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Abstract. We classify group rings of finite groups over a field F accord-

ing to the model-theoretic complexity of the category of their modules.

For instance we prove that, if F contains a primitive cubic root of 1,

then the Krull–Gabriel dimension of such rings is 0, 2, or undefined.

1. Introduction

There are two standard tools to measure a model-theoretic complexity of

the category of modules over a given ring R. The first one is the Krull–

Gabriel dimension which can be defined as the m-dimension of the lattice

of all positive primitive formulae over R. In the model theory of modules

this notion is tightly connected with the Cantor–Bendixson analysis of the

Ziegler spectrum of R (a topological space, whose points are indecomposable

pure-injective R-modules), and hence with a classification of indecomposable

pure-injective modules. In all known cases where the Krull–Gabriel dimen-

sion has been calculated, it is equal to the Cantor–Bendixson rank of the

Ziegler spectrum, and it is an open question whether it is always the case.

The notion of the Krull–Gabriel dimension was introduced by Geigle [11]

in the context of finite dimensional algebras over a field. In particular, he

proved (see [11, Thm. 4.3]) that the Krull–Gabriel dimension of any tame

hereditary finite dimensional algebra over a field is equal to 2. It is also

known from Auslander [1, Prop. 3.4] that the Krull–Gabriel dimension of

a finite dimensional algebra A (or any ring) is equal to zero if and only

if A is of finite representation type, and Baer (see [2, Cor. 3.7]) showed

that the Krull–Gabriel dimension of any wild finite dimensional algebra is

undefined. Furthermore, by Krause [17] (see also Herzog [14]) the Krull–

Gabriel dimension of a finite dimensional algebra cannot be equal to 1.
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Recently Schröer [28] and (independently) Burke and Prest [5] found, for

every n ≥ 2, an example of a (string) finite dimensional algebra with Krull–

Gabriel dimension n. It is still an open question whether there exists a

finite dimensional algebra with an infinite Krull–Gabriel dimension. Again,

by Schröer (see also [21]), if A is a finite dimensional non-domestic string

algebra over a field, then the Krull–Gabriel dimension of A is undefined,

and there is a belief that every domestic finite dimensional string algebra

has finite Krull–Gabriel dimension (see [22, 24]).

Besides its applications to the description of points and topology of the

Ziegler spectrum, the (existence of) Krull–Gabriel dimension eradicates some

‘strange’ pure-injective modules. Namely, if the Krull–Gabriel dimension of

a ring R is defined, then every pure-injective R-module has an indecompos-

able direct summand, hence there is no superdecomposable pure-injective

module over R.

Another more powerful tool to eliminate superdecomposable pure-injective

modules is the width (of the lattice of all pp-formulae) over a ring R. Thus,

if R has a width, then no superdecomposable modules over R occur, but the

converse was proved by Ziegler only for countable rings (thus, in the case of

finite dimensional algebras, for countable fields). Essentially less is known

about this model–theoretic invariant of R. It is a kind of folklore (see [20,

p. 282]) that every wild algebra does not have width. (For a discussion of

a more subtle question of the existence of superdecomposable pure-injective

modules over wild algebras see [16, Ch. 8]). Recently Puninski [23] pin-

pointed a class of tame finite dimensional algebras without width. Namely,

he proved that every non-domestic finite dimensional string algebra does

not have width. No example of a finite dimensional algebra with width, but

without Krull–Gabriel dimension is known. For instance, it is not known

whether all Ringel’s canonical algebras (see [27]) do not have width (none

of them has Krull–Gabriel dimension as observed by Prest [20, p. 276]).

Thus, it sounds useful to look at some natural classes of finite dimensional

algebras (or rings) to measure their complexity using the Krull–Gabriel di-

mension or width. Unfortunately for many classes of rings that are at hands

the model–theoretic complexity grows too rapidly. For instance, Puninski,

Puninskaya and Toffalori [25] have recently shown that, if R is the integral

group ring of a (nontrivial) finite group, then the width of R is undefined and

hence (since R is countable) there exists a superdecomposable pure-injective

R-module.
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In this paper we investigate from this point of view group rings FG of

finite groups over a field F . By Maschke’s theorem nothing interesting

is happening if the characteristic of F does not divide the order of G (for

instance, if the characteristic of F is zero). Indeed, FG is semisimple artinian

in this case, hence the Krull–Gabriel dimension of FG is zero. If F is a field

of characteristic p and p divides |G|, then (see [8, 64.1]) the group ring FG is

of finite representation type if and only if a p-Sylow subgroup of G is cyclic.

This gives a description of group rings with Krull–Gabriel dimension zero.

As we have already mentioned, the Krull–Gabriel dimension of FG cannot

be equal to 1.

It is easily seen that, ifG = C(2)2 is the Klein group and the characteristic

of F is equal to 2, then the Krull–Gabriel dimension of FG is equal to 2 (see

Fact 4.3 below). Using a standard (induce and restrict) machinery we show

(see Corollary 4.10) that the same is true for any finite group G with C(2)2

as a 2-Sylow subgroup and for a field F of characteristic 2. The standard

examples here are given by the alternating groups A4 and A5 over a field of

characteristic 2, but further groups with this property can be found among

the simple groups PSL2(q): for instance, PSL2(11) and PSL2(13) are such.

In fact we completely characterize (see Corollary 4.16) finite simple groups

G such that the group ring FG has Krull–Gabriel dimension 2: all these

groups are in the PSL2(q) series and the characteristic of F must be equal

to 2.

But, just as for integral group rings, a big gap arises in the possible values

of Krull–Gabriel dimension for our group algebras. Namely, we will prove

(see Theorem 4.11) that, if F is a field and G is a finite group not mentioned

above, then in most cases the group ring FG has no width, hence the Krull–

Gabriel dimension is undefined; in particular, if F is countable, then FG

possesses a superdecomposable pure-injective module. The only possible

exceptions are generalized quaternion groups over a field of characteristic 2

without a primitive cubic root of unity.

The proof is straightforward when FG is wild (see the above remarks),

and it is well known that the remaining cases are but a few. Indeed, as

we show below, it suffices to look at the group algebras FG where G is

isomorphic either to D(8) (the dihedral group) or to Q(8) (the quaternion

group) and F is a field of characteristic 2. We will handle D(8) using a

standard series of string modules, similarly to [23]. If F contains a primitive
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cubic root of unity, a clever Dade’s substitute (see [10]) will allow us to

employ a similar approach in the case of Q(8).

So the only case to be clarified, and the main difficulty we encounter, is

when G = Q(8) and F is a field of characteristic 2 containing no primitive

cubic root of unity (say, a finite field of two elements). The relations of

FQ(8) in this case seem to be too long to produce a natural series of string

modules (to prove the non-existence of width). Still we believe that the

width of FQ(8) is undefined, and plan to overcome these difficulties in a

future paper.

Our approach is based on [23], but we will also provide (and apply to our

framework) a new very general condition under which a ring R does not have

width. Roughly speaking this condition is met when R has two ‘independent’

dense chains of finitely presented modules with local endomorphism rings.

To prove this we will exploit essentially the same idea as in [23]: a lattice

freely generated by two dense chains does not have width.

In detail §§ 2-3 are devoted to preliminaries and basic results on lattices

of pp-formulae and dimensions, respectively. § 4 deals with the complexity

of modules over group algebras, and § 5 introduces and illustrates the width

criterion just mentioned.

To make this paper accessible for both model theorists and experts in the

representation theory, we will introduce the basic notions using the language

of both areas. However, the machinery used in the proofs is clearly biased

towards the model theory of modules (reflecting mostly the authors back-

ground). Anyway we refer to [16], [20] and [32] for model theory of modules,

to [12] and [31] for group theory and to [8], [9] and [30] for representation

theory. Modules are assumed to be right; as we will see in the next section,

this preference (right rather than left) does not affect our results.

2. Preliminaries and pp-formulae.

There are many ways to define a positive primitive formula (pp-formula)

over a given ring R. Using functors one can say that a pp-formula is a finitely

generated subfunctor of the forgetful functor Hom(R,−) in the category

(mod-R,Ab) of additive covariant functors, where mod-R is the category

of finitely presented R-modules and Ab is the category of abelian groups.

Model-theoretic-wise the definition is as follows.

A pp-formula ϕ(x) (in one free variable x) is a formula of the form

∃ ȳ (ȳA = xb̄), where ȳ = (y1, . . . , yk) is a set of (bound) variables, A is
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an k × l matrix over R, and b̄ = (b1, . . . , bl) is a row of elements of R. For

instance a | x (read ‘a divides x’) is a divisibility formula ∃ y (ya = x). If

M is a module and m ∈ M , then one writes M |= ϕ(m) (m satisfies ϕ in

M), if there exists a tuple of elements m = (m1, . . . ,mk) ∈ M such that

mA = mb̄. The set ϕ(M) = {m ∈M |M |= ϕ(m)} is a subgroup of M and

is said to be a pp-subgroup of M . It may happen (if R is noncommutative)

that ϕ(M) is not a submodule of M , but it is always a (left) submodule of

M over S = End(M). For instance, if ϕ is a divisibility formula a | x, then

ϕ(M) = Ma.

If f : M → N is a morphism of modules and M |= ϕ(m) for some

pp-formula ϕ, then N |= ϕ(f(m)), hence f(ϕ(M)) ⊆ ϕ(N). Thus every

pp-formula ϕ(x) defines a functor Fϕ ∈ (mod-R,Ab) as follows. For every

M ∈ mod-R we set Fϕ(M) = ϕ(M) and, if f : M → N is a morphism of

finitely presented modules, then F (f) is the restriction of f on ϕ(M).

If ϕ(x) and ψ(x) are pp-formulae, we say that ϕ implies ψ, written ϕ→ ψ,

if for every (finitely presented) module M , ϕ(M) ⊆ ψ(M). For instance, if

ϕ
.= a | x and ψ .= b | x, a, b ∈ R, then ϕ→ ψ if and only if a ∈ Rb. It follows

that ϕ → ψ if and only if Fϕ is a subfunctor of Fψ. Now we identify pp-

formulae that define the same functor. Namely, we say that ϕ is equivalent

to ψ, if ϕ→ ψ → ϕ, that is, ϕ(M) = ψ(M) for every module M . Then the

lattice of pp-formulae LR is the lattice of finitely generated subfunctors of

the functor (R,−) ∈ (mod-R,Ab) with + and ∩ as operations.

On the level of pp-formulae these operations are identified as follows.

If ϕ and ψ are pp-formulae, then their meet is a conjunction ϕ ∧ ψ, and

joint (that is, sum) of ϕ and ψ can be defined as the pp-formula θ(x) .=

∃ z (ϕ(z) ∧ ψ(x− z)).

A third way to look at pp-formulae is through pointed modules. A pointed

module (M,m) is a module M with a distinguished element m ∈ M . A

morphism of pointed modules is a morphism f : M → N such that f(m) = n.

One can also think of a pointed module (M,m) as a morphism gM : R→M

such that gM (1R) = m (where 1R denotes the unity of R). From this point

of view a pointed morphism is a morphism f : M → N such that f gM = gN .

To see the way all this is connected with pp-formulae, let (M,m) be a

pointed module such that M is finitely presented. Then (see [20, Prop. 8.4])

there is a pp-formula ϕ(x) such that (M,m) is a free realization of ϕ, that is,

m ∈ ϕ(M) and for every pp-formula ψ, m ∈ ψ(M) yields ϕ→ ψ (thus a free
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realization is a ‘minimal’ realization of ϕ). Furthermore, ϕ is uniquely de-

termined up to equivalence, and (again by [20, Prop. 8.4]) every pp-formula

has a finitely presented free realization.

Thus the lattice LR can be considered as a set of equivalence classes of

(pointed) morphisms between finitely presented pointed modules. Here, two

pointed modules (M,m) and (N,n) are said to be equivalent, if there are

pointed morphisms f : M → N and g : N → M (such that f(m) = n and

g(n) = m). The operations of the lattice LR obtain a nice description on

this level. Namely, if (M,m) corresponds to ϕ and (N,n) corresponds to ψ,

then (M ⊕N, (m,n)) will correspond to ϕ+ψ. To get ϕ∧ψ is more tricky:

one should form a pushout of the corresponding morphisms f : R→M and

g : R→ N which gives a finitely presented module K = M ⊕N/ im(f,−g).
If k denotes the common coset of (m, 0) and (0, n), then (K, k) will be a free

realization of ϕ ∧ ψ (for more on this see [18, Ch. 7]).

LR is a modular lattice. Furthermore LR has the largest element 1(LR)

given by the (equivalence class of) pp-formula x = x, and the least element

0(LR) given by the pp-formula x = 0. On the level of morphisms they cor-

respond to the identity morphism from R into R and to the zero morphism

from R onto 0.

There are two subtleties to be taken into account looking at the above

definition. Firstly it has been introduced for right modules over R, so we

should be talking about right pp-formulas. A similar definition is possible on

the left, so we get a lattice of left pp-formulae over R. Fortunately, by [20,

Ch. 8] (which is just a reincarnation of Auslander’s duality) these lattices are

anti-isomorphic. So for the purpose of this paper (say, calculating different

dimension, see below) the side does not make any difference. Therefore we

use LR to denote either of these lattices.

Secondly we have considered only pp-formulae in one free variable. A

very similar definition is possible for pp-formulae ϕ(x̄) in any number of free

variables x̄ = (x1, . . . , xk). On the functorial level they correspond to finitely

generated subfunctors of the forgetful functor Hom(Rk,−) ∈ (mod-R,Ab).

We can also identify these pp-formulae with pointed modules (M,m), where

m = (m1, . . . ,mk) is a tuple of elements of M , or with morphisms f : Rk →
M such that f(ei) = mi (ei is the ith unity of Rk). A pp-formula ϕ in k free

variables defines a subgroup of Mk consisting of all k-tuples m satisfying

ϕ, and we will still denote this subgroup by ϕ(M). As before, identifying

equivalent pp-formulae we obtain a lattice LkR. According to this notation
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L1
R is just LR. Most questions in the model theory of modules can be solved

on the level of L1
R, but sometimes one has to evoke the LkR.

3. Dimensions

There is a general way of introducing an (ordinal valued) dimension of

a modular lattice with respect to any class of modular lattices (see [20,

Sec. 10.2]). In the model theory of modules just two of them are in a

common use. The former, referring to the 2-element chain, is m-dimension,

and the latter, corresponding to the set of all chains, is breadth. There is one

more important dimension which does not fall completely in this description,

although it is connected with breadth. It is the (Ziegler’s) width of the lattice

which plays a dominant role in this paper. Let us (following [20, Sect. 10.2])

briefly recall these notions.

Let L be a modular lattice with with bottom element 0(L) and top element

1(L). We will define the m-dimension of L, mdim(L). To start with, we set

mdim(L) = −1 if and only if |L| = 1, that is, 0(L) = 1L. Otherwise |L| > 1,

hence mdim(L) ≥ 0.

Let ∼f be a congruence on a modular lattice that identifies intervals of

finite length. By induction on ordinals we define an ascending chain of

congruences ∼α on L and the corresponding chain of factor lattices Lα =

L/ ∼α.

If α = 0, then ∼α is the trivial congruence, hence L0 = L/ ∼0 is isomor-

phic to L. If α is a limit ordinal, then set ∼α= ∪β<α ∼β, and let Lα be the

corresponding factor lattice of L.

Suppose that α = β+1 is such that ∼β has been already defined, and let

πβ : L → Lβ be the corresponding projection. Then the congruence ∼α+1

is defined to be the preimage, via πβ, of the congruence ∼f on Lβ.

By cardinality arguments, the ascending chain of congruences ∼α on L

will stabilize. Thus there are two cases to consider. If this chain stabilizes

on certain α such that 0(L) is not ∼α-equivalent to 1(L) (hence Lα has at

least two elements) we say that the m-dimension of L is undefined, or also

that mdim(L) = ∞. If this is not the case then, since 0(L) 6= 1(L), there

exists a successor ordinal α = β+ 1 such |Lβ| > 1, but |Lα| = 1, and we say

that the m-dimension of L is equal to β, mdim(L) = β.

Thus the m-dimension of L is zero if and only if L is a finite lattice with

0(L) 6= 1(L). Furthermore, if ω is the usual ordering of natural numbers

and ω∗ denotes its reverse ordering, then the chain L = ω C ω∗ (ω∗ on the
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top of ω) has m-dimension 1. Indeed, ∼1 identifies all finite length intervals

of L, hence glues together all the elements of ω, and also those of ω∗, but

still separates the elements of ω and those of ω∗. Thus L1 is a two-element

lattice, and L2 is a trivial lattice, hence mdim(L) = 1. It can be also checked

that the m-dimension of a lattice L is undefined if and only if L contains a

subchain isomorphic to the ordering (Q,≤) of the rationals.

An important property of the m-dimension is that, if L′ is a sublattice

(even with different bottom and top elements) or a factor lattice of L, then

mdim(L′) ≤ mdim(L).

Lemma 3.1. (see [18, L. B6]) If L = L1 × . . . × Lk, then mdim(L) =

maxi mdimLi.

Proof. Since each Li is embeddable in L, mdim(Li) ≤ mdim(L) for every i,

hence maxi mdim(Li) ≤ mdim(L).

To prove the reverse inequality we may argue by induction, and hence

assume that k = 2. Suppose that mdim(L1) = α and mdim(L2) = β

such that α ≥ β. Consider the following chain in L = L1 × L2: 0(L) =

(0(L1), 0(L2)) < (1(L1), 0(L2)) < (1(L1), 1(L2)) = 1(L). Clearly the inter-

val [(0(L1), 0(L2)); (1(L1), 0(L2))] is isomorphic to L1, hence it got collapsed

on the stage α (as we have already noticed, there is no difference whether

we run ∼α analysis in L or in any of its sublattices). Similarly the interval

[(1(L1), 0(L2)); (1(L1), 1(L2))] is isomorphic to L2, hence it got collapsed at

the stage α. It follows that 0(L) ∼α 1(L) in L, therefore mdim(L) ≤ α. �

It is easily seen from the definition that the m-dimension does not change

its value if one switch from L to its dual lattice L∗. We single out this fact

for future applications.

Fact 3.2. If L is a modular lattice with bottom element 0(L) and top element

1(L), then mdim(L) = mdim(L∗).

Now let us deal with breadth. Let L be a modular lattice with bottom

element 0(L) and top element 1(L), and let ∼l be a congruence on L that

identifies intervals which are chains (strictly speaking, it is a congruence

generated by these intervals, that is, a ∼l b if and only if there is a chain

a ∧ b = c0 < c1 < . . . < ck = a + b such that each interval [ci, ci+1] in

L is a chain). The breadth of L, br(L), is defined in the same manner as

m-dimension, but using the congruence ∼l instead of ∼f at each stage.

By this definition, it follows again that br(L) = −1 if and only if |L| = 1;

also br(L) = 0 if and only if there is a chain 0 = c0 < . . . < ck = 1 in L such
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that each interval [ci, ci+1] in L is a chain. Thus the following lemma has

the same proof as Lemma 3.1.

Lemma 3.3. If L = L1 × . . .× Lk, then br(L) = maxi br(Li).

The usage of breadth of a lattice is quite restricted because in most cases

it can be replaced by a (less smooth) invariant called width. However,

Lemma 3.3 is not true for width, so we have to use breadth in some proofs.

On the other hand most results about superdecomposable pure-injective

modules are formulated in terms of width, hence we have to introduce this

notion too.

Let L be a modular lattice with bottom element 0(L) and top element

1(L). We define the width of L, wd(L), by induction on ordinals. We set

wd(L) = −1 if and only if |L| = 1, and, if α is a limit ordinal, then define

wd(L) ≥ α if wd(L) ≥ β for every β < α (as has been already decided).

Suppose that α = β + 1. Then one puts wd(L) ≥ α if there exist a, b ∈ L

such that both intervals [a, a+ b] and [b, a+ b] have width ≥ β.

◦ 1(L)

◦

��
��

��

??
??

??
a+ b

◦
??

??
??a

≥β

◦

��
��

��
b

◦ a ∧ b
≥β

◦ 0(L)

By modularity, it is the same as wd([a∧ b, a]) ≥ β and wd([a∧ b, b]) ≥ β.

For instance, wd(L) = 0 if and only if L is a chain, but the direct product

of two nontrivial chains has width 1 (and breadth 0). As one can easily see

from the definition, the breadth does not exceed the width. In fact both

dimensions coexist.

Fact 3.4. [20, L. 10.7] Let L be a modular lattice with bottom element 0(L)

and top element 1(L). Then br(L) ≤ wd(L) < ωbr(L)+1.

Note that the ∼α analysis for breadth runs at least as fast as a similar

analysis for m-dimension. Thus we obtain the following:

Corollary 3.5. Let L be a modular lattice with 0(L) and 1(L). Then

mdim(L) ≥ br(L). In particular, if the m-dimension of L is defined, then

the breadth of L is defined, therefore the width of L is defined.
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Our main interest will be to calculate the aforementioned dimensions for

lattices of pp-formulae over various given rings. Let us explain why this

problem is important.

Let R be a ring. Then the Krull–Gabriel dimension of R, KG(R), is

the m-dimension of the lattice of all pp-formulae (in one variable) over R.

Again, two precautions should be taken. Firstly we should check that this

definition does not depend on the side. But, as we have already mentioned,

the lattice of left pp-formulae over R is anti-isomorphic to the lattice of right

pp-formulae over R, hence (see Fact 3.2) both lattices have the same m-

dimension. Secondly we will see below that this definition does not depend

on the number of variables in pp-formulae (this can be also extracted from

[18, Prop. 7.2]).

If M is a module over R, then the set of pp-subgroups of M forms a

lattice L(M). Moreover, the map ϕ→ ϕ(M) defines a morphism of lattices

LR → L(M) which is onto. We say that a module M is big, if this map is

an isomorphism. Big modules exist over any ring.

Fact 3.6. (see [20, Cor. 8.17]) Suppose that M is a direct sum of all iso-

morphism types of finitely presented R-modules (or M has this module as a

direct summand). Then M is big.

We may introduce a similar lattice Lk(M) of subgroups of Mk defined by

pp-formulae in k free variables. According to this notation L1(M) is just

L(M). As above, we obtain an onto morphism of lattices LkR → Lk(M),

which is an isomorphism if M is a big module.

Let ϕ(x, y) be a pp-formula (in two free variables). Define ϕ1(x)
.=

∃ y ϕ(x, y) and ϕ2(y)
.= ϕ(0, y). Thus ϕ1 and ϕ2 are both pp-formulas in

one variable.

Lemma 3.7. If M is a module, then the map ϕ(M) → (ϕ1(M), ϕ2(M))

defines an embedding of lattices L2(M) → L(M)× L(M).

In particular, the map ϕ → (ϕ1, ϕ2) defines an embedding of L2
R into

LR × LR.

Proof. The latter claim follows directly from the former, as soon as M is

chosen to be big (see Fact 3.6).

Concerning the former claim, it is straightforward to check that the map

is a morphism of lattices. Indeed, it suffices to prove that, if ϕ,ψ are pp-

formulae in two variables, then ϕ(M) ⊆ ψ(M) implies ϕi(M) ⊆ ψi(M) for

every i. Suppose that m ∈ ϕ1(M). Then M |= ∃ y ϕ(m, y), hence there
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exists n ∈ M such that M |= ϕ(m,n). By the assumption, M |= ψ(m,n),

hence M |= ψ1(m), as desired. The proof that ϕ2(M) ⊆ ψ2(M) is similar.

Now we check that this map is an embedding. Otherwise we may assume

that ϕ(M) ⊂ ψ(M) for some pp-formulae ϕ and ψ in two variables such

that ϕ1(M) = ψ1(M) and ϕ2(M) = ψ2(M). Choose m,n ∈ M such that

M |= ψ(m,n) ∧ ¬ϕ(m,n). From M |= ψ(m,n) it follows that M |= ψ1(m).

By the assumption, M |= ϕ1(m), therefore M |= ϕ(m,n′) for some n′ ∈M .

Since ϕ(M) ⊆ ψ(M), we conclude that M |= ψ(m,n′). Subtracting this

from M |= ψ(m,n), we obtain M |= ψ(0, n − n′), that is, M |= ψ2(n − n′).

By the assumption, M |= ϕ2(n−n′), that is, M |= ϕ(0, n−n′). Adding this

with M |= ϕ(m,n′), we conclude that M |= ϕ(m,n), a contradiction. �

It is easy to extend the above construction and to embed LkR into the

direct product of k copies of LR for every k; in the same way, for every

module M , on gets an embedding from Lk(M) into the direct product of k

copies of L(M).

Proposition 3.8. (cp. [18, Prop. 7.2]) For every ring R we have mdim(LkR) =

mdim(LR). Thus the Krull–Gabriel dimension of R is equal to the m-

dimension of the lattice of all pp-formulae in k free variables.

If M is a module, then mdim(Lk(M)) = mdim(L(M)).

Proof. Using induction we may assume that k = 2. Then the result follows

from Lemma 3.1 and Lemma 3.7. �

By Lemma 3.3, similar arguments apply to the breadth.

Proposition 3.9. For any ring R and any k, br(LkR) = br(LR). If M is

an R-module, then br(Lk(M)) = br(L(M)).

We apply this proposition as follows.

Corollary 3.10. For any ring R, if wd(LR) is defined, then wd(LkR) is

defined.

Proof. Suppose that wd(LR) = α. By Fact 3.4, br(LR) ≤ α. By Proposi-

tion 3.9 we conclude that br(LkR) ≤ α, hence (by Fact 3.4 again) wd(LkR) <

ωα+1. �

Question 3.11. Let R be a ring. Is it always true that wd(LR) = wd(L2
R)?

If M is a module, and ϕ is a pp-formula, then ϕ(M (I)) = ϕ(M)(I).

This readily implies that L(M) ∼= L(M (I)), in particular these lattices
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have the same m-dimension and breadth. If N is another module, then

ϕ(M⊕N) = ϕ(M)⊕ϕ(N), hence L(M⊕N) is embeddable in L(M)×L(N).

By Lemma 3.1 we obtain

Corollary 3.12. (see [18, Prop. 7.6]) If M and N are modules and I is a

set, then mdim(L(M (I) ⊕N)) = max(mdim(L(M)),mdim(L(N))).

4. Group algebras

In this section we collect some (well known) facts about finite groups and

their group rings over a field and apply them to calculate the model-theoretic

complexities of these rings.

Recall that a (finite) group G is said to be a p-group (for p a prime), if

the order of every element of G is a power of p. Let C(pk) denote a cyclic

(p-)group consisting of pk elements.

Fact 4.1. (see [8, 6.10, p. 19], for instance) If G is a finite p-group then

either G is cyclic or C(p)2 is a factor group of G.

For a definition of tame and wild finite dimensional algebras see [30,

Sec. 14.4]. Here is a typical example of wildness.

Fact 4.2. (see [30, Thm. 14.17]) If F is a field of characteristic p > 2, then

FC(p)2 is a wild algebra. Consequently, if G is a noncyclic p-group, then

FG is a wild algebra.

On the other hand the ring FC(p), where F is a field of characteristic p,

is isomorphic to the (truncated) ring of polynomials F [X | Xp = 1], hence

is of finite representation type.

For p = 2 the situation is more complicated. First of all there exists a

group algebra of Krull–Gabriel dimension 2.

Fact 4.3. If F is a field of characteristic 2 and G = C(2)2 is the Klein

group, then FG has Krull–Gabriel dimension 2.

This should be folklore and in discussed for instance in [19, § 4]. Anyway

let us sketch briefly a proof.

Proof. Let g and h be generators of C(2)2. If X = 1 + g and Y = 1 + h,

then R = FC(2)2 is the (4-dimensional) algebra F [X,Y | X2 = Y 2 =

0]. As every group algebra of finite group, R is self-injective with the (1-

dimensional) socle spanned by XY .
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Therefore (see [16, Prop. 8.69]) every R-module is a direct sum of a free

module R(I) and a module over R/ soc(R) ∼= F [X,Y | X2 = Y 2 = XY = 0].

It is easily seen (via a reduction to the Kronecker algebra, see [16, Ch. 8])

that the last algebra has Krull–Gabriel dimension 2. If M is a big module

over R, then M = R(I)⊕K, and we may assume that K is a big R/ soc(R)-

module. Then mdim(L(K)) = 2, and mdim(L(R)) = 0, since R is of finite

length. By Corollary 3.12, we obtain mdim(L(M)) = mdim(L(K)) = 2, as

desired. �

Recall (see [30, p. 293]) that the following is a standard representation of

dihedral groups:

Dm = 〈g, h | g2 = h2m
= 1 , hgh = g〉, m ≥ 1 .

For instance D1 is isomorphic to the Klein group and D2 is the dihedral

group D(8) of order 8.

Similarly the semidihedral groups are given as

Sm = 〈g, h | g2 = h2m
= 1, hg = gh2m−1−1〉, m ≥ 3 ,

and (generalized) quaternion group are represented as

Qm = 〈g, h | g2 = h2m−1
, g4 = 1, hgh = g〉, m ≥ 2 .

For instance Q2 is the quaternion group Q(8) of order 8.

The following is an important dichotomy for 2-groups.

Fact 4.4. ([12, 5.4.5] and before that) Let G be a (finite) 2-group which is

not cyclic. Then either a) G has C(4)× C(2)2 or C(2)3 as a factor group,

or b) G is a dihedral, semidihedral or generalized quaternion group.

If G is a dihedral with m ≥ 2 or semidihedral, then G contains D(8)

as a subgroup. If G is generalized quaternion, then G contains Q(8) as a

subgroup.

In fact all algebras in a) are wild.

Fact 4.5. (see [30, Thm. 14.17]) If F is a field of characteristic 2 and G =

C(4) × C(2)2 or G = C(2)3, then the group algebra FG is wild. Therefore

the same is true if G has one of this group as a factor group.

Dihedral, semidihedral and generalized quaternion algebras are tame (see

[3]), but we do not use this result in the paper.
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To make further reductions we recall some basic facts about induced mod-

ules.

Let S be a subgroup of a group G and let M be an FS-module. Then

the FG-module MG = M ⊗FS FG is said to be induced by M . On the

other hand if N is an FG-module then, restricting scalars to FS, we obtain

a (restricted) module NS over FS.

The following fact describes what is happening if we apply these opera-

tions twice.

Fact 4.6. ([9, 10.A and 19.5.(ix)])

1) If M is an FS-module, then M is a direct summand of (MG)S.

2) If the characteristic of F does not divide |G : S| and N is an FG-

module, then N is a direct summand of (NS)G.

In most sources (such as [9]) these results are formulated in the framework

of finitely generated modules. But one can easily check that their proof goes

through for all modules.

Now we are in a position to give a first application. Clearly, if L′ is a

sublattice of a lattice L, then wd(L′) ≤ wd(L).

Proposition 4.7. Let G be a finite group, S be a subgroup of G and let F

be a field. If wd(LFS) is undefined, then wd(LFG) is undefined. If KG(FS)

is undefined, then KG(FG) is undefined.

Proof. Let M be a big module over FS, hence L(M) = LFS . It follows

that wd(LFS) = wd(L(M)), hence wd(L(M)) = ∞. By Fact 4.6, M is a

direct summand of FS-module N = (MG)S . It follows that wd(L(M)) ≤
wd(L(N)), hence wd(L(N)) = ∞. But clearly the lattice of pp-subgroups

of N (as an FS-module) is a sublattice of the lattice of pp-subgroups of MG

(as an FG-module). Then wd(L(N)) ≤ wd(L(MG)) ≤ wd(LFG), therefore

wd(LFG) = ∞.

The proof for the Krull–Gabriel dimension is similar. �

Let S be a subgroup of a finite group G and let g1, . . . , gk be representa-

tives of left cosets of G modulo S. If M is an FS-module, then every element

m of the FG-module MG can be uniquely written as m1⊗g1 + . . .+mk⊗gk.
For h ∈ G and 1 ≤ i ≤ k, find h′ ∈ H and 1 ≤ j ≤ k such that gih = h′gj ;

this implies (mi ⊗ gi) · h = mih
′ ⊗ gj , which determines the FG-module
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structure. Using this representation, one can easily construct for every pp-

formula ϕ(x) over FG a pp-formula ϕ∗(x1, . . . , xk) over FS such that

MG |= ϕ(m) if and only if M |= ϕ∗(m1, . . . ,mk) (∗)

(and this definition does not depend on m and M — see [25, p. 53] for

example).

Proposition 4.8. 1) The map ϕ → ϕ∗ defines an embedding of lattices

L(MG) → Lk(M).

2) If the characteristic of F does not divide |G : S|, then this map gives

rise to an embedding of lattices LFG → LkFS.

Proof. 1) First we check that this map is a morphism of lattices. Suppose

that ϕ(MG) ⊆ ψ(MG) for some pp-formulae ϕ,ψ over FG, and we have to

verify that ϕ∗(M) ⊆ ψ∗(M).

Suppose that M |= ϕ∗(m1, . . . ,mk) for some m1, . . . ,mk ∈ M and set

m = m1 ⊗ g1 + · · ·+mk ⊗ gk ∈MG. Then, by (∗), MG |= ϕ(m), therefore,

by the assumption, MG |= ψ(m). Applying (∗) again, we obtain M |=
ψ∗(m1, . . . ,mk), as desired.

Now we check that this map is an embedding. Otherwise ϕ(MG) ⊂
ψ(MG) for some pp-formulae ϕ,ψ over FG such that ϕ∗(M) = ψ∗(M).

Choose m = m1 ⊗ g1 + · · ·+mk ⊗ gk ∈ ψ(MG) \ ϕ(MG). Then, by (∗), we

obtain M |= (ϕ∗ ∧ ¬ψ∗)(m1, . . . ,mk), a contradiction.

2) First we prove that there exists a big FG-module N such that NS is a

big FS-module. Indeed, using Fact 3.6, choose a big FS-module M . If K is

a big FG-module, then the same is true for N = MG ⊕K. By Fact 4.6, M

is a direct summand of (MG)S . Then M is a direct summand of NS , hence

NS is a big FS-module.

So we assume that N is a big FG-module such that NS is a big FS-

module. By Fact 4.6, N is a direct summand of (NS)G. By what we

have already proved, the map ϕ → ϕ∗ defines an embedding of lattices

L((NS)G) → Lk(NS). Since the FG-module (NS)G contains N as a direct

summand, it is big, hence L((NS)G) = LFG. Similarly, since NS is a big

FS-module, Lk(NS) = LkFS . Thus we obtained an embedding from LFG

into LkFS , as desired. �

Corollary 4.9. Let F be a field of characteristic p and let S ⊆ G be finite

groups such that p does not divide |G : S|. Then KG(FS) = KG(FG).

15



Proof. Arguing as in Lemma 4.7, it is always the case that KG(FS) ≤
KG(FG).

If p does not divide |G : S| then, by Proposition 4.8, there is an embedding

LFG → LkFS , hence KG(FG) ≤ mdim(LkFS) = KG(FS) by Proposition 3.8.

�

Using Fact 4.3, we immediately obtain.

Corollary 4.10. Let F be a field of characteristic 2 and let G be a finite

group such that a 2-Sylow subgroup of G is isomorphic to C(2)2. Then

KG(FG) = 2.

A simplest example of this situation is the group A4. Indeed, |A4| = 12 =

22 · 3, hence it has a 2-Sylow subgroup consisting of 4 elements. In fact,

the (normal) subgroup generated by permutations (12)(34) and (14)(23) is

isomorphic to C(2)2. If G = A5, then |A5| = 60 = 22 ·3 ·5, hence (the same)

group C(2)2 is a 2-Sylow subgroup of A5 (but in this case it is not normal).

It follows that, over a field F of characteristic 2, both algebras FA4 and

FA5 have Krull–Gabriel dimension 2. At the end of this section we will give

more examples of group rings with Krull–Gabriel dimension 2.

If F is a field of characteristic p and G is a finite group such that p

does not divide |G|, then the group ring FG is semisimple artinian, hence

KG(FG) = 0. Thus we concentrate on the case of prime characteristic p

dividing |G|.
If A is a wild finite dimensional algebra, then (see [20, Thm. 13.7]) the

width of A is undefined.

Theorem 4.11. Let F be a field of characteristic p and let G be a finite

group such that p divides |G|. Then

1) KG(FG) = 0 if and only if a p-Sylow subgroup of G is cyclic.

Suppose that either the characteristic of F is not equal to 2, or F contains

a primitive cubic root of unity, or a 2-Sylow subgroup of G is not isomorphic

to a generalized quaternion group. Then

2) KG(FG) = 2 if and only if p = 2 and a 2-Sylow subgroup of G is

(isomorphic to) C(2)2.

3) Otherwise both the width of LFG and consequently KG(FG) are un-

defined. Moreover, if F is countable, then there exists a superdecomposable

pure-injective module over FG.
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Proof. We have already mentioned that the ring FG is of finite representa-

tion type if and only if a p-Sylow subgroup S of G is cyclic. This proves

1).

Therefore we may assume that a p-Sylow subgroup S of G is non-cyclic.

If p > 2 then (see Fact 4.2) FS is a wild algebra, in particular wd(LFS) is

undefined. By Proposition 4.7, wd(LFG) is undefined.

Thus we may assume that p = 2. If S is isomorphic to C(2)2, then,

by Corollary 4.10, KG(FG) = 2. Consider the other possibilities given by

Fact 4.4. If S has C(4)×C(2) or C(2)3 as a factor group, then (by Fact 4.5)

FS is a wild algebra. As above, we obtain that wd(LFS) = ∞, hence

wd(LFG) = ∞.

It remains to consider the case, when S is dihedral (with m > 1), semidi-

hedral, or generalized quaternion group.

As soon as we do that, and if the field F is countable, the existence of a

superdecomposable pure-injective module would follow from Ziegler’s result

(see [20, Cor. 10.14]).

If S is dihedral with m > 1 or semidihedral, then S contains D(8) as a

subgroup, hence it suffices to prove that FD(8) has no width.

Lemma 4.12. If F is a field of characteristic 2 and D(8) is the dihedral

group, then the width of LFD(8) is undefined.

Proof. Recall (see Section 4) that D(8) can be realized as a group with

generators g, h and relations g2 = h4 = 1, gh = h3g. If X = 1 + h,

Y = 1 + hg, then direct calculations show that FD(8) is isomorphic to the

(8-dimensional) algebra F 〈X,Y | X2 = Y 2 = 0, (XY )2 = (Y X)2〉 (see also

[26]).

In particular, the 5-dimensional algebra A = F 〈X,Y | X2 = Y 2 =

XYX = Y XY = 0〉 is a factor algebra of FD(8). It is a string algebra

with two bands C = XY −1 and D = XYX−1Y −1 with the same first letter

(see [28] for a terminology on string algebras), hence A is non-domestic. It

follows from [23, Cor. 3.2] that LA does not have width, hence the same is

true for FD(8). �

Indeed, the obstruction to width for A refers to a suitable construction

amalgamating the following finite dimensional string modules:
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The proof in [23] uses a description of morphisms between string modules

(see [7]). In Section 5 we give a more direct proof of the non-existence of

width for FD(8).

If S is a generalized quaternion group, then S containsQ(8) as a subgroup.

Thus, it suffices to prove that the width of FQ(8) is undefined. Furthermore,

by the assumption F contains a primitive cubic root of unity.

Lemma 4.13. If F is a field of characteristic 2 containing a primitive cubic

root ε of unity, and Q(8) is the quaternion group, then the width of LFQ(8)

is undefined.

Proof. Recall (see Section 4 again) that Q(8) can be considered as a group

with generators g, h and relations g4 = 1, g2 = h2 and gh = h3g. Here

is Dade’s trick. If ε ∈ F , then (see [10, p. 572]) X = hg + εh + ε2g and

Y = hg+ε2h+εg are generators for FQ(8) satisfying the following relations:

X2 = Y XY , Y 2 = XYX, X2Y = Y 2X = 0 and (XY )2 = (Y X)2. For

instance, FQ(8) has A = F 〈X,Y | X2 = Y 2 = XYX = Y XY = 0〉 as a

factor algebra. At this point we can proceed as in the proof of the previous

lemma. �

�

Note that the only case that got unsettled in this theorem is when F is

a field of characteristic 2 without a primitive cubic root of unity and a 2-

Sylow subgroup of G is a generalized quaternion group. We do believe, but

unable to prove, that the width of FG is undefined in this case, and clearly

it suffices to prove this for G = Q(8).

The following is the celebrated theorem by Brauer and Suzuki (see [4]).

Remark 4.14. If G is a finite simple group, then the generalized quaternion

group Qm cannot occur as a 2-Sylow subgroup of G.

Proof. We may assume that G is not abelian. Then, by Glauberman Z∗-

theorem (see [31, Thm. 2.14]) a 2-Sylow subgroup of G contains at least two

involutions (that is, elements of order 2). But (see [31, 4.2(iii)]) Qm contains

just one involution, g2. �
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It follows that for finite simple groups Theorem 4.11 is valid without any

additional restrictions.

Proposition 4.15. Let F be a field of characteristic p, and let G be a finite

simple group. Then

1) KG(FG) = 0 if and only if p divides |G| and a p-Sylow subgroup of G

is cyclic.

2) KG(FG) = 2 if and only if p = 2 and a 2-Sylow subgroup of G is

isomorphic to the Klein group C(2)2.

3) Otherwise wd(FG) = ∞, hence KG(FG) = ∞.

It may be too ambitious to make a complete list of fields and finite simple

groups satisfying 1) of this proposition. But it is possible to do so for

2). Recall that PSLn(q) denotes the special projective linear group over

the Galois field GF (q) of order q = pl, for p a prime. Note also that

PSL(2, 4) ∼= PSL(2, 5) ∼= A5.

Corollary 4.16. Let F be a field and let G be a finite simple group. Then

the following are equivalent:

1) The Krull–Gabriel dimension of FG is equal to 2.

2) The characteristic of F is equal to 2 and G ∼= PSL2(q), where q =

8k ± 3, k ≥ 1.

Proof. By Proposition 4.15, the characteristic of F must be equal to 2.

Furthermore, 1) is the same as a 2-Sylow subgroup S of G is isomorphic to

C(2)2. Since the Klein group is a dihedral group, we may evoke the following

result by Gorenstein and Walter (see [13, Thm. 2]). A finite simple group G

has a dihedral 2-Sylow subgroup S if and only if G is isomorphic to PSL2(q),

q is odd, q ≥ 5 or G is isomorphic to A7.

Since |A7| = 7!
2 = 23 · 32 · 5 · 7, a 2-Sylow subgroup of A7 is isomorphic to

D2 = D(8), hence this case is ruled out. Otherwise q = 2n+1, n ≥ 2, hence

the order of PSL2(q) is q(q2−1)
2 = 2n(n + 1)(2n + 1). We have to ensure

that this number is not divisible by 8. It follows easily that n = 4l + 1 or

n = 4l + 2 for some l, therefore q = 8k ± 3, k ≥ 1. Then |PSL2(q)| =

22(2k± 1)(4k± 1)(8k± 3). Thus a 2-Sylow subgroup of PSL2(q) has order

4, hence (by [13] again) is isomorphic to D1 = C(2)2, as desired. �

5. Obstruction to the width

In this section we give a general construction which is very useful in

proving that a particular algebra has no width.
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But first we recall some facts about finitely presented (f.p.) and pure-

injective modules. If M is a module and m ∈ M then the pp-type of m

in M , ppM (m) is the set of all pp-formulae ϕ(x) such that M |= ϕ(m). A

pp-type p is said to be finitely generated, if there exists a formula ϕ ∈ p such

that ϕ → ψ for every ψ ∈ p. In this case we say that ϕ generates p. For

instance, if M is a f.p. module, then the pp-type of any element m ∈ M is

finitely generated. Indeed, if (M,m) is a free realization of a pp-formula ϕ

(see Section 2), then ϕ generates ppM (m).

It is easily seen that, if (M,m) and (N,n) are pointed modules and f :

M → N is a pointed morphism, then ppM (m) ⊆ ppN (n). If M is f.p., the

the converse is also true.

Fact 5.1. [20, Prop. 8.3] Let (M,m) and (N,n) be finitely presented pointed

modules such that ppM (m) ⊆ ppN (n). Then there exists a pointed morphism

from M to N .

Thus, if (M,m) is a free realization of a pp-formula ϕ and (N,n) is a

free realization of ψ, then there is a pointed morphism M → N if and only

if ψ → ϕ.

Let M be an indecomposable pure-injective module, S = End(M). Then

S is a local ring, hence the set of all non-invertible elements of S form a

(unique) maximal ideal of S, Jac(S), the Jacobson radical of S.

Fact 5.2. [20, Thm. 4.27] Let M be an indecomposable pure-injective mod-

ule, 0 6= m ∈ M and f ∈ S = End(M). Then f ∈ Jac(S) if and only

if ppM (m) ⊂ ppM (f(m)). In particular, m is not a sum of elements with

strictly bigger pp-types.

Let PE(M) denote the pure injective envelope of a given module M , see

[20, Ch. 4].

Fact 5.3. [15, p. 535] Let M be a finitely presented module. Then PE(M)

is indecomposable if and only if M has a local endomorphism ring.

Thus the following lemma is similar to Fact 5.2.

Lemma 5.4. Let M be a finitely presented module with a local endomor-

phism ring S. If f ∈ S is such that f(m) = m for some 0 6= m ∈M , then f

is an automorphism. In particular, m is not a sum of elements with strictly

bigger pp-types.
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Proof. Since M is a pure submodule of PE(M), we can extend f to an endo-

morphism g of PE(M). By Fact 5.3, PE(M) is an indecomposable module.

Since g(m) = m, Fact 5.2 implies that g is an automorphism of PE(M).

Then (by the same fact) g preserves pp-types of elements, hence f = g |M
is a pure embedding. Since M is f.p., f splits. But M is indecomposable,

hence f is onto.

Suppose that m = m′ +m′′, where the pp-types of m′ and m′′ in M are

strictly bigger than that of m. Since M is f.p., there are g, h ∈ End(M) such

that g(m) = m′ and h(m) = m′′. Then (g+ h)(m) = m, hence (by what we

have already proved) g + h is an automorphism of M . Since End(M) is a

local ring, either g or h is invertible, a contradiction. �

The following lemma gives a useful criterion when two f.p. pointed mod-

ules are isomorphic.

Lemma 5.5. Let (M,m), (N,n), m,n 6= 0, be pointed finitely presented

modules with local endomorphism rings. Suppose that there exist pointed

morphisms f : M → N and g : N →M . Then M ∼= N .

Proof. Note that gf is an endomorphism of M such that gf(m) = m. By

Lemma 5.4, gf is an automorphism of M , therefore (multiplying by (gf)−1

on the left) we may assume that gf = 1M . Then f is a monomorphism and

N = im(f)⊕ker(g). Since N is indecomposable and im(f) 6= 0, we conclude

that ker(g) = 0, hence f is onto. �

Now we are in a position to present a general criterion to nonexistence of

width.

Proposition 5.6. Let R be a ring. Suppose that (Mq,mq), q ∈ Q+ and

(Nt, nt), t ∈ Q− are pointed finitely presented modules with local endomor-

phism rings such that the following conditions hold:

1) for all 0 < q < q′ there is a pointed morphism Mq → Mq′ but the

(pointed) modules Mq and Mq′ are not isomorphic;

2) for all t < t′ < 0 there is a pointed morphism Nt′ → Nt, but the

(pointed) modules Nt′ and Nt are not isomorphic;

3) for all t < 0 < q the pushout (Mtq,mtq) of (Nt, nt) and (Mq,mq) has

a local endomorphism ring;

4) for all t < 0 < q, q′, q 6= q′, the (pointed) modules Mtq and Mtq′ are

not isomorphic, and for all t, t′ < 0 < q, t 6= t′, the (pointed) modules Mtq

and Mt′q are not isomorphic;
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5) if t < 0 < q then there is no pointed morphism between (Nt, nt) and

(Mq,mq) (in either direction).

Then the lattice LR of all pp-formulae over R does not have width.

Proof. Let (Mq,mq), q ∈ Q+ be a free realization of a pp-formula ϕq. If

0 < q < q′, then by 1) there is a pointed morphism Mq → Mq′ . Since

(Mq′ ,mq′) is a free realization of ϕq′ , we conclude that ϕq′ → ϕq. On the

other hand by 1) the (pointed) modules Mq′ and Mq are not isomorphic.

Therefore, by Lemma 5.5, there is no pointed morphism from Mq′ to Mq.

It follows that ϕq does not imply ϕq′ , hence ϕq′ < ϕq. In particular all the

formulae ϕq, q ∈ Q+ are different and form a chain L+ in LR isomorphic to

(Q,≤).

Similarly, using 2), if (Nt, nt), t ∈ Q− is a free realization of a pp-formula

ψt, then for all t < t′ < 0 we obtain ψt < ψt′ . These formulae also form a

chain L− in LR isomorphic to (Q,≤).

Let L be a sublattice of LR generated by L− ∪ L+. Since L is a modular

lattice generated by two chains, it is distributive. We claim that L− ∪ L+

generates L freely (that is, there are no relations between elements of L

except of those implied by the conditions that L− and L+ are chains). Then,

by [23, Cor. 3.2], it would follow that L, and hence LR does not have width.

Otherwise, by [25, Lemma 5.4], there are ϕq > ϕq′ ∈ L+ and ψt > ψt′ ∈
L− such that ϕq ∧ ψt ≤ ϕq′ + ψt′ (in general, some of the ϕ’s or ψ’s can be

missing, but first we consider the case when all these formulas occur).
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66
66

ϕq
◦

��
��

��
��

66
66

66
66 ◦

��
��

��
��

ψt

◦
ϕq′

◦ ◦
ψt′

By 3) the pushout (Mtq,mtq) of (Nt, nt) and (Mq, nq) is a f.p. module

with a local endomorphism ring. Clearly (Mtq,mtq) is a free realization of

θ
.= ϕq ∧ ψt. Since θ → ϕq′ + ψt′ , by distributivity we obtain θ = θ ∧ (ϕq′ +

ψt′) = (θ∧ϕq′)+ (θ∧ψt′). Thus mqt = m+n such that Mqt |= (θ∧ϕq′)(m)

and Mqt |= (θ ∧ ψt′)(n). By Lemma 5.4, mqt cannot be a sum of elements

with strictly bigger pp-types. It follows that either θ is equivalent to θ∧ϕq′ ,
whence θ → ϕq′ , or θ is equivalent to θ ∧ ψt′ , whence θ → ψt′ .

By symmetry we may assume that θ → ϕq′ , that is, ϕq ∧ψt → ϕq′ . Since

ϕq′ < ϕq, it follows easily that ϕq ∧ ψt is equivalent to ϕq′ ∧ ψt. Then, by

Remark 5.1, there is a pointed morphism from Mtq to Mtq′ , and there is a

22



pointed morphism from Mtq′ to Mtq. By Lemma 5.5 we conclude that the

pointed modules Mtq and Mtq′ are isomorphic, a contradiction.

It remains to consider the case when (at least) one of ϕq or ψt is missing,

say ϕq ≤ ψt′ . This case can be handled similarly, but we have to use 5). �

Note that (by Corollary 3.10), this proposition remains true if we point

(instead of elements) tuples of any length k.

We can use Proposition 5.6 to give a direct proof of the argument sketched

in Section 4 to show Lemmas 4.12 and 4.13. Indeed, let W+ be the set of all

words in letters C and D with D as a first letter. We may consider W+ as

a set of (indecomposable) string modules pointed at the leftmost element.

Here is a typical example (a pointed element is shown by a bullet):

◦
Y

����
��

�� X

��8
88

88
8

◦
X

����
��

��
◦

Y

��8
88

88
8 ◦

X����
��

�� Y

��8
88

88
8

•
M(DC)

◦ ◦

By [29, Prop. 6.2] W+ contains a countable dense chain (Mq,mq), q ∈ Q+

of non-isomorphic pointed modules, such that for all 0 < q < q′ there is a

natural pointed morphism from Mq to Mq′ . Moreover, we can choose the

Mq of (pairwise) different F -dimensions. Thus the modules (Mq,mq) satisfy

1) of Proposition 5.6.

Similarly let W− be the set of all words in letters C and D that end by

C. We may consider W− as a set of string modules pointed at the rightmost

element. Arguing as above, we obtain a chain of pointed modules (Nt, nt),

t ∈ Q− of different F -dimensions satisfying 2) of Proposition 5.6. Clearly the

pushout of (Nt, nt) and (Mq,mq) is a string module. Therefore this module

is indecomposable with a local endomorphism ring. Here is an example:

◦
Y

����
��

�� X

��8
88

88
8

◦
X

����
��

��

Y ��8
88

88
8 ◦

X

����
��

��
◦

Y

��8
88

88
8 ◦

X����
��

�� Y

��8
88

88
8

◦ •
M(CDC)

◦ ◦

Furthermore, comparing dimensions, we see that 4) of Proposition 5.6 is

also satisfied.

Concerning 5) note that ϕq (the formula that generates the pp-type of mq

in Mq) implies X | x but does not imply Y | x for every q ∈ Q+. Similarly ψt
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(the formula that generates the pp-type of nt in Nt) implies Y | x but does

not imply X | x for every t ∈ Q−. It follows (see Remark 5.1) that there is

no pointed morphism between (Nt, nt) and (Mq, nq) (in either direction).
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