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Abstract. We describe the Ziegler spectrum of a Bézout domain B = D +

XQ[X] where D is a principal ideal domain and Q is its field of fractions; in

particular we compute the Cantor–Bendixson rank of this space. Using this,

we prove the decidability of the theory of B-modules when D is “sufficiently”

recursive.

1. Introduction

The model theory of modules over Bézout domains has been recently developed

in [9]. This note is a further contribution to this theory, in which we analyze a

particular class of Bézout domains obtained from principal ideal domains using the

so-called D+M-construction (see [1, p. 7]).

Recall that a commutative domain B (with identity) is said to be Bézout if every

2-generated (and therefore every finitely generated) ideal of B is principal. Thus

for every pair of elements a, b ∈ B one can introduce a greatest common divisor

gcd(a, b) as a generator c of the ideal aB + bB (this element is unique up to a

multiplicative unit of B). Furthermore the intersection aB∩bB is again a principal

ideal dR (therefore B is coherent), and we call d a least common multiple of a and

b (again defined up to a multiplicative unit). Under a suitable choice of lcm and

gcd we have an equality lcm(a, b) · gcd(a, b) = ab.

The D+M-construction produces from any principal ideal domain D, which is

not a field, a Bézout domain which is not noetherian. In detail let

• Q = Q(D) denote the quotient field of D,

• B = B(D) be the subring of Q[X] consisting of polynomials whose constant

term is in D, that is B = D +XQ[X].

Note that in the particular case when D is the ring of integers, B = Z+XQ[X].

For basic properties of this construction see [1, pp. 7–8]. For instance (see [1,

Example III.1.5]) B is a Bézout domain which is not noetherian. Namely for every

prime (= irreducible) p ∈ D, we have a strictly ascending chain XB ⊂ p−1XB ⊂
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p−2XB ⊂ . . . of ideals of B. It follows that B is not a unique factorization domain

(since being a UFD and being noetherian are equivalent for Bézout domains).

Our aim in this note is to examine the decidability of the theory of modules

over a Bézout domain B = B(D) for a sufficiently recursive principal ideal domain

D. With this purpose in mind, we will study in Section 2 for any such B (suffi-

ciently recursive or not) the Ziegler spectrum of B, Zg(B), both the points and the

topology, and we will compute the Krull–Gabriel dimension of B, equivalently, the

Cantor–Bendixson rank of the spectrum. After that we will describe in Section 3

the right setting for analyzing decidability of modules over Bézout domains and

we will single out the “effectively” given B for which our decision problem makes

sense. Finally in Section 4 we tackle the decidability question for B-modules and

we answer it positively when D is effectively given. For instance this is the case for

our capital example D = Z and B = Z +XQ[X].

We assume some familiarity with the basic model theory of modules, in particular

with pp-formulae, pp-types, (indecomposable) pure injective modules and Ziegler

topology. We refer about these premises to [3, 10] or also [6, Chapter 10]. In

particular we adopt the following notation: if ϕ,ψ are pp-formulae in one free

variable over a given ring R and M is an R-module, then Inv(M,ϕ, ψ) denote the

index of the subgroup ϕ(M)∩ψ(M) in ϕ(M), which is either a positive integer k or

∞. Thus Inv(ϕ,ψ) = k and Inv(ϕ,ψ) ≥ k are first order sentences in the language

of R-modules saying that the index (in a given module) is exactly k, or at least k.

Such statements are called invariant sentences.

For basic facts on model theory over Bézout domains we refer to [9]. Chapter 17

of [3] discusses the topic of decidability of modules. Modules are always assumed

to be right.

2. The Ziegler spectrum

In this section we consider the Ziegler spectrum, Zg(B), of a Bezout domain

B = B(D) = D + XQ[X], where D is a principal ideal domain, not a field, and

Q = Q(D) denotes its quotient field. Recall that Zg(B) is a topological space whose

points are (isomorphism classes) of indecomposable pure injective B-modules, and

a basis of the topology is given by the compact open sets (ϕ/ψ)
.
= {M ∈ Zg(B) |

ϕ(M)∩ψ(M) ⊂ ϕ(M)} (a strict inclusion), where ϕ and ψ range over pp-formulae

over B in (at most) one free variable.

We want to calculate the Cantor–Bendixson rank of the Ziegler spectrum of B.

Because the lattice L of pp-formulae over any Bézout domain is distributive, by [5,

Corollary 5.3.29] this ordinal equals the Krull–Gabriel dimension of B, that is the

m-dimension of L(B). The latter invariant is determined by iterative factoring L

(and what is obtained from it) by congruence relations collapsing intervals of finite
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length (see [5, Chapter 7]). For instance the m-dimension is undefined exactly when

L contains a subchain isomorphic to the ordering of the rationals (Q,≤).

As a preliminary step in our analysis let us describe the prime ideals of B.

Lemma 2.1. Any nonzero prime ideal P of B is one of the following:

1) pB, where p is a prime element of D;

2) for some irreducible polynomial f(X) ∈ Q[X] whose constant term is 1, the

ideal Pf = f(x)B;

3) PX = XQ[X].

Furthermore, these prime ideals satisfy the following inclusion schema:
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In particular, PX is not principal and PX = ∩p pB.

Proof. The following arguments are standard (for instance, see [1, p. 8]). If A

is a multiplicative subset of B (or any commutative domain) then there exists a

natural 1-1 correspondence between prime ideals P of B such that P ∩ A = ∅ and

prime ideals of the localization BA. This correspondence is defined as P 7→ PA and

I 7→ I ∩B (where I is a prime ideal of BA).

We take A = D \ 0 ⊂ B. Then A is multiplicative and BA = Q[X]. Let P be a

prime ideal of B.

If P ∩ A 6= ∅ then, since P is prime, it contains some prime p. Furthermore

X = p · (p−1X) ∈ pB ⊆ P . It follows that B/pB ∼= D/pD is a field, therefore pB

is a maximal ideal of B. But then P = pB.

Suppose now that P ∩A = ∅, therefore P is obtained by restriction from a prime

ideal fQ[X] of Q[X], where f(X) is an irreducible polynomial. If the constant term

of f is zero, we may assume that f = X, therefore P = XQ[X] ∩ B = XQ[X].

Otherwise we may suppose that the constant term of f equals 1 (therefore f ∈ B)

and P = fQ[X] ∩B. But clearly this intersection equals fB.

The remaining claims are straightforward. �

Note that the Krull dimension of B (defined as a maximal length of a chain of

prime ideals) is 2, and B is not catenary (0 ⊂ Pf is another saturated chain of

prime ideals of length 1).

Now we describe, for each prime P , the corresponding localization BP . Since B

is a Bézout domain, BP must be a valuation domain.
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First consider the case P = pB for a prime p ∈ B. Clearly BP = Bp =

Dp + XQ[X], where Dp stands for localization of D with respect to pD. The

principal ideals of Bp form the following chain:

Bp ⊃ pBp ⊃ p2Bp ⊃ · · · ⊃ p−1XBp ⊃ XBp ⊃ pXBp ⊃ · · · ⊃ X2Bp ⊃ . . . .

In particular, the Krull dimension of Bp equals 2.

One corollary is immediate.

Lemma 2.2. The Krull–Gabriel dimension of B is at least 4.

Proof. It suffices to prove that KG(Bp) = 4 for some (in fact for any) prime p.

Since Bp is a valuation domain, this is a standard procedure (see [6, Chapter 5]).

Each indecomposable pure injective Bp module M is uniquely determined by a

pair of ideals (I, J) of Bp, therefore we will write M = PE(I, J), where I stands

for the annihilator ideal of some element of M and J is its non-divisibility ideal.

Furthermore, the Cantor–Bendixson rank of M equals mdim(I)⊕mdim(J), where

mdim(I) is the m-dimension of the cut defined by I on the chain of principal ideals

of Bp.

Note that the only cut on this chain of maximal m-dimension 2 corresponds to

the zero ideal, and the cut defined by a principal ideal has m-dimension 0.

Thus the unique point of maximal CB-rank in Zg(Bp) corresponds to the pair

(0, 0), hence isomorphic to Q(X) (the generic point). Its CB-rank equals 2 + 2 = 4.

As we have already noticed this value coincides with the Krull–Gabriel dimension

of Bp. �

To simplify ongoing considerations let us make some general remarks. If P is a

prime ideal of a commutative ring R, then by ZgP we will denote the closed subspace

of Zg(R) consisting of modules on which each r ∈ R \ P acts as an automorphism.

Clearly this set can be identified with the Ziegler spectrum of the localization RP ,

that is ZgP = Zg(RP ).

Define a map P 7→ ZgP from the set of prime ideals of R ordered by inclusion

to the collection of closed subsets of Zg(R).

Remark 2.3. The map P 7→ ZgP preserves the ordering. Furthermore, if the

intersection of prime ideals ∩i∈IPi is a prime ideal (say, if the Pi form a chain),

then this map preserves this intersection.

Proof. Suppose that P ⊆ Q are prime ideals and M ∈ ZgP . For any r /∈ Q we have

r /∈ P , therefore r acts as an isomorphism on M . But this means that M ∈ ZgQ. �

Using this (though we do need this) the above map can be extended to semiprime

ideals, therefore (taking radicals) to all ideals of R.
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If M is an indecomposable pure injective R-module, then consider the set P =

P (M) consisting of r ∈ R which act as non-isomorphisms on M . It follows from

[10, Theorem 5.4] that P is a prime ideal and M has a natural structure of an

(indecomposable pure injective) RP -module. Therefore the whole Ziegler spectrum

Zg(R) is covered by the union of closed subsets ZgP .

Now we are in a position to show that the above estimate of the Krull–Gabriel

dimension of our B is sharp.

Theorem 2.4. The Krull–Gabriel dimension of B equals 4 with Q(X) being a

unique point of maximal CB-rank.

Proof. The following is a schematic diagram of Zg(B): we imagine it as a bouquet

of closed subspaces anchored in the generic point Q(X).

Up Uq

ZgX

•Q(X)

Uf

Zgp Zgq

Zgf

We know the Ziegler spectrum of any valuation domain BP with P a prime

ideal of B, and know the relative CB-ranks of points measured in Zg(BP ). But

Zg(BP ) is a closed subset of Zg(B) which is not open. Thus, if M ∈ Zg(BP ), the

‘global’ CB-rank of M could be larger than the CB-rank of M calculated in relative

topology. Measuring this jump is the main problem to take care of.

Let M be an indecomposable pure injective B-module and P = P (M), therefore

M has a natural structure of a BP -module.

First assume that P = fB for an irreducible polynomial f(X) ∈ Q[X] with 1

as a constant term. We have already mentioned that Bf = BfB is a noetherian

valuation domain and described its ideals. It follows that either M = Bf/f
nBf is

a finitely generated Bf -module, or M is Prüfer or adic, or M = Q(X), the unique

generic module.

Note that the basic open set Vf = (xf = 0/x = 0) consists of points on which

f(X) acts with a nontrivial kernel. We claim that Vf is contained in Zg(Bf ).

Indeed, let M be a point in Vf and P = P (M). Then f ∈ P (M), therefore

P (M) = fB and hence every r /∈ fB acts as an isomorphism on M .
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The same is true for the open set Wf = (x = x/f | x). In the union Uf = Vf∪Wf

of these open sets f(X) acts as a non-isomorphism. Observe that Uf contains all

points of Zg(Bf ), but the generic, and Uf ∩ Zgp = ∅ for any prime p.

Let n be a positive integer. Since V = (xfn = 0/f | x + xfn−1 = 0) isolates

Bf/f
nBf in Zg(Bf ), it follows that V ∩ Uf isolates this point in Zg(B). Since the

Prüfer module Pr(Bf ) has CB-rank 1 in Zg(Bf ) and f has a nonzero kernel acting

on it, it follows that Pr(Bf ) has CB-rank 1 in Zg(B). Similarly the adic module

PE(Bf ) has CB-rank 1 in Zg(B), as f is not onto when acting on this module.

As we will see later the only remaining point in Zgf , that is, the generic point

Q(X) (whose CB-rank in Zg(Bf ) equals 2) jumps to maximal CB-rank 4 in the

whole space.

Now let us consider the points M ∈ Zg(Bp) for some prime p ∈ D. We have

already mentioned the description of ideals of Bp and the fact that every point of

Zg(Bp) is determined by a pair of ideals (I, J) of Bp; let PE(I, J) denote this point.

Look at the open set Up consisting of points on which p acts as a non-isomorphism.

It is obvious that Up ⊆ Zg(Bp) and its complement in ZgP is ZgX :

Zg(BX)

Up

Zg(Bp)

It is easily seen that a point M = PE(I, J) belongs to Up if and only if either I

or J is a principal nonzero ideal of Bp. For instance, if I = J = pBp, then M is

a simple Bp-module Bp/pBp. The m-dimension of the cut defined by a principal

nonzero ideal is 0 while the maximal m-dimension (that is, the one of the cut defined

by the zero ideal) is 2. Therefore the pairs of m-dimensions of cuts defined by the

ideals I, J of Bp are (0, 0), (0, 1), (1, 0), (2, 0) and (0, 2). Their relative CB-ranks

are the corresponding sums 0, 1 and 2.

Thus intersecting Up with an open set which isolates such a point M = PE(I, J)

in Zg(Bp) at the corresponding level we see that its CB-rank does not change when

passing to the ambient space Zg(B).

All the remaining points of Zg(B) are not included in Up for any p. As each

p acts as a isomorphism on these points, they belong to Zg(BX). For instance if

I = J = ∪npnXBp and M = PE(I, J), then M /∈ Up and its relative CB-rank

equals 1 + 1 = 2.

Thus, if M is one of the remaining points (and is not generic), then either

M = BX/X
nBX for some positive integer n or M is Prüfer or adic over BX .
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First we will prove that M = BX/X
nBX has CB-rank 2 (by looking at the

relative CB-rank, global rank is at least 2). For this we will use the basic open set

(xXn = 0/X | x+xXn−1 = 0) and intersect it with UX to avoid the various Zg(Bf )

(clearly UX ∩Zg(Bf ) = ∅). It suffices to show that this open set separates M from

the points in Zg(Bp) (p a prime) of CB-rank 2 corresponding to the following pairs

of m-dimensions: (2, 0) and (0, 2).

Those are the points PE(I, J), where one of the ideals is principal and nonzero

and the other is zero. Suppose that the above pair opens on an element m ∈
PE(I, J), where we may assume that I is the annihilator of m and J is a ‘non-

divisibility’ ideal of m. Since Xn ∈ I, it follows that I is nonzero. Similarly, as

X ∈ J , one deduces that J is nonzero. But this contradicts the choice of I and J .

What remains in Zg(BX) is the Prüfer point Pr(BX), the adic point PE(BX),

and the generic point Q(X). Clearly (xX = 0/x = 0) separates Pr(BX) from

PE(BX) and Q(X), therefore CB(Pr(BX)) = 3. The same is true for PE(BX).

The only remaining point Q(X) has CB-rank 4. �

Note that the map in Remark 2.3 does not reflect intersections. Indeed, as follows

from this remark, ZgX = ∩p Zgp. But it is easily seen that for any primes p 6= q we

also have ZgX = Zgp ∩Zgq, but XB is a proper subset of pB ∩ qB.

3. Effectively given Bézout domains

We are going to consider decidability of B-modules. It is well known that some

natural conditions are to be assumed on an arbitrary ring R (in particular on our B)

to ensure that the decision problem of R-modules make sense (see [3, Section 17.1]).

Let we briefly discuss this matter. For simplicity we refer to integral domains R

with identity. The following definition is a bit informal, but can be easily stated in

a rigorous way via Turing Machines and Church Thesis.

Definition 3.1. A countable integral domain R is said to be effectively given if its

elements can be recursively listed (possibly with repetitions) as

r0 = 0, r1 = 1, r2, . . . , rk, . . . k ∈ N

so that the following holds:

1) there are algorithms which, given n,m ∈ N, produce rn + rm, −rn and rn · rm
(more precisely indices for these elements in the list);

2) there is an algorithm which, given n,m ∈ N, decides whether rn = rm or not;

3) there is an algorithm which, given n,m ∈ N, establishes whether rm | rn or

not.

Notice that, if R is effectively given, then the theory T (R) is recursively enumer-

able. Here are some further straightforward consequences of the same hypothesis.
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Remark 3.2. Let R be an effectively given integral domain.

4) There is an algorithm which, given n,m ∈ N with rm | rn, provides r ∈ R
such that rm · r = rm (that is, an index for this quotient in the list).

5) There is an algorithm which, given m ∈ N, decides whether rm is a unit of R

or not and, if yes, calculates its inverse.

6) Suppose that R is a Bézout domain. Then there is an algorithm which, given

n,m ∈ N with rn, rm 6= 0, calculates a greatest common divisor of rn, rm (or rather

an index of it).

Proof. 4) Just explore the list rk, k ∈ N, for every k calculate rm · rk and check

whether this product equals rn. As rm divides rn, one eventually finds such an

index.

5) Apply 3) and 4) to n = 1.

6) Explore the list of all possible 4-types (a, b, u, v) ∈ R4 (which can be obtained

in a standard way from the list of R) looking at the solution of

rn = (rn · u+ rm · v) · a, rm = (rn · u+ rm · v) · b .

As R is Bézout, one eventually finds, after finitely many steps, a successful tuple

(a, b, u, v). Then put gcd(rn, rm) = rn · u+ rm · v. �

Note that, given 6) for a Bézout domain R, the conditions 3) (and hence 4))

become excessive. Indeed to check whether rm divides rn calculate first gcd(rm, rn),

divide rm by it and look whether the quotient is invertible.

The following result shows that when analyzing pp-formulae over Bézout domains

it suffices to consider only divisibility and annihilator conditions. Recall that, up

to logical equivalence, if χ(x) and χ′(x) are pp-formulas in a single variable x,

then also their conjunction χ(x) ∧ χ′(x) and their sum χ(x) + χ′(x), introduced

as ∃u∃u′ (χ(u) ∧ χ′(u′) ∧ x = u + u′), are pp-formulas. Moreover the equivalence

classes of pp-formulas are a lattice with respect to the corresponding operations.

Lemma 3.3. Every pp-formula χ(x) in one variable over a Bézout domain R is

equivalent to a finite conjunction of formulae ϕa,b
.
= a | x + xb = 0, a, b ∈ R, and

also to a finite sum of formulae ψc,d
.
= c | x ∧ xd = 0.

Furthermore, if R is effectively given, then these formulae can be found effec-

tively.

Proof. The existence of such formulas over an arbitraryR follows from [9, Lemma 2.3].

However we have to find them effectively when R is effectively given. To do that,

begin producing all the possible implications of χ(x) and the (recursively enumer-

able) theory T (R) of R via formal proofs. When this procedure provides a formula

χ′(x) of the desired form – so a suitable combination of divisibility and annihilator

conditions – start producing implications from T (R) and χ′(x), looking for χ(x).
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The existence result ensures that the procedure will eventually halts in a successful

way, so producing a formula χ′(x) equivalent to χ(x). �

For instance this lemma gives a good basis for the Ziegler topology.

Corollary 3.4. Let R be an effectively given Bézout domain. Then the open sets

(ψc,d/ϕa,b), a, b, c, d ∈ R form a basis of the topology of Zg(R) which can be effec-

tively enumerated.

4. Decidability

The aim of this section is to prove decidability of modules over Bézout domains

B, and we have a range of methods at disposal. Using the fact that the Ziegler

spectrum of B is countable and its precise description, we can make an effective

list of points Mk, k ∈ N, of Zg(B). By Corollary 3.4 we also know an effective

basis for this space. According to a general recipe of Ziegler [10, Theorem 9.4]

(see also Prest’s unpublished preprint [4]) it suffices to provide an algorithm which,

given a point Mk, a basic open set (ϕi/ψi) and a positive integer l, decides whether

Inv(ϕi, ψi) = l holds true in Mk.

It is possible to obtain the proof of decidability pursuing this approach, however

(being partly logicians) we will produce another proof based on a recent result by

Lorna Gregory on the decidability of modules over a valuation domain [2]. To

do that, let us introduce some further notation: if V is a valuation domain, then

Jac(V ) will denote its Jacobson radical (= the set of non-units) and F = V/ Jac(V )

is the residue field of V .

If V is effectively given, then (see [8, p. 273]) the decidability of V -modules yields

the knowledge of the size of F (that is whether F is finite or infinite and, if finite,

the number of elements in F ). By [2] the converse is almost true.

Fact 4.1. [2] Suppose that V is an effectively given valuation domain with known

size of the residue field and with an algorithm checking for given a, b ∈ V whether

a ∈ bnV holds for some n. Then the theory of V -modules is decidable.

Note that, if a principal ideal domain D is effectively given, then it is easily

seen that the rings Q = Q(D), Q[X] and B = D + XQ[X] are effectively given.

However to reduce decidability to valuation domains, we will require of D some

extra effectiveness. We say that (an effectively given) principal ideal domain D is

strongly effectively given if it satisfies the following extra conditions:

1)′ there is an algorithm that lists all the prime elements of D;

2)′ there is an algorithm that lists all the irreducible polynomials of Q[X];

3)′ for every prime p the size of the field D/pD is known.

For instance, it is well known (say, by an old Kronecker’s algorithm checking

indecomposability of rational polynomials) that Z is effectively given.
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We do not know whether these extra effectiveness conditions can be formally

derived from decidability of B-modules. The problem is that despite a localization

of B, say the one Bp at some prime p, is given effectively, the theory of Bp-modules

is defined in the theory of B-modules using an infinite set of axioms (so it is not

clear in advance that the theory of Bp-modules must be decidable).

However the previous restrictions are natural and satisfied for many examples.

In fact the condition 2)′ rephrases, in the terminology of [3, p. 344], the property

that Q has a splitting algorithm, and Q does admit it. On the basis of 1)′ and 2)′,

one also gets algorithms to decompose a non-invertible element of D in a product

of primes, in particular to decide whether it is irreducible or not; and we can do

the same for polynomials in Q[X].

We can even specify this for B, with an obvious proof.

Lemma 4.2. Let D be strongly effectively given. Every nonzero polynomial F [X] ∈
B can be effectively decomposed as r s−1XnF ′(X), where r, s are coprime elements

of D, n is a non-negative integer and F ′(X) has constant term 1 and is (effectively)

written as a product of irreducible polynomials.

If a principal ideal domain D is effectively given, the same is clearly true for each

localization Bp and Bf . Thus in the remainder of this section we will refer to these

localizations with a fixed effective enumeration.

Lemma 4.3. Let D be a strongly effectively given principal ideal domain. Then

each localization Bp, p a prime, and Bf , f an irreducible polynomial of Q[X] of

constant term 1, has a decidable theory of modules.

Proof. Each such localization is an effectively given valuation domain. Furthermore,

because Bp/ Jac(Bp) ∼= D/pD, and Bf/ Jac(Bf ) is infinite, we know the sizes of

residue fields. Using Gregory’s result, it suffices to decide, for given elements a, b

of any of these localizations V , whether a ∈ bnV holds true for some n.

This can be easily checked, because we can reduce a, b to polynomials in B and

and then use their presentations from Lemma 4.2. �

Now we are in a position to prove the following.

Theorem 4.4. Let D be a strongly effectively given principal ideal domain and let

B = D + XQ[X] be the corresponding Bezout domain. Then the theory T (B) of

B-modules is decidable.

Proof. Since B is effectively given, from axioms for B-modules we can generate a

list of sentences true in any B-module (that is, T (B) is recursively enumerable). To

prove decidability we have to enumerate a complement of T (B), which is equivalent

to listing in an effective way sentences true in some B-module.

Every indecomposable pure injective B-module localizes, therefore has a nat-

ural structure of either a Bp-module for some prime p or a Bf -module for some
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irreducible polynomial f with 1 as a constant term. Make an effective list of such

modules with marks from which localization they stem.

In view of [4], in order to complete our proof, it suffices to restrict to modules

M that are finite direct sums of indecomposable pure injective summands, M =

M0⊕· · ·⊕Mk, and to produce a set of axioms for the theory of any such M , T (M).

By Baur–Monk theorem and because T (M) is complete, this theory is axioma-

tized by invariant sentences Inv(ϕ,ψ) ≥ n. We will list all such sentences σ and

decide whether they are true in M . By additivity M |= σ if and only if each

Mi |= Inv(ϕ,ψ) ≥ ni and n1 · . . . · nk ≥ n, where we may assume that ni ≤ n.

Since the theory of each localization of B is decidable, each question Mi |=
Inv(ϕ,ψ) ≥ ni can be answered effectively (using the localization at the marked

prime ideal), hence so is σ. �

Thus we obtain the result of our original interest.

Corollary 4.5. The theory of Z +XQ[X]-modules is decidable.
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