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Abstract. We prove that a simple geometric theory of SU-rank 1 is n-ample if
and only if the associated theory equipped with an predicate for an independent
dense subset is n-ample for n at least 2.

1. Introduction

The notion of n-ampleness, introduced by Pillay in [5], roughly measures the
complexity of the forking geometry: the Hrushovski construction ab-initio exhibits
that, in strongly minimal theories, forking geometry can be more complicated than
the geometry of vector spaces (1-based theories) and yet less than algebraic geome-
try (theories interpreting a �eld). The property that holds in Hrushovski's example
is called CM-triviality and it �ts in this hierarchy of n-amples. In fact, (see [5] and
[6]) a theory T is 1-based if and only if is not 1-ample and is CM-trivial if and only
if is not 2-ample. Furthermore if T interprets a �eld, then T is n-ample for all n.
However, the converse is not true: Evans [4] constructs a 1-based theory with a
reduct which is n-ample for every n but does not interpret an in�nite group.

It is a major problem to �nd theories of �nite rank that are not CM-trivial but
do not interpret a �eld. Baudisch and Pillay ([1]) obtained a 2-ample theory which
is of in�nite rank not interpreting any in�nite group.

On the other hand, Berenstein and Vassiliev in [2] exhibit a 1-based (not 1-
ample) theory T such that T ind is not 1-based, where T ind stands for the theory of
the pair (M,H), where M |= T and H is an independent dense subset of M . We
prove in this paper that in this case T ind is CM-trivial. Moreover,we prove that for
n ≥ 2, T is not n-ample if and only if T ind is not n-ample.

2. Independent predicates in geometric theories

In this section we write down the principal de�nitions and results on geometric
theories with an independent predicate that we will use in this paper. All proofs
can be found in [2] and [3].

De�nition 2.1. A complete theory T is geometric if eliminates ∃∞ and algebraic
closure satis�es the exchange property in every model of T .
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Let T be a complete geometric theory in a language L and let LH = L ∪ {H}
where H is a new unary predicate. T ind is the LH theory extending T together
with the axioms:

(1) for all L-formulas ϕ(x, ȳ)

∀ȳ(ϕ(x, ȳ)nonalgebraic→ ∃x ∈ Hϕ(x, ȳ)) (Density property)

(2) for all L-formulas ϕ(x, ȳ), for all n ∈ ω and for all ψ(x, ȳ, z̄)

∀ȳ(ϕ(x, ȳ)nonalgebraic ∧ ∀ȳz̄∃≤nxψ(x, ȳ, z̄)

→ (∃x /∈ H∀z̄ ∈ H(ϕ(x, ȳ) ∧ ¬ψ(x, ȳ, z̄))) (Extension property)

In these axioms, �non algebraicity" can be expressed in a �rst order way due to
the elimination of ∃∞.

From now on by acl() and |̂ we mean algebraic closure and algebraic indepen-
dence in the sense of T .

Proposition 2.1. (Berenstein,Vassiliev [2]) If T is a geometric theory and

(M,H) |= T ind

is ℵ0-saturated, then:
(1) If A ⊂ M is �nite dimensional and q ∈ Sn(A) has dimension n, then there

is ā ∈ H(M)n such that ā |= q (Generalized density property).
(2) If A ⊂M is �nite dimensional and q ∈ Sn(A) then there is ā |= q such that

ā |̂
A

H (Generalized extension property).

De�nition 2.2. An H-structure is an ℵ0-saturated model of T ind .

De�nition 2.3. Let (M,H) be an H-structure and c a tuple in M . We denote by
HB(c), the H-basis of c, the smallest tuple h ⊆ H such that c |̂

h

H.

Also for A ⊆ M , A algebraically closed (in the sense of T ind), the H-basis of c
relative to A, denoted by HB(c/A), will stand for the smallest tuple hA ∈ H such
that c |̂

hAA

H.

Proposition 2.2. For every c, the basis HB(c) exists.

Proof. Let h and h′ be tuples of H such that c |̂
h

H and c |̂
h′
H. It su�ces to prove

that if h′′ = h ∩ h′ then c |̂
h′′
H.

We can write c as c1c2 where c1 is independent over H and c2 ⊆ acl(c1H).
So by de�nition of h and h′ we know that c2 ⊆ acl(c1h) and c2 ⊆ acl(c1h

′). If
c2 * acl(c1h

′′) then, by exchange property, there is an element in g in h \ h′ (or in
h′ \ h), such that g ∈ acl(c1h

′). But c1 was chosen to be independent from H so
actually g ∈ acl(h′). This yields a contradiction as H is an independent subset. �

Proposition 2.3. Let (M,H) an H-structure, let c and A be subsets of M and
assume that A = acl(A) and HB(A) ⊆ A, then HB(c/A) exists.
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Proof. Again, let h and h′ be minimal such that c |̂
hA

H and c |̂
h′A

H. In particular

we have that hh′ ∩A = ∅.
Write c as c1c2 where c1 is independent over AH and c2 ⊆ acl(c1AH). Then

c2 ⊆ acl(c1Ah) and c2 ⊆ acl(c1Ah
′). Let h′′ = h ∩ h′, if c2 * acl(c1Ah

′′) then by
exchange there is an element g ∈ h \ h′ (or viceversa) such that g ∈ acl(c1Ah

′).

Claim: we have that g /∈ acl(Ah′).
If not, as g /∈ h′ then by exchange there is an element a′ and a subset A′ of A

such that a /∈ acl(A′) and a′ ∈ acl(A′gh′), then some (non empty) subset of gh′

must be contained in HB(A), HB(A) ⊆ A and h′g∩A ⊆ h′h∩A = ∅. Contradiction.

Therefore, as g ∈ acl(c1Ah
′) \ acl(Ah′), c1 is not independent over AH.

�

We de�ned the relative H-basis over algebraic closed sets A with HB(A) ⊆ A.
The next theorem shows that actually these hypothesis impose that the set over
which the H-base is de�ned must be algebraically closed in T ind.

Theorem 2.1. (Berenstein,Vassiliev [2]) If (M,H(M)) is an H-structure and A
is a subset of M then the algebraic closure of A in the sense of LH (that we will
denote by aclH(A)) is the algebraic closure in the sense of L of A ∪HB(A).

From now on, by HB(A/B) we mean HB(A/ aclH(B)).

The next theorem provides a characterization of the canonical bases in T ind in
terms of H-basis and algebraic closure.

Theorem 2.2. (Berenstein, Vassiliev [2]) Let T an SU -rank 1 geometric theory
and (M,H) be an H-structure (su�ciently saturated), a a tuple of M and B ⊂M
aclH-closed. Then the canonical base cbH(a/B) of stpH(a/B), is interalgebraic (in
the sense of LH) with cb(aHB(a/B)/B).

Example 2.1. Let V a vector space over Q such that |V | > ℵ0 and let H =
{h0, h1, ...} be a countable independent subset of V . Then (V,H) is an H-structure.

Moreover, if t is a vector independent of H and t0 = t + v0 then cbH(t/t0) is
interalgebraic with cb(tv0/t0) = t0. So t 6 |̂ t0, but aclH(t) ∩ aclH(t0) = ∅ hence

Th(V,H) is not 1-based.

This example shows that 1-basedness is not preserved in T ind.
We will see in the next section that if T is a SU-rank 1 geometric theory, then

T ind is 1-based i� T is trivial.

3. Ampleness

De�nition 3.1. A simple theory T is not n-ample if for every sets a0, ..., an ofMeq

which satisfy the next conditions:

For all 1 ≤ i ≤ n− 1.

(1) ai+1 |̂
ai

ai−1...a0,
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(2) acleq(a0...ai−1ai+1) ∩ acleq(a0...ai−1ai) = acleq(a0...ai−1).

We have an |̂
acleq(a1)∩acleq(a0)

a0.

Here we use the de�nition given by Evans in [4]. This de�nition seems more
natural that the one given by Pillay in [5]. Nevertheless all the results that we
present here work for both de�nitions.

From now on we will assume that T is a SU-rank 1 geometric theory eliminating
imaginaries. By Theorem 1.2. canonical basis are interalgebraic with a tuple of
elements, so T ind has geometric elimination of imaginaries. Then, for the de�nition
of n-ampleness, it su�ces to work with real elements in an H-structure (M,H).

Proposition 3.1. The H-basis are transitive in the sense that

HB(c/B) ∪HB(B) = HB(cB).

In particular, if A ⊆ B and aclH(cA) ∩ aclH(B) = aclH(A) then

HB(c/A) ⊆ HB(c/B).

Proof. It's clear that HB(c/B) ∪HB(B) ⊆ HB(cB). On the other hand,

c |̂
B∪HB(c/B)

H

and
B |̂

HB(c/B) HB(B)

H

then
cB |̂

HB(c/B) HB(B)

H.

�

Lemma 3.1. If T is trivial, then for every set A, acl(A) = aclH(A).

Proof. Let h = acl(A) ∩ H. If x ∈ acl(A) ∩ acl(H), then by triviality x ∈ acl(h′)
for some h′ ∈ H ∩ acl(A) = h. Hence HB(A) ⊆ h ⊆ acl(A). �

The previous lemma and Proposition 2.1 implies that, in a trivial theory, for
every set A and every B = aclH(B) we have HB(A/B) ⊆ acl(A). Because

HB(A/B) ⊆ aclH(AB) \B = acl(AB) \B ⊆ acl(A).

Proposition 3.2. T is trivial i� T ind is 1-based.

Proof. If T is trivial then for every a and b with b = aclH(b) we have

h = HB(a/b) ⊆ acl(a),

so aclH(cbH(a/b)) = aclH(cb(ah/b)) ⊆ aclH(a).

Suppose now T ind is 1-based and assume that T is not trivial, then there exists a
tuple a and elements b and h such that b ∈ acl(ah) and b /∈ acl(a)∪ acl(h). We can
assume that a is an independent tuple minimal with this property and therefore
that a |̂ H (by the Generalized Extension Property). Moreover, as tp(h/a) is
not algebraic, we can assume that h belongs to H by density. It is clear that
h = HB(b/a) so cbH(b/a) is interalgebraic (in TH) with cb(bh/a). Now, the theory
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T ind is 1-based, hence aclH(cbH(b/a)) = aclH(b) ∩ aclH(a). On the other hand
aclH(a) = acl(a) as a |̂ H and also aclH(b) = acl(b) because a |̂

h

H and b ∈ acl(ah),

then b |̂
h

H. But b /∈ acl(h) so HB(b) = ∅.

However, minimality of a yields acl(cb(bh/a)) = acl(a), hence acl(a) ⊆ acl(b)
and h ∈ acl(ab) ⊆ acl(b). This is a contradiction. �

Theorem 3.1. For n ≥ 2 T is n-ample i� T ind is n-ample.

Proof. (⇒) Assume T is n-ample, then there are sets a0, ..., an such that:
(1) ai+1 |̂

ai

ai−1...a0,

(2) acl(a0...ai−1ai+1) ∩ acl(a0...ai−1ai) = acl(a0...ai−1).
(3) an 6 |̂

acl(a1)∩acl(a0)

a0

By the generalized extension property, there are a′0...a
′
n such that tp(a′0...a

′
n) =

tp(a0...an) and a′0...a
′
n |̂ H.

As the H-bases of any subset of {a′0..., a′n} are empty, algebraic closure in T ind

is the same as in T . So condition (2) holds in T ind.
By the characterization of the canonical bases (since H-bases are empty), con-

dition (1) holds also in T ind. But if

a′n |H^
aclH(a′1)∩aclH(a′0)

a′0

then

a′n |̂
acl(a′1)∩acl(a′0)

a′0

This is a contradiction.

(⇐)Assume T is not n-ample. Let a0, ..., an be such that for all 1 ≤ i ≤ n− 1

(1) ai+1 |̂
ai

H
ai−1...a0

(2) aclH(a0...ai−1ai+1) ∩ aclH(a0...ai−1ai) = aclH(a0...ai−1).
We may assume that ai = aclH(ai) for every i ≤ n.

Claim 1. In these conditions we have the following chain:

HB(an/a0) ⊆ HB(an/a0a1) ⊆ ... ⊆ HB(an/a0...an−1).

Because

an |H^
ai+1

ai...a0

therefore

aclH(anai−1...a0) ∩ aclH(ai, ..., a0) ⊆ aclH(ai+1ai−1...a0),

hence, by (2),

aclH(anai−1...a0) ∩ aclH(aiai−1...a0) = aclH(ai−1...a0).

The conclusion follows from Proposition[2.1]. Note that this only make sense if
n ≥ 2.
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Let's call h = HB(an/a0) and h′ = HB(an/a0, ..., an−1). Hence h ⊆ h′ by the
previous claim. As the canonical basis cbH(an/aclH(a0...an−1)) is interalgebraic
(in TH) with cb(anh

′/aclH(a0...an−1)), then

anh |̂
an−1

aclH(an−1an−2...a0).

De�ne recursively tuples a′i, bi for 0 ≤ i ≤ n− 1 in the following way:
For the case i = 0 let a′0 = ∅ and b0 = a0.
For i > 0 let a′i ⊆ aclH(ai, bi−1, .., b0) be a maximal tuple independent over

acl(aibi−1, ..., b0) (in the sense of T ), and bi = acl(aia
′
i). In particular we have that

acl(bi, ..., b0) = aclH(ai, ..., a0).

Note that we can take a′i = HB(ai, bi−1, ..., b0).
De�ne also bn as anh

′.

Claim 2. For i ≤ n− 1 we have bi |̂
bi−1

bi−2...b0:

By de�nition a′i |̂ aibi−1..b0, hence a′i |̂
ai

bi−1...b0. On the other hand, as ai |H^
ai−1

ai−1...a0

(by (1)) and ai−1 ⊂ bi−1 ⊆ aclH(ai−1, ..., a0), then ai |H^
bi−1

bi−1...b0. This implies by

transitivity that bi |̂
bi−1

bi−2...b0 for i ≤ n− 1.

Note also that bn |̂
bn−1

bn−2...b0 by de�nition of h′ and the characterization of

canonical bases in T ind.

Claim 3. For i ≤ n−1 we have acl(bi+1bi−1...b0)∩acl(bibi−1...b0) = acl(bi−1...b0).
Because, for every i ≤ n,

acl(bi...b0) = aclH(ai...a0),

then by (2)

acl(ai+1bi−1...b0) ∩ acl(bibi−1...b0) = acl(bi−1...b0).

So, if acl(ai+1bi−1...b0) ∩ acl(bibi−1...b0) ( acl(bi+1bi−1...b0) ∩ (bibi−1...b0), then by
exchange there exists a ∈ acl(a′i+1) ∩ acl(ai+1bi...b0). Contradiction.

Therefore, Claims 2, 3 and non n-ampleness of T imply that bn |̂
b1∩b0

b0, moreover

we get that anh |̂
a1∩a0

a0 because h ⊆ h′ and b1 ∩ b0 = a1 ∩ b0.

Hence, again by de�nition of h and characterization of canonical bases, an |H^
a1∩a0

a0.

�
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