
Semisimple torsion in groups of finite Morley rank

Jeffrey Burdges∗

Institut Camille Jordan, Université de Lyon-I, Lyon, France
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Introduction

A group of finite Morley rank is a group whose definable subsets have a notion
of dimension satisfying several basic axioms [BN94, p. 57]. Such groups arise
naturally in model theory; initially as ℵ1-categorical groups, i.e. as groups deter-
mined up to isomorphism by their first order theory, and here the simple groups
correspond exactly. More recently groups of finite Morley rank have appeared
in applications of model theory to diophantine problems.

The main examples are algebraic groups over algebraically closed fields,
where the notion of dimension is the usual one; and the dominant conjecture is
that all such simple groups are algebraic.

Algebraicity Conjecture (Cherlin/Zilber). A simple group of finite Morley
rank is an algebraic group over an algebraically closed field.

Much work towards this conjecture involves local analysis in an inductive
setting reminiscent of the classification of the finite simple groups; but without
transfer arguments or character theory.

New methods have emerged recently in the study of groups of finite Morley
rank, and have led to a number of advances. Among the characteristic features
of the recent work are the systematic use of generic covering arguments, which
will be met with below, as well as the study of divisible abelian p-subgroups
(commonly known as p-torii), with which we will also be occupied here.

Such p-tori may always be viewed as semisimple. However, there are diffi-
culties when one wishes to view individual p-elements as either semisimple or
unipotent. For example, even a connected solvable p-group of a group of finite
Morley rank is merely a central product, not necessarily a direct product, of a
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p-torus and a definable connected nilpotent p-subgroups of bounded exponent,
(commonly known as p-unipotent subgroups).

Our main objective here is to obtain several results concerning that p-torsion
in connected groups of finite Morley rank which is semisimple in a robust but
technical sense involving the absence of p-unipotent subgroups. We say a group
G has p⊥ type if it contains no nontrivial unipotent p-subgroup.

For the case p = 2, one may always assume 2⊥ type, (sometimes referred
to odd or degenerate type) because the Algebraicity Conjecture holds in the
presence of a 2-unipotent subgroup [ABC07]. In this case, our results will have
numerous applications to classification problems, beginning with the generation
theorem of [BC08]—or strictly speaking, beginning with some older papers that
could have been shortened had the result been available at the time.

The article is arranged linearly, with each section depending upon the pre-
vious ones. We expect the main result of each section to find other applications
outside this article, and therefore list each here; however, the first two have a
more technical character. Some results are proved for sets of primes π, but here
we state only the stared natural reduction to a single prime p.

The first section expands upon [Che05] and clarifies the nature of the generic
element of G.

Theorem 1. Let G be a connected group of finite Morley rank, p a prime, and
a be a generic element of G. Then

1. a commutes with a unique maximal p-torus Ta of G,

2. d(a) contains Ta, and

3. If G has p⊥ type then d(a) is p-divisible.

The next section contains a new genericity argument for cosets.

Theorem 2*. Let G be a group of finite Morley rank, let a be a p-element in
G such that C(a) has p⊥ type, and let T be a maximal p-torus of C(a) (possibly
trivial). Then ⋃

(aC◦(a, T ))G◦
is generic in aG◦.

These two technical results are the main ingredients in the following robust
criteria for semi-simplicity.

Theorem 3*. Let G be a connected group of finite Morley rank, p a prime,
a any p-element of G, and suppose C◦

G(a) has p⊥ type. Then a belongs to a
p-torus.

Theorem 3* has immediate consequence for the structure of Sylow p-subgroups.

Corollary. Let G be a connected group of finite Morley rank of p⊥ type, and T
a maximal p-torus of G. Then any p-element of C(T ) belongs to T .

Our fourth section further exploits the genericity argument for cosets to
prove conjugacy of Sylow p-subgroups, i.e. maximal solvable p-subgroups.
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Theorem 4. Let G be a group of finite Morley rank of p⊥ type. Then all Sylow
p-subgroups are conjugate.

We note that the conjugacy of Sylow 2-subgroups in general groups of finite
Morley rank is known, and for general p the result is known in solvable groups
of finite Morley rank.

Our last topic concerns the so-called Weyl group, which for our present
purposes may be defined as follows.

Definition 0.1. Let G be a group of finite Morley rank, and T a maximal
divisible abelian torsion subgroup of G. The Weyl group of G is the group
N(T )/C◦(T ), which can be viewed as a group of automorphisms of T .

The maximal divisible abelian torsion subgroups of G are conjugate by
[Che05], so this group is well-defined up to conjugacy and in particular up
to isomorphism. Furthermore it is finite since N◦(T ) = C◦(T ).

Theorem 5.2. Let G be a connected group of finite Morley rank. Suppose the
Weyl group is nontrivial and has odd order, with r the smallest prime divisor of
its order. Then G contains a unipotent r-subgroup.

All of these results will be needed in [BC08], and the torality theorem should
be quite useful subsequently in the analysis of particular configurations associ-
ated with classification problems in odd type groups. The corollary to Theorem
3 is also given in [BC06] for p = 2, and is applied there to the study of generically
multiply transitive permutation groups.

Outside material will be introduced as needed, but much of this occurs al-
ready in the first section. Any facts used without explicit can be found in
[BN94].

1 Generic p-divisibility

We begin by analyzing the generic element of a connected group of finite Morley
rank. We use the notation d(a) for the definable hull of an element a. The
definable hull of a divisible abelian torsion subgroup of G is called a decent
torus.

Theorem 1. Let G be a connected group of finite Morley rank, p a prime, and
a be a generic element of G. Then

1. a commutes with a unique maximal p-torus Ta of G,

2. d(a) contains Ta, and

3. If G has p⊥ type then d(a) is p-divisible.

Here we consider only elements a whose type over ∅ is generic. When G
is of p⊥ type there need not be any generic definable set X such that d(a)
is p-divisible for every element of X. Indeed, with G an algebraic torus in
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characteristic other than p, that stronger claim fails. In this case the generic
element has infinite order, but every infinite definable set contains p-elements
of finite order, and for such elements d(a) = 〈a〉.

The idea of the proof is to replace the group G by the centralizer of one of
its maximal decent tori. This depends on the main result of [Che05], which is
closely related to point (1) above.

Proposition 1.1 ([Che05]). Let G be a group of finite Morley rank. Then all
maximal decent tori of G are conjugate. Furthermore, if T is a maximal decent
torus of G, then there is a generic subset X of the group C◦

G(T ) such that

1. X ∩Xg = ∅ for g /∈ NG(T ), and

2.
⋃

XG is generic in G.

In particular Proposition 1.1 states that any element of the generic definable
set

⋃
G(XG) commutes with a unique conjugate of T , or in other words with a

unique maximal decent torus of G. So we have our first point:

Lemma 1.2. Let G be a connected group of finite Morley rank, and let a ∈ G
be generic over ∅. Then C◦(a) contains a unique maximal decent torus Ta of
G.

Our next point is that Ta is contained in d(a), and at this point we must
work not with the generic set X, but with the type of a itself generic. In this
situation there are two notions of genericity which are relevant: genericity in
the group G, and genericity in the subgroup C◦(Ta), but again by Proposition
1.1 these two notions can be correlated. Indeed, the next result is a direct
reformulation of Lemma 1.2.

Lemma 1.3. Let G be a connected group of finite Morley rank, and T0 a max-
imal decent torus. Then an element a ∈ C◦(T0) is generic over ∅ in G if and
only if the following hold.

1. T0 is generic over ∅, in the set of maximal decent tori;

2. a is generic in the group C◦(T0) over the canonical parameter for T0.

A word on terminology: as a definable set, T0 can be viewed as an “imaginary
element” of G, and the canonical parameter for T0 is simply this element. As
this may be identified with T0 itself, one may speak of genericity “over T0”.
The natural language for discussing the group C◦(T0) treats this parameter as
a distinguished constant; it is interdefinable with C◦(T0).

Proof. Suppose first that a is generic. Then T0 = Ta.
We show that T0 is generic over ∅. If T0 belongs to a ∅-definable family

T in Geq (a uniformly definable family in G) then a belongs to the set X :=⋃
T∈T C◦(T ). If the family T is nongeneric in the set of maximal decent tori,

then X is nongeneric in G, a contradiction—the failure of genericity is immediate
by a rank calculation.

4



Now we show a is generic over the canonical parameter t0 for T0, in C(T0).
If a belongs to some nongeneric set Yt0 ⊆ C◦(T0), where Y is defined over
t0, then a belongs to the ∅-definable nongeneric set

⋃
t∈X Yt, where again the

nongenericity follows by a direct rank calculation.
Now suppose T0 is generic over ∅ and a ∈ C◦(T0) is generic over the pa-

rameter T0. Suppose that a belongs to the ∅-definable subset Y of G. Let
Y0 = Y ∩ C◦(T0). As a ∈ Y0, the set Y0 is generic in C◦(T0). The set T of
conjugates T of T0 for which Y ∩ C◦(T ) is generic in C◦(T ) is ∅-definable and
contains T0, and hence T is generic in the set of conjugates of T0. It then follows
from Proposition 1.1 that Y is generic in G.

We will also need some general properties of definable quotients.

Lemma 1.4. Let G be a group of finite Morley rank, A ⊆ G, H a normal
A-definable subgroup of G, and Ḡ := G/H.

1. If an element a ∈ G is generic over A then its image ā in Ḡ is generic
over A.

2. If T is a maximal decent torus of G, and H is solvable, then the image T̄
of T in Ḡ is a maximal decent torus of Ḡ.

The first point has already occurred in a special form above, and is also
contained in Lemma 6.2 of [Poi87].

Proof. Ad 1. Suppose X̄ is an A-definable subset of Ḡ containing ā, with preim-
age X in G. As X contains a it is generic. But rk(X) = rk(X̄) + rk(H) and
thus X̄ is generic in Ḡ. Thus ā is generic in Ḡ.

Ad 2. Let Tp be the p-torsion subgroup of T . It suffices to show that T̄p is a
maximal p-torus of Ḡ. Let Sp be the preimage in G of a maximal p-torus S̄p of Ḡ
containing T̄p. We may suppose that G = d(Sp) and thus G is solvable. Now let
P be a Sylow p-subgroup of G containing Tp. Then P̄ is a Sylow p-subgroup of
Ḡ [ACCN98] and therefore contains a maximal p-torus of Ḡ. Hence P̄ contains
a maximal p-torus of Ḡ. But as S is a solvable p-group, S◦ = Tp ∗ U with U
unipotent [BN94, Corollary 6.20], so T̄p is the maximal p-torus of P̄ , and hence
is a maximal p-torus of Ḡ.

Lemma 1.5. Let G be a connected group of finite Morley rank and a ∈ G
generic. Then d(a) contains Ta.

Proof. Treating the parameter Ta as a constant, and bearing in mind Lemma
1.3, we may suppose that a is a generic element of C◦(Ta), and Ta is ∅-definable.
Hence we may replace G by C◦(Ta), assuming therefore that

G contains a unique maximal decent torus T , which is central in G.

Let T1 be the definable hull of the torsion subgroup of d(a) ∩ T . As T is
taken to be ∅-definable, the torsion subgroup of T is contained in acl(∅) and
hence the definable set T1, treated as another parameter, is also in acl(∅). Thus
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ā is generic in the quotient Ḡ := G/T1, and in this quotient T̄ := T/T1 is a
maximal decent torus. So replacing G by Ḡ, we may suppose that d(a) ∩ T is
torsion free. It suffices to show that T = 1.

By [BN94, Ex. 10 p. 93], d(a) = A ⊕ C is the direct sum of a divisible
abelian group A and a finite cyclic group C. If n = |C| then for any multiple
N of n, we have d(aN ) = A. On the other hand, for any torsion element
c ∈ T , the element a′ = ac is also generic over ∅ and hence a′ and a realize
the same type. Letting N be a multiple of n and the order of c, it follows that
d((a′)n) = d((a′)N ) = d(aN ) = d(an) and thus cn ∈ d(an) ≤ d(a). Now by
our reductions d(a) contains no p-torus for any p, and hence d(a) has bounded
exponent. Thus cn has bounded exponent, with c varying and n fixed, and so
T = 1 as claimed.

For the final point in Theorem 1 we prepare the following, which is a minor
variation on a result of [BBC07].

Lemma 1.6. Let G be a connected group of finite Morley rank, p a prime, and
T a maximal p-torus of G. Suppose that T is central in G and a is a p-element
of G not in T . Then C◦(a) contains a nontrivial p-unipotent subgroup. Thus if
G is of p⊥ type then all p-elements in C(T ) belong to T .

Here we employ one of the main results of [BBC07].

Fact 1.7 ([BBC07, Theorem 4]). Let G be a connected group of finite Morley
rank, and let a ∈ G be a p-element. Then C(a) contains an infinite abelian
p-subgroup.

Proof of Lemma 1.6. Observe first that the p-torsion subgroup of d(T ) is T , and
thus a /∈ d(T ). Now passing to a quotient as in the previous argument we may
suppose that T = 1 and G contains no p-torus. So C◦(a) contains a nontrivial
p-unipotent subgroup by Fact 1.7.

We turn to the last point in Theorem 1.

Lemma 1.8. Let G be a connected group of finite Morley rank of p⊥ type, and
a ∈ G a generic element. Then d(a) is p-divisible.

Proof. As we have seen above, we may suppose that Ta is central in G and ∅-
definable. The group d(a) is an abelian group of finite Morley rank, and hence
has the form A × Cfor some p-divisible abelian group A, and some p-group C
of bounded exponent by [BN94, Ex. 10, p. 93]. Since G is of p⊥ type, C ≤ Ta.
As Ta ≤ d(a) by Lemma 1.5, d(a) is p-divisible. So C ≤ Ta. Now a = bt with
b ∈ A and t ∈ C. It follows easily that d(b) = A is p-divisible. But b = at−1 is
also generic, so our result holds for b, and hence for any realization of the same
type.

Now Theorem 1 is contained in Lemmas 1.2, 1.5, and 1.8.
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2 Coset genericity

In this section we prove a generic covering theorem. Theorems of this type have
played an increasing role in the analysis of connected groups of finite Morley
rank. Our aim here is to show that for a p-element a of a group G of p⊥

type, the union of the conjugates of C◦(a) is generic in G. This improves on
the analysis carried out in [BBC07] for groups of p-degenerate type. In order
to prove this we need to sharpen it substantially and identify a subgroup of
C◦(a) actually responsible for the genericity. The precise result we aim at is the
following, which generalizes the result in several directions, notably by allowing
the element a to lie outside the connected component of G.

We formulate this analysis using a more general set of primes π, as opposed
to the single prime p used in the introductory statement. Of course, π-torus
will mean simply a divisible abelian π-group, and need not realize all primes in
π. Likewise, π⊥ type means no p-unipotent subgroup for any p ∈ π.

Theorem 2. Let G be a group of finite Morley rank, let a be a π-element in G
such that C(a) has π⊥ type, and let T be a maximal π-torus of C(a) (possibly
trivial). Then ⋃

(aC◦(a, T ))G◦
is generic in aG◦.

In particular ⋃
(aC◦(a)G◦

) is generic in aG◦.

Generic covering theorems have involved definable subgroups more often
than cosets. The following covering lemma, given in [BBC07], is well adapted
to the case of cosets.

Fact 2.1 ([BBC07, Lemma 4.1]). Let G be a group of finite Morley rank, H a
definable subgroup of G, and X a definable subset of G. Suppose that

rk(X \
⋃

g/∈H

Xg) ≥ rk(H)

Then rk(
⋃

XG) = rk(G).

The following property of generic subsets of cosets is very well known for
subgroups, but occurs more rarely in its general form.

Lemma 2.2. Let G be a group of finite Morley rank, H a connected definable
subgroup, and X a definable generic subset of the coset aH. Then 〈X〉 = 〈aH〉 =
〈a,H〉.

Proof. The second equality is purely algebraic, and clear. For the first, an
application of genericity and connectedness shows that H ≤ 〈X〉, and thus
aH ⊆ 〈X〉.
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Proof of Theorem 2. We will use the notation NG(X) here for arbitrary subsets
of G, not just subgroups, with its usual meaning: the setwise stabilizer of X
under the action of G by conjugation.

Let T be the set of maximal π-tori in C◦
G(a). We observe first that T may

be identified with a definable set in Geq. Indeed, it follows from the conjugacy
of maximal decent tori that maximal π-tori are conjugate under the action of
the group

Ga = C◦
G(a)

so T corresponds naturally to the right coset space NGa
(T )\Ga for any T ∈

T , and N(T ) = N(d(T )) is definable. As the elements of T are themselves
undefinable, this identification should be used with circumspection.

As the maximal π-tori of C(a) are conjugate, we may suppose that the π-
torus T ∈ T is chosen generic over a. Set

H := C◦(〈a, T 〉)

which enters the picture most naturally here as C◦
C◦(a)(T ). Then T is the unique

maximal π-torus in H, and we aim to show that

rk(
⋃

(aH)G◦
) = rk(G◦)

Let Ĥ be the generic stabilizer of aH, defined as

{g ∈ G : rk((aH) ∩ (aH)g) = rk(aH)}

This is a definable subgroup of G. We claim

(1) rk(Ĥ) = rk(H)

Since a is an element of finite order normalizing (even centralizing) H, the
group 〈a,H〉 is definable with 〈a,H〉◦ = H. Applying the preceding lemma,

Ĥ ≤ NG(〈a,H〉) ≤ NG(〈a,H〉◦) = NG(H) ≤ N(T )

Thus Ĥ◦ ≤ C(T ).
We claim that any π-element u of 〈a,H〉 lies in the abelian group 〈a, T 〉:

indeed, the π-group U = 〈u, a〉 has the form U0〈a〉 with U0 = U ∩H. We claim
that U0 ≤ T . For this, it suffices to show that any π-element u′ ∈ U0 belongs
to T . But this holds by Lemma 1.6.

Therefore 〈a,H〉 contains only finitely many elements of the same order as
a, and as Ĥ acts by conjugation on these elements, we have Ĥ◦ ≤ C◦(a) and
thus Ĥ◦ ≤ C◦(〈a, T 〉) = H. So (1) holds.

We would like to apply the generic covering lemma, Fact 2.1, with X = aH
and with H (in the lemma) equal to Ĥ (here). For this, it suffices to verify the
condition

(∗) rk(aH \
⋃

g/∈Ĥ

(aH)g) = rk(H)
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Now suppose x ∈ aH is generic over the parameters a and T (really, d(T )).
We claim that both

(2) x centralizes a unique maximal π-torus of C◦(a), namely T , and

(3) a ∈ d(x)

Clearly x = ah with h ∈ H generic over a and T . Since T is itself generic
over a, h realizes the type of a generic element of C◦(a) over a (Lemma 1.3).
By Theorem 1, h centralizes a unique maximal π-torus of C◦(a) for p ∈ π, and
hence so does x. So (2) follows.

As C◦
G(a) has π⊥ type, d(h) is π-divisible by Theorem 1. So, for any π-

number q, the quotient d(h)/d(hq) is a p-divisible group of exponent at most
q, and hence trivial: d(h) = d(hq). Let q be the order of a. Then d(xq) =
d(aqhq) = d(hq) = d(h). So h ∈ d(x), and hence also a ∈ d(x), giving (3).

If (∗) fails, then H ∩
⋃

g/∈Ĥ(aH)g is generic in aH, so, as x ∈ aH is generic
over the parameters a and T , we have xg ∈ aH for some g /∈ Ĥ. As x, xg ∈ aH,
d(x) and d(xg) both commute with T , and therefore d(x) also commutes with
T g−1

. Since a ∈ d(x), we have T g−1 ≤ C◦
G(a). By (2) it follows that T = T g−1

,
that is g ∈ N(T ).

Again, since a ∈ d(x), we have ag ∈ d(xg) is an element of order q in
〈a,H〉. So ag ∈ 〈a, T 〉. Since g ∈ N(T ) this gives g ∈ NG(〈a, T 〉) as well. Now
H = C◦(〈a, T 〉) so

Hg = C◦(〈a, T 〉)g = C◦(〈ag, T 〉) = C◦(〈a, T 〉) = H

Hence (aH)g = (xH)g = xgHg = xgH = aH, and g ∈ Ĥ, a contradiction.
So (∗) holds, and our result follows by Fact 2.1.

3 Torality

We now prove the main result of the paper. Again, we formulate this in a
technical form slightly more general than the original statement using a set of
primes π.

Theorem 3. Let G be a connected group of finite Morley rank, π a set of
primes, a any π-element of G, and suppose C◦

G(a) has π⊥ type. Then a belongs
to a π-torus.

Theorem 3 has the following direct corollary.

Corollary 3.1. Let G be a connected group of finite Morley rank with a π-
element a such that C(a) has π⊥ type. Then a belongs to any maximal π-torus
of C(a).

Proof. By Theorem 3, there is a π-torus T containing a. By Proposition 1.1,
any maximal π-torus in C(a) is C◦(a)-conjugate to T , and so contains a.
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These provide very strong restrictions on a simple group G of finite Morley
rank. Since, for π = {2}, the outstanding structural problems concern groups
of 2⊥ type (i.e., odd or degenerate type), this bears directly on these issues and
in particular provides constraints on the structure of a Sylow 2-subgroup, which
will be developed in [BC08].

For the proof, we use the following variation on Fact 1.7 [BBC07, Theorem
4], due to Tuna Altınel.

Lemma 3.2 (Altınel). Let G be a connected group of finite Morley rank, and
let a ∈ G be a π-element. Then C(a) contains an infinite abelian p-subgroup for
some p ∈ π.

We require the following standard fact.

Fact 3.3 ([ABCC01]; [Bur04, Fact 3.2]). Let G = H o T be a group of finite
Morley rank with H and T definable. Suppose T is a solvable π-group of bounded
exponent and Q C H is a definable solvable T -invariant π⊥-subgroup. Then

CH(T )Q/Q = CH/Q(T ).

Proof of Lemma 3.2. We make take G to be a minimal counterexample; in par-
ticular C◦(a) is a π⊥-group. Of course, G does have an infinite abelian p-group
for every p ∈ π by Fact 1.7. So clearly a /∈ Z(G).

As Z◦(G) has no π-torsion, CG/Z◦(G)(a) = CG(a)/Z◦(G) by Fact 3.3. So
CG/Z◦(G)(a) has no π-torsion by [BN94, Ex. 11 p. 93 or Ex. 13c p. 72]. Thus
Z◦(G) = 1 by minimality of G.

We now observe that a ∈ d(x) ∩ aC◦(a) for any x ∈ aC◦(a). Let K :=
d(x) ∩ C◦(a). So x is a π-element in d(x)/K. By [BN94, Ex. 11 p. 93], xd◦(x)
contains a π-element b. But a is the unique π-element in aC◦(a) ⊇ xK. Thus
a = b ∈ d(x) ∩ aC◦(a), as desired.

By Theorem 2,
⋃

(aC◦(a))G is generic in G. We show that G has no divis-
ible torsion. Otherwise, choose a maximal decent torus T of G. By Fact 1.1,⋃

C◦(T )G is generic in G too, and hence meets aC◦(a) in an element x. So
a ∈ d(x) lies inside some C◦(T )g. But CC◦(T )g (a) is still a π⊥-group, contra-
dicting the minimality of G.

As C◦(a−1) = C◦(a),
⋃

(a−1C◦(a))G is also generic in G, by Theorem 2.
So there is some x ∈ a−1C◦(a) ∩ (aC◦(a))g for some g ∈ G. As above ag

and a−1 are the only π-elements in (aC◦(a))g and a−1C◦(a), respectively. So
ag = a−1. It follows that G has an involution in d(g). As G has no divisible
torsion, G has even type, but has no algebraic simple section. So B(G) is a
2-unipotent subgroup normal in G, by the Even Type Theorem [ABC07]. Now
Z◦(B(G)) 6= 1 by cite[Lemma 6.2]BN. But now Z◦(B(G)) ≤ Z◦(G) = 1 because
again G has no divisible torsion (see [Bur06, §4] or [BBC07, Proposition 8.1]),
a contradiction.

Proof of Theorem 3. By Lemma 3.2, there is a non-trivial π-torus T of C◦(a),
which we take maximal in C◦(a). Set H := C◦(a, T ). By Theorem 2, the
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set (aH)G is generic in G. So after conjugating we may suppose that some
x = ah ∈ aH is generic in G. We claim that a ∈ d(x).

Since x is generic in G, C(x) contains a unique maximal π-torus S of G, which
lies inside d(x), by Theorem 1. Clearly T ≤ S since T ≤ C(x). The definable
hull d(x) contains a p-element x′ with x′H = xH = aH. So x′a−1 ∈ H is a
p-element, and lies inside T . Thus x′a−1 ∈ S ≤ d(x) by Lemma 1.6, and so
a ∈ d(x).

Again since x is generic in G, we have x ∈ C◦(S) by Theorem 1, and hence
a ∈ C◦(S) and T = S is nontrivial. Since H ≤ C(a) has π⊥ type, we have
a ∈ T by Lemma 1.6. This proves our claim.

This theorem has consequences for the structure of Sylow p-subgroups in
connected groups of p⊥ type and low Prüfer p-rank, especially Prüfer rank 1,
for which see [BC08].

4 Conjugacy of Sylow p-subgroups

We will define Sylow p-subgroups of a group G of finite Morley rank as maximal
solvable p-subgroups. Here one arrives at the same class of groups by imposing
local finiteness or local nilpotence in place of solvability [BN94, §6.4]. If S is
a Sylow p-subgroup of G then S◦ will be a central product of a p-unipotent
subgroup and a p-torus, and in particular is nilpotent. So, if S is a Sylow
p-subgroup and X a proper subgroup of S, then NS(X) > X.

Our goal in the present section is the following.

Theorem 4. Let G be a group of finite Morley rank of p⊥ type. Then all Sylow
p-subgroups are conjugate.

The conjugacy result is also known for solvable groups, as a special case of
the theory of Hall subgroups ([BN94, Theorem 9.35]) and for arbitrary groups
of finite Morley rank when p = 2.

As an immediate consequence we can strengthen [BBC07, Theorem 3].

Corollary 4.1. Let G be a connected group of finite Morley rank and p⊥ type.
If G some Sylow p-subgroup of G is finite then G contains no elements of order
p.

The critical case for the proof is the case in which at least one Sylow p-
subgroup is finite; which proves the corollary itself. It also shows that Sylow
p-subgroups are conjugate if all lie outside G◦.

Lemma 4.2. Suppose G is a group of finite Morley rank and p⊥ type containing
a finite Sylow p-subgroup P . Then all Sylow p-subgroups of G are conjugate.

Proof. Let Op(G) denote the subgroup of G generated by its solvable normal
p-subgroups. Such a p-subgroup must be contained in P and thus Op(G) ≤ P
is finite, and is the largest finite normal p-subgroup of G. In Ḡ = G/Op(G) we
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have Op(Ḡ) = 1 and P̄ = P/Op(G) is a finite Sylow p-subgroup of Ḡ, and if we
prove the claim for Ḡ it follows for G. So we may suppose

(1) Op(G) = 1

Let D be a subgroup of P of maximal order subject to the condition: D
is contained in a solvable p-subgroup of G which has no conjugate contained
in P . Let R be such a p-subgroup. Let D1 = NP (D), D2 = NR(D). By the
maximality of D, any p-Sylow subgroup P1 of N(D) containing D1 is conjugate
to a subgroup of P . Let R1 be a Sylow p-subgroup of N(D) containing D2. If
R1 is conjugate to P1, then R1 is conjugate to a subgroup of P . In particular
D2 is then conjugate to a subgroup of P and R is conjugate to a group meetings
P in a subgroup of order greater than |D|. But this contradicts the choice of D.

It follows that in N(D) we have nonconjugate Sylow p-subgroups, so by the
minimality of G we find DCG and thus D ≤ Op(G) = 1. Hence any p-subgroup
which meets P nontrivially is conjugate to a subgroup of P .

Fix a ∈ P nontrivial. We claim

(2) C◦(a) is a p⊥-group

If this fails, take x ∈ C◦(a) a nontrivial p-element. By Fact 1.7, C(x) is an
infinite abelian p-subgroup A. As Op(G) = 1, we have C(x) < G and hence the
Sylow p-subgroups of C(x) are conjugate. Taking Sylow p-subgroups Q and R
of C(x) containing 〈a, x〉 and A respectively, we find that Q is conjugate to a
subgroup of P since Q meets P nontrivially, and hence the infinite group R is
conjugate to a subgroup of the finite group P , a contradiction.

Now let b be an arbitrary p-element of the coset aG◦, and Tb a maximal
torus of C◦(b). Then

⋃
(bC◦(b, Tb))G◦

is generic in aG◦ by Theorem 2. This
applies in particular to a, with Ta = 1. As we have generic sets associated to a
and b in the coset aG◦, their intersection is nontrivial, giving

aC◦(a) ∩ b′C◦(b′, Tb′) > 1 for some conjugate b′ of b.

Fix h ∈ aC◦(a) ∩ b′C◦(b′, Tb′). Since h ∈ aG◦, there is a p-element h′ ∈
d(h) ∩ aG◦. But d(h) ∩ aG◦ is contained in both aC◦(a) and b′C◦(b′, Tb′). So
h′ ∈ aC◦(a), and as h′ is a p-element we find h′ = a. Similarly h′ ∈ b′Tb′ . Thus
a ∈ b′Tb′ and Tb′ ≤ C◦(a), so Tb′ = 1. We conclude that a = b′ and thus

(3) For a ∈ P#, any two p-elements in aG◦ are conjugate.

Now fix an arbitrary Sylow p-subgroup Q of G. We will show that P and Q
are conjugate.

Let Ḡ = G/G◦ and let R̄ be a Sylow p-subgroup of R̄ containing P̄ . We may
suppose after conjugating Q that Q̄ ≤ R̄. We claim

(4) R̄ = P̄

Assuming the contrary, let R be the preimage in G of R̄. We have NR̄(P̄ ) > P̄
and thus NR(PG◦) > PG◦. If PG◦ < G then Sylow p-subgroups of PG◦ are
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conjugate and therefore NR(PG◦) = G◦NR(P ). Thus NR(P ) covers NR̄(P̄ )
and therefore there is a p-element x ∈ NR(P ) \ P . But then P is not a Sylow
p-subgroup, a contradiction. So (4) holds.

Hence PG◦ = QG◦. In particular there are a ∈ P#, b ∈ Q with aG◦ = bG◦

and thus a, b are conjugate. Hence some conjugate of Q meets P , and as we
have shown this conjugate of Q must itself be conjugate to P .

Proof of Theorem 4. We have G a group of finite Morley rank of p⊥ type and
P1, P2 Sylow p-subgroups. We may suppose that Sylow p-subgroups in proper
definable subgroups of G are conjugate, and we wish to prove the same for G.

Let T1, T2 be the maximal p-tori in P1, P2 respectively. We may suppose
T1 ≤ T2. If P1 is finite the preceding lemma applies. So we may suppose T1 is
nontrivial.

If NG(T1) < G then conjugacy holds in NG(T1) and thus T2 is conjugate
to a subgroup of P1. In this case T1 = T2, so P1, P2 ≤ N(T1) and our claim
follows.

So suppose T1 C G. Then passing to Ḡ = G/d(T1), the image P̄1 of P1 is
finite. We claim that P̄1 is a Sylow p-subgroup of Ḡ. Let Q̄1 be a solvable
p-group containing P̄1, set Q̄ = d(Q̄1), and let Q be the preimage in G of Q̄.
Then Q is solvable. By [ACCN98], P̄1 is a Sylow p-subgroup of Q̄, and hence
P̄1 = Q̄1. That is, P̄1 is a Sylow p-subgroup of Ḡ.

By the previous lemma P̄1 and P̄2 are conjugate, and we may suppose they
are equal. Let P̄ = d(P̄1) and let P be the preimage in G of P̄ . Then P is
solvable and P1, P2 ≤ P , so by [ACCN98] the groups P1, P2 are conjugate, as
claimed.

5 Weyl groups

A suitable notion of “Weyl group” in the context of groups of finite Morley rank
is the following.

Definition 5.1. Let G be a group of finite Morley rank. Then the Weyl group
associated to G is the abstract group W = N(T )/C◦(T ) where T is a maximal
decent torus, viewed as a group of automorphisms of T .

This is well-defined up to conjugacy in G, and finite.
In algebraic groups, Weyl groups are Coxeter groups, and in particular are

generated by involutions. We note that, by a Fratini argument (Proposition 1.1),
the “Weyl group” associated to some non-maximal decent torus is a quotient of
the Weyl group associated to a maximal decent torus,

Theorem 5.2. Let G be a connected group of finite Morley rank. Suppose the
Weyl group is nontrivial and has odd order, with r the smallest prime divisor of
its order. Then G contains a unipotent r-subgroup.

In fact, we prove that either
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(H1) an r-element representing an element of order r in W centralizes a unipo-
tent r-subgroup, or else

(H2) some toral r-element centralizes a unipotent r-subgroup.

One should briefly consider a group G whose proper simple sections have
r⊥ type; which obviously includes minimal connected simple groups. Here if
some toral r-element centralizes a unipotent r-subgroup, then the whole torus
centralizes the unipotent r-subgroup. Of course, any Weyl group element whose
centralizer has r⊥ type is toral by Theorem 3. So the first of these two conditions
suffices in this case, and we have the following as a corollary of the proof.

Corollary 5.3. Let G be a minimal connected simple group of finite Morley
rank. Suppose the Weyl group is nontrivial and has odd order, with r the small-
est prime divisor of its order. Then G contains a unipotent r-subgroup in the
centralizer of any r-element representing an element of order r in W .

Proof of Theorem 5.2. We consider a counterexample G with maximal decent
torus T , set W := N(T )/C◦(T ), and take r| |W | minimal. Suppose also that
both (H1) and (H2) fail in G, or simply that G has r⊥ type for the simplified
statment. We take G to have minimal Morley rank subject to these conditions.

We first reduce to the case

Z(G) = 1

In Ḡ = G/Z(G) the image T̄ of T is a maximal decent torus by Lemma 1.4, with
preimage TZ(G) in G, and T is the unique maximal decent torus of TZ(G).
Hence N(T̄ ) is the image of N(T ) and so C◦(T̄ ) = N◦(T̄ ) is the image of
C◦(T ) = N◦(T ). Thus N(T̄ )/C◦(T̄ ) is isomorphic with W , So we may assume
Z(G) = 1 after replacing G by Ḡ.

Now let Tr be the maximal r-torus of T ; which is nontrivial by [BBC07,
Theorem 3]. Fix an element w of order r in W , and choose a representative
a ∈ N(T ) for w which is itself an r-element. We now assume that C◦(a) has r⊥

type since (H1) fails. Then a ∈ N(Tr) \ Tr.
We claim

CTr (a) is finite.

Otherwise, set U := C◦
Tr

(a) 6= 1. Let Û be a maximal r-torus of C◦
G(a)

which contains U . Then a ∈ Û by Theorem 3. So H = C◦
G(U) contains both

T and a, since a ∈ Û . As Z(G) = 1, we have H < G. The Weyl group of H is
NH(T )/CH(T ), and a represents an r-element of this group, This contradicts
the supposed minimality of G. So indeed CTr (a) is finite.

Now commutation with a produces an endomorphism of Tr with finite kernel,
and it is easy to see that any such endomorphism is surjective (working either
which large invariant finite subgroups of Tr, or equivalently with the action of
the endomorphism ring of Tr on the dual “Tate module”). So [a, Tr] = Tr, and
multiplying by a on the left gives

(∗) aTr = a · Tr
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Now there is some r-element b ∈ CTr (a)# since Ω1(Tp) · 〈a〉 is a finite p-group.
Our goal is to play with (∗) and variations of (∗) to show that b and b2 are
conjugate, under the action of the Weyl group, which will contradict our hy-
pothesis on the minimality of r. Observe to begin with that a, ab, and ab2 are
all Tr-conjugate, as they are in the coset aTr.

We show next that a /∈ C◦(b) and b /∈ C◦(a).
If a ∈ C◦(b) then, as T ≤ C◦(b), we again contradict the minimality of G.

Hence a /∈ C◦(b). On the other hand we may now assume, by failure of (H2),
that C◦(b) has r⊥ type since b is toral. So, if b ∈ C◦(a) then, by Theorem 3
and its corollary, b belongs to a maximal r-torus U of C◦(a), and also a ∈ U ;
so a ∈ C◦(b), a contradiction. Thus b /∈ C◦(a).

As C(a) has r⊥ type, Theorem 4 says that its Sylow r-subgroups are con-
jugate. So, as b lies inside C(a), there is a maximal decent torus U of C(a)
normalized by b. Now a ∈ U by Corollary 3.1, and U is a maximal decent torus
of G. Thus b represents a nontrivial r-element of the Weyl group relative to
U . Now, with Ur the r-torsion in U , we can reverse the roles of a and b, and
conclude that b, ab are conjugate under the action of Ur. Thus a, b are conjugate
in G. As r > 2 we may argue similarly that a, b2 are conjugate in G. So b, b2

are conjugate in G.
Now observe, by [BN94, Lemma 10.22], that N(T ) controls fusion in T : if

X ⊆ T and Xg ⊆ T then T, T g ≤ C(Xg) and hence T g is conjugate to T in
C(Xg), thus T is conjugate to T g in N(T ). So b and b2 are conjugate under the
action of N(T ). In other words, we have a Weyl group element carrying b to b2.
Thus we have elements in W whose order is some prime dividing the order of
2 in the multiplicative group modulo r. Such a prime is a factor of r − 1, and
hence less than r. This contradicts the minimization of r.

Corollary 5.4. Let G be a connected group of finite Morley rank without unipo-
tent torsion. If the Weyl group is nontrivial then it has even order; in particular,
the group G is not of degenerate type in this case.
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