DECIDABILITY OF MODULES OVER A BÉZOUT DOMAIN $D+X Q[X]$ WITH D A PRINCIPAL IDEAL DOMAIN AND Q ITS FIELD OF FRACTIONS.

GENA PUNINSKI AND CARLO TOFFALORI

Abstract

We describe the Ziegler spectrum of a Bézout domain $B=D+$ $X Q[X]$ where D is a principal ideal domain and Q is its field of fractions; in particular we compute the Cantor-Bendixson rank of this space. Using this, we prove the decidability of the theory of B-modules when D is "sufficiently" recursive.

1. Introduction

The model theory of modules over Bézout domains has been recently developed in [9]. This note is a further contribution to this theory, in which we analyze a particular class of Bézout domains obtained from principal ideal domains using the so-called $\mathrm{D}+\mathrm{M}$-construction (see [1, p. 7]).

Recall that a commutative domain B (with identity) is said to be Bézout if every 2 -generated (and therefore every finitely generated) ideal of B is principal. Thus for every pair of elements $a, b \in B$ one can introduce a greatest common divisor $\operatorname{gcd}(a, b)$ as a generator c of the ideal $a B+b B$ (this element is unique up to a multiplicative unit of B). Furthermore the intersection $a B \cap b B$ is again a principal ideal $d R$ (therefore B is coherent), and we call d a least common multiple of a and b (again defined up to a multiplicative unit). Under a suitable choice of lcm and gcd we have an equality $\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b$.

The $\mathrm{D}+\mathrm{M}$-construction produces from any principal ideal domain D, which is not a field, a Bézout domain which is not noetherian. In detail let

- $Q=Q(D)$ denote the quotient field of D,
- $B=B(D)$ be the subring of $Q[X]$ consisting of polynomials whose constant term is in D, that is $B=D+X Q[X]$.

Note that in the particular case when D is the ring of integers, $B=\mathbb{Z}+X \mathbb{Q}[X]$.
For basic properties of this construction see [1, pp. 7-8]. For instance (see [1, Example III.1.5]) B is a Bézout domain which is not noetherian. Namely for every prime ($=$ irreducible) $p \in D$, we have a strictly ascending chain $X B \subset p^{-1} X B \subset$

[^0]$p^{-2} X B \subset \ldots$ of ideals of B. It follows that B is not a unique factorization domain (since being a UFD and being noetherian are equivalent for Bézout domains).

Our aim in this note is to examine the decidability of the theory of modules over a Bézout domain $B=B(D)$ for a sufficiently recursive principal ideal domain D. With this purpose in mind, we will study in Section 2 for any such B (sufficiently recursive or not) the Ziegler spectrum of $B, \mathrm{Zg}(B)$, both the points and the topology, and we will compute the Krull-Gabriel dimension of B, equivalently, the Cantor-Bendixson rank of the spectrum. After that we will describe in Section 3 the right setting for analyzing decidability of modules over Bézout domains and we will single out the "effectively" given B for which our decision problem makes sense. Finally in Section 4 we tackle the decidability question for B-modules and we answer it positively when D is effectively given. For instance this is the case for our capital example $D=\mathbb{Z}$ and $B=\mathbb{Z}+X \mathbb{Q}[X]$.

We assume some familiarity with the basic model theory of modules, in particular with pp-formulae, pp-types, (indecomposable) pure injective modules and Ziegler topology. We refer about these premises to [3, 10] or also [6, Chapter 10]. In particular we adopt the following notation: if φ, ψ are pp-formulae in one free variable over a given ring R and M is an R-module, then $\operatorname{Inv}(M, \varphi, \psi)$ denote the index of the subgroup $\varphi(M) \cap \psi(M)$ in $\varphi(M)$, which is either a positive integer k or ∞. Thus $\operatorname{Inv}(\varphi, \psi)=k$ and $\operatorname{Inv}(\varphi, \psi) \geq k$ are first order sentences in the language of R-modules saying that the index (in a given module) is exactly k, or at least k. Such statements are called invariant sentences.

For basic facts on model theory over Bézout domains we refer to [9]. Chapter 17 of [3] discusses the topic of decidability of modules. Modules are always assumed to be right.

2. The Ziegler spectrum

In this section we consider the Ziegler spectrum, $\mathrm{Zg}(B)$, of a Bezout domain $B=B(D)=D+X Q[X]$, where D is a principal ideal domain, not a field, and $Q=Q(D)$ denotes its quotient field. Recall that $\mathrm{Zg}(B)$ is a topological space whose points are (isomorphism classes) of indecomposable pure injective B-modules, and a basis of the topology is given by the compact open sets $(\varphi / \psi) \doteq\{M \in \mathrm{Zg}(B) \mid$ $\varphi(M) \cap \psi(M) \subset \varphi(M)\}$ (a strict inclusion), where φ and ψ range over pp-formulae over B in (at most) one free variable.

We want to calculate the Cantor-Bendixson rank of the Ziegler spectrum of B. Because the lattice L of pp-formulae over any Bézout domain is distributive, by [5, Corollary 5.3.29] this ordinal equals the Krull-Gabriel dimension of B, that is the m-dimension of $L(B)$. The latter invariant is determined by iterative factoring L (and what is obtained from it) by congruence relations collapsing intervals of finite
length (see [5, Chapter 7]). For instance the m-dimension is undefined exactly when L contains a subchain isomorphic to the ordering of the rationals (\mathbb{Q}, \leq).

As a preliminary step in our analysis let us describe the prime ideals of B.
Lemma 2.1. Any nonzero prime ideal P of B is one of the following:

1) $p B$, where p is a prime element of D;
2) for some irreducible polynomial $f(X) \in Q[X]$ whose constant term is 1 , the ideal $P_{f}=f(x) B$;
3) $P_{X}=X Q[X]$.

Furthermore, these prime ideals satisfy the following inclusion schema:

In particular, P_{X} is not principal and $P_{X}=\cap_{p} p B$.
Proof. The following arguments are standard (for instance, see [1, p. 8]). If A is a multiplicative subset of B (or any commutative domain) then there exists a natural 1-1 correspondence between prime ideals P of B such that $P \cap A=\emptyset$ and prime ideals of the localization B_{A}. This correspondence is defined as $P \mapsto P_{A}$ and $I \mapsto I \cap B$ (where I is a prime ideal of B_{A}).

We take $A=D \backslash 0 \subset B$. Then A is multiplicative and $B_{A}=Q[X]$. Let P be a prime ideal of B.

If $P \cap A \neq \emptyset$ then, since P is prime, it contains some prime p. Furthermore $X=p \cdot\left(p^{-1} X\right) \in p B \subseteq P$. It follows that $B / p B \cong D / p D$ is a field, therefore $p B$ is a maximal ideal of B. But then $P=p B$.

Suppose now that $P \cap A=\emptyset$, therefore P is obtained by restriction from a prime ideal $f Q[X]$ of $Q[X]$, where $f(X)$ is an irreducible polynomial. If the constant term of f is zero, we may assume that $f=X$, therefore $P=X Q[X] \cap B=X Q[X]$. Otherwise we may suppose that the constant term of f equals 1 (therefore $f \in B$) and $P=f Q[X] \cap B$. But clearly this intersection equals $f B$.

The remaining claims are straightforward.
Note that the Krull dimension of B (defined as a maximal length of a chain of prime ideals) is 2 , and B is not catenary ($0 \subset P_{f}$ is another saturated chain of prime ideals of length 1).

Now we describe, for each prime P, the corresponding localization B_{P}. Since B is a Bézout domain, B_{P} must be a valuation domain.

First consider the case $P=p B$ for a prime $p \in B$. Clearly $B_{P}=B_{p}=$ $D_{p}+X Q[X]$, where D_{p} stands for localization of D with respect to $p D$. The principal ideals of B_{p} form the following chain:

$$
B_{p} \supset p B_{p} \supset p^{2} B_{p} \supset \cdots \supset p^{-1} X B_{p} \supset X B_{p} \supset p X B_{p} \supset \cdots \supset X^{2} B_{p} \supset \ldots .
$$

In particular, the Krull dimension of B_{p} equals 2 .
One corollary is immediate.
Lemma 2.2. The Krull-Gabriel dimension of B is at least 4.
Proof. It suffices to prove that $\mathrm{KG}\left(B_{p}\right)=4$ for some (in fact for any) prime p. Since B_{p} is a valuation domain, this is a standard procedure (see [6, Chapter 5]). Each indecomposable pure injective B_{p} module M is uniquely determined by a pair of ideals (I, J) of B_{p}, therefore we will write $M=\mathrm{PE}(I, J)$, where I stands for the annihilator ideal of some element of M and J is its non-divisibility ideal. Furthermore, the Cantor-Bendixson rank of M equals $\operatorname{mim}(I) \oplus \operatorname{mdim}(J)$, where $\operatorname{mdim}(I)$ is the m-dimension of the cut defined by I on the chain of principal ideals of B_{p}.

Note that the only cut on this chain of maximal m-dimension 2 corresponds to the zero ideal, and the cut defined by a principal ideal has m-dimension 0 .

Thus the unique point of maximal CB-rank in $\mathrm{Zg}\left(B_{p}\right)$ corresponds to the pair $(0,0)$, hence isomorphic to $Q(X)$ (the generic point). Its CB-rank equals $2+2=4$. As we have already noticed this value coincides with the Krull-Gabriel dimension of B_{p}.

To simplify ongoing considerations let us make some general remarks. If P is a prime ideal of a commutative ring R, then by Zg_{P} we will denote the closed subspace of $\mathrm{Zg}(R)$ consisting of modules on which each $r \in R \backslash P$ acts as an automorphism. Clearly this set can be identified with the Ziegler spectrum of the localization R_{P}, that is $\mathrm{Zg}_{P}=\mathrm{Zg}\left(R_{P}\right)$.

Define a map $P \mapsto \mathrm{Zg}_{P}$ from the set of prime ideals of R ordered by inclusion to the collection of closed subsets of $\mathrm{Zg}(R)$.

Remark 2.3. The map $P \mapsto \mathrm{Zg}_{P}$ preserves the ordering. Furthermore, if the intersection of prime ideals $\cap_{i \in I} P_{i}$ is a prime ideal (say, if the P_{i} form a chain), then this map preserves this intersection.

Proof. Suppose that $P \subseteq Q$ are prime ideals and $M \in \mathrm{Zg}_{P}$. For any $r \notin Q$ we have $r \notin P$, therefore r acts as an isomorphism on M. But this means that $M \in \mathrm{Zg}_{Q}$.

Using this (though we do need this) the above map can be extended to semiprime ideals, therefore (taking radicals) to all ideals of R.

If M is an indecomposable pure injective R-module, then consider the set $P=$ $P(M)$ consisting of $r \in R$ which act as non-isomorphisms on M. It follows from [10, Theorem 5.4] that P is a prime ideal and M has a natural structure of an (indecomposable pure injective) R_{P}-module. Therefore the whole Ziegler spectrum $\mathrm{Zg}(R)$ is covered by the union of closed subsets Zg_{P}.

Now we are in a position to show that the above estimate of the Krull-Gabriel dimension of our B is sharp.

Theorem 2.4. The Krull-Gabriel dimension of B equals 4 with $Q(X)$ being a unique point of maximal CB-rank.

Proof. The following is a schematic diagram of $\mathrm{Zg}(B)$: we imagine it as a bouquet of closed subspaces anchored in the generic point $Q(X)$.

We know the Ziegler spectrum of any valuation domain B_{P} with P a prime ideal of B, and know the relative CB-ranks of points measured in $\mathrm{Zg}\left(B_{P}\right)$. But $\mathrm{Zg}\left(B_{P}\right)$ is a closed subset of $\mathrm{Zg}(B)$ which is not open. Thus, if $M \in \mathrm{Zg}\left(B_{P}\right)$, the 'global' CB-rank of M could be larger than the CB-rank of M calculated in relative topology. Measuring this jump is the main problem to take care of.

Let M be an indecomposable pure injective B-module and $P=P(M)$, therefore M has a natural structure of a B_{P}-module.

First assume that $P=f B$ for an irreducible polynomial $f(X) \in Q[X]$ with 1 as a constant term. We have already mentioned that $B_{f}=B_{f B}$ is a noetherian valuation domain and described its ideals. It follows that either $M=B_{f} / f^{n} B_{f}$ is a finitely generated B_{f}-module, or M is Prüfer or adic, or $M=Q(X)$, the unique generic module.

Note that the basic open set $V_{f}=(x f=0 / x=0)$ consists of points on which $f(X)$ acts with a nontrivial kernel. We claim that V_{f} is contained in $\mathrm{Zg}\left(B_{f}\right)$. Indeed, let M be a point in V_{f} and $P=P(M)$. Then $f \in P(M)$, therefore $P(M)=f B$ and hence every $r \notin f B$ acts as an isomorphism on M.

The same is true for the open set $W_{f}=(x=x / f \mid x)$. In the union $U_{f}=V_{f} \cup W_{f}$ of these open sets $f(X)$ acts as a non-isomorphism. Observe that U_{f} contains all points of $\mathrm{Zg}\left(B_{f}\right)$, but the generic, and $U_{f} \cap \mathrm{Zg}_{p}=\emptyset$ for any prime p.

Let n be a positive integer. Since $V=\left(x f^{n}=0 / f \mid x+x f^{n-1}=0\right)$ isolates $B_{f} / f^{n} B_{f}$ in $\mathrm{Zg}\left(B_{f}\right)$, it follows that $V \cap U_{f}$ isolates this point in $\mathrm{Zg}(B)$. Since the Prüfer module $\operatorname{Pr}\left(B_{f}\right)$ has CB-rank 1 in $\mathrm{Zg}\left(B_{f}\right)$ and f has a nonzero kernel acting on it, it follows that $\operatorname{Pr}\left(B_{f}\right)$ has CB-rank 1 in $\mathrm{Zg}(B)$. Similarly the adic module $\mathrm{PE}\left(B_{f}\right)$ has CB-rank 1 in $\mathrm{Zg}(B)$, as f is not onto when acting on this module.

As we will see later the only remaining point in Zg_{f}, that is, the generic point $Q(X)$ (whose CB-rank in $\operatorname{Zg}\left(B_{f}\right)$ equals 2) jumps to maximal CB-rank 4 in the whole space.

Now let us consider the points $M \in \operatorname{Zg}\left(B_{p}\right)$ for some prime $p \in D$. We have already mentioned the description of ideals of B_{p} and the fact that every point of $\mathrm{Zg}\left(B_{p}\right)$ is determined by a pair of ideals (I, J) of B_{p}; let $\mathrm{PE}(I, J)$ denote this point. Look at the open set U_{p} consisting of points on which p acts as a non-isomorphism. It is obvious that $U_{p} \subseteq \mathrm{Zg}\left(B_{p}\right)$ and its complement in Zg_{P} is Zg_{X} :

It is easily seen that a point $M=\mathrm{PE}(I, J)$ belongs to U_{p} if and only if either I or J is a principal nonzero ideal of B_{p}. For instance, if $I=J=p B_{p}$, then M is a simple B_{p}-module $B_{p} / p B_{p}$. The m-dimension of the cut defined by a principal nonzero ideal is 0 while the maximal m-dimension (that is, the one of the cut defined by the zero ideal) is 2 . Therefore the pairs of m-dimensions of cuts defined by the ideals I, J of B_{p} are $(0,0),(0,1),(1,0),(2,0)$ and $(0,2)$. Their relative CB-ranks are the corresponding sums 0,1 and 2 .

Thus intersecting U_{p} with an open set which isolates such a point $M=\mathrm{PE}(I, J)$ in $\mathrm{Zg}\left(B_{p}\right)$ at the corresponding level we see that its CB-rank does not change when passing to the ambient space $\mathrm{Zg}(B)$.

All the remaining points of $\operatorname{Zg}(B)$ are not included in U_{p} for any p. As each p acts as a isomorphism on these points, they belong to $\mathrm{Zg}\left(B_{X}\right)$. For instance if $I=J=\cup_{n} p^{n} X B_{p}$ and $M=\operatorname{PE}(I, J)$, then $M \notin U_{p}$ and its relative CB-rank equals $1+1=2$.

Thus, if M is one of the remaining points (and is not generic), then either $M=B_{X} / X^{n} B_{X}$ for some positive integer n or M is Prüfer or adic over B_{X}.

First we will prove that $M=B_{X} / X^{n} B_{X}$ has CB-rank 2 (by looking at the relative CB-rank, global rank is at least 2). For this we will use the basic open set $\left(x X^{n}=0 / X \mid x+x X^{n-1}=0\right)$ and intersect it with U_{X} to avoid the various $\mathrm{Zg}\left(B_{f}\right)$ (clearly $\left.U_{X} \cap \mathrm{Zg}\left(B_{f}\right)=\emptyset\right)$. It suffices to show that this open set separates M from the points in $\mathrm{Zg}\left(B_{p}\right)$ (p a prime) of CB-rank 2 corresponding to the following pairs of m-dimensions: $(2,0)$ and $(0,2)$.

Those are the points $\operatorname{PE}(I, J)$, where one of the ideals is principal and nonzero and the other is zero. Suppose that the above pair opens on an element $m \in$ $\mathrm{PE}(I, J)$, where we may assume that I is the annihilator of m and J is a 'nondivisibility' ideal of m. Since $X^{n} \in I$, it follows that I is nonzero. Similarly, as $X \in J$, one deduces that J is nonzero. But this contradicts the choice of I and J.

What remains in $\mathrm{Zg}\left(B_{X}\right)$ is the Prüfer point $\operatorname{Pr}\left(B_{X}\right)$, the adic point $\mathrm{PE}\left(B_{X}\right)$, and the generic point $Q(X)$. Clearly $(x X=0 / x=0)$ separates $\operatorname{Pr}\left(B_{X}\right)$ from $\operatorname{PE}\left(B_{X}\right)$ and $Q(X)$, therefore $\mathrm{CB}\left(\operatorname{Pr}\left(B_{X}\right)\right)=3$. The same is true for $\operatorname{PE}\left(B_{X}\right)$.

The only remaining point $Q(X)$ has CB-rank 4.
Note that the map in Remark 2.3 does not reflect intersections. Indeed, as follows from this remark, $\mathrm{Zg}_{X}=\cap_{p} \mathrm{Zg}_{p}$. But it is easily seen that for any primes $p \neq q$ we also have $\mathrm{Zg}_{X}=\mathrm{Zg}_{p} \cap \mathrm{Zg}_{q}$, but $X B$ is a proper subset of $p B \cap q B$.

3. Effectively given Bézout domains

We are going to consider decidability of B-modules. It is well known that some natural conditions are to be assumed on an arbitrary ring R (in particular on our B) to ensure that the decision problem of R-modules make sense (see [3, Section 17.1]). Let we briefly discuss this matter. For simplicity we refer to integral domains R with identity. The following definition is a bit informal, but can be easily stated in a rigorous way via Turing Machines and Church Thesis.

Definition 3.1. A countable integral domain R is said to be effectively given if its elements can be recursively listed (possibly with repetitions) as

$$
r_{0}=0, r_{1}=1, r_{2}, \ldots, r_{k}, \ldots \quad k \in \mathbb{N}
$$

so that the following holds:

1) there are algorithms which, given $n, m \in \mathbb{N}$, produce $r_{n}+r_{m},-r_{n}$ and $r_{n} \cdot r_{m}$ (more precisely indices for these elements in the list);
2) there is an algorithm which, given $n, m \in \mathbb{N}$, decides whether $r_{n}=r_{m}$ or not;
3) there is an algorithm which, given $n, m \in \mathbb{N}$, establishes whether $r_{m} \mid r_{n}$ or not.

Notice that, if R is effectively given, then the theory $T(R)$ is recursively enumerable. Here are some further straightforward consequences of the same hypothesis.

Remark 3.2. Let R be an effectively given integral domain.
4) There is an algorithm which, given $n, m \in \mathbb{N}$ with $r_{m} \mid r_{n}$, provides $r \in R$ such that $r_{m} \cdot r=r_{m}$ (that is, an index for this quotient in the list).
5) There is an algorithm which, given $m \in \mathbb{N}$, decides whether r_{m} is a unit of R or not and, if yes, calculates its inverse.
6) Suppose that R is a Bézout domain. Then there is an algorithm which, given $n, m \in \mathbb{N}$ with $r_{n}, r_{m} \neq 0$, calculates a greatest common divisor of r_{n}, r_{m} (or rather an index of it).

Proof. 4) Just explore the list $r_{k}, k \in \mathbb{N}$, for every k calculate $r_{m} \cdot r_{k}$ and check whether this product equals r_{n}. As r_{m} divides r_{n}, one eventually finds such an index.
5) Apply 3) and 4) to $n=1$.
6) Explore the list of all possible 4-types $(a, b, u, v) \in R^{4}$ (which can be obtained in a standard way from the list of R) looking at the solution of

$$
r_{n}=\left(r_{n} \cdot u+r_{m} \cdot v\right) \cdot a, \quad \quad r_{m}=\left(r_{n} \cdot u+r_{m} \cdot v\right) \cdot b
$$

As R is Bézout, one eventually finds, after finitely many steps, a successful tuple (a, b, u, v). Then put $\operatorname{gcd}\left(r_{n}, r_{m}\right)=r_{n} \cdot u+r_{m} \cdot v$.

Note that, given 6) for a Bézout domain R, the conditions 3) (and hence 4)) become excessive. Indeed to check whether r_{m} divides r_{n} calculate first $\operatorname{gcd}\left(r_{m}, r_{n}\right)$, divide r_{m} by it and look whether the quotient is invertible.

The following result shows that when analyzing pp-formulae over Bézout domains it suffices to consider only divisibility and annihilator conditions. Recall that, up to logical equivalence, if $\chi(x)$ and $\chi^{\prime}(x)$ are pp-formulas in a single variable x, then also their conjunction $\chi(x) \wedge \chi^{\prime}(x)$ and their sum $\chi(x)+\chi^{\prime}(x)$, introduced as $\exists u \exists u^{\prime}\left(\chi(u) \wedge \chi^{\prime}\left(u^{\prime}\right) \wedge x=u+u^{\prime}\right)$, are pp-formulas. Moreover the equivalence classes of pp-formulas are a lattice with respect to the corresponding operations.

Lemma 3.3. Every pp-formula $\chi(x)$ in one variable over a Bézout domain R is equivalent to a finite conjunction of formulae $\varphi_{a, b} \doteq a \mid x+x b=0, a, b \in R$, and also to a finite sum of formulae $\psi_{c, d} \doteq c \mid x \wedge x d=0$.

Furthermore, if R is effectively given, then these formulae can be found effectively.

Proof. The existence of such formulas over an arbitrary R follows from [9, Lemma 2.3]. However we have to find them effectively when R is effectively given. To do that, begin producing all the possible implications of $\chi(x)$ and the (recursively enumerable) theory $T(R)$ of R via formal proofs. When this procedure provides a formula $\chi^{\prime}(x)$ of the desired form - so a suitable combination of divisibility and annihilator conditions - start producing implications from $T(R)$ and $\chi^{\prime}(x)$, looking for $\chi(x)$.

The existence result ensures that the procedure will eventually halts in a successful way, so producing a formula $\chi^{\prime}(x)$ equivalent to $\chi(x)$.

For instance this lemma gives a good basis for the Ziegler topology.
Corollary 3.4. Let R be an effectively given Bézout domain. Then the open sets $\left(\psi_{c, d} / \varphi_{a, b}\right), a, b, c, d \in R$ form a basis of the topology of $\operatorname{Zg}(R)$ which can be effectively enumerated.

4. Decidability

The aim of this section is to prove decidability of modules over Bézout domains B, and we have a range of methods at disposal. Using the fact that the Ziegler spectrum of B is countable and its precise description, we can make an effective list of points $M_{k}, k \in \mathbb{N}$, of $\mathrm{Zg}(B)$. By Corollary 3.4 we also know an effective basis for this space. According to a general recipe of Ziegler [10, Theorem 9.4] (see also Prest's unpublished preprint [4]) it suffices to provide an algorithm which, given a point M_{k}, a basic open set $\left(\varphi_{i} / \psi_{i}\right)$ and a positive integer l, decides whether $\operatorname{Inv}\left(\varphi_{i}, \psi_{i}\right)=l$ holds true in M_{k}.

It is possible to obtain the proof of decidability pursuing this approach, however (being partly logicians) we will produce another proof based on a recent result by Lorna Gregory on the decidability of modules over a valuation domain [2]. To do that, let us introduce some further notation: if V is a valuation domain, then $\operatorname{Jac}(V)$ will denote its Jacobson radical ($=$ the set of non-units) and $F=V / \mathrm{Jac}(V)$ is the residue field of V.

If V is effectively given, then (see [8, p. 273]) the decidability of V-modules yields the knowledge of the size of F (that is whether F is finite or infinite and, if finite, the number of elements in F). By [2] the converse is almost true.

Fact 4.1. [2] Suppose that V is an effectively given valuation domain with known size of the residue field and with an algorithm checking for given $a, b \in V$ whether $a \in b^{n} V$ holds for some n. Then the theory of V-modules is decidable.

Note that, if a principal ideal domain D is effectively given, then it is easily seen that the rings $Q=Q(D), Q[X]$ and $B=D+X Q[X]$ are effectively given. However to reduce decidability to valuation domains, we will require of D some extra effectiveness. We say that (an effectively given) principal ideal domain D is strongly effectively given if it satisfies the following extra conditions:
1)' there is an algorithm that lists all the prime elements of D;
$2)^{\prime}$ there is an algorithm that lists all the irreducible polynomials of $Q[X]$;
$3)^{\prime}$ for every prime p the size of the field $D / p D$ is known.
For instance, it is well known (say, by an old Kronecker's algorithm checking indecomposability of rational polynomials) that \mathbb{Z} is effectively given.

We do not know whether these extra effectiveness conditions can be formally derived from decidability of B-modules. The problem is that despite a localization of B, say the one B_{p} at some prime p, is given effectively, the theory of B_{p}-modules is defined in the theory of B-modules using an infinite set of axioms (so it is not clear in advance that the theory of B_{p}-modules must be decidable).

However the previous restrictions are natural and satisfied for many examples. In fact the condition 2$)^{\prime}$ rephrases, in the terminology of [3, p. 344], the property that Q has a splitting algorithm, and \mathbb{Q} does admit it. On the basis of 1$)^{\prime}$ and 2$)^{\prime}$, one also gets algorithms to decompose a non-invertible element of D in a product of primes, in particular to decide whether it is irreducible or not; and we can do the same for polynomials in $Q[X]$.

We can even specify this for B, with an obvious proof.
Lemma 4.2. Let D be strongly effectively given. Every nonzero polynomial $F[X] \in$ B can be effectively decomposed as $r s^{-1} X^{n} F^{\prime}(X)$, where r, s are coprime elements of D, n is a non-negative integer and $F^{\prime}(X)$ has constant term 1 and is (effectively) written as a product of irreducible polynomials.

If a principal ideal domain D is effectively given, the same is clearly true for each localization B_{p} and B_{f}. Thus in the remainder of this section we will refer to these localizations with a fixed effective enumeration.

Lemma 4.3. Let D be a strongly effectively given principal ideal domain. Then each localization B_{p}, p a prime, and B_{f}, f an irreducible polynomial of $Q[X]$ of constant term 1, has a decidable theory of modules.

Proof. Each such localization is an effectively given valuation domain. Furthermore, because $B_{p} / \operatorname{Jac}\left(B_{p}\right) \cong D / p D$, and $B_{f} / \operatorname{Jac}\left(B_{f}\right)$ is infinite, we know the sizes of residue fields. Using Gregory's result, it suffices to decide, for given elements a, b of any of these localizations V, whether $a \in b^{n} V$ holds true for some n.

This can be easily checked, because we can reduce a, b to polynomials in B and and then use their presentations from Lemma 4.2.

Now we are in a position to prove the following.
Theorem 4.4. Let D be a strongly effectively given principal ideal domain and let $B=D+X Q[X]$ be the corresponding Bezout domain. Then the theory $T(B)$ of B-modules is decidable.

Proof. Since B is effectively given, from axioms for B-modules we can generate a list of sentences true in any B-module (that is, $T(B)$ is recursively enumerable). To prove decidability we have to enumerate a complement of $T(B)$, which is equivalent to listing in an effective way sentences true in some B-module.

Every indecomposable pure injective B-module localizes, therefore has a natural structure of either a B_{p}-module for some prime p or a B_{f}-module for some
irreducible polynomial f with 1 as a constant term. Make an effective list of such modules with marks from which localization they stem.

In view of [4], in order to complete our proof, it suffices to restrict to modules M that are finite direct sums of indecomposable pure injective summands, $M=$ $M_{0} \oplus \cdots \oplus M_{k}$, and to produce a set of axioms for the theory of any such $M, T(M)$.

By Baur-Monk theorem and because $T(M)$ is complete, this theory is axiomatized by invariant sentences $\operatorname{Inv}(\varphi, \psi) \geq n$. We will list all such sentences σ and decide whether they are true in M. By additivity $M \models \sigma$ if and only if each $M_{i} \models \operatorname{Inv}(\varphi, \psi) \geq n_{i}$ and $n_{1} \cdot \ldots \cdot n_{k} \geq n$, where we may assume that $n_{i} \leq n$.

Since the theory of each localization of B is decidable, each question $M_{i} \models$ $\operatorname{Inv}(\varphi, \psi) \geq n_{i}$ can be answered effectively (using the localization at the marked prime ideal), hence so is σ.

Thus we obtain the result of our original interest.
Corollary 4.5. The theory of $\mathbb{Z}+X \mathbb{Q}[X]$-modules is decidable.

References

[1] L. Fuchs, L. Salce, Modules over non-Noetherian Domains, Mathematical Surveys and Monographs Series 84, American Mathematical Society, 2001.
[2] L. Gregory, Decidability for theories of modules over valuation domains, Preprint, 31 pages, www.math.uni-konstanz.de/ gregory/Decmodulesgregory.pdf
[3] M. Prest, Model Theory and Modules, London Mathematical Society Lecture Note Series 130, Cambridge University Press, 1988.
[4] M. Prest, Decidability for modules - summary, unpublished notes, 1991.
[5] M. Prest, Purity, Spectra and Localization, Encyclopedia of Mathematics and its Applictions 121, Cambridge University Press, 2009.
[6] G. Puninski, Serial Rings, Kluwer, 2001.
[7] G. Puninski, M. Prest, P. Rothmaler, Rings described by various purities, Comm. Algebra 27 (1999), 2127-2162.
[8] G. Puninski, V. Puninskaya, C. Toffalori, Decidability of the theory of modules over commutative valuation domains, Ann. Pure Appl. Logic, 145 (2007), 258-275.
[9] G. Puninski, C. Toffalori, Model theory of modules over Bézout domains. The width, Preprint, 34 pages, http://www.logique.jussieu.fr/modnet/Publications/Preprint\ server/papers/639/639.pdf [10] M. Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149-213.
(G. Puninski) Faculty of Mechanics and Mathematics, Belarusian State University, 4, praspekt Nezalezhnosti, Minsk 220030, Belarus

E-mail address: punins@mail.ru
(C. Toffalori) University of Camerino, School of Science and Technologies, Division of Mathematics, Via Madonna delle Carceri 9, 62032 Camerino, Italy

E-mail address: carlo.toffalori@unicam.it

[^0]: 2000 Mathematics Subject Classification. 03C60, 13F05, 13F30.
 Key words and phrases. Bézout domain, decidability, Ziegler spectrum, Cantor-Bendixson rank, Krull-Gabriel dimension.

