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Abstract. We will develop the model theory of modules over com-

mutative Bézout domains. In particular we characterize commutative

Bézout domains B whose lattice of pp-formulae has no width and give

some applications to the existence of superdecomposable pure injective

B-modules.

1. Introduction

An idealistic approach to model theory of modules over a ring R would

be through a complete description of the lattice L(R) of pp-formulae in one

variable over R. Having achieved this goal, the description of the Ziegler

spectrum ZgR over R is usually not difficult, and various model theoretic

dimensions (like m-dimension, breadth and width) would admit straightfor-

ward calculations.

Unfortunately, a complete description of L(R) is very rarely available:

even over rings of integers it causes some difficulties, but over many rings

(like string algebras — see [10]) is hardly possible. Thus various indirect

methods were developed to calculate the above mentioned model theoretic

invariants.

However there is one class of rings, where this program has been success-

fully carried through — commutative valuation domains V . In this case (see

[8]) the whole lattice L(V ) is a free product of two copies of the positive cone

Γ+(V ) of the value group of V , and after that all these dimensions, and the

Ziegler spectrum of B are calculated without much effort. The advantage

of this approach is that many natural questions on ZgV and on the theory

T (V ) of V -modules admit a natural interpretation and can be tackled very

effectively. For instance, the question on decidability of T (V ) was answered

almost completely (see [12], [3], [5]) and the sobriety of ZgV (see [4]) was
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established. Furthermore (see [9, Ch. 12]) a superdecomposable pure injec-

tive V -module exists if and only if Γ+(V ) contains a dense subchain if and

only if the width of L(V ) is undefined.

In this paper we will extend this natural approach to commutative Bézout

domainsB. This class of rings is undoubtedly of great importance in algebra,

including among others the ring of algebraic integers and the ring of entire

(complex or real) functions in one variable. We will describe, in terms of the

positive cone Γ+(B) of the value group Γ(B) of B, the whole lattice L(B).

Despite being quite technical and lengthy, this result is expected to be very

useful for future applications. Due to a sheer volume of the paper we will

restrict ourselves with just a few. For instance, we will give a syntactical

description, in a spirit of original Ziegler [14], of the Ziegler spectrum of

B. A basis for topology is very similar to what is known for commutative

valuation domains and given by a combination of simple divisibility and

annihilator conditions. The points of ZgB (that is, indecomposable pure

injective B-modules) are described by pairs of filter-cofilter partitions on

Γ+(B), with a precise criterion when two pairs produce the same point.

We will also approach an old and unresolved question on the equivalence

of the existence of a superdecomposable pure injective B-module and the

non-existence of the width of L(B). Unable to give a complete answer

we will prove that the width of this lattice is undefined if and only if the

lattice ordered group Γ(B) contains a dense subchain. Surprisingly we will

see that the unresolved implication (no width implies a superdecomposable

pure injective) is quite difficult even in the torsion free (or divisible) case.

As we will show in this paper, almost all problems in model theory of mod-

ules over commutative Bézout domains are in fact questions about lattice

ordered abelian groups. Therefore these model theoretic problems appear

to be a good test for applying well developed methods of this classical part

of algebra.

We hope that this paper will be just a first step in a program of investi-

gating model theoretic properties of modules over very interesting examples

of rings originated in algebra and analysis.

2. Preliminaries

All rings R in this paper will be commutative rings with unity, and all

modules M are unitary (and mostly right) R-modules.
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Recall that a ring R is said to be Prüfer, if the lattice of ideals of R

is distributive. For instance, R is Prüfer if and only if for every prime

(or maximal) ideal P , the localization RP is a (commutative) valuation

ring, that is all ideals of RP are linearly ordered by inclusion. For various

characterizations of Prüfer domains (for instance, this property is equivalent

to semiheredity) see [1, Ch. 3]. But the following Warfield’s result holds even

for rings with zero divisors.

Fact 2.1. [13, Thm. 1] Every finitely presented module over a Prüfer ring

R is a direct summand of a (finite) direct sum of modules R/rR, r ∈ R.

One consequence of this result for model theory of modules is straightfor-

ward.

Recall that a positive primitive formula (pp-formula) ϕ(x) in one variable

x is an existentially quantified formula ∃ y = (y1, . . . , yn) yA = xb, where

b = (b1, . . . , bk) is a row of elements of R and A is an n × k matrix over

R. If M is an R-module and m ∈ M , then we say that m satisfies ϕ in

M , written M |= ϕ(m), if there is a tuple m = (m1, . . . ,mn) ∈ M such

that mA = mb (that is, if the corresponding system of linear equations is

soluble). By ϕ(M) we will denote the submodule {m ∈ M | M |= ϕ(m)}
defined by ϕ in M .

We say that pp-formulas ϕ(x) and ψ(x) are equivalent if ϕ(M) = ψ(M)

in any module M . For an algebraic description of this equivalence relation,

in terms of matrix equations, see [7, L. 1.1.13]. Actually this equivalence

relation applies to pairs of arbitrary formulas. It turns out that, up to this

relation, if ϕ(x), ψ(x) are pp-formulas, then also their conjunction ϕ(x) ∧
ψ(x) and their sum ϕ(x) + ψ(x)

.
= ∃u∃ v (ϕ(u) ∧ ψ(v) ∧ x = u+ v) are pp-

formulas. The following property, coined as RD-property in [11], is a direct

consequence of Fact 2.1.

Fact 2.2. Every pp-formula ϕ(x) over a Prüfer ring R is equivalent to a

finite sum of formulas ∃ y (ya = x∧yb = 0), and also to a finite conjunction

of formulae c | xd, that is ∃ y (yc = xd).

We say that a ring R is Bézout, if every 2-generated ideal of R is principal

(and therefore every finitely generated ideal of R is principal). For instance,

every Bézout ring is Prüfer. In this paper we will deal mostly with Bézout

domains, and we will use the letter B to denote such rings. Thus a domain

B is Bézout if and only if for any a, b ∈ B there exist u, v, s, t ∈ B such that

(au+ bv)s = a and (au+ bv)t = b, that is c = au+ bv is a single generator
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for the ideal aB + bB. These identities are often called Bézout identities.

Note that the element c as above is defined up to multiplication by a unit,

and called the greatest common divisor of a and b, gcd(a, b).

Localizing, it is not difficult to check that in a Bézout domain B the

intersection aB ∩ bB of principal ideals is also a principal ideal dR (that

is, every Bézout domain is coherent), and we call this d the least common

multiple of a and b, lcm(a, b) (again, d is defined up to a multiplicative unit).

For instance, it is easily shown that ab = gcd(a, b) · lcm(a, b).

For more properties of Bézout domains the reader is referred to [1, Sec. 3.5].

For instance, every principal ideal domain is Bézout. Furthermore (see [1,

Exam. 3.1.3]) the ring of algebraic integers is Bézout, so as (see [6]) the ring

of entire complex or real functions in one variable.

Recall that a divisibility formula is a pp-formula of the form a | x .
=

∃ y (ya = x), a ∈ B, therefore (a | x)(M) = Ma for any module M .

Similarly, the annihilator formula xb = 0 defines in any module M the

annihilator of b : annM (b)
.
= {m ∈M | mb = 0}.

Over Bézout domains every pp-formula is equivalent to a Boolean combi-

nation of divisibility and annihilator conditions.

Lemma 2.3. Let B be a Bézout domain. Then every pp-formula over B is

equivalent to

1) a finite conjunction of formulas ϕa,b
.
= a | x+ xb = 0, and also to

2) a finite sum of formulas ψc,d
.
= c | x ∧ xd = 0.

Proof. We will prove just 1), and then 2) will follow by duality (see an

explanation at the end of this section).

By Fact 2.2 it suffices to consider the formula χ
.
= a | xb .= ∃ y (ya = xb).

Let c = gcd(a, b), therefore a = ca′ and b = cb′, where a′ and b′ are coprime,

that is a′u+ b′v = 1 for some u, v ∈ B. We will show that χ is equivalent to

ϕa′,c
.
= a′ | x+ xc = 0.

Indeed, suppose first that m ∈ ϕa′,c(M), therefore m = na′ + k, where

kc = 0. Multiplying by c we obtain mc = na′c = na, therefore mb = mcb′ =

nab′ ∈Ma. It follows that ϕa′,c implies χ.

Now assume that M |= χ(m), that is mb = na for some n ∈ M . Then

m = ma′u+mb′v = (ma′u+na′v)+(mb′v−na′v), where ma′u+na′v ∈Ma′

and (mb′v − na′v)c = (mb− na)v = 0. It follows that χ implies ϕa′,c. �
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Note that the formula ϕa,b is equivalent to the formula ab | xb, since

(ab | xb)(M) = {m ∈ M | mb ∈ Mab} clearly equals Ma + annM (b) in any

module M .

If ϕ and ψ are pp-formulae, we say that ϕ implies ψ, written ϕ → ψ, if

ϕ(M) ⊆ ψ(M) for any module M (actually we already used this notion in

the proof of Lemma 2.3). For instance, it is straightforward to check that,

over any ring R, we have a | x→ a′ | x iff a ∈ Ra′ and xb = 0→ xb′ = 0 iff

b′ ∈ bR. Furthermore, if R is a domain and 0 6= a, b ∈ R, then a | x→ xb = 0

is never true; and xb = 0 → a | x holds if and only if 1 = bs + ta for some

s, t ∈ R.

If we factorize the set of all pp-formulae in one variable over a ring R

identifying equivalent formulae, we obtain a set L(R). Furthermore the

implication defines a partial ordering on L(R) such that L(R) is a lattice:

the meet is given by conjunction of formulae, and the join is formed by the

sum of formulae.

The following useful remark can also be derived from Fact 2.1.

Fact 2.4. If R is a Prüfer ring, then the lattice L(R) is distributive.

Note that above we defined the right pp-formulae over a ring R. A similar

definition gives also left pp-formulae over R. By [7, Sec. 1.3.1]) there exists

a duality, called elementary duality, between lattices of left and right pp-

formulae, which interchanges divisibility and annihilator conditions.

3. PP-formulae

If B is a Bézout domain, then Lemma 2.3 claims that the lattice L(B) is

generated by divisibility and annihilator conditions. The following lemma

shows that the result of lattice operations on generators is natural.

Lemma 3.1. Let B be a Bézout domain and a, b, a′, b′ ∈ R. The the follow-

ing holds:

1) a | x+ a′ | x is equivalent to c | x, where c = gcd(a, a′).

2) a | x ∧ a′ | x is equivalent to l | x, where l = lcm(a, a′).

3) xb = 0 + xb′ = 0 is equivalent to xd = 0, where d = lcm(b, b′).

4) xb = 0 ∧ xb′ = 0 is equivalent to xg = 0, where g = gcd(b, b′).

Proof. By elementary duality it suffices to prove 1) and 3).

1) We have c = au+a′u′ and also a = cs, a′ = cs′ for some u, u′, s, s′ ∈ B.

From a = cs it follows a | x → c | x, and similarly a′ | x implies c | x;

therefore a | x+ a′ | x→ c | x.
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For the converse implication suppose that for some B-module M and

m ∈ M we have M |= (c | x)(M), that is m = nc for some n ∈ M . Then

m = nc = n(au + a′u′) = nua + nu′a′ ∈ Ma + Ma′, therefore c | x implies

a | x+ a′ | x.

3) Clearly d = 0 if and only if b = 0 or b′ = 0, and in this case the

conclusion is trivial. Thus we can suppose that d, b, b′ 6= 0. From dB =

bB ∩ b′B it follows that d = bg = b′g′, where 0 6= g, g′ are coprime (that is,

gB + g′B = B). Thus choose u, u′ ∈ B such that gu+ g′u′ = 1.

From d ∈ bB, b′B it follows that xb = 0, xb′ = 0 → xd = 0, therefore

xb = 0+xb′ = 0 implies xd = 0. For the converse we assume that md = 0 for

some element m of a B-module M . Then m = m(gu+g′u′) = mgu+mg′u′,

where (mgu)b = mdu = 0 and (mg′u′)b′ = mdu′ = 0, therefore xd = 0

implies xb = 0 + xb′ = 0. �

If a, b ∈ B, then we define a ≤ b if b ∈ aB (that is aB ⊇ bB). Intuitively

this ordering corresponds to divisibility for integers, say 2 ≤ 4 (but not vice

versa), and is opposite to the inclusion relation for principal ideals of B. If

we set a ∼ b for a ≤ b ≤ a, then a ∼ b if and only if aB = bB. The set

of equivalence classes of this relation can be identified with B factorized by

units, that is with the set Γ+(B) of principal ideals of B. Our ordering ≤
induces the partial ordering on this set such that Γ+(B) is a lattice, with gcd

as a meet and lcm as a join. We illustrate this with the following diagram.

◦
�����

?????
lcm

◦
?????a ◦

����� b

◦
gcd

Note that on level of principal ideals we have aR + bR = gcd(a, b)R and

aR ∩ bR = lcm(a, b)R, therefore Γ+(B) is anti-isomorphic to the lattice of

principal ideals. But to avoid reversing the ordering we will prefer to look

at this lattice as a set of (equivalence classes of) elements of B, rather than

principal ideals. In this sense we will sometimes identify the elements of

B and their equivalence classes in Γ+(B) (or the corresponding principal

ideals).

Clearly Γ+(B) is a non-negative part of the value group of B, which is an

abelian lattice ordered group (see [1, Sec. 3.5] for more on that). Further-

more, the famous Kaplansky–Jaffard–Ohm theorem (see [1, Thm. 3.5.3])

says that every lattice ordered abelian groups occurs as a value group of
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some Bézout domain B. As we will see, the model theoretical properties of

B, in particular its lattice L(B), depend only on Γ+(B).

From Lemma 3.1 it follows that the lattice L(B) is generated by two copies

of Γ+(B) — one formed by divisibility formulae, and another by annihilator

conditions.

• xb = 0 Γ+(B)

•
a|x

Γ+(B) • ϕa,b

Here we show a formula ϕa,b
.
= a | x+ xb = 0 as a point on the Γ+(B)×

Γ+(B) plane such that the divisibility formulae correspond to the first (that

is, vertical) coordinate and the annihilator conditions to the second (that is,

horizontal) coordinate. Note that in the previous diagram both the vertical

and the horizontal axis are denoted by encircled regions rather than by lines.

This is to underline that Γ+(B) is a lattice, but not necessarily a total order.

By Lemma 2.3 every pp-formula over a Bézout domain B is equivalent to a

finite conjunction of such formulae, therefore it is shown as a finite number

of points on this plane (connected by ’invisible’ conjunctions).

Our next goal is to investigate implications between various formulas ϕa,b

and their finite conjunctions. Note that if a ∈ Bc or d ∈ bB then clearly

ϕa,b implies ϕc,d, and we call such implications trivial. Geometrically these

implications correspond to shifts ‘right and down’ on the plane:

Γ+(B)

.a ◦
ϕa,b

//

��

◦

��

ϕa,d

.c ◦
ϕc,b

//◦
ϕc,d

. //

OO

.
b

.
d Γ+(B)

If B = V is a valuation domain, then it follows from [9, L. 12.1] that all

implications between pp-formulas ϕa,b, and even between conjuncts of them,

are ’trivial’, in particular L(V ) is freely generated by two chains Γ+(V ) (and
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in the particular setting of valuation domains it makes sense to represent

Γ+(B) = Γ+(V ) as a line, as we did in the previous diagram). As we will see

in a moment, the situation for Bézout domains is more complicated: there

are some nontrivial implications.

Let us make first a simple remark: if ϕ,ψ are pp-formulas over any ring,

then ϕ implies ψ if and only if ϕ+ ψ implies ψ.

By Lemma 3.1 we have ϕa,b + ϕc,d = ϕgcd(a,c),lcm(b,d). Since gcd(a, c) | c
and d | lcm(b, d) it follows that, when analyzing the implication ϕa,b → ϕc,d,

we may assume that a | c and d | b, that is c = ag and b = dh for some

g, h ∈ B.

A similar simplification applies to the (most general) implication
∧
i≤n ϕai,bi

→ ϕc,d. Namely, we can replace
∧
i≤n ϕai,bi by (

∧
i≤n ϕai,bi) + ϕc,d. By

distributivity of the lattice L(B) (see Lemma 2.4) the last formula equals∧
i≤n(ϕai,bi + ϕc,d), hence

∧
i≤n ϕgcd(ai,c),lcm(bi,d). Thus for each i ≤ n we

may assume that c = aigi and bi = dhi for some gi, hi ∈ B.

First we will analyze the case when d 6= 0 and ai 6= 0 for every i. We

consider the remaining ’degenerate’ cases later.

Proposition 3.2. Let B be a Bézout domain, ai, gi, hi, i ≤ n and c, d be

elements of B such that c = aigi for all i. Further assume that ai, d 6= 0 and

li = lcm(gi, hi) for all i again. Then the following are equivalent:

1)
∧
i≤n ϕai,dhi implies ϕc,d.

2) cB +
∑

i≤n gihiB = B.

3) cB +
∑

i≤n liB = B.

Proof. 1) ⇒ 2). Otherwise there exists a prime ideal P containing cB +∑
i≤n gihiB. The implication holds true also over BP which is a valuation

domain. It follows from [9, Cor. 12.4] that for some i we have both aigi | ai
in RP , that is gi /∈ P , and dhi | d in RP , that is hi /∈ P . But then gihi /∈ P ,

a contradiction.

2) ⇒ 3). Since li divides gihi, this is obvious.

3) ⇒ 1). It suffices to prove that our implication holds true over any

localization BP . Since BP is a valuation domain, our equality implies that

either c is invertible, or one of li is invertible. If c is invertible, then the

formula ϕc,d holds everywhere, so there is nothing to prove.

Suppose that li is invertible in BP , that is li /∈ P . This clearly implies

gi, hi /∈ P , and we obtain the desired arguing as in 1). �
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Note that our proof of the proposition (as most proofs using localizations)

says nothing about how this implication is ’realized’ as a sequence of ’trivial’

implications (see [7, p. 12] for the meaning of triviality). In fact one can give

a completely constructive proof of this claim in the spirit of [11]. However we

decided to suppress this longish proof just occasionally producing a string

of ’real’ implications.

But for future use it is worthwhile to give a ’geometric’ interpretation of

this result. We slice our Γ+(B)×Γ+(B) plane in four quarters I, II, III, IV .

The following diagram represents these quarters in a neighborhood of the

point ϕc,d corresponding to the elements c, d ∈ B.

I oo
hi //◦

�
�
� II

•
ϕc,d

◦ ____
III

��
gj

OO

oo
hk

//◦
IV

��
gk

OO

To produce an implication
∧
i≤n ϕai,bi → ϕc,d we proceed as follows. After

summing up and replacing each given ϕak,bk (k ≤ n) with ϕak,bk + ϕc,d, we

will push the formula ϕak,bk into the fourth quarter. The result of this

operation for formulas in the second and third quarters, so of the form ϕai,bi

with c | ai and ϕaj ,bj with bj | d respectively, is shown by dashed lines on

the diagram. Now we could collect the products gkhk creating our ideal

J = cB +
∑

i≤n gihiB.

If we are persistent enough to get J = B, then we obtain the desired

implication. For instance this is the case if (different) gj1 and gj2 in the

third quarter are coprime.

When n = 1, the things are simplified.

Corollary 3.3. Let a, b, c, d be elements of a Bézout domain B with a, d 6= 0.

Then ϕa,dh implies ϕag,d if and only if g is invertible and a, h are coprime.

Proof. By Lemma 3.2 our implication takes place if and only if agB+ghB =

B. This clearly requires that g is invertible, and then that a and h are

coprime. �
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.ag ◦
ϕag,d

.a ◦ϕa,dh

ccG
G

G
G

G

.
d

.
dh

Referring to the previous diagram this means that the (single) formula

ϕa,b that implies ϕc,d is located in the first and second quarters, therefore

lies ‘above’ ϕc,d.

Warning: in the previous diagram, as well as in the next ones representing

the plane Γ+(B) × Γ+(B) in the remainder of the paper, we draw axes

neither as lines nor as encircled regions and we simply indicate the involved

“coordinates” a, d, . . . on each of them.

The following useful lemma describes implications between single formulas

ϕa,b, and is also a direct consequence of Proposition 3.2.

Lemma 3.4. Let a, b, c, d be elements of a Bézout domain B, a, d 6= 0. Then

ϕa,b → ϕc,d if and only if c | a and elements c and lcm(b, d)/d are coprime.

It follows from Corollary 3.3 that, if a and b′ are coprime, then the for-

mulae ϕa,b and ϕa,bb′ are equivalent. This has an obvious consequence for

principal ideal domains. More generally a Bézout domain B is said to be

adequate, if for all 0 6= a, b ∈ B we can decompose a = cd such that d and b

are coprime, and for any c′ ∈ B such that c′ | c and the ideal c′B is proper,

c′ and b are not coprime. For instance (see [2, Sec. 3]) the ring of entire

complex or real functions in one variable is adequate.

Corollary 3.5. Let B be an adequate Bézout domain. Then every 1-pp-

formula over B is equivalent to a finite conjunction of pp-formulas ϕa,b,

where a and b are coprime.

For the sake of completeness we will also describe the remaining ’degen-

erate’ implications
∧
i≤n ϕai,bi → ϕc,d. If d = 0, then the formula ϕc,d is

equivalent to the formula x = x, therefore holds everywhere. Thus it re-

mains to consider the case when certain ai equal zero. Note that in this case

c = aigi = 0, therefore ϕc,d is just the annihilator formula xd = 0.

Lemma 3.6. Let a1, . . . , an, b1, . . . , bn, d be elements of a Bézout domain B

such that d 6= 0, a1 = · · · = ak = 0, ak+1, . . . , an 6= 0, and bi = dhi for each

i. Then
∧
i≤n ϕai,bi → xd = 0 if and only if d ∈

∑k
i=1 biB.
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Proof. Using elementary duality, our implication can be rewritten as the

implication d | x →
∑

i≤n(bi | x ∧ aix = 0) of left pp-formulae. Note that

(B, d) is a free realization of the formula d | x. Thus this implication takes

place if and only if d ∈
∑

i≤n(bi | x ∧ aix = 0)(B). If ai 6= 0, then the ideal

(aix = 0)(B) equals 0, therefore we can restrict the range of the sum to

i ≤ k. For i ≤ k, the ideal (aix = 0)(B) equals B, therefore the whole sum

equals
∑

i≤k Bbi, as desired. �

4. The Ziegler spectrum

Recall that the Ziegler spectrum, ZgR, of a ring R is a (quasi-compact)

topological space whose points are (isomorphism classes of) indecomposable

pure injective R-modules, and the basis of topology is given by (compact)

open sets (ϕ/ψ) = {M ∈ ZgR | m ∈ ϕ(M) \ψ(M) for some m ∈M}, where

ϕ and ψ are pp-formulae in one variable. This basic open set is nonempty

if and only if ϕ does not imply ψ.

The following result is an standard consequence of Lemma 2.3.

Corollary 4.1. Let B be a Bézout domain. Then the basis for ZgB is given

by open sets (ψc,d/ϕa,b), that is (c | x ∧ xd = 0)/(a | x + xb = 0), where

a, b, c, d ∈ B.

Of course it is useful to know when such an open set is nontrivial. We

will give an answer only in the most interesting ‘non-degenerate’ case. The

remaining cases are analyzed without difficulty.

Lemma 4.2. Let a, b, g, h be nonzero elements of a Bézout domain B. Then

the implication a | x ∧ xbh = 0→ ag | x+ xb = 0 holds if and only if g and

h are coprime.

Proof. To analyze this implication, arguing as usual, we have to replace the

formula a | x by a | x + ϕag,b
.
= ϕa,b. Thus g1 = g and h1 = 1, hence

g1h1 = g in the notation of Proposition 3.2. Similarly we will replace the

formula xbh = 0 by xbh = 0 + ϕag,b
.
= ϕag,bh, therefore g2 = 1 and h2 = h,

hence g2h2 = h.

By the same proposition our implication holds if and only if agB + gB +

hB = B, that is if g and h are coprime. �

For instance we see that there could be nontrivial ‘relations’ when gener-

ating L(B) by two copies of Γ+(B), that is L(B) is usually a proper factor

of the (distributive) lattice freely generated by these copies.
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An algebraic description of points of ZgB is in principle known from

Ziegler [14, p. 168, Remark]. Namely, every such point (that is, an in-

decomposable pure injective module) M localizes: there is a prime ideal P

such that every element not in P acts as an isomorphism on M . Thus M

is an indecomposable pure injective module over the valuation domain BP ,

therefore (see [14] again) is isomorphic to the pure injective envelope of the

factor I/J , where J ⊂ I are fractional ideals of BP .

However, as for valuation domains, a syntactical description of points of

ZgB through pp-types has many advantages. Recall that a (non-overlapping)

collection p = p+ ∪ ¬ p− of pp-formulas and their negations is called a pp-

type, if it is 1) complete, that is any pp-formula belongs to p+ or p−, and 2)

consistent, that is if ϕ1, . . . , ϕn ∈ p+, ϕ is a pp-formula and
∧
i≤n ϕi → ϕ,

then ϕ ∈ p+. Because each pp-type p is uniquely determined by its positive

part p+, we usually identify p with p+ (and write, for a pp-formula ϕ, ϕ ∈ p
for ϕ ∈ p+ and ϕ /∈ p for ϕ ∈ p−).

A general theory (see [7, Ch. 4] says that for any pp-type p there is a

(minimal) unique pure injective pointed module (N(p),m), the pure injective

envelope of p, such that p coincides with the pp-type of m in N(p), where

ppN(p)(m) = {ϕ | N(p) |= ϕ(m)}. (Actually a similar notion of pp-type

makes sense for any element m in any module M .) A pp-type p is said to

be indecomposable, if the module N(p) is indecomposable. Thus to describe

points of ZgB is the same as to describe 1) indecomposable pp-types as

subsets of L(B) and 2) give a criterion when different pp-types will produce

isomorphic indecomposable pure injective modules.

Now we are in a position to realize this program for Bézout domains.

Since the lattice L(B) is distributive, from [14, Thm. 4.4] we obtain the

following criterion of indecomposability.

Fact 4.3. A pp-type p over a Bézout domain is indecomposable if and only

if for all ϕ,ψ ∈ p− we have ϕ+ ψ ∈ p−.

Recall that a nonempty subset F of a lattice is said to be a filter, if it

is upward closed (that is a ∈ F and a ≤ b implies b ∈ F ), and closed with

respect to the meet (that is a, b ∈ F implies a ∧ b ∈ F ). Since every pp-

type p is closed with respect to conjunctions, it is always a filter in L(B).

The above lemma shows that indecomposable pp-types over Bézout domains

correspond to filter-cofilter partitions of L(B), where a cofilter is a nonempty

subset of a lattice which is downward closed and closed with respect to join.
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But we could essentially improve this ‘rough’ description for Bézout do-

mains.

Let p be an indecomposable pp-type over a Bézout domain B. We could

restrict the above partition of L(B) to divisibility and annihilator conditions.

Namely, we set I(p) = {b ∈ Γ+(B) : xb = 0 ∈ p}, I∗(p) = Γ+(B) \ I(p) and

J(p) = {a ∈ Γ+(B) : a | x /∈ p}, J∗(p) = Γ+(B) \ J(p).

Lemma 4.4. Let p be an indecomposable pp-type over a Bézout domain B

and I = I(p), J = J(p). Then

1) Γ+(B) = I ∪ I∗ is a filter-cofilter partition of Γ+(B).

2) Γ+(B) = J ∪ J∗ is a filter-cofilter partition of Γ+(B).

3) If a < c for a ∈ J∗, c ∈ J and d < b for b ∈ I, d ∈ I∗ then the elements

g = c/a and h = b/d are not coprime.

Proof. 1) If b ∈ I and b ≤ b′, then xb = 0 implies xb′ = 0, therefore b′ ∈ I,

hence I is upward closed. The fact that I is closed with respect to gcd

follows from Lemma 3.1 4). Similarly Fact 4.3 and Lemma 3.1 3) imply that

I∗ is a cofilter.

2) has a similar proof (but now the filter if J∗).

3) Suppose that g and h are coprime. We have that a | x, xb = 0 ∈ p and

c | x, xd = 0 ∈ p−. By Lemma 4.2 we obtain a | x∧xb = 0→ c | x+xd = 0,

therefore the last formula is in p. But, since p is indecomposable, Fact 4.3

implies that either c | x ∈ p, hence c ∈ J∗, or xd = 0 ∈ p, hence d ∈ I, a

contradiction in both cases. �

Note that the pair of filter-cofilter partitions in this lemma is uniquely

determined by the filter I and cofilter J . We call a pair (I, J) satisfying

the conditions of this lemma admissible, and we will usually write this pair

instead of the two corresponding partitions of Γ+(B).

We will show that Lemma 4.4 characterizes indecomposable pp-types over

Bézout domains. But first let us clarify a little the objects that occur in this

lemma. Note that the filters in Γ+(B) correspond one-to-one to ideals of B,

via the map F 7→ I(F )
.
= {b ∈ B | bB ∈ F}. For instance it is easily seen

that I(F ) is an ideal, in fact

• I(F ) includes 0,

• if a ∈ I(F ) then a ≤ ar implies ar ∈ I(F ) for any r ∈ B,

• I(F ) is closed under gcd and consequently under +.

If P is a prime ideal of B and F = F (P ) = {bB | b ∈ P} is the corre-

sponding filter, then F ∗ = Γ+(B) \ F is clearly a cofilter. Unfortunately in

13



general we cannot claim that for a filter-cofilter partition Γ+(B) = F ∪ F ∗

the ideal I = I(F ) is prime. What we have is apparently weaker: a, b /∈ I
implies lcm(a, b) /∈ I (but ab ∈ I is quite possible).

Now we give the promised classification of indecomposable pp-types.

Theorem 4.5. Let B be a Bézout domain. Then there exists a natural one-

to-one correspondence between indecomposable pp-types in one variable over

B and admissible pairs (I, J) of filter-cofilter partitions of Γ+(B).

Proof. Given two filter-cofilter partitions (I, J) as above, we will construct

an indecomposable pp-type p = p(I, J) as follows. Take a divisibility formula

a | x in p if a ∈ J∗, and take it in p− otherwise. Now include an annihilator

formula xb = 0 in p if b ∈ I, and put in into p− otherwise.

Further include a formula ϕa,b in p if a | x is already in p or xb = 0 ∈ p
(and take ϕa,b in p− otherwise). Finally put the formula

∧
i≤n ϕai,bi in p if

and only if each ϕai,bi is already in p.

From Lemma 2.3 it follows that p is complete, and Fact 4.3 would yield

indecomposability. What remains is to prove the consistency of p. Suppose,

by a way of contradiction, that ϕ1, . . . , ϕn ∈ p and
∧
i≤n ϕi → ϕ with ϕ ∈ p−.

By the definition of p we may assume that each ϕi is either a divisibility or

an annihilator formula. Furthermore, since J∗ and I are filters, we could

further suppose that just one of those formulas occurs, that is the whole

implication is of the form a | x ∧ xb = 0 → ϕ, a ∈ J∗, b ∈ I. Furthermore

clearly we may assume that ϕ
.
= ϕc,d ∈ p−, therefore c ∈ J and d ∈ I∗.

Finally taking the sums we can replace in this implication a with gcd(a, c) ∈
J∗ and b with lcm(b, d) ∈ I. But then a < c and d < b, therefore elements

g = c/a and h = b/d are coprime by Lemma 4.2. But this contradicts

admissibility (see condition 3) of Lemma 4.4).

Thus we have constructed by each indecomposable pp-type a pair of filter-

cofilter partitions of L(B) satisfying 3) and vice versa. The proof that these

maps invert each other is straightforward. �

In general the hypotheses of this theorem are quite enigmatic and, over

a particular ring, may require a further nontrivial analysis. Let us see what

they mean in the case when B is a principal ideal domain. Then the filter I

corresponds to a principal ideal rB, r ∈ B. If r 6= 0 then the condition that

I∗ is cofilter clearly implies that r = pn for an irreducible p ∈ B. Similarly

we obtain that either J = 0 or J = qmB for an irreducible q ∈ B. Finally

if I = pnB and J = qmB then 3) yields p = q. This way we clearly obtain
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the (well known — see [7, Sec. 5.2.1]) classification of indecomposable pure

injective modules over principal ideal domains. For instance, if B = Z and

I = 4Z, J = 8Z, then we obtain the finite abelian group Z/16Z; and for

I = 4Z, J = 0 we get the 2-Prüfer group Z2∞ .

Thus we have classified indecomposable pp-types. To complete a (syn-

tactical) classification of points of ZgB we have to describe which pp-types

produce isomorphic indecomposable pure injective modules (that is their

pure injective envelopes are isomorphic). First we need a technical lemma

describing how the multiplication by an element of B changes the pp-type

of an element of an indecomposable pure injective B-module.

Lemma 4.6. Let m be an element of an indecomposable pure injective mod-

ule M with the pp-type p, and let (I, J) be the corresponding admissible pair.

Further assume that b /∈ I (that is mb 6= 0 in M) and let (I ′, J ′) be the ad-

missible pair corresponding to the pp-type q of mb in M . Then I ′ = (I :

b) = {r ∈ B | br ∈ I} and J ′∗
.
= Jb = {c ∈ B | c′ = c/ gcd(c, b) ∈ J∗}.

Proof. For r ∈ B we have r ∈ I ′ (that is xr = 0 ∈ q) if and only if (mb)r = 0

in M , that is br ∈ I. Thus I ′ = (I : b).

Now we would like to calculate J ′∗. By the definition, c ∈ J ′∗ if and only

if c divides mb in M , that is the formula c | xb belongs to p. Let d = gcd(c, b)

and c′ = c/d. We claim that this happens exactly when c′ ∈ J∗.
Firstly, by the proof of Lemma 2.3, the formula c | xb is equivalent to

c′ | x+ xd = 0.

Note also that b ∈ dB and mb 6= 0 implies md 6= 0 in M , that is xd =

0 ∈ p−. Since p is indecomposable, it follows that the formula c | xd .
= c′ |

x+ xd = 0 is in p if and only if c′ | x ∈ p, that is c′ ∈ J∗. �

For instance we conclude from this lemma (in fact this is evident) that

J∗b ⊆ J ′∗. But also (less trivially) if c and b are coprime then c ∈ J∗ if and

only if c ∈ J ′∗.
Below by p(I, J) we will denote (the unique) indecomposable pp-type

corresponding to the admissible pair (I, J), and by N(I, J) we will denote

the pure injective envelope of this type.

Informally the following result says that the types of two nonzero ele-

ments in an indecomposable pure injective B-module can be equalized when

multiplying by an element of B. This lemma completes the classification of

ZgB.
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Lemma 4.7. Let (I1, J1) and (I2, J2) be admissible filter-cofilter partitions

of Γ+(B). Then the corresponding indecomposable pure injective modules

are isomorphic if and only if one of the following holds:

1) there exists b /∈ I1 such that I2 = (I1 : b) and J2 = (J1)b, or

2) there exists d /∈ I2 such that I1 = (I2 : d) and J1 = (J2)d.

Proof. ⇐. By symmetry we may assume 1). Let M = N(I1, J1) be an

indecomposable pure injective module with an element m ∈ M whose pp-

type equals p(I1, J1). Then mb 6= 0, and (by Lemma 4.6) the pp-type

of mb in M equals p(I2, J2). Since M is indecomposable, it follows that

N(I2, J2) ∼= M .

⇒. Let M = N(I1, J1) be as above. By the assumption, there exists

n ∈M whose pp-type equals p(I2, J2). We have already mentioned that M is

localized: there exists a prime ideal P ofB such thatM is an indecomposable

pure injective module over the valuation domain BP (that is every r ∈ B \P
acts as an isomorphism of M).

It follows from [9, L. 11.11] that there exist elements b′, d′ ∈ BP such that

either ppM (mb′) = ppM (n) or ppM (m) = ppM (nd′), and we consider only

the first possibility. Let b′ = br−1 for some b ∈ B and r /∈ P . Then k = mb

realizes in M the same pp-type as n, that is p(I2, J2). Thus by Lemma 4.6

we obtain I2 = (I1 : b) and J2 = (J1)b.

�

5. Types

In this section we will give a syntactical description of pp-types in one

variable over Bézout domains B. Recall that we view Γ+ = Γ+(B) as the

factor set of B modulo the set of units of B, or also as the set of principal

ideals of B, but for simplicity we sometimes identify the elements of B with

the corresponding equivalence classes, or principal ideals. Then Γ+ is a

lattice with the ordering a ≤ b if b ∈ aB, that is aB ⊇ bB. For instance 1

(more precisely B = 1B) is the smallest element of this ordering and 0 (that

is, 0B) is the largest element. Recall that a cofilter of the lattice Γ+ is a

nonempty subset of Γ+ which is downward closed and closed with respect

to lcm:
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◦
zzzzz

DDDDD
DDDDD

lcm

◦a ◦ b

...
...

By Γ̂+ we denote the set of cofilters of Γ+ with respect to inclusion relation

⊆. It is not difficult to check that Γ̂+ is a lattice, where the greatest lower

bound is given by intersection. The least upper bound of two cofilters Λ and

Λ′ consists of elements a such that a ≤ lcm(c, c′) for some c ∈ Λ, c′ ∈ Λ′:

◦
qqqqqqqqq

MMMMMMMMM
lcm

◦c ◦
a

◦ c′

. . . .

We will denote this least upper bound by 〈Λ∪Λ′〉, in fact it is the minimal

cofilter extending Λ ∪ Λ′.

Note that Γ+ itself, considered as a set of principal ideals, is naturally

contained in Γ̂+, indeed Γ̂+ is its completion.

Recall that a pp-type p is just a filter on L(B). It follows from Lemma 2.3,

that p is uniquely determined by the set of formulas ϕa,b ∈ p+. We associate

to p a function F = F (p) : Γ+ → Γ̂+ given by F (b) = {a ∈ B | ϕa,b ∈ p} for

all b ∈ B (viewed as an element of Γ+).

F (b)

. ◦
a

.

Notice that, if a, a,′ , b, b′ ∈ B are such that aB = aB′ and bB = b′B, then

the formulas ϕa,b and ϕa′,b′ are equivalent, therefore our definition is sound.

Lemma 5.1. F (b) is a cofilter for any b ∈ B.

Proof. First of all F (b) is nonempty. Namely ϕ1,b is equivalent to x = x,

therefore belongs to p, hence 1 ∈ F (b).

Furthermore, F (b) is downward closed. Indeed if ϕa,b ∈ p and a′ ≤ a,

then ϕa,b → ϕa′,b (a trivial implication), therefore a′ ∈ F (b).

Finally F (b) is closed with respect to lcm. Namely let a, a′ ∈ F (b), that

is ϕa,b, ϕa′,b ∈ p. From Lemma 3.1 it easily derives that ϕlcm(a,a′),b ∈ p,

therefore lcm(a, a′) ∈ F (b). �
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Let us point out some crucial properties of F .

Proposition 5.2. Let B be a Bézout domain, p be a pp-type in one variable

x over B, and the function F = F (p) : Γ+ → Γ̂+ be defined as before. Then

the following holds:

1) F (0) = Γ+;

2) F (1) = Γ+ if and only if p is zero;

3) for every a, b, b′ ∈ B from a ∈ F (b) it follows that ab′ ∈ F (bb′), in

particular F is non-decreasing;

4) for every a, b, b′ ∈ B, if a ∈ F (bb′) and a is coprime with b′, then

a ∈ F (b);

5) F preserves the lattice meet operation, that is, for every b, b′ ∈ B we

have F (gcd(b, b′)) = F (b) ∩ F (b′).

Proof. 1) If b = 0, then the formula ϕa,b holds everywhere, therefore a ∈
F (b).

2) Note that 0 ∈ F (1) if and only if ϕ0,1
.
= 0 | x is in p.

3) Clearly ϕa,b implies ϕab′,bb′ , therefore a ∈ F (b) yields ab′ ∈ F (bb′).

In particular, if b ≤ c, then c = bb′ for some b′ ∈ B. Therefore a ∈ F (b)

implies ab′ ∈ F (c), hence a ∈ F (c). Thus the function F is non-decreasing.

4) follows from a remark after Corollary 3.3.

5) Let a ∈ B be such that a ∈ F (gcd(b, b′)). Then a gcd(b, b′) | x gcd(b, b′)

is in p, therefore (by trivial implications) ϕa,b, ϕa,b′ ∈ p, hence a ∈ F (b) ∩
F (b′).

Conversely, suppose that a ∈ F (b) ∩ F (b′), that is ϕa,b, ϕa,b′ ∈ p. By

Lemma 3.1 it follows that ϕa,b∧ϕa,b′ = ϕa,gcd(b,b′) ∈ p, hence a ∈ F (gcd(b, b′)).

�

We have just seen that the function F preserves the meet. Now we inves-

tigate the behavior of F with respect to the join.

Lemma 5.3. Let F = F (p) : Γ+ → Γ̂+ be defined as before and b, b′ ∈ B.

Then F (lcm(b, b′)) ⊇ 〈F (b) ∪ F (b′)〉.

F (b)

F (lcm(b, b′))

F (b′)
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Proof. By symmetry it suffices to check that F (b) ⊆ F (lcm(b, b′)). Let

a ∈ F (b), that is ϕa,b ∈ p. But the last formula trivially implies ϕa,lcm(b,b′),

therefore ϕa,lcm(b,b′) ∈ p yields a ∈ F (lcm(b, b′)) �

The opposite inclusion F (lcm(b, b′)) ⊆ 〈F (b) ∪ F (b′)〉 does not hold in

general. In fact it is easily seen that our claim is equivalent to the following.

If a ∈ B and ϕa,lcm(b,b′) ∈ p, then there are c, c′ ∈ B such that a | lcm(c, c′)

and ϕc,b, ϕc′,b′ are in p.

F (lcm(b, b′))

◦
lcm(c, c′)

����������

3333333333

F (b) ◦
a

F (b′)

◦
c

◦
c′

However let B = Z and let p be the pp-type of the element m = (2, 1) in

the Z-module Z⊕Z12. Take a = 2, b = 4 and b′ = 6, whence lcm(b, b′) = 12.

Then m satisfies ϕa,lcm(b,b′), that is ϕ2,12
.
= 24 | 12x, therefore 2 ∈ F (12).

On the other hand 2 /∈ 〈F (4) ∪ F (6)〉. Indeed otherwise there are c, c′ ∈ Z
such that 2 | lcm(c, c′) and ϕc,b, ϕc′,b′ ∈ p. These conditions mean 4c | 4(2, 1)

and 6c | 6(2, 1). This clearly implies c, c′ = ±1, hence lcm(c, c′) = 1 — a

contradiction, since lcm(c, c′) is even.

Let now F be a function from Γ+ to Γ̂+ satisfying the conditions 1)–5)

of Lemma 5.2. Define a pp-type p = p(F ) as follows. Take ϕa,b ∈ p+ if

a ∈ F (b), and take ϕa,b ∈ p− otherwise. It follows from Lemma 2.3 that, if

this set of formulae is consistent, it it uniquely extended to a pp-type over

B. We claim that conditions 1)–5) give also a sufficient condition for that.

Theorem 5.4. Let B be a Bézout domain. Then there is a natural one to

one correspondence between nonzero pp-types p in one variable over B and

functions F : Γ+ → Γ̂+ satisfying the conditions 1)–5) of Lemma 5.2.

Proof. By Lemma 5.2 and what we have already noticed, it suffices to prove

that the type p defined by a function F is consistent.

Furthermore (by compactness and taking direct products) it is enough to

show that the implication
∧
i≤n ϕai,bi → ϕc,d for ϕai,bi ∈ p, that is ai ∈ F (bi),

yields ϕc,d ∈ p, that is c ∈ F (d).

As usual (see arguments before Proposition 3.6) we may assume that, for

every i, c = aigi and bi = dhi for some gi, hi ∈ B.
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First suppose that ai 6= 0 for every i, and also d 6= 0. From ai ∈ F (bi) =

F (dhi) and c = aigi by 3) we conclude that c ∈ F (dgihi) for every i. Then

c ∈ ∩i≤nF (dgihi), which by 5) equals F (gcd(dgihi)) = F (d gcd(gihi)). On

the other hand, by Proposition 3.2 c and gcd(gihi) are coprime. Then we

can apply 4) to conclude c ∈ F (d).

The case d = 0 is trivial, because F (0) = Γ+.

Finally suppose that d 6= 0 and ai = 0 for some i ≤ n, hence c = 0.

In the notation of Lemma 3.6 this boils down to analyzing the implication∧k
i=1 xbi = 0→ xd = 0, where

∧k
i=1 xbi = 0 ∈ p and d ∈

∑
i≤k biB. Thus we

have 0 ∈ F (bi) for every i ≤ k, therefore 0 ∈ ∩i≤kF (bi) = F (gcd(b1, . . . , bk)).

From d ∈
∑

i≤k biB we obtain d ≥ gcd(b1, . . . , bk), therefore 0 ∈ F (d) since

F is nondecreasing. But then xd = 0 ∈ p. �

6. Superdecomposable pure injective modules.

A (non-zero) module M is said to be superdecomposable, if it contains

no indecomposable direct summands. If m is a nonzero element of M and

p = ppM (m) then, being a direct summand of M , the module N(p) is also

superdecomposable. Thus a ring R possesses a superdecomposable pure

injective module if and if there exists a superdecomposable pp-type in one

variable over R. A useful necessary condition of the existence of such a type

is given in terms of width of the lattice of pp-formulae.

Let L be a lattice with minimum and maximum. For a definition of width

of L see [14, p. 182]. For instance w(L) = 0 if L is a chain, that is all elements

of L are comparable. Furthermore, for an ordinal α, we (inductively) have

w(L) ≥ α + 1 if there are incomparable a, b ∈ L such that both intervals

[a ∧ b, a] and [a ∧ b, b] have width ≥ α (∧ and ∨ denote here the meet and

join operations of L, respectively).

◦
AAAAAA

}}}}}}
a ∨ b

◦a
≥ α

◦ b
≥ α

◦

AAAAAA
}}}}}}

a ∧ b

If w(L) ≥ α for every α, then we say that the width of L is undefined, or

that L has no width, and write w(L) =∞. In particular, w(L) is undefined

if L contains a countable squeezing family of incomparable diamonds (below

we show just the beginning of this sequence):
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◦

For more tricky “if and only if condition” for non-existence of width in

terms of wide subposets see [7, Thm. 7.3.1].

Fact 6.1. [14, Thm. 7.1] If there exists a superdecomposable pure injective

module over a ring R, then the lattice L(R) has no width. Furthermore,

if the lattice L(R) is countable (in particular if R is countable), then the

converse is true.

For uncountable rings, the sufficiency of this width condition (to the ex-

istence of a superdecomposable pure injective module) is an open problem

(see some discussion in [7, Sec. 7.3]).

Before approaching the general case let us first give a useful sufficient

condition for the existence of such a module over Bézout domains.

Proposition 6.2. Let B be a Bézout domain with a nonzero proper idem-

potent ideal I (that is I = I2). Then B possesses a superdecomposable pure

injective module.

Proof. Choose a maximal ideal P containing I and localize at P . Then

BP is a commutative valuation domain whose (nonzero proper) ideal IP is

idempotent. It follows from [9, Thm. 12.12] that there exists a superdecom-

posable pure injective BP -module M . This M remains superdecomposable

and pure injective when considered as B-module. �

This situation occurs for Bézout domains quite often.

Example 6.3. The following Bézout domains possess superdecomposable

pure injective modules:

1) the ring A of algebraic integers (the algebraic closure of Q in C);

2) the ring of entire (complex or real) functions in one variable;

3) the direct product Zω of ω copies of integers;

4) any filtered product Zω/F , where F is a non-principal filter on subsets

of ω.
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Proof. We have already mentioned that rings in 1) and 2) are Bézout. Fur-

thermore, the class of Bézout rings is closed with respect to direct products

and homomorphic images, therefore the same is true for rings in 3) and

4). In any case we will construct an idempotent ideal I in B, and apply

Proposition 6.2.

1) Let I be the ideal of A generated by all roots an = 2n
√

2, n = 1, . . . .

Clearly this ideal is idempotent and proper.

2) Let c = {cn} be a sequence of natural numbers such that cn ≤ n for

every n and cn → ∞ (as n goes to ∞). Clearly the complex function fc,

defined by fc(z) =
∏∞
n=1(1 − z/n3)cn for all z, is entire. Let I be the ideal

of the ring E(C) of all entire functions in one variable, generated by such

functions.

Note that fc is clearly a multiple of f2c′ , where c′ = {c′n} and, for every n,

c′n is the integer part of cn/2. It follows that I is idempotent.

The same arguments apply to the ring E(R) of analytic real functions in

one variable.

3) Consider the ideal I generated by all sequences {cn} as in 2).

4) Consider the image of the ideal I from 3). �

Note that there exists a visible difference in a behavior of some Bézout

domains with regard to existence of superdecomposable pure injective mod-

ules. For instance, there is no such module over Z. However, taking a

non-principal ultrafilter we see that there exists an elementary equivalent

to Z (in the language of rings) Bézout domain B possessing such a module.

Furthermore (by elementary descent) we can easily find a countable model

of the theory of Z with a superdecomposable pure injective module.

But, if A is the ring of algebraic integers, then every element of A is

a square. It follows that any model of the theory of A contains a proper

idempotent ideal, hence has a superdecomposable pure injective module.

7. The non-existence of width

The aim of the remaining part of the paper is to characterize Bézout

domains without width. We say that a subset S of a lattice L is dense, if

S contains two comparable elements, and for every a < b ∈ S there exists

c ∈ S such that a < c < b. Clearly a lattice L contains a dense subchain

if and only if L contains a (countable) subset isomorphic to the ordering of

the rationals (Q,≤).
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Theorem 7.1. Let B be a Bézout domain. Then the lattice L(B) of pp-

formulae over B has no width if and only if its value group Γ(B) contains

a densely ordered subchain.

First we will prove the sufficiency. Let B be a Bézout domain whose value

group Γ(B) contains a densely ordered countable subchain. It clearly follows

that there is a non-unit g ∈ B that could be ’splitted’ infinitely many times:

g = g0 · g1 for nonunits g0, g1 ∈ B; g0 = g00 · g01 with similar properties,

g1 = g10 · g11 and so on.

More formally, there exists a binary tree of nonunits bη ∈ B, η ∈ 2<ω,

such that bη = bη0 ·bη1. Note that the principal ideals generated by elements

located on the same branch of this tree are comparable. But it is quite

possible that elements from different branches produce comaximal ideals,

for instance bη0 and bη1 could be coprime.

Note that the formula ϕg2,g (trivially) implies ϕg,g2 and (by Lemma 3.4)

the converse implication does not hold, therefore we obtain a nontrivial

interval [ϕg2,g, ϕg,g2 ] in the lattice L(B):

.g2 ◦
ϕg2,g

.

.g . ◦ϕg,g2
.
g

.
g2

It would be oversimplistic to think of this interval as a square: by Lemma 3.4,

all formulas in it are located inside the corresponding horizontal strip, but

could protrude outside the square. However we will prove that this inter-

val does not have width, and all the required calculations will be carried

through inside this square.

Consider the first step of our construction.
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.g2 ◦ ◦
ϕ1

◦

.gg0g10 ◦ ◦ϕ2

.gg0

.gg00 ◦ψ1 ◦

.g ◦ ◦
ψ2

◦
.
g

.
gg00

.
gg0

.
gg0g10

.
g2

By trivial implications we see that all the formulas ϕ1
.
= ϕg2,gg0g10 , ϕ2

.
=

ϕgg0g10,g2 , ψ1
.
= ϕgg00,g, ψ2

.
= ϕg,gg00 belong to the square (that is ϕg2,g →

ϕi, ψj → ϕg,g2 for all i and j). Let us check that the two diamonds on this

diagram are incomparable. It suffices to check that ψ1 does not imply ϕ2

and that ϕ1 does not imply ψ2.

The first case is impossible, because by Lemma 3.3 the implication be-

tween formulae ϕa,b cannot increase the divisibility condition given by a.

Thus assume that ϕ1 implies ψ2, that is ϕg2,gg0g10 implies ϕg,gg00 . Then by

Lemma 3.4 we obtain gB + g01g10B = B. But g01g10 divides g, therefore

gB = B, a contradiction.

Now clearly the above construction can be repeated for each small square,

producing eventually an infinite sequence of squeezing incomparable dia-

monds in L(B). Thus the lattice L(B) has no width.

In the remaining part of this section we will prove the necessity in The-

orem 7.1, that is the nonexistence of width of the lattice L(B) implies that

the value group Γ(B) contains a dense subchain.

Suppose that a Bézout domain B is such that the width of the lattice L(B)

is undefined. By the definition of width we can find a countable elementary

subring B′ of B such that the width L(B′) is undefined. Because there is

an obvious embedding from Γ(B′) to Γ(B), it will be sufficient to prove that

Γ(B′) contains a dense subchain. Furthermore, by Fact 6.1, B′ possesses a

superdecomposable pure injective module, hence a superdecomposable type

in one variable. In what follows we will analyze this type. Thus from the

very beginning we may assume that B has a superdecomposable pp-type.

Recall that a pp-type p is said to be superdecomposable, if its pure injective

envelope N(p) is superdecomposable, that is contains no indecomposable
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direct summands. It follows from another result of Ziegler (see [14, Sect. 6])

that p is superdecomposable if and only if p contains no large formula. Since

the lattice L(B) for a Bézout domain B is distributive, the formula ϕ ∈ p−

is large if for all ϕ1, ϕ2 ∈ p− such that ϕ→ ϕ1, ϕ2 we have ϕ1 + ϕ2 ∈ p−.

The following diagram illustrates this configuration:

◦ //

��

ϕ ◦

���
�
�
ϕ1

◦ //___
ϕ2

◦
p−

From Lemma 2.3 we easily derive

Lemma 7.2. Let p be a nonzero pp-type over a Bézout domain B. Then p is

superdecomposable if and only if for any ϕa,b ∈ p− there are ϕa1,b1 , ϕa2,b2 ∈
p− such that ϕa,b → ϕa1,b1 , ϕa2,b2 and ϕa1,b1 + ϕa2,b2 ∈ p.

Now we will translate this condition into the language of the function

F (p) corresponding to p (see Proposition 5.2). As we will see, there exists

a clear trichotomy for the behavior of this function.

Proposition 7.3. Let p be a nonzero pp-type in one variable over a Bézout

domain B and let F = F (p) be the corresponding function from Γ+ to Γ̂+.

Then p is superdecomposable if and only if the following holds.

For every a, b ∈ B such that a /∈ F (b), either

(i) there are c, d ∈ B such that c < a, b < d, a /∈ F (d), c /∈ F (b) and

c ∈ F (d):

◦a

. ◦c .F (d)

. . F (b)

◦
b

◦
d

or

(ii) there are e, g ∈ B such that e, g < a, e, g /∈ F (b) but gcd(e, g) ∈ F (b):

◦
�����

?????
a

◦
?????e F (b) ◦

����� g

◦
gcd(e, g)
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or

(iii) there are f, h ∈ B such that b < f, h, a /∈ F (f), F (h) but a ∈
F (lcm(f, h)):

F (lcm(f, h))

F (f) ◦
a
F (h)

F (b)

Note that the condition (i) has already occurred for valuation domains

(see [9, Prop. 12.11]), however (ii) and (iii) cannot occur when Γ(B) is

linearly ordered.

Proof. ⇐. By Lemma 7.2 it suffices to show that no formula ϕa,b ∈ p− is

large in p (according to the statement of the lemma). Suppose first that (i)

holds. Consider the following diagram:

◦ //

��

a ◦

◦c
b

•
d

(here circles denote points in p− and bullets formulas in p). Since a /∈ F (d)

we obtain ϕa,d ∈ p−, and similarly c /∈ F (b) implies ϕc,b ∈ p−. Furthermore,

ϕa,b → ϕa,d, ϕc,b are trivial implications, and ϕa,d +ϕc,b = ϕc,d ∈ p, because

c ∈ F (d).

Similarly in case (ii) we have trivial implications ϕa,b → ϕe,b, ϕg,b, where

the last two formulae are in p−, because e, g /∈ F (b). But gcd(e, g) ∈ F (b)

yields ϕe,b + ϕg,b = ϕgcd(e,g),b ∈ p.
The condition (iii) is analyzed similarly.

⇒. Let a, b ∈ B be such that a /∈ F (b) but neither (i), (ii) or (iii) holds.

We will show that the formula ϕa,b ∈ p− is large in p getting a contradiction.

Thus we have to prove that for any ϕe,f , ϕg,h ∈ p− such that ϕa,b implies

both these formulae, ϕe,f + ϕg,h ∈ p−.

Suppose first that a 6= 0. By Lemma 3.4 the implication ϕa,b → ϕe,f

yields e ≤ a, and the elements e and lcm(b, f)/f are coprime. We would

like to replace f by f ′ = lcm(b, f), that is to force that b ≤ f . Indeed ϕa,b

implies ϕe,f ′ , because f ≤ f ′. Furthermore, because f ′ = f · (f ′/f) and e

and f ′/f are coprime, the conditions 3) and 4) of Proposition 5.2 imply that

e ∈ F (f) if and only if e ∈ F (f ′), that is ϕe,f ∈ p− if and only if ϕe,f ′ ∈ p−.
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Furthermore ϕe,f + ϕg,h → ϕe,f ′ + ϕg,h, so if the latter formula is in p−,

the same is true for the former formula.

Thus we can assume that e ≤ a, b ≤ f , and similarly that g ≤ a, b ≤ h.

Now put c = gcd(e, g) and d = lcm(f, h), in particular c ≤ a and b ≤ d.

◦
a

◦
�����

?????

◦e
????? ◦ g

�����

◦
gcd(e, g) = c

◦
f

◦
b

◦
�����

????? ◦ lcm(f, h) = d

?????

�����

◦
h

By ¬(i) we obtain that either

(*1) c ∈ F (b), or

(*2) a ∈ F (d), or

(*3) c /∈ F (d).

First assume (*1). We know that e, g ≤ a and a /∈ F (b). Furthermore

b ≤ f and e /∈ F (f) imply e /∈ F (b); and b ≤ h and g /∈ F (h) yield g /∈ F (b).

But then c ∈ F (b) contradicts ¬(ii).

Similarly if (*2) holds, then we have b ≤ f, h and a /∈ F (b). Furthermore

e ≤ a and e /∈ F (f) imply a /∈ F (f); and g ≤ a and g /∈ F (h) yield a /∈ F (h).

But then a ∈ F (d) contradicts ¬(iii).

Thus we are left with (*3). Then c /∈ F (d) implies ϕc,d ∈ p−. But

ϕc,d = ϕe,f + ϕg,h, therefore this sum is in p, as desired.

The case a = 0 is considered similarly. �

Let us examine the various cases generated by conditions (i), (ii) and (iii)

from Proposition 7.3.

Proposition 7.4. Let B be a Bézout domain and let p be a superdecompos-

able pp-type over B such that every pair of elements a, b ∈ B with ϕa,b ∈ p−

satisfies (i). Then the lattice Γ+(B) contains a subchain isomorphic to the

ordering (Q,≤) of the rationals.

Proof. Take a, b ∈ B with ϕa,b ∈ p−. Look at the corresponding elements

c, d provided by (i). Then both ϕc,b and ϕa,d are not in p, therefore we can

apply to c, b and a, d the same procedure.
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First let us deal with c, b. By (i) there are elements c′, d′ ∈ B such that

c′ < c, b < d′, and ϕc,d′ , ϕc′,b ∈ p− but ϕc′,d′ ∈ p.
It follows easily that c′ < a and we claim that we can also assume that

d′ ≤ d. To do that, just replace d′ with D
.
= gcd(d, d′). Then clearly

b ≤ D ≤ d:

◦a

◦c

◦c′

◦ d

◦
b

◦
D ?????

�����

◦ d′

Furthermore ϕc,D ∈ p− and ϕc′,D ∈ p.
Namely note that ϕc,D ∈ p combined with D ≤ d′ would imply ϕc,d′ ∈ p,

a contradiction. Also observe that c′ ≤ c and ϕc,d ∈ p imply ϕc′,d ∈ p.

Because ϕc′,d′ ∈ p, Lemma 3.1 yields ϕc′,D ∈ p.
Furthermore from ϕc,d ∈ p and ϕc,D ∈ p− we obtain D < d; and ϕc′,D ∈ p

and ϕc′,b ∈ p− imply b < D.

In conclusion we may assume that b < d′ < d. The next diagram describes

this part of the proof, where again by circles we denote points in p− and by

bullets formulas in p.

◦a ◦ ◦

◦c ◦ •

◦c′
b

•
d′

•
d

Similarly, when considering a, d, we will find elements c′′, d′′ ∈ B such

that c′′ < a, d < d′′, and ϕa,d′′ , ϕc′′,d ∈ p−, ϕc′′,d′′ ∈ p.

◦a ◦

◦c′′

d
•
d′′

Replacing c′′ by C
.
= lcm(c′, c′′), we can also assume c ≤ c′′. Obviously

c ≤ C ≤ a.

28



◦a

◦C
�����

?????

◦c ◦ c′′

◦
d

◦
d′′

Furthermore ϕC,d ∈ p− and ϕC,d′′ ∈ p.
Namely ϕC,d ∈ p and c′′ ≤ C would imply ϕc′′,d ∈ p, a contradiction. For

the second condition note that ϕc,d ∈ p and d ≤ d′′ gives ϕc,d′′ ∈ p. Together

with ϕc′′,d′′ ∈ p, by Lemma 3.1 this implies ϕC,d′′ ∈ p.
As a consequence, ϕc,d ∈ p and ϕC,d ∈ p− imply c < C; and ϕa,d ∈ p and

ϕC,d ∈ p− yield c < a. Thus taking C = c′′ we obtain:

◦a ◦ ◦ ◦

◦c′′ ◦ ◦ •

◦c ◦ • •

◦c′
b

•
d′

•
d

•
d′′

(where, as before, circles and bullets correspond to formulas in p−, p re-

spectively). At this point we can repeat the same construction for formulas

ϕc,d′ , ϕc′,b, ϕa,d′′ and ϕc′′,d. As in [9, Thm. 12.11] this eventually generates

two dense countable chains inside Γ+(B), the former containing a, c′′, c, c′,

and the latter b, d′, d, d′′. �

Thus we are led to consider Bézout domains B and superdecomposable

pp-types p over B such that some pair of elements a, b ∈ B satisfies (ii) or

(iii) but not (i).

The following remark has a straightforward proof.

Remark 7.5. 1) If e ≤ a and the pair (e, b) satisfied (i), then the same

holds true for (a, b).

2) If b ≤ f and (a, f) satisfies (i), then the same is true for (a, b).

.a ◦ //

��

◦

.e ◦

.
b

.
f
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The following lemma shows that in the absence of (i), the conditions (ii)

and (iii) are preserved when forming our basic configuration.

Lemma 7.6. Let (a, b) be a pair of elements of B for which (i) fails (and

hence (a, b) satisfies (ii) or (iii)).

1) Assume that (a, b) satisfies (ii). Then, with notation of Proposition 7.3

(e, b) (or (g, b)) satisfies (iii) if and only if (a, b) satisfies (iii).

2) Assume that (a, b) satisfies (iii). Then, with notation of Proposition 7.3

(a, f) (or (a, h)) satisfies (ii) if and only if (a, b) satisfies (ii).

Proof. We will prove 2). The proof of 1) is similar.

Suppose first that (a, f) satisfies (ii). Let e′, g′ witness that. Thus e′, g′ ≤
a, ϕe′,f , ϕg′,f ∈ p− and ϕC,f ∈ p, where C denotes gcd(e′, f ′).

◦a

◦
�����

?????

◦
?????e′ ◦

����� g′

◦
C = gcd

◦
b

◦
f

From ϕe′,f , ϕg′,f ∈ p− and b ≤ f it follows that ϕe′,b, ϕg′,b ∈ p−. If

ϕC,b ∈ p−, then the pair (a, b) satisfies (i), a contradiction. Thus ϕC,b ∈ p
witnesses (ii) for (a, b).

Conversely suppose that (a, b) satisfies (ii). Then there are e, g ≤ a such

that ϕe,b, ϕg,b ∈ p− but ϕC,b ∈ p, where C = gcd(e, g). Then ϕC,b ∈ p

and b ≤ f implies ϕC,f ∈ p. If ϕe,f ∈ p, then the pair (a, b) satisfies (i), a

contradiction. Thus ϕe,f ∈ p−, and similarly ϕg,f ∈ p−. Thus we obtained

a configuration (ii) for the pair (a, f). �

We will further analyze cases (ii) and (iii).

Theorem 7.7. Let B a Bezout domain, p be a superdecomposable pp-type

over B such that some pair of elements (a, b) satisfies (ii) or (iii) but not

(i) in Proposition 7.3. Then the lattice Γ+(B) includes either

A) a binary tree aη, η ∈ 2<ω such that

1) a∅ = a, ϕa,b ∈ p−,

2) if η is a prefix of η′, then aη′ ≤ aη,

3) aη00, aη01 ≥ gcd(aη0, aη1) and aη10, aη11 ≥ gcd(aη0, aη1),

4) for all η ∈ 2<ω we have ϕaη0,b, ϕaη1,b ∈ p− but ϕgcd(aη0,aη1),b ∈ p
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◦
aη

tttttttttttttt

JJJJJJJJJJJJJJ

◦aη0
????? ◦ aη1

�����

◦ ◦
aη00

◦
aη10

◦

◦aη01 • gcd
????? •

����� ◦aη11

•
gcd

or

B) a binary tree bη, η ∈ 2<ω such that

1) b∅ = b, ϕa,b ∈ p−,

2) if η is a prefix of η′, then bη ≤ bη′,
3) bη00, bη01 ≤ lcm(bη0, bη1) and bη10, bη11 ≤ lcm(bη0, bη1),

4) for all η ∈ 2<ω we have ϕa,bη0 , ϕa,bη1 ∈ p− but ϕa,lcm(bη0,bη1) ∈ p.

•
lcm

�����
?????

◦bη00 • lcm • ◦ bη10

◦
����� ◦

bη01
◦
bη11

◦
?????

◦bη0

JJJJJJJJJJJJJJ ◦ bη1

tttttttttttttt

◦
bη

Proof. By symmetry we may assume that (a, b) satisfies (ii) and we set

a∅ = a. Thus there are a0, a1 < a such that ϕa0,b, ϕa1,b ∈ p− but for

c = gcd(a0, a1) we have ϕc,b ∈ p, that is ϕa0,b + ϕa1,b ∈ p. Taking into

account Lemma 7.6 by symmetry we may further assume that both (a0, b)

and (a1, b) satisfy (ii). Thus choose a′00, a
′
01 < a0 such that ϕa′00,b, ϕa′01,b ∈ p

−

but for c′ = gcd(a′00, a
′
01) we have ϕc′,b ∈ p.
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◦
a

?????

jjjjjjjjjjjjjj

◦a0

?????

������������ ◦ a1

������������������

◦
?????

�����

◦
?????

����� ◦a00

????? ◦ a01
�����

◦a′00
?????

jjjjjjj ◦a′01
�����

jjjjjjj •
d OOOOOOOOO

•
c′

jjjjjjj •
c

Now take a00 = lcm(a′00, c) and a01 = lcm(a′01, c). Using distributivity,

it is not difficult to check that these elements are as desired. Namely note

that ϕa′00,b ∈ p
−, therefore the conjunction of this formulas with ϕc,b is in

p−. But the first coordinate of this conjunction is lcm(a′00, c) = a00. Thus

ϕa00,b ∈ p− and similarly ϕa01,b ∈ p−. Now if we denote d
.
= gcd(a00, a01)

then clearly d = lcm(c, c′), hence ϕa00,b + ϕa01,b = ϕd,b equals ϕc,b ∧ ϕc′,b,
therefore lies in p.

A similar construction applies to a1 and so on. Thus we will eventually

construct a binary tree as required in A). �

Now we are in a position to complete the proof of Theorem 7.1. Indeed,

the sufficiency has been already established. To prove the necessity arguing

as above we may suppose that B has a superdecomposable pp-type p. If

every pair (a, b) in p− satisfies (i), then Proposition 7.4 produces a dense

subchain in Γ+(B). Otherwise by Theorem 7.7 we obtain even more, namely

that Γ+(B) contains even a ‘squeezing diamonds’ configuration (in particular

has no width).

8. Discussion

First in this section we will give an example of a superdecomposable pp-

type over a Bézout domain B such that each point (a, b) not in p satisfies (ii)

but neither (i) nor (iii). Namely let B = Zω/U , where U is any non-principal

ultrafilter on ω, in particular B is elementarily equivalent to Z. To any U -

class of B, say of a ∈ Zω, we associate the number cn of different primes in

the decomposition of the n-coordinate an of a into prime factors. Of course

this definition is not sound but the property that cn goes to infinity as n

goes to infinity does not depend on the choice of the representative a, but

only on the U -class. Such elements will be called large, and all the remaining

elements of B will be called small.
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Now include the formula ϕa,b in p− if a is large, and take this formula

in p if a is small, and proceed as usual to complete this set of formulas to

a pp-type. It is not difficult to check that p is consistent. Suppose that

ϕa,b ∈ p−. Clearly a is a product of two large elements c, d such that c and

d are coprime. Then ϕa,b → ϕc,b, ϕd,b ∈ p− and ϕc,b + ϕd,b = ϕ1,b ∈ p, as

desired for (ii).

Because p is completely determined by divisibility conditions, it is easily

checked that no pair (a, b) ∈ p− satisfies (i) or (iii). Note that the superde-

composable pure injective module N(p) is additionally torsion-free.

Let us discuss briefly how difficult is to construct a superdecomposable

pure injective module in case when a Bézout domain B has a binary tree

of elements bη satisfying condition (iii) from Theorem 7.7. In this case

the theory of divisible B-modules has no width, so we could expect a su-

perdecomposable pure injective model of this theory. Furthermore it is not

difficult to check that such a module exists if and only if, for some ideal I

of B, the injective envelope of the cyclic module B/I is superdecomposable.

This gives the following condition on I: for every b /∈ I there are s, t ∈ B
such that bs, bt /∈ I, but lcm(bs, bt) ∈ I. However we are not able to con-

struct such an ideal just from the sequence bη with (iii), and the existence

of such ideal seems to be a difficult problem.

Dually, we have a similar problem in case (ii), but now with superdecom-

posable pure injective torsion-free B-modules. The case (i) seems to be even

harder to analyze.

However, because our analysis depends only on Γ(B), this is a problem

of the theory of lattice ordered abelian groups, which are classified (see [1,

Sec. 3.4]). Thus we hope that the use of this theory will lead to its solution.
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