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Abstract. We prove a theorem comparing a well-behaved dimen-
sion notion to a second, more rudimentary dimension. Specialising
to a non-standard counting measure, this generalizes a theorem
of Larsen and Pink on an asymptotic upper bound for the inter-
section of a variety with a general finite subgroup of an algebraic
group. As a second application we apply this to bad fields of posi-
tive characteristic, to give an asymptotic estimate for the number
of Fq-rational points of a definable multiplicative subgroup similar
to the Lang-Weil estimate for curves over finite fields.

Introduction

In [1] Larsen and Pink show that if H is a “sufficiently general” finite
subgroup of a connected almost simple algebraic group G, then for any
subvariety X of G

|H ∩X| ≤ c · |H|dim(X)/dim(G),

where the constant c depends only on the form of G and X, but not
on H (in other words, G and X are allowed to vary in a constructible
family). This theorem was recast (in somewhat greater generality) in
model-theoretic form by the first author of the present paper, and re-
discovered by the second author in the context of bad fields. In the
general form it allows to give an upper bound, for suitable minimal
structures with a well-behaved dimension d, of a rudimentary dimen-
sion δ (which may for instance be derived from counting measure in
a quasi-finite subset) in terms of the original dimension d, typically
giving Larsen-Pink like estimates for increasing families of finite sub-
sets. We offer two proofs of the theorem: a more rapid one using types,
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and a more explicit construction using definable sets. The latter proof
could in principle be used to get effective estimates on the constant c.

1. The Main theorem

Definition 1. Let M be an uncountably saturated structure. A di-
mension theory on M is an automorphism-invariant map d from the
class of definable sets into N, together with a formal element −∞,
satisfying

(1) d(∅) = −∞ and d({x}) = 0 for any point x.
(2) d(X ∪ Y ) = max{d(X), d(Y )}.
(3) Let f : X → Y be a definable map.

(a) If d(f−1(y)) = n for all y ∈ Y , then d(X) = d(Y ) + n, for
all n ∈ N ∪ {−∞}.

(b) {y ∈ Y : d(f−1(y)) = n} is definable for all n ∈ N∪{−∞}.

It follows that d(X ×Y ) = d(X) + d(Y ), and d(X) = d(Y ) if X and Y
are definably isomorphic. By uncountable saturation, d(f−1(y)) takes
only finitely many values for y ∈ Y . Note that the trivial dimension
d(X) = 0 for non-empty X is allowed.

Definition 2. For a partial type π let d(π) := min{d(X) : X ∈ π};
note that the minimum is necessarily attained. If p = tp(x/A), put
d(x/A) := d(p).

For two partial types π, π′ over A let

π ⊗A π′ := (π × π′) ∪ {¬X : X A-definable, d(X) < d(π) + d(π′)}.

Definition 3. Let M be a structure with dimension d. A definable
subset F ⊂ M3 is a correspondence on M if the projection to the first
two coordinates is surjective with 0-dimensional fibres. We put

F (X) := {y ∈ M :|= ∃(x, x′) ∈ X F (x, x′, y)}, and
F−1(y) := {(x, x′) ∈ M2 :|= F (x, x′, y)}.

If F is a set of correspondences, M is F-minimal if for any A and partial
1-types π, π′ over A with 0 < d(π) ≤ d(π′) < d(M) and a partial type
ρ over A extending π ⊗A π′, there is F ∈ F with d(F (ρ)) > d(π′).

Roughly speaking, a structure is F -minimal if it is generated from any
definable subset by repeated applications of the correspondences in F .

Lemma 1. The following are equivalent:

(1) M is F-minimal.
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(2) For any x, x′ ∈ M and parameters A with 0 < d(x/A) ≤
d(x′/A) < d(M) and d(xx′/A) = d(x/A) + d(x′/A) there is
F ∈ F and y ∈ F (xx′) with d(F−1(y) ∩ tp(xx′/A)) < d(x/A).

(3) For any A and A-definable X, X ′ with 0 < d(X) ≤ d(X ′) <
d(M) and (x, x′) ∈ X × X ′ there is A-definable W ⊆ X ×
X ′ with (x, x′) ∈ W such that either d(W ) < d(X × X ′) or
d(F−1(y) ∩W ) < d(X) for some F ∈ F and y ∈ F (xx′).

Proof: Suppose M is F -minimal, and consider x, x′, A as in (2). Put
π = tp(x/A), π′ = tp(x′/A) and ρ := tp(xx′/A). Since d(xx′/A) =
d(x/A)+d(x′/A) we have ρ ⊇ π⊗Aπ′, so there is F ∈ F with d(F (ρ)) >
d(π′). In particular there is y ∈ F (xx′) with d(y/A) > d(x′/A). Let
k = d(F−1(y) ∩ tp(xx′/A)), and choose A-definable W ∈ tp(xx′/A)
with d(W ) = d(xx′/A) and d(F−1(y) ∩W ) = k, and A-definable Y ∈
tp(y/A) with d(F−1(y′) ∩W ) = k for all y′ ∈ Y . Then

d(x/A) + d(x′/A) = d(xx′/A) = d(W ) ≥ d(F ∩ (W × Y ))

= d(Y ) + k ≥ d(y/A) + k > d(x′/A) + k

(the first inequamlity holds, since the projection of F ∩ (W × Y ) to W
has fibres of dimension 0), whence d(x/A) > k = d(F−1(y)∩tp(xx′/A)).

For the converse, consider partial types π, π′ and ρ over A as in the
definition of F -minimality, and take xx′ |= ρ. Since ρ ⊇ π ⊗A π′ we
have d(π) = d(x/A), d(π′) = d(x′/A), d(ρ) = d(xx′/A) and d(x/A) +
d(x′/A) = d(xx′/A). By (2) there is F ∈ F and y ∈ F (xx′) with
d(F−1(y) ∩ tp(xx′/A)) < d(x/A). Choose A-definable W ∈ tp(xx′/A)
with k = d(F−1(y) ∩ tp(xx′/A)) = d(F−1(y) ∩ W ), and A-definable
Y ∈ tp(y/A) with d(Y ) = d(y/A) and d(F−1(y′) ∩ W ) = k for all
y′ ∈ Y . Then

d(x/A) + d(x′/A) = d(xx′/A) = d(ρ) ≤ d(F ∩ (W × Y ))

= d(Y ) + k = d(y/A) + k < d(y/A) + d(x/A)

(for all uu′ |= ρ there is v with uu′v ∈ F ∩ (W × Y ), whence the first
inequality), whence d(F (ρ)) ≥ d(y/A) > d(x′/A) = d(π′).

The equivalence (2) ⇔ (3) follows from the fact that for any partial
type π there is X ∈ π with d(π) = d(X). 2

Example 1. A field of finite Morley rank (possibly with additional
structure) is {+,×}-minimal.

Proof: Suppose 0 < RM(x/A) ≤ RM(x′/A) and x |̂
A

x′. If both

RM(x, x′/x + x′, A) ≥ RM(x/A) and RM(x, x′/xx′, A) ≥ RM(x/A),
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then x |̂
A

x + x′ and x |̂
A

xx′. Let x0, x1 be independent realiza-

tions of stp(x/A, x′). Since x0 + x′ and x1 + x′ realize the same strong
type over A, they realize the same non-forking extension to A, x0, x1; a
strong automorphism over A, x0, x1 maping x0 + x′ to x1 + x′ will map
x0 − x1 + x′ to x′, whence x0 − x1 + x′ |= stp(x′/A). As x′ |̂

A
x0 − x1,

we get x0 − x1 ∈ stab+(x′/A); similarly x0x
−1
1 ∈ stab×(x′/A). As

x0, x1 are independent non-algebraic, both stabilizers are infinite; note
that obviously stab+(x′/A) is stab×(x′/A)-invariant. However, in a
field K of finite Morley rank the only definable additive subgroup A
invariant under an infinite multiplicative subgroup is K itself (other-
wise {c ∈ K : cA ≤ A} would define an infinite subring, and hence
an infinite subfield, a contradiction). Thus stab+(x′/A) = K, and
RM(x′/A) = RM(K). 2

Example 2. Let G be a simple algebraic group (or more generally, a
simple group of finite Morley rank, possibly with additional structure).
Let F be the collection of maps Fc(x, y) = cx−1c−1y, where c runs
over a countable Zariski-dense subgroup Γ (respectively, subgroup Γ
not contained in any proper definable subgroup of G). Then G is F -
minimal.

Proof: In any group of finite Morley rank, d = RM is additive and defin-
able. So consider A ⊇ Γ and x |̂

A
x′ with 0 < RM(x/A) ≤ RM(x′/A),

and suppose RM(x, x′/cx−1c−1x′, A) ≥ RM(x/A) for all c ∈ Γ. Then

x |̂
A

cx−1c−1x′, whence x−c−1 |̂
A

x−c−1
x′ for all c ∈ Γ. So for any two

independent realizations x0, x1 of stp(x/A, x′) both x−c−1

0 x′ and x−c−1

1 x′

satisfy the unique non-forking extension of stp(x−c−1
x′/A) to A, x0, x1,

and (x0x
−1
1 )c−1

x′ |= stp(x′/A). Since x0, x1 |̂
A

x′ this means that

(x0x
−1
1 )c−1 ∈ stab(x′/A) for any two independent realisations x0, x1

of stp(x/A), and any c ∈ Γ. So this stabilizer is an infinite definable
subgroup, as is the intersection H of its Γ-conjugates. But then the
normalizer of H contains Γ, whence G by our choice of Γ; since H
is infinite and G is simple, we get H = G = stab(x′/A). Therefore
tp(x′/A) is generic, and RM(x′/A) = RM(G). 2

Definition 4. Let M be any structure. A quasi-dimension on M is a
map δ from the class of definable sets into an ordered abelian group G,
together with a formal element −∞, satisfying

(1) δ(∅) = −∞, and δ(X) > −∞ implies δ(X) ≥ 0.
(2) δ(X ∪ Y ) = max{δ(X), δ(Y )}, and δ(X × Y ) = δ(X) + δ(Y ).
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(3) For any definable X ⊆ Mk and projection π to some of the
coordinates, if δ(π−1(x̄)) ≤ g for all x̄ ∈ π(X), then δ(X) ≤
δ(π(X)) + g, for all g ∈ G ∪ {−∞}.

We can now state the main theorem.

Theorem 2. Let M be an F-minimal structure, where F is a set of
∅-definable correspondences for some dimension d. Let δ be a quasi-
dimension on M such that

(0) d(X) = 0 implies δ(X) ≤ 0 for all definable X.
(4) For any F ∈ F and definable X ⊆ M2, Y ⊆ M we have

δ(F ∩ (X×Y )) ≥ δ(X), provided for all xx′ ∈ X there is y ∈ Y
with F (xx′y).

Then d(M)δ(X) ≤ d(X)δ(M) for any definable set X ⊆ M .

Remark 1. (1) δ(F ∩ (X × Y )) ≤ δ(X) follows from axiom (3)
and the fact that the fibres of the projection F ∩ (X ×Y ) → X
have d-dimension zero, and hence δ-dimension zero.

(2) Requirement (4) holds in particular if F consists of definable
functions, and δ is invariant under definable bijections.

The idea of the proof will be that given a set X, by F -minimality there
is a sequence (F1, . . . , Fn) of correspondences such that for Y1 = X
and Yi+1 = Fi(X, Yi), we get Yn = M, and the kernels of the maps
X × Yi → F (X, Yi) all have smaller dimension than X. By inductive
hypothesis the kernels have small δ; since δ(M) is n δ(X) minus δ of
the kernels, we get the desired upper bound for δ(X).

Proof: Clearly we may assume d(M) > 0. We use induction on d(X).
For d(X) = 0 the assertion follows from condition (0). So suppose
the assertion holds for dimension less than k, and d(X) = k. Put
α = δ(M)/d(M) and suppose δ(X) ≥ α k.

Lemma 3. Let X, Y ⊆ M be B-definable with 0 < d(X) ≤ d(Y ).
Then there is a B-definable finite partition X × Y = W0 ∪ · · · ∪ Wn,
correspondences Fi ∈ F and sets Zi ⊆ F (Wi) for i = 1, . . . , n, such
that

• d(Wi) = d(X) + d(Y ) for i > 0, and d(W0) < d(X) + d(Y ).
• for all i > 0 we have d(Zi) > d(Y ), and d(F−1(z) ∩ Wi) =

d(X) + d(Y )− d(Zi) for all z ∈ Zi.
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Proof: For F ∈ F and B-definable W ⊆ X × Y put

WF := {(x, y) ∈ W : ∃z ∈ F (xy) d(F−1(z) ∩W ) < d(X)}, and

ZF := {z ∈ F (WF ) : d(F−1(z) ∩W ) < d(X)}.
By Lemma 13 the B-definable sets

{V ⊂ X × Y : d(V ) < d(X) + d(Y )} ∪ {WF : F ∈ F , W B-definable}
cover X × Y . By compactness a finite subset covers X × Y ; shrinking
the sets if necessary, we may assume that the sets form a partition of
X × Y . For i = d(X)− 1, d(X)− 2, . . . , 0 partition every ZF involved
into parts

Zi
F := {z ∈ ZF : d(F−1(z) ∩ (WF \

⋃
j>i

W j
F )) = i},

and put W i
F = F−1(Zi

F ) ∩ (WF \
⋃

j>i W
j
F ). Let W0 be the union of

those sets of dimension strictly less than d(X) + d(Y ), and enumerate
the others as W1, . . . ,Wn and Z1, . . . , Zn, respectively, with correspon-
dences F1, . . . , Fn. This satisfies the conditions. 2

We inductively choose a tree of subsets of M with Y∅ := X and d(Yη′) <
d(Yη) whenever η′ < η is a proper initial segment. Suppose we have
found Yη. If d(Yη) = d(M) this branch stops. Otherwise put Y = Yη

in Lemma 3 and let Yηi := Zi for i > 0. Put Fηi := Fi, Wηi := Wi,
and nηi := ni = d(X) + d(Yη) − d(Yηi). As d(Yηi) > d(Yη) for all η,
the tree is finite. Let m be the maximal length of a branch, and put
mη = m− |η|, where 0 ≤ |η| ≤ m is the length of η.

Lemma 4. If W ⊂ Xmηi × Yηi with d(W ) < d(Xmηi × Yηi), then
d((idXmη−1 × Fηi)

−1(W ) ∩ (Xmη−1 ×Wηi)) < d(Xmη × Yη).

Proof: Since the fibres have constant dimension nηi, we have

d((idXmη−1 × Fηi)
−1(W ) ∩ (Xmη−1 ×Wηi)) = d(W ) + nηi

< d(Xmηi × Yηi) + d(X) + d(Yη)− d(Yηi)

= d(Xmη × Yη). 2

If d(Yη) = d(M) put Vm = ∅, and if Vηi
has been defined for all i > 0

put

Vη := (Xmη−1 ×Wη0) ∪
⋃
i>0

[(idXmη−1 × Fηi)
−1(Vηi) ∩ (Xmη−1 ×Wηi)].

Then inductively d(Vη) < d(Xmη×Yη). In particular d(V∅) < d(Xm+1).

Lemma 5. If W ⊂ Xn with d(W ) < n d(X), then δ(W ) < n δ(X).
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Proof: We use induction on n, the assertion being trivial for n = 0, 1.
So assume it holds for n, and consider W ⊆ Xn+1. Let π be the
projection of W to the first n coordinates, and put Wi = {x̄ ∈ π(W ) :
d(π−1(x̄)) = i} for i ≤ k. Since d(W ) < d(Xn+1), we have d(Wk) <
d(Xn). So by inductive hypothesis

δ(π−1(Wk)) ≤ δ(Wk×X) = δ(Wk)+δ(X) < δ(Xn)+δ(X) = (n+1) δ(X).

On the other hand, for x̄ ∈ Wi with i < k we have

δ(π−1(x̄)) ≤ α d(π−1(x̄)) = α i

by our global inductive hypothesis. Hence by requirement (3)

δ(π−1(Wi)) ≤ δ(Wi) + α i ≤ δ(Xn) + α (k − 1) < (n + 1) δ(X)

since we assume δ(X) ≥ α k. Thus

δ(W ) = max
i≤k

δ(π−1(Wi)) < (n + 1) δ(X). 2

It follows that δ(V∅) < δ(Xm+1), and

(m + 1) δ(X) = δ(Xm+1) = δ((Xm∅ × Y∅) \ V∅).

For ȳ ∈ (Xmηi × Yηi) \ Vηi

d((idXmη−1 × Fηi)
−1(ȳ) ∩ [(Xmη−1 ×Wηi) \ Vη]) ≤ nηi < k,

so by inductive hypothesis

δ((idXmη−1 × Fηi)
−1(ȳ) ∩ [(Xmη−1 ×Wηi) \ Vη]) ≤ α nηi.

Hence

δ((idXmη−1 × Fηi) ∩ ([(Xmη−1 ×Wηi) \ Vη]× [(Xmηi × Yηi) \ Vηi]))

≤ δ((Xmηi × Yηi) \ Vηi) + α nηi

by assumption (3), and

δ((idXmη−1 × Fηi) ∩ ([(Xmη−1 ×Wηi) \ Vη]× [(Xmηi × Yηi) \ Vηi]))

≥ δ((Xmη−1 ×Wηi) \ Vη])

by assumption (4). Since (Xmη ×Yη) \Vη) =
⋃

i>0(X
mη−1×Wηi) \Vη),

δ((Xmη × Yη) \ Vη) = max
i>0

δ((Xmη−1 ×Wηi) \ Vη)

≤ max
i>0

δ((Xmηi × Yηi) \ Vηi) + α nηi.

On the other hand, d(X) + d(Yη) = d(Yηi) + nηi for all η and i > 0.
Let η be the branch which corresponds always to the maximum of the
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δ-dimensions. Summing over the initial segments of η we obtain

(m + 1) δ(X) = δ((Xm × Y∅) \ V∅) ≤ δ(Xmη × Yη) + α
∑

∅<η′≤η

nη′

= mη δ(X) + δ(Yη) + α
∑

∅<η′≤η

nη′

≤ (m− |η|) δ(X) + δ(M) + α
∑

∅<η′≤η

nη′ ,

whereas

(|η|+ 1) d(X) = d(Yη) +
∑

∅<η′≤η

nη′ = d(M) +
∑

∅<η′≤η

nη′ .

Therefore

(|η|+ 1) δ(X) ≤ α (d(M) +
∑

∅<η′≤η

nη′) = α (|η|+ 1) d(X),

and δ(X) ≤ α d(X). This proves the theorem. 2

We shall now give a second, type-based proof for Theorem 2.

Proof: We use induction on d(X) =: k, the assertion following from
condition (0) if k = 0. For partial types (πi : i < m) and (π′j : j < n)
and rationals αi and α′

j we put∑
i<m

αi δ(πi) ≤
∑
j<n

α′
j δ(π′j)

if for every choice of X ′
j ∈ π′j there are Xi ∈ πi with

∑
i<m αi δ(Xi) ≤∑

j < nα′
j δ(X ′

j). Note that ≤ is transitive.

Claim. It is enough to prove the assertion for complete types.

Proof of Claim: Let X be an A-definable set, and X the collection of
A-definable X ′ ⊆ X such that d(M)δ(X ′) ≤ d(X ′)δ(M). Then X is
closed under finite unions, so either d(M)δ(X) ≤ d(X)δ(M), or there
is a type p ∈ S(A) completing the partial type {X \X ′ : X ′ ∈ X}. By
assumption d(M)δ(p) ≤ d(p)δ(M). So there are A-definable X1, X2 ∈ p
with d(M)δ(X1) ≤ d(p)δ(M) and d(X2) = d(p). But then X1∩X2 ∈ X,
a contradiction. 2

So let p ∈ S1(A) with d(p) = k. Clearly we may assume that d(M) δ(p) ≥
d(p) δ(M). For ease of notation we also assume that the value group
G of δ is divisible.

Claim. If p′ ∈ S1(A), there is q ∈ S2(A) extending p⊗A p′ with δ(p) +
δ(p′) ≤ δ(q).
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Proof of Claim: Suppose not, and consider

X := {X ⊆ M2 A-definable : δ(p) + δ(p′) 6≤ δ((p× p′) ∪ {X})}.

Then X is closed under finite unions, and we can put ρ := (p × p′) ∪
{¬X : X ∈ X}, a consistent partial type. By assumption d(ρ) <
d(p) + d(p′), as otherwise we could complete ρ to a type q with d(q) =
d(p) + d(p′), whence q ⊇ p ⊗A p′ and δ(p) + δ(p′) ≤ δ(q). Hence the
projection to the second coordinate has fibres of dimension i < k. So
there are A-definable sets X ∈ p, X ′ ∈ p′ and X × X ′ ⊃ Y ∈ ρ with
d(X) = d(p), d(X ′) = d(p′), d(Y ) = d(ρ) and d(Y ∩ (X×{x′})) = i for
all x′ ∈ X ′. By inductive hypothesis d(M)δ(Y ∩ (X × {x′})) ≤ i δ(M)
for all x′ ∈ X ′, so by property (3)

δ(Y ) ≤ δ(X ′) + i δ(M)/d(M) ≤ δ(X ′) + i δ(p)/d(p) ;

as one can choose Y depending on X ′ we get

δ(ρ) ≤ δ(p′) +
i

k
δ(p) < δ(p′) + δ(p),

since δ(p) is bounded below by δ(M) d(p)/d(M), a contradiction to the
definition of ρ. 2

By F -minimality there is n < ω, a sequence p = p0, p1, . . . , pn of com-
plete types over A, a complete A-type qi ⊇ p⊗A pi with δ(p) + δ(pi) ≤
δ(qi) for i < n, and correspondences (Fi : i < n) in F , such that pi+1 is
a completion of Fi(qi) for all i < n with d(pi) < d(pi+1), and d(pn) =
d(M). For i < n put Ri := Fi ∩ (qi × pi+1), and choose A-definable
sets X ∈ qi, X ′ ∈ pi+1 and Y ∈ Ri with d(X) = d(qi) = d(p) + d(pi),
d(X ′) = d(pi+1), Y ⊆ X×X ′, and such that the fibres of the projection
π of Y to the last coordinate have constant dimension ji = d(π−1(a)),
where a |= X ′. Then

d(X ′) + ji = d(Y ) = d(X) = d(p) + d(pi) < d(p) + d(X ′)

by axiom (3)(a). By inductive hypothesis δ(π−1(a)) ≤ ji δ(M)/d(M)
for all a ∈ X ′, whence δ(Y ) ≤ δ(X ′) + ji δ(M)/d(M). Letting X ′ con-
verge to pi+1 and Y to Ri, we obtain δ(Ri) ≤ δ(pi+1) + ji δ(M)/d(M).

Since condition (4) implies δ(qi) ≤ δ(Fi ∩ (qi × pi+1)) = δ(Ri), we get

δ(p) + δ(pi) ≤ δ(qi) ≤ δ(Ri) ≤ δ(pi+1) + ji δ(M)/d(M).

Summing the inequalities for i < n, we obtain

(n + 1) δ(p) ≤ δ(pn) +
δ(M)

d(M)

∑
i<n

ji = δ(M) +
δ(M)

d(M)

∑
i<n

ji.
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On the other hand,

d(M) +
∑
i<n

ji = d(pn) +
∑
j<n

[d(p) + d(pi)− d(pi+1)] = (n + 1) d(p),

whence

(n + 1) δ(p) ≤ δ(M)

d(M)
[d(M) +

∑
i<n

ji] =
δ(M)

d(M)
(n + 1) d(p),

which proves the theorem. 2

Remark 2. The above proof of Theorem 2 defined the relation δ(π) ≤
δ(π′) without actually defining the quantities δ(π). Perhaps for other
applications an invariant δ(π) for types may be useful. We sketch now
how this may be done.

Definition 4 requires δ to be a function into the non-negative elements
of a linearly ordered group G that can be assumed divisible. In place of
this, let us gain generality by taking G = (G, +, 0, <) to be a divisible
linearly ordered commutative semi-group. This means that (1)–(2)
below hold; we may as well assume (3); we assume cancellation only in
the limited form (4), with respect to a distinguished element δ(M).

(1) (G, +, 0) is an additive semi-group, with every element uniquely
divisible by any positive integer.

(2) < is a linear ordering, and x ≤ y implies x + z ≤ y + z.
(3) For any x ∈ G there is k < ω with 0 ≤ x ≤ k δ(M).
(4) x + δ(M) > x for any x.

It follows that x + 1
n

δ(M) > x for any x and integer n > 0.

These more general assumptions have the advantage that the semi-
group G can be completed by means of Dedekind cuts. The assump-
tions continue to hold; in particular (4) does, since if U is a Dedekind
cut invariant under adding δ(M), then by (3) it must include all of Γ,
but Dedekind cuts are assumed bounded.

Now for any partial type π =
∧

i∈I Xi we can define δ(π) = infi∈I δ(Xi).
The earlier definition of the inequality is now a consequence. Whether
the greater generality has any additional use, we do not know.

Corollary 6. Under the same hypotheses as Theorem 2, let X ⊂ Mn

be definable. Then d(M) δ(X) ≤ d(X) δ(M).

Proof: We use induction on n, the assertion being Theorem 2 for n = 1.
For X ⊆ Mn+1 let π be the projection to the first n coordinates, and
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partition Y := π(X) into sets

Yi := {x̄ ∈ Y : d(π−1(x̄) ∩X) = i}.

Let Xi := π−1(Yi) ∩X, then (Xi : i ≤ d(M)) partitions X, and

d(X) = max
i≤d(M)

d(Xi) = max
i≤d(M)

d(Yi) + i.

For every i ≤ d(M) and x̄ ∈ Yi Theorem 2 yields δ(π−1(x̄) ∩X) ≤ α i,
with α = δ(M)/d(M). By inductive hypothesis δ(Yi) ≤ α d(Yi), so

δ(X) = max
i≤d(M)

δ(Xi) ≤ max
i≤d(M)

δ(Yi) + α i ≤ α max
i≤d(M)

d(Yi) + i = α d(X).

2

Remark 3. If M is F -minimal, then Mn can be shown to be mini-
mal with respect to the induced set of correspondences; this yields an
alternative proof of Corollary 6.

2. An example that counts

Let (Mn : n < ω) be a family of L-structures for some language L,
and Γn finite subsets of Mn. For some ultrafilter on ω let 〈M, Γ〉 be
the ultraproduct of the structures 〈Mn, Γn〉. The ultraproduct of the
counting measures on the Γn yields a finitely additive measure µ on
the definable subsets of Γ which takes values in some non-standard
real closed field R∗. Note that 〈M, Γ, R∗, µ, log〉 is ℵ0-saturated (in
fact, even ℵ1-saturated).

Let I be the convex hull of Z in R∗, and π : R∗ → R∗/I the natural
(additive) quotient map. For a definable subset X of Γ define

δ(X) = π log µ(X),

and note that δ(X) = 0 if and only if log µ(X) ∈ I, that is µ(X) ∈ I,
in other words µn(Xn) = O(1) in the factors, that is X is finite in the
ultraproduct. For a definable subset Y of M we put δ(Y ) := δ(Y ∩Γ).

Lemma 7. Assume that M has a dimension d such that d(X) = 0
implies X finite, and Γ is closed under the correspondences (i.e. for all
xx′ ∈ Γ2 and y ∈ M such that F (xx′y) holds, y ∈ Γ as well). Then δ
satisfies conditions (0)–(4) from Theorem 2.

Proof: (1) is obvious. For (2) note that

µ(X ∪ Y ) ≤ µ(X) + µ(Y ) ≤ 2 max{µ(X), µ(Y )},
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whence log(µ(X ∪Y )) ≤ log 2+max{log µ(X), log µ(y)}. Since log 2 ∈
I, we get δ(X ∪ Y ) ≤ max{δ(X), δ(Y )}; the other inequality follows
from monotonicity.

We claim that for any definable map f : X → Y , if δ(f−1(y)) ≤ α for
all y ∈ Y , then there is r ∈ R∗ with π(r) = α and log µ(f−1(y)) ≤ r
for all y ∈ Y . Indeed, pick any r0 ∈ R∗ with π(r0) = α. Put

Yn := {y ∈ Y : log µ(f−1(y)) ≤ r0 + n}.
Then Yn ⊂ Yn+1 for all n < ω, and Y =

⋃
n<ω Yn; by ℵ0-saturation

there is n0 with Y = Yn0 . Then r := r0 + n0 will do.

This shows (3). Finally, (4) is clear, since the fibres of the projection
of any F ∈ F to the first two coordinates must have d-dimension zero,
hence be finite in the ultraproduct, and thus uniformly finite in the
factors; they are non-empty by closedness of Γ under F . 2

Unwinding the definitions, for this choice of δ (and suitable dimension
d) the inequality d(M)δ(X) ≤ δ(M)d(X) becomes

|Xn ∩ Γn| ≤ O(|Γn|d(X)/d(M)).

Possible choices for d include algebraic dimension, Morley rank, Shelah
rank, Lascar rank, SU-rank or S1-rank, whenever it is finite, additive
and definable in the pure L-structure M.

Remark 4. Uniformity in parameters of the constant intervening in
the O-notation follows automatically from compactness.

Remark 5. Note that for any definable map f : X → Y :

(1) If δ(f−1(y) ≥ α for all y ∈ Y , then δ(Y ) + α ≤ δ(X).
(2) If δ(f−1(y) ≤ α for all y ∈ Y and f(X ∩ Γ) ⊆ Γ, then δ(X) ≤

δ(Y ) + α.

In particular δ is invariant under definable bijections f preserving Γ
(i.e. x ∈ Γ if and only if f(x) ∈ Γ).

3. An application

We shall now give the model-theoretic formulation of the theorem by
Larsen and Pink alluded to in the introduction.

Theorem 8. [1] Let Gn be a simple algebraic group varying in an
algebraic family and Γn a finite subgroup such that in the ultraproduct
G the subgroup Γ is Zariski-dense. Then for any subvariety V of G

|Vn ∩ Γn| ≤ O(|Γn|dim(V )/dim(G)).
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Proof: Since Gn varies in an algebraic family, G is a simple algebraic
group, and d = dim = RM is finite, additive and definable. Let F be
the collection of maps Fc(x, y) = cx−1c−1y, where c runs over a count-
able Zariski-dense subgroup Γ0 of Γ. Clearly Γ is F -closed; moreover
G is F -minimal by Example 2. Theorem 2 and Lemma 7 yield the
result. 2

Corollary 9. [1] In the setting of Theorem 8 consider a ∈ Γ with
RM(CG(a)) > 0, RM(aG) > 0 and δ(G) > 0. Then Γ meets both
CG(a) and aG in infinite sets.

Proof: Using the definable map x 7→ ax and translation maps between
CG(a) and its cosets, we see that

RM(CG(a)) + RM(aG) = RM(G), and

δ(CG(a)) + δ(aG) = δ(G).

If α = δ(G)/RM(G), then δ(CG(a)) ≤ α RM(CG(a)) and δ(aG) ≤
α RM(aG) by Theorem 2 and Lemma 7, so equality must hold. 2

4. Bad fields

A bad field [2] is a structure 〈K, 0, 1, +,−, ·, T 〉 of finite Morley rank,
where T is a predicate for a distinguished infinite proper connected
multiplicative subgroup (or even a non-algebraic connected subgroup
of (K×)n for some n, but these shall not be considered here). Such
an object appears naturally when considering a faithful action of an
abelian group M on an M -minimal abelian group A, the whole of
finite Morley rank: We obtain that there is an algebraically closed field
K such that A ∼= K+ and M ↪→ K×; one knows that the image of
M generates K additively, but a priori it could be a proper subgroup.
In particular, the possible existence of bad fields (and of bad groups)
prevents us from proving an analogue of the Feit-Thompson theorem
for simple groups of finite Morley rank, namely that they contain an
involution (or, indeed, any torsion element at all).

In [3] the second author showed that under the assumption that there
are infinitely many prime numbers of the form (pn−1)/(p−1) (called p-
Mersenne primes), there is no bad field of characteristic p > 0. In [4] he
obtained an asymtotic estimate for the number of Fq-rational points of
a multiplicative subgroup of rank 1; this shows the nonexistence of bad
fields with RM(T ) of rank 1 modulo a slightly weaker number-theoretic
hypothesis. We can now obtain an analogous asymptotic estimate for
multiplicative subgroups of arbitrary rank.
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For two functions f and g on N we put f � g if there are positive
constants c, c′ with cf(n) ≤ g(n) ≤ c′f(n) for all n ∈ N.

Theorem 10. For any definable subset X of a bad field K of positive
characteristic and any finite subfield Fq ≤ K we have |X ∩ Fq| ≤
O(qRM(X)/RM(K)). In particular |T ∩ Fpn| � pn RM(T )/RM(K).

Proof: Let 〈K, T 〉 be a bad field of characteristic p > 0. We put
Mn = 〈K, T 〉 for all n < ω, and Γn = Fpn ; our correspondences F will
be addition and multiplication. Clearly Γ is closed under F , and K is
F -minimal by Example 1. So Theorem 2 and Lemma 7 imply the first
assertion.

By [3, Theorem 2] there is an ∅-definable partial function f : K → T
with generic domain and an integer ` > 0 such that f(ta) = t`f(a)
for all a ∈ dom(f) and all t ∈ T (in particular dom(f) is closed under
multiplication by T ). By connectivity T is `-divisible, so all fibres have
the same rank, namely RM(K) − RM(T ). Hence the number of Fq-
points on a fibre is bounded by O(q1−α), where α = RM(T )/RM(K).
Moreover, the complement of the domain has rank at most RM(K)−1,
so its number of Fq-points is bounded by O(q1−1/RM(K)). Since Fq is
precisely the set of fixed points of the definable automorphism x 7→ xq,
it is closed under all Fq-definable functions. Hence the number of Fq-
points of T is at least (q − O(q1−1/RM(K)))/O(q1−α) ≥ cqα for some
constant c. 2

Definition 5. Let π be a set of prime numbers. For an integer n
the π-part nπ is the biggest π-number (with all prime divisors in π)
dividing n.

Corollary 11. Suppose 〈K, T 〉 is a bad field of characteristic p > 0,
and let π be the set of prime orders of elements in T . Then

(pn − 1)π � pα n,

with α = RM(T )/RM(K).

Proof: Since T is divisible, it is a direct sum of Prüfer groups. Hence if
k is the subfield of K with pn elements and q is a prime dividing |T∩k×|,
then T contains all of the q-part of k×. Thus |T ∩ k| = (pn − 1)π. 2

Definition 6. Let 0 < α < 1. A set π of primes is (p, α)-balanced if(
(pn − 1)π

)
� pα n. It is p-balanced if it is (p, α)-balanced for some α

with 0 < α < 1.
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Note that if π is (p, α)-balanced, then the complement of π is (p, 1−α)-
balanced.

Corollary 12. If there is no p-balanced set, then there is no bad field
of characteristic p.

Proof: This follows immediately from Corollary 11. 2
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