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Abstract. We give a de�nition, in the ring language, of Zp inside Qp and of
Fp[[t]] inside Fp((t)), which works uniformly for all p and all �nite �eld extensions
of these �elds, and in many other Henselian valued �elds as well. The formula
can be taken existential-universal in the ring language, and in fact existential in
a modi�cation of the language of Macintyre. Furthermore, we show the negative
result that in the language of rings there does not exist a uniform de�nition by an
existential formula and neither by a universal formula for the valuation rings of
all the �nite extensions of a given Henselian valued �eld. We also show that there
is no existential formula of the ring language de�ning Zp inside Qp uniformly for
all p. For any �xed �nite extension of Qp, we give an existential formula and a
universal formula in the ring language which de�ne the valuation ring.

1. Introduction

Uniform de�nitions of valuation rings inside families of Henselian valued �elds
have played important roles in the work related to Hilbert's 10th problem by B. Poo-
nen [11] and by J. Koenigsmann [8], especially uniformly in p-adic �elds. We address
this issue in a wider setting, using the ring language and Macintyre's language. Since
the work [9], the Macintyre language has always been prominent in the study of p-
adic �elds.

Let Lring be the ring language (+,−, ·, 0, 1). Write LMac for the language of
Macintyre, which is obtained from Lring by adding for each integer n > 0 a predicate
Pn for the set of nonzero n-th powers. We assume that the reader is familiar with
pseudo-�nite �elds and Henselian valued �elds. For more information we refer to
[5], [10], [4], and [3].

The following notational conventions are followed in this paper. For a Henselian
valued �eld K we will write OK for its valuation ring. OK is assumed nontrivial.
MK is the maximal ideal of OK , and k = OK/MK is the residue �eld. We denote
by res the natural map OK → k.

Given a ring R and a formula ϕ in Lring or LMac in m ≥ 0 free variables, we write
ϕ(R) for the subset of Rm consisting of the elements that satisfy ϕ. In this paper
we will always work without parameters, that is, with ∅-de�nability.
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1. Theorem. There is an existential formula ϕ(x) in Lring ∪ {P2, P3} such that

OK = ϕ(K)

holds for any Henselian valued �eld K with �nite or pseudo-�nite residue �eld k
provided that k contains non-cubes in case its characteristic is 2.

We are very grateful to an anonymous referee for pointing out to us that our
argument in an earlier version failed when k has characteristic 2 and every element
is a cube (i.e. (k∗)3 = k∗). There are such k, �nite ones and pseudo-�nite ones (cf.
Section 5).

Note that in such a case k has no primitive cube root of unity, and so its unique
quadratic extension is cyclotomic. That extension is the Artin-Schreier extension,
and (as the referee suggested) it is appropriate to adjust the Macintyre language by
replacing P2 by P

AS
2 , where

PAS
2 (x)⇔ ∃y(x = y2 + y).

This has notable advantages, namely:

2. Theorem. There is an existential formula ϕ(x) in Lring ∪ {PAS
2 } such that

OK = ϕ(K)

holds for all Henselian valued �elds K with �nite or pseudo-�nite residue �eld.

Since in a �eld of characteristic not equal to 2, we have PAS
2 (x) ⇔ P2(1 + 4x),

Theorem 2 implies the following.

3. Theorem. There is an existential formula ϕ(x) in Lring ∪ {P2} such that

OK = ϕ(K)

holds for all Henselian valued �elds K with �nite or pseudo-�nite residue �eld of

characteristic not equal to 2.

Before proving the above theorems, we state some other results. First some
negative results.

4.Theorem. Let K be any Henselian valued �eld. There does not exist an existential

formula ψ(x) in Lring such that

OL = ψ(L)

for all �nite extensions L of K. Neither does there exist a universal formula η(x)
in Lring such that

OL = η(L)

for all �nite extensions L of K.

The following was noticed by the referee.

5. Theorem. There is no existential or universal Lring-formula ϕ(x) such that Zp =
ϕ(Qp) for all the primes p. More generally, given any N > 0, there is no such

formula ϕ(x) such that Zp = ϕ(Qp) for all p ≥ N .
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For a �xed local �eld of characteristic zero, we can give existential and universal
de�nitions.

6. Theorem. Let K be a �nite extension of Qp. Then the valuation ring OK of

K is de�nable by an existential formula in Lring and also by a universal formula in

Lring.

2. Negative results

2.1. Proof of Theorem 4. Suppose that there was such an existential formula
ψ(x). Let Kalg denote the algebraic closure of K. By [5, Lemma 4.1.1 and Theorem
4.1.3], there is a unique valuation on Kalg extending the valuation on K. The
valuation ring OK has a unique prolongation to every algebraic extension of K.
The valuation ring OKalg of Kalg is the union of the valuation rings of the �nite
extensions L, and is thus contained in ψ(Kalg). On the other hand, if a ∈ ψ(Kalg),
then a ∈ ψ(L) for some �nite extension L of K. Thus a lies in the valuation ring of
L, and hence a ∈ OKalg . So ψ(Kalg) coincides with the valuation ring of Kalg which
implies that it must be �nite or co�nite, contradiction.

We will now show that there is no existential formula θ(x) in the language of
rings such that for all �nite extensions L of K

θ(L) =ML.

Suppose that there was such a formula θ(x). Then since the maximal ideal of OKalg

is the union of the maximal idealsML over all �nite extensions L of K, we see that
if a ∈MKalg , then a ∈ML for some �nite extension L of K, hence θ(a) holds in L,
so θ(a) holds in Kalg. Conversely, if Kalg |= θ(a), where a ∈ Kalg, then L |= θ(a) for
some �nite extension L of K, hence a ∈ ML, thus a ∈ MKalg . Therefore θ(Kalg)
coincides with the maximal ideal of the valuation ring of Kalg which implies that it
must be �nite or co�nite, contradiction.

If θ(x) is a formula de�ningML, then the formula

σ(x) := ∃z(xz = 1 ∧ θ(z))
de�nes the set L \ OL. We deduce that there does not exist an existential formula
σ(x) in the language of rings such that for all �nite extensions L of K

σ(L) = L \ OL.
Thus there does not exist a universal formula η(x) of the language of rings such that
for all �nite extensions L of K

η(L) = OL.
The proof of Theorem 4 is complete.

2.2. Proof of Theorem 5. Suppose there is such a formula ϕ(x). By a result of
Ax [2, Proposition 7, pp.260], there is an ultra�lter U on the set P of all primes
such that the ultraproduct k = (

∏
p∈P Fp)/U satis�es

k ∩Qalg = Qalg.
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The �eld K = (
∏

p∈P Qp)/U is Henselian with residue �eld k, which is pseudo-�nite
of characteristic zero, and value group an ultrapower of Z.

If L is a �nite extension of K, the residue �eld k′ of L is a �nite extension
of k, hence is pseudo-�nite and has the same algebraic numbers as k. Since two
pseudo-�nite �elds with isomorphic sub�elds of algebraic numbers are elementarily
equivalent ([2, Theorem 4, pp.255]), k′ ≡ k. Thus all residue �elds of �nite extensions
ofK are elementarily equivalent to k and all value groups are elementarily equivalent
to Z. So, by the theorem of Ax-Kochen [1, Theorem 3, pp.440], L ≡ K for all �nite
extensions L of K, and so OL = ϕ(L) uniformly, contradicting Theorem 4.

3. Proof of Theorem 6

Suppose K has degree n over Qp. We have n = ef , where f and e are respectively
the residue �eld dimension and rami�cation index of K over Qp (cf. [6]). Let L be
the maximal unrami�ed extension of Qp inside K. L has residue �eld Fpf and value
group Z for the valuation extending the p-adic valuation vp of Qp. K has value
group (1/e)Z for the valuation v extending vp.

Select (non-uniquely) a monic irreducible polynomial G0(x) over Fp of degree f
such that Fpf is the splitting �eld of G0(x). Consider a monic polynomial G(x) over
Z which reduces to G0(x) mod p. The polynomial G0(x) has a simple root in Fpf ,
so by Hensel's Lemma, G(x) has a root γ in L.

1. Claim. L = Qp(γ).

Proof of the claim. Clearly Qp(γ) ⊂ L. But the residue �eld of Qp(γ) contains Fpf .
So the dimension of Qp(γ) over Qp is at least f . So L = Qp(γ). �

Note that G(x) is irreducible over Zp and so over Qp, and G(x) splits in L. Thus
all the roots of G(x) are conjugate over Qp by automorphisms of L. We can choose
an Eisenstein polynomial over L of the form

xe +He−1(γ)x
e−1 + · · ·+H0(γ) ∈ L[x],

where for i ∈ {0, . . . , e−1}, Hj(z) is a polynomial in the variable z over Qp. We aim
to get an Eisenstein polynomial whose coe�cients are in Q(γ). For any polynomials
H∗0 (z), . . . , H

∗
e−1(z) over Q, we let

H∗z (x) := xe +H∗e−1(z)x
e−1 + · · ·+H∗0 (z) ∈ Q(z)[x].

If H∗j (z) is such that |Hj(z) −H∗j (z)| is very small, then since v(γ) ∈ Z, it follows
that |Hj(γ)−H∗j (γ)| is also very small. Thus we can choose H∗j (z) over Q su�ciently
close to Hj(z) so that H∗γ(x) ∈ Q(γ)[x] is Eisenstein. So H∗γ(x) is irreducible over
L, and, by Krasner's Lemma, it has a root in K which generates K over L. For any
other root γ′ of G(x), there is a Qp-automorphism σ of L such that σ(γ) = γ′, and
thus σ(H∗j (γ)) = H∗j (γ

′). Since L is unrami�ed over Qp and p is a uniformizer in L,
the valuation ring of L is de�nable without parameters and σ preserves the valuation.
Thus H∗γ′(x) is also an Eisenstein polynomial. By [6, Theorem 1, p.23], any root of
an Eisenstein polynomial is a uniformizer. We have thus shown that for any root η
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of G(x), any root of H∗η (x) is a uniformizer. Indeed, {t : ∃η G(η) = 0∧H∗η (t) = 0} is
an existentially de�nable nonempty set of uniformizers. So using Hensel's Lemma,
we can de�ne OK by

∃z∃y∃w (G(z) = 0 ∧H∗z (y) = 0 ∧ 1 + yx2 = w2)

if p 6= 2, and

∃z∃y∃w (G(z) = 0 ∧H∗z (y) = 0 ∧ 1 + yx3 = w3)

if p 6= 3.
This completes the proof of existential de�nability of OK . Note that combined

with the remark about existential de�nition of a nonempty set of uniformizers, it
gives existential de�nition of the set of uniformizers, and so of the maximal ideal
MK as the set of elements of K which are a product of a uniformizer and an element
of OK . Thus the complement of OK is existentially de�nable as the set of inverses
of elements ofMK . Hence OK is universally de�nable.

4. Proof of Theorems 1 and 2

For any prime number p, let Tp(x) be the condition about 1 free variable x
expressing that

pp + x ∈ Pp ∧ x 6∈ Pp.
Let T (x) be the property about x ∈ K saying that

T2(x) ∨ T3(x).

Let T+(x) be the statement

x 6= 0 ∧ ¬PAS
2 (x) ∧ ¬PAS

2 (x−1).

Recall that ∧ stands for conjunction and ∨ for disjunction in �rst order languages.

1. Lemma. Let k be a pseudo-�nite �eld. If the characteristic of k is di�erent from

2, then T2(k) is in�nite. If the characteristic of k is 2 and k contains a non-cube,

then T3(k) is in�nite.

Proof. Suppose the characteristic of k is di�erent from 2. k is elementarily equivalent
to an ultraproduct of �nite �elds Fq where q is a power of an odd prime. Thus
(q − 1, 2) 6= 1, hence F×q contains a non-square (cf. Section 5, Proposition 5). Thus
k× contains a non-square a. Then T2(x) is equivalent with

∃w, v(w2 = 4 + x ∧ av2 = x).

Now consider the curve C given by w2 = 4+x, av2 = x in A3. Since this is an abso-
lutely irreducible curve de�ned over k, it follows by the pseudo-algebraic closedness
of k that C(k) is in�nite. Thus, T2(k) is in�nite. The proof for characteristic 2 is
similar. �

2. Lemma. T+(k) is in�nite for every pseudo-�nite �eld k.
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Proof. Given a pseudo-�nite �eld k choose a ∈ k \ PAS
2 (k) if k has characteristic 2

and a ∈ k \ k2 if k has characteristic di�erent from 2, and de�ne the curve Ca by
w2 + w = a− x

v2 + v = a− x−1

if k has characteristic 2; and

1 + 4x = aw2

1 + 4x−1 = av2

if k has characteristic di�erent from 2. Then Ca is an absolutely irreducible curve in
A3. Since k is pseudo-algebraically closed, Ca(k) is in�nite. Note that

T+(x)⇔ ∃v∃w (v, w, x) ∈ Ca(k),
which completes the proof. �

3. Lemma. Let K be any Henselian valued �eld with residue �eld k. Then, T (K) is
a subset of the valuation ring OK and T+(K) is a subset of the units O×K. Moreover,

T (K) contains both the sets

res−1(T2(k) \ {0}) and res−1(T3(k) \ {0}),
and T+(K) contains res−1(T+(k)).

Proof. We �rst show that T2(K) ⊂ OK for all Henselian valued �elds K. It su�ces
to show for x ∈ K \ OK that x is a square if and only if x + 4 is a square. Let
x ∈ K \OK . We show the left to right direction, the converse is similar. So assume
x is a square. It su�ces to show that 1 + 4/x is a square, for then x + 4 will be a
product of two squares 1 + 4/x and x, hence a square.

Let f(y) := y2 − 1− 4/x. Since |f ′(1)| = |2| and |x| > 1, we have

|f(1)| = |4/x| < |4| = |2|2 = |f ′(1)|2.
Thus by Hensel's Lemma, f(y) has a root in OK . This shows that T2(K) ⊂ OK .
One proceeds similarly to show that T3(K) ⊂ OK . It follows that T (K) ⊂ OK for
all Henselian valued �elds K.

Now let x ∈ T2(k) \ {0}. This implies that the characteristic of k is not 2. Thus
if x̂ ∈ OK is any lift of x, by Hensel's Lemma, x̂ ∈ T2(K), so res−1(T2(k)) ⊂
T2(K). Similarly x ∈ T3(k) \ {0} implies that the characteristic of k is not 3,
and res−1(T3(k)) ⊂ T3(K). The other assertions concerning T+(K) and T+(k) are
immediate. �

We will use the following theorem of Chatzidakis - van den Dries - Macintyre
[4]. This result can be thought of as a de�nable version of the classical Cauchy -
Davenport theorem.

7. Theorem. [4, Proposition 2.12] Let K be a pseudo-�nite �eld and S an in�nite

de�nable subset of K. Then every element of K can be written as a + b + cd, with
a, b, c, d ∈ S.
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8. Corollary. Let ϕ(x) be an Lring-formula. Then there exists N = N(ϕ) such that

K = {a+ b+ cd : a, b, c, d ∈ ϕ(K)}.
for every �nite �eld K of cardinality at least N .

Proof. Follows from Theorem 7 and a compactness argument. �

9. Theorem. Let ϕ(x) be an Lring-formula such that ϕ(k) is in�nite for every

pseudo-�nite �eld k and ϕ(K) ⊂ OK and res−1(ϕ(k)) ⊂ ϕ(K) for every Henselian

valued �eld K with pseudo-�nite residue �eld k. Then there exists N ≥ 1 such that

OK = {a+ b+ cd : a, b, c, d ∈ ϕ(K)}
for every Henselian valued �eld K with �nite or pseudo-�nite residue �eld of cardi-

nality at least N .

Proof. Let θ ∈ OK . Then res(θ) = a+ b+ cd for a, b, c, d ∈ ϕ(k). Let b̂, ĉ, d̂ denote
lifts of b, c, d respectively. Then

res(θ − (b̂+ ĉd̂)) = a.

Thus θ − (b̂+ ĉd̂) ∈ ϕ(K), and we are done. �

10. Corollary. There exists N > 0 such that

OK = {a+ b+ cd : a, b, c, d ∈ T (K)}
for any Henselian valued �eld K with �nite or pseudo-�nite residue �eld k with

cardinality at least N provided that k contains non-cubes in case its characteristic

is 2.

Proof. Immediate. �

11. Corollary. There exists N > 0 such that

OK = {a+ b+ cd : a, b, c, d ∈ T+(K)}
for any Henselian valued �eld K with �nite or pseudo-�nite residue �eld k with

cardinality at least N .

Proof. Immediate. �

For any integer ` > 0, K any �eld, and X ⊂ K any set, let S`(X) be the set
consisting of all y ∈ K such that y` − 1 + x ∈ X for some x ∈ X.

4. Proposition. Let K be a Henselian valued �eld with �nite residue �eld k with

qK elements. Let ` be any positive integer multiple of qK(qK − 1). Then one has

OK = {0, 1}+ S`(T
+(K)),

where the sumset of two subsets A,B of K consists of the elements a+ b with a ∈ A
and b ∈ B. If k has a non-cube in case it has characteristic di�erent from 3, then
one has

OK = {0, 1}+ S`(T (K)).
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Proof. Since OK is integrally closed in K, for any l > 0 and any Henselian valued
�eld K, one has by Lemma 3 that

Sl(T (K)) ⊂ OK
and

Sl(T
+(K)) ⊂ OK .

2. Claim. For any unit y ∈ OK there is a positive γ in the value group such that

ord(yl − 1) > γ.

Proof. There are two cases. Either the value group has a least positive element or it
has arbitrarily small positive elements. Suppose the �rst case holds. Let π denote
an element of least positive valuation.

We assume K has residue �eld Fq, with q = pf . Fix a unit y. Let a be a (not
necessarily primitive) (q − 1)-th root of unity such that

|y − a| < 1.

Note that a exists by Hensel's Lemma since y is a root of the polynomial xq−1 − 1
modulo the maximal ideal and is clearly non-singular.

Write y as a+ bπ, where b ∈ OK . Then
yl = 1 + lal−1bπ + · · ·+ blπl.

Note that the Binomial coe�cients are divisible by l, and hence by q and thus by π
(as πe = p where e is rami�cation index), and l ≥ 2; therefore

v(yl − 1) ≥ 2.

This proves the Claim in the �rst case. In the second case, there are arbitrarily small
positive elements in the value group and yl − 1 has some strictly positive valuation,
hence γ exists in this case. �

3. Claim. Given γ a positive element of the value group, there is a ∈ T (K) and

b ∈ T+(K) such that ord(a) ≤ γ, ord(b) ≤ γ, and

a+ aMK ⊂ T (K)

b+ bMK ⊂ T+(K).

Proof. Again, �rst assume that the value group has a least positive element π.
Clearly π is a non-square and a non-cube, and by Hensel's Lemma 4+ π is a square
if the residue characteristic is not equal to 2, and 27 + π is a cube if the residue
characteristic is not equal to 3. So we can take a = π, and by Hensel's Lemma we
have a+ aMK ⊂ T (K).

In the case that there are elements of arbitrarily small positive value, there exist
non-squares and non-cubes of arbitrarily small positive value. Indeed, �x a non-
square x. We can choose b such that its valuation is very close to half the valuation
of 1/x. Then b2x has valuation very close to zero. A similar argument works for the
non-cubes. Then Hensel's Lemma as above completes the proof in this case.
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As for T+(K), given γ > 0, choose any b ∈ T+(K). We have that b is a unit and
hence ord(b) = 0 < γ. It follows from Hensel's Lemma that b+bMK ⊂ T+(K) since
if b+ bm = y2+ y for some y, where m ∈M, then b− y2− y has a non-singular root
modulo the maximal ideal M; this contradicts b ∈ T+(K). This argument works
for any value group. �

To complete the proof of the proposition take a unit α ∈ OK . By Claim 2 there
is γ > 0 with ord(αl − 1) > γ. Choose elements a ∈ T (K), and b ∈ T+(K) such
that ord(a) ≤ γ and ord(b) ≤ γ. Thus

(αl − 1)/a ∈MK

and

(αl − 1)/b ∈MK ,

hence

αl − 1 + a ∈ a+ aMK

and

αl − 1 + b ∈ b+ bMK .

So by Claim 3, α ∈ Sl(T (K)) and α ∈ Sl(T+(K)). This completes the proof. �

We can now give the proof of Theorems 1 and 2. By Lemma 3, for any ` > 0 and
any Henselian valued �eld K one has

S`(T (K)) ⊂ OK .
and

S`(T
+(K)) ⊂ OK .

From Proposition 4 and Corollaries 10 and 11 we deduce that there exists ` > 0
such that for any Henselian valued �eld K we have

(4.0.1) OK = ({0, 1}+ S`(T (K))) ∪ {a+ b+ cd : a, b, c, d ∈ T (K)}
provided that the residue �eld k contains a non-cube in case the characteristic of k
is 2. From Proposition 4 and Corollaries 10 and 11 we also deduce that

(4.0.2) OK = ({0, 1}+ S`(T
+(K))) ∪ {a+ b+ cd : a, b, c, d ∈ T+(K)}

for any Henselian valued �eld K. Now Theorems 1 and Theorem 2 follow since the
unions in 4.0.1 and 4.0.2 corresponds to existential formulas in Lring ∪ {P2, P3} and
Lring ∪ {PAS

2 } respectively as desired.

5. Appendix: Powers in pseudo-finite fields

5. Proposition. Let p be a prime, q a power of p, and m ∈ N. The following are

equivalent.

• F∗q = (F∗q)m.
• (q − 1,m) = 1.
• F∗h = (F∗h)m for in�nitely many powers h of p.
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Proof. To show the �rst and second statements are equivalent, let K = Fq. The
multiplicative group K∗ is cyclic of order q − 1. If (m, q − 1) = 1 then the map
x→ xm is an automorphism of K∗. Conversely, if the map x→ xm from K∗ to K∗

is surjective, then it is injective. Choose d with d|m and d|(q − 1). There is y such
that yd = 1, so ym = (yd)m/d = 1, thus ym = 1, contradiction.

To prove the equivalence of the second and third statements, let h be the order
of p in (Z/mZ)∗. Assume that (ps − 1,m) = 1, for some s. For any a ∈ N, we have

pah+s ≡ ps (mod m),

hence
pah+s − 1 ≡ ps − 1 (mod m).

Therefore (pah+s − 1,m) = 1. Conversely, the last congruence shows that (pah+s −
1,m) = 1 implies (ps − 1,m) = 1. The proof is complete. �

Corollary. There are pseudo-�nite �elds of characteristic 2 which do not contain

non-cubes, and pseudo-�nite �elds of characteristic 3 which do not contain non-

squares. There are pseudo-�nite �elds K of characteristic zero such that K∗ = (K∗)n

for all odd n.

Proof. The �rst two statements are immediate by Proposition 5. For the last state-
ment use compactness to reduce to the case of �nitely many n, therefore to one n
by taking product, and then use Proposition 5. �

Note that the restriction to odd n in the Corollary is necessary since for any �nite
�eld k of odd characteristic, k∗/(k∗)2 has cardinality 2.
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