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1 Introduction

This article gives a positive answer to a question posed by D. Macpherson (Ravello 2002
[B.et al], Question 14):

“Can we interpret the random n-ary hypergraph in a pseudofinite field?”
A pseudofinite field is an infinite field that satisfies all first-order sentences that hold

in every finite field. An example of a pseudofinite field is an infinite ultraproduct of
finite fields. The theory of pseudofinite fields was first studied by J. Ax in his 1968 article
“The elementary theory of finite fields”. In this article, among other results, Ax proves
that a field F is pseudofinite if and only if it is perfect, has a unique extension of degree
n for every n ∈ N>0 and is pseudo algebraically closed (PAC), that is, every absolutely
irreducible variety defined over F has an F -rational point.

In 1980 J. L. Duret showed [Du] that the theory of pseudofinite fields is unstable, as
the random graph is definable: given a pseudofinite field F of characteristic different from
2, put an edge between any two distinct points in F in case their sum is a square in F .

During the early 1990’s Hrushovski [H] showed that the theory of pseudofinite fields,
although unstable, is not so “bad” in the sense that, some of the methods from stability
theory can still be applied here.

An n-hypergraph is a graph whose edges, instead of connecting just two vertices, con-
nect n distinct vertices. A random n-hypergraph on a set A is a tuple (A, H) where H is
a subset of A[n] satisfying the following sentence for every m and k: for all a1, . . . , am and
b1, . . . , bk in A[n−1], distinct, there is an element c ∈ A, such that a1∪{c}, . . . , am∪{c} ∈ H
and b1 ∪ {c}, . . . , bk ∪ {c} 6∈ H.

Hrushovski proved in [H] that it is not possible to interpret a random (n + 1)-ary
hypergraph in a random n-ary hypergraph. This proves that the complexity of the random
n-ary graphs strictly increases with n.
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2 Preliminaries

Throughout the article all the fields we will consider will be contained in a fixed alge-
braically closed field Ω and K will stand for a field contained in Ω.

Let K̃ denote the algebraic closure of K in Ω and we will denote Aut(K̃/K) as Gal(K).
We call a field extension L of K a regular extension if K is algebraically closed in L, i.e.
if K̃ ∩ L = K.

By a valuation we will mean a real discrete valuation. A valuation of a function field
K(x) whose maximal ideal is generated by f(x) will be denoted by vf . In addition to the
valuations on K(x) given by the maximal ideals of K[x], there is one more valuation v∞
of K(x) which is defined by: v∞(f/g) = deg(g)−deg(f) for f and g in K[t] where deg(f)
denotes the degree of the polynomial f . We will denote valuations by the letters v and w.

Let K ′ be a finite algebraic field extension of K and v̂ be an extension of v to K ′, i.e.
v̂ is a valuation of K ′ whose valuation ring intersected with K gives the valuation ring
of v. By r(v̂ : v) we denote the ramification index of v̂ over v i.e. r(v̂ : v) is the unique
positive integer such that for all a ∈ K we have v̂(a) = r(v̂ : v)v(a). The residue degree
of v̂ over v is the field degree of the residue field of v̂ over the residue field of v and it is
denoted by d(v̂ : v). Note that if the residue field of v is algebraically closed d(v̂ : v) = 1
for every extension v̂ of v.

Let v̂ be one of the (finitely many) valuations on K ′ that extend v. Then v̂ is said to
be ramified over v (or over K) if r(v̂ : v) > 1 and v is ramified in K ′ if it has at least one
ramified extension v̂ to K ′.

For a polynomial f(X) ∈ K[X] and one of its roots x ∈ Ω, we will call the field
extension K(x) of K a root field of f(X).

We call an element σ of the absolute Galois group Gal(K), a topological generator of
Gal(K) if σ satisfies one of the following equivalent conditions: (i) For any finite Galois

extension L of K, σ|L generates Gal(L/K). (ii) The subfield of K̃ fixed by σ is K. (iii)
〈σ〉 is dense in Gal(K).

It is easy to prove that K has a unique extension of degree n for every n if and only if
Gal(K) ' Ẑ, the profinite completion of Z, and hence Gal(K) has a topological generator.
In particular the absolute Galois group of a pseudofinite field is the profinite cyclic group
Ẑ.

Proposition 1. Suppose K is a perfect field with exactly one extension of degree n for
every positive integer n. Let σ be a topological generator of Gal(K) ' Ẑ. Suppose L is a

regular extension of K. Let τ ∈ Gal(L) be an automorphism of L̃ extending σ. Let M be
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the subfield of L̃ fixed by τ . Then τ is a topological generator of Gal(M) ' Ẑ and K is
algebraically closed in M .

Proof: Since τ extends σ, K is algebraically closed in M . From this it follows that if Kn

is the unique field extension of K of degree n then MKn, the join of the fields M and Kn

is the unique field extension of M of degree n. This proves the proposition. ¤

The next theorem characterizes the concept of elementary equivalence of pseudofinite
fields. (For model theoretical concepts we refer to [Ma]).

Theorem 2 ([Ax]). Let E and F be two pseudofinite fields containing a common subfield
K. Then E and F are elementarily equivalent over K if and only if the algebraic closures
of K in E and F are isomorphic over K. In particular, if E is algebraically closed in F
then E is an elementary extension of F .

The following proposition follows from Lemma 20.2.2 of [FJ].

Theorem 3 ([FJ]). Let E be a perfect field with at most one extension of degree n for
every n. Then there exists a pseudofinite field F containing E in which E is algebraically
closed.

2.1 Linearly Disjoint Extensions

Let E and F be two field extensions of K. The fields E and F are said to be linearly
disjoint over K if any e1, . . . , en ∈ E which are linearly independent over K are also
linearly independent over F . Although not obvious from the definition, this concept is
symmetric in E and F [FJ, Lemma 2.5.1].

Fact 4 (Lemma 2.5.2 of [FJ]). Let E and F be two field extensions of K with F/K
Galois. Then E and F are linearly disjoint over K if and only if E ∩ F 6= K.

Corollary 5. Let E and F be two nontrivial finite extensions of K with F/K Galois and
Gal(F/K) simple. Then F and E are linearly disjoint over K if and only if F is not
contained in the Galois closure of E over K.

Proof: Suppose E and F are not linearly disjoint over K. Then by Fact 4, E ∩ F > K.
Let F1 be the Galois closure over K of E∩F . Clearly F1 is contained in the Galois closure
of E over K. Also, since F is Galois over K, F1 ≤ F . Then Gal(F/F1) is a proper normal
subgroup of G. Since G is simple, Gal(F/F1) = {Id} and so F = F1. That is, F = F1 is
contained in the Galois closure of E over K.

The other direction is clear from Fact 4. ¤
Field extensions E1, . . . , En of K are said to be linearly disjoint over K if each Ei is

linearly disjoint over K from the join of the others, equivalently if Ei is linearly disjoint
from E1 · · ·Ei−1 over K for every i = 2, . . . , n.
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Fact 6 (Lemma 2.5.6 of [FJ]). Let L1, . . . , Ln be a linearly disjoint family of Galois

extensions of K. Then Gal(L1 . . . Ln/K) '
n∏

i=1

Gal(Li/K).

Lemma 7. Finitely many distinct Galois extensions of K whose Galois groups over K
are nonabelian finite simple groups are linearly disjoint over K.

Proof: Let Ei (i = 1, . . . , n) be the Galois extensions as in the statement of the Lemma
and let Gal(Ei/K) = Si. It is enough to show that Ei is linearly disjoint from E1 . . . Ei−1

for 1 < i ≤ n. The claim for i = 2 follows from Fact 4. Assuming that the claim holds
for i = n− 1, we will show that it holds for i = n.

Gal(E1 · · ·En−1/K) = S1× . . .×Sn−1 by induction hypothesis and Fact 6. Suppose for
a contradiction that E1 · · ·En−1 and En are not linearly disjoint over K. Since Gal(En/K)
is simple, by Corollary 5, En is contained in E1 · · ·En−1.

Now consider Gal(E1 · · ·En−1/En), which is a normal subgroup of S1× . . .×Sn−1. By
an elementary lemma on the product of simple groups,

Gal(E1 · · ·En−1/En) = T1 × . . .× Tn−1,

where Ti is either {1} or Si for all i = 1, . . . n− 1. Then

S1/T1× . . .×Sn−1/Tn−1 ' Gal(E1 · · ·En−1/K)/ Gal(E1 · · ·En−1/En) ' Gal(En/K) = Sn.

Simplicity of Sn implies that Sk ' Sn, Tk = 1 for some k = 1, . . . , n− 1 and that Si = Ti

for all i 6= k, n. Thus

Gal(E1 · · ·En−1/En) = T1 × . . .× Tn−1 = S1 × . . .× Sk−1 × {1} × Sk+1 × . . .× Sn−1

= Gal(E1 · · ·En−1/Ek).

and therefore, by the fundamental theorem of Galois theory, En = Ek, contradicting the
assumption. ¤

The lemma above still holds (with the same proof) if one of the extensions is still simple
but abelian. Observe that the only abelian quotients of a non-abelian simple group are
trivial.

2.2 Regular Extensions

Notation: Let f(X) be a polynomial in K[X]. For a field F containing K, let L be the
splitting field of the polynomial f(X) over F , the Galois group Gal(L/F ) is sometimes
denoted as Gal(f(X), F ).

Lemma 8 (2.6.11 of [FJ]). Let f(X, T ) ∈ K[X, T ] be a polynomial over K and Gal(f(X,T ), K(X))
be its Galois group over K(X). Then the polynomial f(X,T ) is absolutely irreducible over
K if and only if L is a regular extension of K, and in this case Gal(L/K(X)) acts tran-
sitively on the roots of f(X,T ) over K(X).
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Lemma 9. Let G be a finite group acting transitively on a finite set A, |A| ≥ 2. Then
there is an element g ∈ G such that g(x) 6= x for every x ∈ A.

Proof: For x ∈ A let Gx be the stabilizer of x. Since G acts transitively on A, [G :
Gx] = |A| and all stabilizers are conjugate. Any two subgroups of G contain at least
the identity in their intersection, hence the cardinality of

⊔
x∈A Gx is less than |G|. Any

g ∈ G\⊔
x∈A Gx will satisfy the desired condition. ¤

By Lemma 9 and Fact 8 we obtain the following corollary.

Corollary 10. Let f(X, T ) be absolutely irreducible over K. Let L be the splitting field
of f(X,T ) over K(X). Then there is an element µ in the Galois group Gal(L/K(X))
that moves all the roots of f(X,T ).

Fact 11 (2.3.11 of [FJ]). Let g(T ) ∈ K[T ] be a polynomial and X an indeterminate.
Then h(X, T ) = g(T ) −X ∈ K(X)[T ] is absolutely irreducible over K. Therefore a root
field of h(X,T ) over K(X) is a regular extension of K.

Fact 12 ([FJ]). Let f(X, T ) be a polynomial in K[X,T ], separable in T . Suppose
Gal(f(X,T ), K(X)) ' Gal(f(X,T ), Ks(X)) where Ks is the separable closure of K. Then
for any field extension F of K we have Gal(f(X, T ), K(X)) ' Gal(f(X, T ), F (X)) and
the splitting field L of f(X, T ) over F (X) is regular over F .

Lemma 13 (Ch.III Corr.6, p.58 [La2]). Let X ∈ Ω be transcendental over K. Let L1

and L2 be two algebraic extensions of K(X) which are linearly disjoint over K(X) and
which are regular extensions of K. Then L1L2 is also a regular extension of K.

2.3 Random Graphs and Hypergraphs

The theory of the random graph is axiomatized by the statements that express the follow-
ing for all natural numbers n and m: “for all distinct (n+m) elements x1, . . . , xn, y1, . . . , ym

there is a z such that R(z, xi) for i = 1, . . . , n and ¬R(z, yj) for j = 1, . . . , m. This theory
is ω-categorical and has quantifier elimination.

For any set X, let X [n] denote the set of subsets of X whose elements have precisely
n members. Then an n-hypergraph over X is a tuple (X,R) where R is a subset of X [n].
A n-hypergraph (X, R) is called random if for every distinct a1, . . . , am ∈ X [n−1] and for
every subset I of {1, ..., m} there is an element c ∈ X such that ai ∪ {c} ∈ R if and only
if i ∈ I.

The countable random n-hypergraph can be constructed as the Fraissé limit of finite
n-hypergraphs, hence its fist order theory is ω-categorical and has quantifier elimination
by [Ho, Thm 7.4.1 ].

Note that one can define a random m-hypergraph in a random n-hypergraph by setting
the first n −m entries of the random n-hypergraph to be equal to a constant c. On the
contrary, it was proved in [H] that if (ω,R) is isomorphic to the random n-hypergraph,
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then R is not a finite Boolean combination of (n − 1)-ary relations. This, together with
the elimination of quantifiers, implies that we cannot interpret a random n-hypergraph
in a random (n− 1)-hypergraph.

2.4 Symmetric Polynomials

Throughout this subsection we let A denote a commutative ring with identity and t1, . . . , tn
algebraically independent elements over A. Let sn,1, . . . , sn,n be the elementary symmetric
polynomials in t1, . . . , tn of degree 1, . . . , n respectively. Thus

(1)
n∏

i=1

(X − ti) = Xn − sn,1X
n−1 + sn,2X

n−2 − . . . + (−1)nsn,n.

It is well known that sn,1, . . . , sn,n form an algebraically independent basis for the ring of
symmetric polynomials in A[t1, . . . , tn].

We now define Sn,i to be the sum of all monomials of degree i over the variables
t1, . . . , tn:

Sn,i(t1, . . . , tn) =
∑

r1+...+rn=i

tr1
1 . . . trn

n .

The polynomials Sn,i are called the complete symmetric polynomials in t1, . . . , tn. The
next fact is from [Fu, Section 6.1].

Fact 14. For every k ≤ n, t = (t1, . . . , tn),

Sn,k(t)− sn,1(t)Sn,k−1(t) + sn,2(t)Sn,k−2(t)− . . . + (−1)ksn,k(t) = 0.

Lemma 15. The polynomials Sn,1, . . . , Sn,n form a basis for the ring of symmetric poly-
nomials in A[t1, . . . , tn], that is A[sn,1, . . . , sn,n] = A[Sn,1, . . . , Sn,n].

Proof: Obviously A[Sn,1, . . . , Sn,n] ≤ A[sn,1, . . . , sn,n]. To prove the converse we will
show that for every k < n, A[sn,1, . . . , sn,k] ≤ A[Sn,1, . . . , Sn,k] by induction on k. For
k = 1 there is nothing to prove. Assume A[sn,1, . . . , sn,k−1] ≤ A[Sn,1, . . . , Sn,k−1]. It is
enough to show that sn,k ∈ A[Sn,1, . . . , Sn,k]. By Fact 14 we see that sn,k(t) can be written
in terms of Sn,1(t), . . . , Sn,k(t) and sn,1(t), . . . , sn,k−1(t). The desired result follows by the
induction hypothesis. ¤
Notation: Since the polynomial Sn,n−1(t1, . . . , tn) =

∑
r1+...+rn=n−1 tr1

1 . . . trn
n will be used

several times, we will shorten it as S.

Lemma 16. If a = {a1, . . . , an−1}, b = {b1, . . . , bn−1} are in F [n−1], then

S(a1, . . . , an−1, X) = S(b1, . . . , bn−1, X)

if and only if a = b.
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Proof: Note that S(a1, . . . , an−1, X) =
∑n−1

i=0 Sn−1,i(a1, . . . , an−1)X
n−1−i. Therefore

S(a1, . . . , an−1, X) = S(b1, . . . , bn−1, X) if and only if Sn−1,i(a1, . . . , an−1) = Sn−1,i(b1, . . . , bn−1)
for all i ≤ n− 1. By Lemma 15, each of sn−1,1, . . . , sn−1,n−1 can be expressed uniquely in
terms of the basis Sn−1,1, . . . , Sn−1,n−1. This implies that sn−1,i(a1, . . . , an−1) = sn−1,i(b1, . . . , bn−1)
for all i ≤ n − 1. Hence by the fundamental equality for the symmetric functions given
in (1) above, we conclude that {a1, . . . , an−1} = {b1, . . . , bn−1}. ¤
Notation: Let f(X1, . . . , Xn) be a symmetric polynomial in k[X1, . . . , Xn]. Let a =
{a1, . . . , an} be in K [n]. Since f(a1, . . . , an) = f(aσ(1), . . . , aσ(n)) for any σ ∈ Sym(n), we
are allowed to denote f(a1, . . . , an) by f(a).

3 Main Theorem

Theorem 17. Let F be a pseudofinite field, F (x) a field extension of F with x transcen-
dental over F and H a nonabelian simple group. Let

g(T, Y1, . . . , Yn−1, Yn) ∈ F [T, Y1, . . . , Yn−1, Yn]

be a polynomial over F symmetric in the indeterminates Y1, . . . , Yn. For every a =
{a1, . . . , an−1} ∈ F [n−1], let La denote the splitting field of g(T, a, x) ∈ F (x)[T ]. Sup-
pose that for every a, b in F [n−1] the following properties are satisfied:

i. Gal(La/F (x)) ∼= H.

ii. La is a regular extension of F .

iii. La 6= Lb for a 6= b.

If R ⊂ F [n] is defined by the condition

(1) “{a1, . . . , an} ∈ R if and only if g(T, a1, . . . , an−1, an) has a root in F”

then (F, R) is a random n-hypergraph.

We will construct polynomials satisfying the conditions stated in the hypothesis after
giving the proof of the theorem. This will allow us to conclude that we can realize a
random n-hypergraph in a pseudofinite field F .

Proof: Let a1 = {a1
1, . . . , a

1
n−1}, . . . , am = {am

1 , . . . , am
n−1} be in F [n−1] for 1 ≤ i ≤ m and

let I ⊆ {1, ..., m} and J = {1, ..., m} \ I. To prove that R is a random n-hypergraph we
need to find c ∈ F such that {ai

1, . . . , a
i
n−1, c} ∈ R for every i ∈ I, and {aj

1, . . . , a
j
n−1, c} 6∈

R for every j ∈ J .
Unwinding the definition (1), this says that we need to find an element c of F such

that the polynomial g(T, ai
1, . . . , a

i
n−1, c) will have a root in F for i ∈ I and the polynomial

g(T, bj
1, . . . , b

j
n−1, c) will have no roots in F for j ∈ J .
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The strategy of the proof is as follows: we will construct an elementary extension of
F containing an element x satisfying the conditions required for c. We can then conclude
that such an element exists in F as well.

Let L1, . . . , Lm be the splitting fields of the polynomials

g(T, a1
1, . . . , a

1
n−1, x), . . . , g(T, am

1 , . . . , am
n−1, x) ∈ F (x)[T ]

over F (x) respectively. These splitting fields are distinct extensions with non abelian sim-
ple Galois groups by hypothesis, therefore they are linearly disjoint by lemma 7. Denote
by L = L1 . . . Lm the join of the extensions L1, . . . , Lm. By Fact 6,

Gal(L/F (x)) ' H ×H × . . .×H

is the product of m copies of H.
By Lemma 9 there is an element µj of Gal(Lj/F (x)) which moves all the roots of

g(T, ai
1, . . . , a

i
n−1, x) for every j ∈ J . Take µ in Gal(L/F (x)) so that µ|Li

= Id for every
i ∈ I and µ|Lj

= µj for every j ∈ J .

Let σ be a topological generator of the absolute Galois group Gal(F̃ /F ) ' Ẑ of the
pseudofinite field F . By the hypothesis of the theorem, the fields Li are regular extensions
of F . Since L1, . . . , Lm are linearly disjoint over F (x), this implies that L is a regular

extension of F by Lemma 13. Therefore there is an automorphism τ ∈ Gal(F̃ (x)/F (x))
extending both σ and µ. Denote the fixed field of τ by M .

Proposition 1 implies that M is a regular extension of F and that it has a unique
extension of degree n for every n ∈ N. This condition with Theorem 3 imply that there is
a pseudofinite field E containing M which is a regular extension of M , i.e. M̃ ∩ E = M .
Therefore E is a regular extension of F and so, by Theorem 2, E is an elementary extension
of the pseudofinite field F containing x.

Now we claim that

E |= ∃c([
∧
i∈I

∃T g(ai
1, . . . , a

i
n−1, c, T ) = 0] ∧ [

∧
j∈J

∀T g(aj
1, . . . , a

j
n−1, c, T ) 6= 0]).

Taking x ∈ F (x) < E for the variable c in the above sentence, we will prove,

[
∧
i∈I

∃T g(ai
1, . . . , a

i
n−1, x, T ) = 0] ∧ [

∧
j∈J

∀T g(aj
1, . . . , a

j
n−1, x, T ) 6= 0]

holds in the pseudofinite field E.
Let i ∈ I, Li contains all roots of g(ai

1, . . . , a
i
n−1, x, T ). µ is the identity on Li and τ

extends µ, therefore M the fixed field of µ, contains all the roots of g(ai
1, . . . , a

i
n−1, x, T ).

The pseudofinite field E contains M , so

E |=
∧
i∈I

∃T g(ai
1, . . . , a

i
n−1, x, T ) = 0.
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We will show that c = x satisfies the second part of the conjunction. Suppose for a
contradiction that for some j ∈ J there exists a t ∈ E such that g(aj

1, . . . , a
j
n−1, x, t) = 0.

Since t is a root of the polynomial g(aj
1, . . . , a

j
n−1, x, T ), t is in Lj < L, an algebraic

extension of F (x), t is also in E. Hence t ∈ E∩ F̃ (x) = M therefore t ∈ M ∩Lj = Fix(µ).
But we chose µ so that it does not fix any root of g(a1

j , . . . , a
n−1
j , x, T ), a contradiction.

We conclude that g(aj
1, . . . , a

j
n−1, x, T ) does not have any root in E for all j ∈ J . This

proves our claim.
Hence,

E |= ∃c([
∧
i∈I

∃T g(ai
1, . . . , a

i
n−1, c, T ) = 0] ∧ [

∧
j∈J

∀T g(aj
1, . . . , a

j
n−1, c, T ) 6= 0]).

The formula above has parameters from F . Since E is an elementary extension of F
it is also true that

F |= ∃c([
∧
i∈I

∃T g(ai
1, . . . , a

i
n−1, c, T ) = 0] ∧ [

∧
j∈J

∀T g(aj
1, . . . , a

j
n−1, c, T ) 6= 0]).

And this proves the theorem. ¤

4 Construction of Extensions

In Section 3 we proved Theorem 17 which states that, if there exists a polynomial
g(T, X1, . . . , Xn) over a pseudofinite field F satisfying certain conditions, then using this
polynomial we can define a random n-hypergraph on F . Here in this section we will con-
struct polynomials satisfying the conditions of Theorem 17 which will allow us to define
a random n-hypergraph on F .

The methods of constructing polynomials satisfying the conditions of the Theorem 17
vary with the characteristic of the given pseudofinite field. We have two cases to consider
separately: characteristic 0, and positive characteristic. In both cases we will use tools
from the ramification theory of the function fields.

The following lemma describes the extensions of a valuation of a function field K(y)
in an integral extension. It is an easy consequence of [St, Theorem III.3.7].

Lemma 18. [St, MM] Let K(y) be a function field, f(X) ∈ K[X] a seperable monic
polynomial and g(X) = f(X) − y ∈ K(y)[X]. Let β ∈ K and f(X) − β =

∏
γi(X)ri

where γi are distinct irreducible polynomials in K[X]. Let x be a root of g(X) = f(X)−y
and L = K(y)(x) be a root field of g(X) = f(X)− y over K(y). Then the extensions of
the valuation vy−β of K(y) to L are the valuations vγi(x) and we have ri = r(vγi(x) : vy−β).

The next lemma is an important result in the theory of valuations, it can be found in
[St, Proposition III.8.9] stated in the language of places instead of valuations.
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Fact 19 (Abhyankar’s Lemma). Let L = L1L2 be the join of two finite algebraic extension
fields Li of K. Let v be a valuation of L, whose restriction to Li is ramified over K with
ramification index ri. If at least one of ri is not equal to 0 modulo the characteristic of
the field L, then the ramification index of v in L/K is lcm(r1, r2).

4.1 Characteristic 0 Case

We will work in characteristic 0 throughout this section.
In [Se] (p. 44) it is shown that the polynomial

h(T, Y ) = (m− 1)Tm −mTm−1 + 1 + (m− 1)Y 2

gives rise to a regular Galois extension of Q(Y ) with Galois group equal to the alternating
group on m elements, Alt(m) when m is divisible by 4. Let us denote the splitting field of
the polynomial h(T, Y ) over Q(Y ) by L. There are two valuations of Q(Y ) which ramify
in the extension L: valuation v∞ of ramification index m/2 and the valuation v1+(m−1)Y 2

with ramification index m − 1. Over Q̃(Y ) the valuation v1+(m−1)Y 2 gives rise to two
valuations each with ramification index m− 1.

We apply the linear transformation Y → 1/Y to the polynomial h(T, Y ). This is a frac-
tional linear transformation of the base field hence Gal(h(T, Y ),Q(Y )) = Gal(h(T, 1/Y ),Q(Y ))
Moreover we can multiply the resulting polynomial by Y 2 to eliminate the denominators,
this does not effect the Galois group nor the ramification indices of the valuations. There-
fore we obtain the following lemma.

Lemma 20. Let m be a natural number divisible by 4. Let y be transcendental over Q.
The Galois group of the polynomial

f(T, y) = (m− 1)y2Tm −my2Tm−1 + y2 + (m− 1)

over Q(y) is the alternating group Alt(m). The polynomial f(T, y) is absolutely irreducible
over Q. There are two valuations of Q(y) which ramify in the splitting field of f(T, y),
the valuation vy with ramification index m/2 and the valuation vy2+(m−1) with ramification
index m− 1.

We fix a pseudofinite field F of characteristic 0 and let n ≥ 3 be a natural number and
x transcendental element over F . For each a ∈ F [n−1] define ya = S(a1, . . . , an−1, x), where

S(t1, . . . , tn) =
∑

r1+...+rn=n−1 tr1
1 . . . trn

n is the (n − 1)st complete elementary symmetric
polynomial defined in section 2.4. Then ya is transcendental over F , x is a root of the
polynomial

(1) S(a1, . . . , an−1, X)− ya ∈ F (ya)[X]

and F (x) is a degree n− 1 extension of F (ya). By Fact 11, F (x) is a regular extension of
F . We call F (x) the “small” extension of F (ya).
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Now we will build a Galois extension of F (ya) with Galois group Alt(m). Let m =
4(n− 1)! and Ka be the splitting field of the polynomial

(2) f(T, ya) = (m− 1)y2
aT

m −my2
aT

m−1 + y2
a + (m− 1)

over F (ya). By Lemma 20 the polynomial f(T, ya) ∈ Q(ya)[T ] is absolutely irreducible
over Q and its Galois group over Q(ya) is Alt(m). Hence by Fact 12, the Galois group of
f(T, ya) over F (ya) is Alt(m) and Ka is a regular extension of F . We call Ka the “large”
extension of F (ya).

Note that if m ≥ 5, Gal(Ka/F (ya)) = Alt(m) is a simple group. Since m = 4(n− 1)!,
the degree of the extension [Ka : F (ya)] = m!/2, is larger than (n− 1)! hence Ka cannot
be contained in the Galois closure of F (x) over F (ya) which is of degree at most (n− 1)!.
Then by Corollary 5, we conclude that Ka and F (x) are linearly disjoint over F .

Now let La be the join of Ka and F (x), the small and the large extensions of F (ya).
Since Ka and F (x) are linearly disjoint over F (ya), Gal(La/F (x)) ∼= Gal(Ka/F (ya)) =
Alt(m). Also, since both Ka and F (x) are regular extensions of F (ya), and since they are
linearly disjoint over F (ya), their join La is a regular extension of F by Lemma 13.

Now consider the extension La/F (x). Since ya = S(a, x) ∈ F (x) we see that La is the
splitting field of the polynomial

f(T, S(a, x)) = (m− 1)S(a, x)2Tm −mS(a, x)2Tm−1 + S(a, x)2 + (m− 1)

over F (x).
Note that f(T, S(a, x)) = g(T, a, x) where g(T, X1, . . . Xn) is a symmetric polynomial

in X1, . . . , Xn which is the desired polynomial. Note that for every a ∈ F n−1, the split-
ting field La of g(T, a, x) over F (x) (the field constructed above) satisfies the following
conditions of the Theorem 17: (i) Gal(La/F (x)) ∼= Alt(m), a simple non-abelian group
since m = 4(n− 1)! > 5 for n ≥ 3 (ii) La is a regular extension of F . Now we will prove
condition (iii):

Claim: (iii) For every a, b in F [n−1] La 6= Lb if a 6= b.

Proof: First note that Ka and La are regular extensions of F for every a in F [n−1].
Hence, working over the algebraic closure F̃ of F instead of F will not change the Galois
groups we have constructed. We denote the extensions of F̃ (x) that corresponds to the
extensions Ka and La of F (x) by K̃a and L̃a for every a in F [n−1]. To show that La and Lb

are distinct extensions of F (x), it is enough to show that L̃a and L̃b are distinct extensions
of F̃ (x).

We will find a valuation of the field F̃ (x) which has different ramification indices in
the Galois extensions L̃a and L̃b hence conclude that L̃a 6= L̃b for a 6= b.

Let a 6= b be in F [n−1], we know by Lemma 2.4 that S(a,X) 6= S(b,X). Then there
exists a factor (X − α) of the polynomial S(a,X) ∈ F̃ [X] such that the multiplicity of
(X −α) in S(a,X) is e1 > 0 and the multiplicity of (X −α) in the polynomial S(b,X) is
e2 ≥ 0 where e1 6= e2.
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Recall that by Lemma 20 the valuations of Q(y) that ramify in the splitting field of
f(T, y) = (m− 1)y2

aT
m−my2

aT
m−1 + y2

a + (m− 1) are vy and vy2+(m−1) . Also recall that

we denote the splitting field of f(T, ya) over F̃ (ya) by K̃a. Since the constant field F̃ of
F̃ (ya) is algebraically closed, as a consequence of Lemma 20 the valuations of F̃ (ya) that
ramify in the extension K̃a/F̃ (ya) are vya , vya−γ and vya+γ where γ is (1−m)1/2. Moreover,
since we obtained the extension L̃a/F̃ (x) by setting ya = S(a, x) the valuations of F̃ (x)
which ramify in L̃a are exactly the valuations vx−β, where β is a root of S(a,X) = 0, or
of S(a,X) = ±γ.

Now we will calculate the ramification index of the valuation vx−α of F̃ (x) in L̃a and
L̃b.

By Theorem 18, the valuation vx−α of F̃ (x) extends the valuation vya of F̃ (ya) with
ramification index r(vx−α : vya) = e1 since the multiplicity of X − α in S(a,X) is e1 > 0.
Also any extension of the valuation vya to Ka has ramification index m/2.

Since e1 ≤ n − 1, it divides m/2 = 2(n − 1)! and therefore r(w : vx−α) = m/2e1 > 1
for any valuation w on L̃a which extends vx−α.

Now we will calculate the ramification index of the valuation vx−α in the extension
Lb/F (x).

If e2 > 0, the same argument shows that vx−α ramifies in L̃b with ramification index
m/2e2 6= m/2e1.

If e2 = 0, then either vx−α does not ramify in L̃b, or else S(b, α) = ±γ, in which case,
using Abhyankar’s Lemma, we obtain that the index of ramification of vx−α in L̃b divides
m − 1. In that case, since m and m − 1 are relatively prime, and m/2ei > 1 divides m,
we also obtain that the indices of ramification of vx−α in La and in Lb are distinct. Since
L̃a and L̃b are Galois extensions of F̃ (x), this implies that L̃a 6= L̃b. Hence La 6= Lb, and
the claim is proved. ¤

We showed that conditions (i),(ii),(iii) of Theorem 17 hold for the polynomial g(T, X1, . . . , Xn−1, Xn)
for n ≥ 3. Hence, we conclude that one can define a random n-hypergraph in a pseud-
ofinite field of characteristic 0 for n ≥ 3. For n = 2 the same method of constructions
can be applied by choosing m = 8 to to satisfy the condition that Alt(m) is simple. This
gives formula defining a random graph in a pseudofinite field different from the one given
by Duret.

4.2 Positive Characteristic p: Enlarging the Ramification Locus

We will use Abhyankar’s polynomials to build Galois extensions of function fields with
Galois group Alt(m) in positive characteristic. The following theorem gives us polynomials
over K(y) with Galois group Alt(m) in case the characteristic of the field is greater than
2.

Theorem 21 ([Ab], [Ab1]). Let K be a field of characteristic p > 2, y transcendental
over K and L the splitting field of the polynomial ft,p(T, y) = Tm − yT t + 1 over K(y)
where t 6≡ 0(mod p) and m = t + p. Then Gal(fp,t(T, y), K(y)) ' Alt(m). Additionally
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the valuation v∞ of K(y) splits into the valuations v̂s and v̂∞ with ramification indices t
and p in the extension K(s) of K(y) where s is a root of fp,t(T, y) = 0 over K(y).

The following theorem is extracted from [Ab2] where the above result is extended for
fields of characteristic two.

Theorem 22 ([Ab], [Ab2]). Let K be a field of characteristic p = 2, y transcendental
over K and L the splitting field of the polynomial ft,q(T, y) = Tm − yT t + 1 over K(y)
where m = t + q and t and q satisfy the following conditions:

i. q = pl for some l

ii. t 6≡ 0(mod p)

iii. t > q > p

iv. t + q ≡ 1(mod 8) or t + q ≡ 7(mod 8)

Then Gal(ft,q(T, y), K(y)) ' Alt(m). Additionally the valuation v∞ of K(y) splits
into the valuations v̂0 and v̂∞ with ramification indices t and q in the extension K(s) of
K(y) where s is a root of fp,t(T, y) = 0 over K(y).

Next, we apply the fractional linear transformation y 7→ 1/y of K(y) to the polynomial
ft,q(T, y) = Tm − yT t + 1 to get the polynomial ht,q(T, y) = yTm − T t + y. Under this
transformation the valuation v∞ is sent to the valuation v0. Combining Theorems 21 and
22 with this transformation we have the following corollary.

Corollary 23. Let K be a field of characteristic p > 0, y transcendental over K and L the
splitting field of the polynomial ht,q(T, y) = yTm − T t + y over K(y) where t 6≡ 0(mod p)
and m = t + q. Take q = p in case the characteristic of the field K is p > 2 and take
q = pl, t > q > p and m ≡ 1(mod 8) or m ≡ 7(mod 8) if the characteristic is p = 2.
Then Gal(ht,q(T, y), K(y)) ' Alt(m). Additionally, vy is the only valuation of K(y) which
ramifies in L and the ramification index of any extension of the the valuation vy of K(y)
to L is divisible by t.

Let F be a pseudofinite field of positive characteristic p. Let n > 1 be such that
p - n− 1. Let x ∈ Ω be transcendental over F . We will construct polynomials satisfying
the conditions of Theorem17.

For every a = {a1, . . . , an−1} ∈ F [n−1], let za be equal to S(a1 . . . , an−1, x) where x is
the transcendental element we fixed at the beginning. Then F (x) is the field extension
of F (za) given by the polynomial S(a1 . . . , an−1, X) − za of degree n − 1 and za ∈ Ω is
transcendental over F .

For k > n − 1, let p1, . . . , pk be k distinct primes greater than n − 1, not equal to
the characteristic of F , each of which is congruent to 1 or 7 modulo 8. This condition is
possible by Dirichlet’s theorem on arithmetic progression of primes. Also choose p1, . . . , pk

such that p1 + · · ·+ pk is not congruent to 0 modulo the characteristic of the field.
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Fix distinct β1, . . . , βk ∈ F , we set ua =
∏k

i=1(za − βi)
pi . Then F (za) is a separable

extension of F (ua) of degree p1 + . . . + pk and za is a root of

k∏
i=1

(Z − βi)
pi − ua ∈ F (ua).

Now take t to be t = p1 . . . pk. Since pi’s were chosen to be congruent to 1 or 7 modulo
8, the product t = p1 . . . pk is congruent to 1 or 7 modulo 8. Define q by:

i. q = p if characteristic of F is p > 2,

ii. q = 8 if the characteristic of F is 2.

Let m = q+t and Ma be the splitting field of the polynomial ft,q(T, ua) = uaT
m−T t+ua

over F (ua). Note that, if char(F ) = 2 then m = 8 + t so m is congruent to 1 or 7
modulo 8 and if char(F ) = p 6= 2 then m = p + t. Hence by Theorem 23, we have
Gal(Ma/F (ua)) ' Alt(m) for both cases, char(F ) = 2 and char(F ) > 2. Also by Lemma
8, Ma is a regular extension of F since ft,q(T, ua) is absolutely irreducible over F .

Note that Ma is not contained in the Galois closure of F (za) over F (ua) because
(t + q)!/2 = (p1 · . . . · pk + q)!/2 > (p1 + . . . + pk)! and Gal(Ma/F (ua)) is a simple group.
Thus, by Corollary 5, Ma is linearly disjoint from F (za) over F (ua).

Let Ka be the join of the extensions Ma and F (za). Then Gal(Ka/F (za)) = Alt(m)
since Ma and F (za) are linearly disjoint over F (ua). Note that Ka is the splitting field of
the polynomial

ft,q(T, (
k∏

i=1

(za − βi)
pi)) = (

k∏
i=1

(za − βi)
pi)Tm − T t +

k∏
i=1

(za − βi)
pi ∈ F (za)[T ]

over F (za). And Ka is a regular extension of F by Fact 11.
So far we have constructed two extensions Ka and F (x) of F (za); Ka/F (za) Galois

with Galois group Alt(m) and F (x) a finite algebraic extension of F (za) given by the
polynomial

∏k
i=1(Z − βi)

pi − ua. Let La be the join of F (x) with Ma. Note that La is the
splitting field of

ft,q(T,

k∏
i=1

(S(a, x)− βi)
pi) =

k∏
i=1

(S(a, x)− βi)
piTm − T t +

k∏
i=1

(S(a, x)− βi)
pi

over F (x).
Now let g1(T, a, x) = ft,q(T,

∏k
i=1(S(a, x)− βi)

pi)). Then g1(T, X1, . . . , Xn−1, Xn) is a
symmetric polynomial in X1, . . . , Xn. Note that (i) for every a ∈ F [n−1], the Galois group
of the polynomial g1(T, a, x) over F (x) is the simple group Alt(m), (ii) La is a regular
extension of F . That is, the first two conditions for the main theorem are satisfied. We
also need to prove that
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(iii) La 6= Lb if a 6= b.
Proof: The valuation vua of F (ua) extends to the valuations wza−βi

of F (za) with ram-
ification indices r(wza−βi

: vua) = pi for i = 1 . . . , k by Lemma 18. Also the ramification
index of the valuation vua in the Galois extension Ma is s where t|s. Since pi divides t, and
pi is not divisible by the characteristic of the field F , the valuations wza−βi

of F (za) have
extensions in Ma which ramify with index s/pi over wza−βi

for i = 1, . . . , k by Abhyankar’s
Lemma.

Again by Lemma 18, the valuation wza−βi
of F (za) extends to the valuations vγ1 , . . . , vγh

of F (x) according to the decomposition of the polynomial S(a1 . . . , an−1, X) − βi =∏h
i=1 γi(X) in F [X].
Since the characteristic of the pseudofinite field F does not divide n−1, the extension

F (x)/F (za) has at most n− 1 ramification points. Therefore one of the valuations wza−βi

does not ramify in F (x) as k was chosen to be greater than n − 1, fix one such βi and
let γ1(x), . . . , γh(x) be the irreducible factors of S(a,X)−βi over F . Then the valuations
vγj(x) for 1 ≤ j ≤ h are the only valuations of F (x) extending wza−βi

and they do not
ramify over wza−βi

by our assumption on βi.
The ramification indices of the extensions vγj(x) of vza−βi

in La are s/pi, by Abhyankar’s
Lemma. If j 6= i, then the ramification indices over F (x) of the extensions of vza−βj

to
La divide s/pj and are therefore different from s/pi. It follows that we can retrieve
the polynomial S(a,X) from the ramification locus of La over F (x): choose i such that
the valuations of F (x) ramifying with index s/pi in La are precisely vγ1(x), . . . , vγr(x),
and

∏r
j=1 γj(X) has degree n − 1 (such an i exists by the discussion above). Then

S(a,X) =
∏k

j=1 γj(X)− βi.
From this it follows that if S(a,X) 6= S(b,X), then La 6= Lb. This gives us the

conclusion. ¤
We have showed the conditions of the main theorem are satisfied in a pseudofinite field

of characteristic p where p does not divide n − 1. Therefore we can interpret a random
n-ary hypergraph in F when the characteristic p of F is positive and p - n− 1. But if we
can realize a random m-hypergraph, by restricting it to n < m many parameters, then we
can realize random n-hypergraph as well. Thus we can realize a random n-hypergraphs
for every n.
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