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Introduction

The aim of this work is to prove a model-theoretic version of the Tannakian
formalism for the generalized di�erential rings. The notion of a generalized
di�erential ring is developed in [1], section II. It provides a uni�ed framework
for the analysis of structures including both di�erential and di�erence rings.
In the same article, Yves André also develops the notion of a connection on
a module, which is the analogue of the notion of a di�erential module, and
which André uses to prove a Tannakian duality ([1], theorem III.2.1.1 and
thereafter). For an exposition of the Tannakian duality, one can consult [5].
The model-theoretic proof of this duality in this general context is inspired by
the work of Moshe Kamensky in [8], where the special case of this theorem
corresponding to pure �elds of characteristic zero is proved using model theory.
The proof exposed here, working in a more general framework, is nevertheless
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not far from Kamensky's. It is centered around the model-theoretic notions of
internality and binding groups, and heavily uses the latter.

Intuitively speaking, the Tannakian formalism, as presented here, says that
one can reconstruct an a�ne algebraic group de�ned over a given �eld, con-
sidering only the category of its �nite-dimensional representations over that
�eld. A major motivation for studying this subject using model theory is that
it permits to analyze interde�nability problems between �elds � or rings �
and groups.

Our methods yield also a modest improvement of a result of [3] (theorem 2.9
there) on di�erence Galois groups; with relatively little e�ort, the arguments
in [3] and the results about Picard-Vessiot extensions can be generalized to
the context of generalized di�erential �elds, and hence hold in particular for
the theory ACFA.

The plan of the article is as follows. The �rst section aims at de�ning
stable embedding and internality, in order to prove the (type-)de�nability of
the binding group associated to such an internality. The end of the section
presents a Galois correspondence, a particular case of which will be used in
section 3. Section 2 presents the notions of a generalized di�erential ring and a
connection as they are presented in [1], sections II.1 and II.2. We de�ne here a
generalized di�erential ring and an appropriate language to turn it into a �rst
order structure. Some hypotheses on the rings in question are also made there.
Section 3, which is the central section to this article begins with a presentation
of a construction of the Tannakian category generated by a module with a
connection satisfying certain hypotheses. Most of the proofs are omitted, since
they can essentially be found in [1], section II. This category is then seen as a
�rst order structure containing in particular the generalized di�erential ring,
and a proof of the Tannakian formalism (at least of a certain version of it) is
given, based on the observation of the fact that this category is internal to the
ring; the construction of the binding group follows. Section 4 compares the
di�erent de�nitions of a Picard-Vessiot extension for generalized di�erential
�elds that can be found in [11], [1], and [3], and proves a generalization of a
theorem in [3] comparing the Galois groups associated to such extensions.

In the sequel, all the rings will be commutative and unitary, and the theories
will be �rst order theories.

This work was realized during my Ph.D., under the supervision of Tuna
Alt�nel.
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1 Stable embedding, internality, and binding groups

The notion of stable embedding of a de�nable set in a model of a �rst order
theory means intuitively that one can control the parameters involved in the
de�nition of subsets of this set. In a stable theory, every de�nable set is stably
embedded. One can �nd a proof of the caracterisations of the stable embedding
presented below in [4], in the appendix.

De�nition 1.1 (Stable embedding) Let T be a �rst order theory, and let
A be a set de�nable without parameters in a model of this theory. One says
that A is stably embedded if for every set B de�nable with parameters, and
every n ∈ N, An ∩B is de�nable with parameters in A.

Lemma 1.2 Let T be a �rst order theory, M one of its models, and A de�n-
able in M without parameters. The following conditions are then equivalent:

1. the set A is stably embedded;
2. for all α ∈M , there exists a subset A0 of A of cardinality at most |T | such

that tp(α/A0) has the same set of realizations as tp(α/A);
3. for all α ∈ M , the type tp(α/A) is de�nable over a set of parameters

A0 ⊂ A.

When T has saturated models, the stable embedding of A is characterized
by a certain "A-homogeneity" of those models:

Lemma 1.3 Let T be a �rst order theory, M a saturated model (in its own
cardinality) of T with a regular cardinality, and A a de�nable set. The following
conditions are then equivalent:

1. the set A is stably embedded;
2. for all a, b ∈ M such that tp(a/A) = tp(b/A), there exists σ ∈ Aut(M/A)

such that σ(a) = b;
3. any automorphism of the structure A lifts to an automorphism of M .

We will work with the following version of internality:

De�nition 1.4 (Internality) Let A and B be two de�nable sets in a model
of a �rst order theory. The set B is said to be internal to A, or A-internal,
if there exists an injective map i : B → A which is de�nable (eventually with
parameters).

The de�nability of the binding group in the frame of an internality to a
stably embedded set is proved in [6], proposition 1.6. In fact, a more general
result is proved there, namely the de�nability of the binding groupoid. This
de�nability is well-known for certain classes of theories, such as stable theories.
One can consult [10], theorem 7.4.8, for a treatment of this case.
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Theorem 1.5 (Binding group) Let T be a �rst order theory eliminating
imaginaries, M a model of T , and A and B two de�nable sets in M . Assume
that A is stably embedded, B is A-internal, and the model M is saturated
in its own regular cardinal. Then, the group Aut(B/A) of the functions from
B∪A into itself induced by an automorphism of M �xing A pointwise is type-
de�nable (as well as its action on B) over a set of parameters A0 ⊂ A of size
at most |T |. It is called the binding group of B in A, and is denoted BG(B/A).

The binding group can be seen as a model-theoretic Galois group, and one
can in particular obtain a certain Galois correspondence between its de�nable
subgroups and certain de�nably closed sets. We will need later a particular
case of this correspondence, so we will make its formulation explicit.

The following general and easy group-theoretic lemma will frequently be
used in the sequel:

Lemma 1.6 Let G be a group acting freely on a set X. Then no proper sub-
group of G has a G-invariant orbit.

Proof If H is a subgroup of G with H.c (for some c ∈ X) a G-invariant orbit,
then G.(H.c) = H.c = (GH).c = G.c. Since the action of G on G.c is free, this
proves that G = H.

ut

The previous lemma is central in the construction of Galois correspondence.
We give below the best version we know of such a correspondence in our
context. It will not be needed in the sequel.

Theorem 1.7 (Galois correspondence for binding groups) Let T be
a �rst order theory, M a saturated model (in its own regular cardinality) of
T , and A a de�nable stably embedded set. Assume that M is A-internal, and
that this internality is witnessed by an injective map fc : M → A. Denote by
BG the binding group BG(M/A), and assume that it is type-de�nable over
a set of parameters A0. The application φ associating to a subgroup of BG
the set of points �xed by this subgroup de�nes an injection from the set of the
de�nable subgroups of BG into the set of the de�nable de�nably closed sets
of M containing A; its "inverse" is the application associating to a de�nable
de�nably closed set D the binding group BG(M/D).

Proof Denote by ψ :

∣∣∣∣ {G/G ≤ BG} → {dcl(D)/A ⊆ D}
G 7→ MG the application as-

sociating to a subgroup G of BG the set of points in M �xed by G (denoted
by MG). We will consider the restriction of this map to the set of de�n-
able subgroups of BG, denoting this restriction φ, and we will now prove
that φ is an injection and that for any de�nable subgroup G of BG, we have
G = BG(M/φ(G)).
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Remark that φ actually takes its values in the de�nable de�nably closed
sets containing A. Indeed, since BG �xes A, any subgroup of BG �xes A as
well, and if an element a is de�nable over MG, then it is obviously �xed by
G, and is then already in MG. Moreover, MG is obviously de�nable when G
is. Every set φ(G) is then de�nable, de�nably closed, and contains A.

Now, we can prove that φ is injective. Let G and H be two de�nable
subgroups of BG such that MG = MH . We want to prove that G = H. We
will in fact prove that G is the binding group BG(M/MG), which is enough to
conclude (since in this case, H will be the same group). In particular, it also
proves the remainder of the theorem. The set MG is de�nable and de�nably
closed, hence it is stably embedded: if S is a subset of (MG)n de�nable with
parameters inM , then the canonical parameter of S is in dcl(MG), and is then
in MG. The group BG(M/MG) is then type-de�nable (by theorem 1.5), and
one has by de�nition G ≤ BG(M/MG), and G and BG(M/MG) �x the same
elements in M . By lemma 1.6, this implies G = BG(M/MG). The application
φ is then injective.

ut

2 Generalized di�erential rings and connections

Recall that all the considered rings are commutative and unitary.

The de�nitions and the treatment of the generalized di�erential rings and
the connections presented in this section come from [1], sections II.1 and II.2.
The rare interventions of model theory are quite natural, and will be useful
in the next section. The next proposition is admitted, but one can �nd in
[9], corollary of the theorem 7.12, a proof of the fact that on a commutative
(unitary) ring, a �nitely presented module is projective if and only if it is �at.
The rest of the proof is easier.

Proposition 2.1 Let A be a commutative noetherian ring, and M an A-
module. The module M is faithful, �nitely generated and projective if and only
if it is faithfully �at and �nitely presented.

De�nition 2.2 (Generalized di�erential ring) We call generalized di�er-
ential ring a ring k, a k-algebra A, and an A-A-bimodule Ω (that is, an abelian
group with a left and a right scalar multiplications Ω · and ·Ω) together with
a bimodule homomorphism d : A → Ω (which we will call the derivation),
satisfying the condition

d(ab) = a Ω· d(b) + d(a) ·Ω b

and such that ker(d) = k. The ring k is called the ring of constants of A.

Pure rings can be seen as generalized di�erential rings with k = Ω = A and
d = 0. The ordinary di�erential rings are generalized di�erential rings, with
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Ω = A and d the usual derivation on A. One can also see a di�erence ring (A, σ)
as a generalized di�erential ring: put Ω = A with the usual multiplication as
left A-module structure; the multiplication "twisted" by σ as right A-module
structure: for a ∈ A and ω ∈ Ω, ω ·Ω a = σ(a) Ω· ω; and the derivation
de�ned by d(a) = σ(a)− a.

Let (k,A,Ω, d) be a generalized di�erential ring.

Hypothesis 1 Except when otherwise stated, we will need the following as-
sumptions in the sequel :

1. A is noetherian;
2. the ring k is a �eld;
3. Ω is reduced, that is to say generated (as a left module, or right module,

or bimodule, those three conditions being equivalent) by d(A);
4. Ω is faithful, projective, and �nitely generated over A (or, equivalently by

proposition 2.1, is faithfully �at and �nitely presented) as a right A-module.

Consider the following language and theory to describe this structure:

De�nition 2.3 The language L is de�ned as the language containing:

� a sort A endowed with the language of rings;
� a unary predicate k, and ternary predicates +k and ×k;
� ternary predicates ·A, +A and ×A;
� a n-ary predicate Ω, and (n+ 1)-ary predicates ·Ω , Ω ·, a 3n-ary predicate

+Ω and a n-ary relation EΩ ;
� a function symbol d : A→ An.

We de�ne T as the theory of the structure (k,A,Ω, d) in this language,
each of the predicate symbol being interpreted in the way suggested by the
corresponding symbol.

When the module Ω is �nitely presented (hypothesis 1.4), it can be ex-
pressed as a quotient of An by an equivalence relation E de�nable (with pa-
rameters) in the A-module structure of An. The equivalence relation is de�ned
by a �nite set of relations which is a presentation of Ω (the parameters in-
volved in the de�nition of E are then the generators of Ω chosen to make this
presentation explicit).

De�ne now the notion of a connection, which permits to generalize to the
case of generalized di�erential rings the notion of a di�erential module.

De�nition 2.4 (Connection) Consider a �nitely generated and projective
left A-moduleM . A connection is an additive application ∇M : M → Ω⊗AM
satisfying the following relation:

∇M (am) = a.∇M (m) + d(a)⊗m

We de�ne in the same way a connection for a right A-module.
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If A is a pure ring, then a connection is just a linear application. When A
is an ordinary di�erential ring, a module together with a connection is exactly
a di�erential module.

The derivation is (canonically isomorphic to) a connection on A. If M is
a left (or right) A-module, then we can de�ne a connection on M putting
∇(am) = (a + d(a)) ⊗ m. Then, for all m, ∇(m) = 1A ⊗ m, and we obtain
∇(am) = a∇(m) + d(a) ⊗ m. The application ∇ de�ned this way is then a
connection on M . Any connection isomorphic to such a connection is called
trivial connection. In particular, one can de�ne a connection (on the right or
on the left) on Ω this way.

Hypothesis 2 The module Ω is endowed with the trivial connection, denoted
∇Ω.

3 The Tannakian formalism

In this section, we consider a generalized di�erential ring A in the language
de�ned in the preceding section, satisfying the same hypotheses. The aim of
this section is to consider the �rst-order structure constituted by the category
of �nite-dimensional representations of an algebraic group, to prove that this
whole structure is internal to the �eld over which the group is de�ned, and to
show that the resulting binding group is actually equal to the original group,
using the lemma 1.6 and an analysis of the imaginaries in this category.

We will consider here categories C endowed with a bifunctor ⊗ satisfying
some constraints. An associativity constraint is an isomorphism of functors
φA,B,C : A⊗(B⊗C)→ (A⊗B)⊗C for which we ensure that the di�erent ways
of computing several tensor products are all isomorphic for all A, B, and C. A
commutativity constraint is an isomorphism of functors ψA,B : A⊗B → B⊗A
for which we ensure that ψA,B ◦ψB,A is the identity of A for all objects A, B.

A category is said to be a tensor category if it has:

� an identity object 1 for ⊗;
� an associativity constraint;
� a commutativity constraint;

and these two constraints interact the same way as usual tensor products.

The internal hom associated to X and Y is the object Hom(X,Y ) repre-
senting the functor Z → Hom(Z ⊗X,Y ) when it is representable. The dual
of X is X∗ = Hom(X,1), and X is said to be re�exive when X is canoni-
cally isomorphic to its bidual X∗∗. The tensor category C is said to be rigid
if every internal hom is de�ned, the morphisms Hom(X,Y ) ⊗Hom(Z, T ) →
Hom(X ⊗ Z, Y ⊗ T ) are isomorphisms, and every object is re�exive.
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It is possible to de�ne easily the notion of tensor functor, that is a functor
respecting the structure given by ⊗; similarly, one can de�ne a morphism of
functors, and an equivalence of tensor categories. In the following, we will
consider tensor categories that are also abelian; the typical example is the
category ModA of �nitely generated A-modules over a commutative ring A,
endowed with the usual tensor product.

Finally, we de�ne a �bre functor on an A-linear tensor category to be
a faithful exact A-linear tensor from C to ModA, the category of �nitely
generated A-modules. We can now de�ne a neutral Tannakian category:

De�nition 3.1 (Neutral Tannakian category) A category C is said to
be neutral Tannakian over A if it is a A-linear abelian rigid tensor category,
endowed with a �bre functor ω.

We will now try to de�ne a �rst-oder context which will allow us to describe
Tannakian categories over a given ring A.

De�nition 3.2 We consider the following language LC:

� the language of generalized di�erential rings for A de�ned in de�nition 2.3,
with a constant symbol for each element of A;

� a sort SV for each object V of C, and a function symbol vf for each arrow
f in C between the corresponding sorts;

� the language of k-vector spaces on each sort SV ;
� a function symbol bV,V ′ : SV × SV ′ → SV⊗kV ′ for all V , V

′.

If C is a neutral Tannakian category over A, then we call TC its elementary
theory in the language LC.

When A is noetherian (hypothesis 1.1), we know that a �nitely generated
module M is noetherian (as a left or right A-module). Hence, any submodule
of M is �nitely generated; such a submodule is then the quotient of a free
�nitely generated module by one of its submodules, and this submodule is
again �nitely generated (by noetherianity); hence, any submodule of M is
�nitely presented. Moreover, if N and N ′ are two �nitely presented and �at
modules, then N⊗AN ′ and N⊕N ′ are also �nitely presented and �at (and, by
proposition 2.1, are �nitely generated and projective). The category generated
by a module M is the category whose objects are the subquotients of the
modules obtained by tensor product, direct sum, and dualization, starting
from M . If C is generated by a unique object M , then we also denote TC by
TM .

We will now prove a general proposition about imaginaries in a neutral
Tannakian category on which a �nice� group acts. This will be fundamental in
the proof of the Tannakian formalism, theorem 3.18.
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De�nition 3.3 (Good polynomials) A language is said to give good poly-
nomials if it is the language of rings augmented with unary function symbols.

The algebra of good polynomials denoted A[x] over a tuple of variables
x = (x1, . . . , xn) associated to a structure A in this language is the algebra
de�ned as the set of terms with parameters over A, endowed with the addition,
multiplication, and composition of polynomials.

An example of such a language (which is the one we will be interested in)
is the language of generalized di�erential rings. In this case, the polynomi-
als are the generalized di�erential polynomials. In particular, in the situation
of a usual di�erential ring, the polynomials are the di�erential polynomials,
and in the case of di�erence rings, the polynomials are the usual di�erence
polynomials.

Proposition 3.4 Assume that the language of A gives good polynomials. Let
H be an a�ne algebraic group de�ned over A, and C a Tannakian category
over A, over which H acts. Then every H-orbit of the form H.c with c a basis
of a module V in C is coded by an element of a projective space associated to
an object of C.

Proof The group H is de�ned by a polynomial equation on A, say P (x) = 0
(x may be a tuple of variables). The basis c permits to identify the set of
polynomials A[x] and the symmetric space S(V ∗), sending the variable xi to
the ith element of the dual basis of c. We denote by φc this identi�cation map
from A[x] to S(V ∗) induced by the basis c. This identi�es the ideal 〈P 〉 of
A[x] generated by P and an ideal I of S(V ∗), generated by the element corre-
sponding to P in S(V ∗). If u is an automorphism of the Tannakian structure,
then u sends H.c to the set H.u(c). Call I ′ the image of the ideal 〈P 〉 under
the identi�cation φu(c) induced by the basis u(c). Then u sends I to I ′, and u
�xes setwise the orbit H.c if and only if I = I ′, so we will try to �nd a code
for the ideal I.

This ideal being generated by a single element, it is completely determined
by its intersection with a �nitely generated submodule W of S(V ∗), and this
intersection W ∩ I is itself a �nitely generated submodule of S(V ∗); the sym-
metric space S(V ∗) is constructed from V using only dualization, direct sums,
and tensor products. Consequently, the ideal I is completely determined by
its intersection with an object of C, since C is stable under all those opera-
tions. Taking the exterior power of W in an appropriate degree, we obtain a
new object of C (for the same reasons), such that W ∩ I is a submodule of
dimension 1 of it. Consequently, W ∩ I corresponds to the unique element of
the projective space associated to the exterior power of W , and this element
is a code for the orbit H.c.

ut

We will now use this proposition to prove that if G is an a�ne algebraic
group over A, then its category of �nitely generated representations over A-
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modules is a neutral Tannakian category, and the group of automorphisms of
the �bre functor Aut⊗(ω) is de�nably isomorphic to G in A.

3.1 A Tannakian category

To check that a category is a Tannakian category requires to verify various
closure properties under tensor products, dualizations, and subquotients; in the
case of modules with a connection, the conditions implying these properties
were checked by André in [1], and this will be brie�y revised in the following
subsections for the ease of the reader.

3.1.1 The tensor product

Consider ∇M and ∇N , two connections on two A-modules M and N . We
want to de�ne a connection on the module M ⊗A N induced by those two
connections (recall that the module structures used to construct M ⊗A N are
the left module structure for M and the right module structure for N , so that
a(m ⊗ n)b = (am) ⊗ (nb)). If Ω is a commutative bimodule, we can proceed
as follows: de�ne ∇M⊗AN (m ⊗ n) = ∇M (m) ⊗ n + ϕ(m ⊗ ∇N (n)), ϕ being
the canonical isomorphism M ⊗Ω ⊗N → Ω ⊗M ⊗N . The resulting map is
a connection on M ⊗A N .

If Ω is not commutative, then for any A-module with a connection M , we
want to build an exchange morphism φ : M ⊗Ω → Ω⊗M such that M ⊗AN
becomes a module with a connection. The following proposition adresses this
problem:

Proposition 3.5 ([1], Proposition II.4.1.1) Under the hypothesis 1.3 (Ω
is reduced), for any A-module with a connection M , there exists a unique
morphism φ = φM : M ⊗A Ω → Ω ⊗AM such that for any A-module with a
connection N , the application

∇M⊗AN (m⊗ n) = ∇M (m)⊗ n+ (φ⊗ idN )(m⊗∇N (n))

is a connection.

3.1.2 Dualization

De�nition 3.6 (Rigidity) A module with a connection is said to be rigid if
it has a dual in the category of the A-modules with a connection.

Recall that M∗ = HomA(M,A) is the dual of M , considered as an A-
module.
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Proposition 3.7 ([1], Lemma II.3.3.4) Under the hypothesis 1.3 (Ω is
reduced), if the application φM de�ned in the proposition 3.5 is invertible,
then the application ∇M∗ : M∗ → Ω ⊗AM∗ de�ned by

p((idΩ ⊗ ε)(∇M∗(n∗)⊗m)) = d(n∗(m))− p((ε⊗ idΩ)(n∗ ⊗ φ−1M (∇M (m))))

(ε : M∗⊗M → A being the application of evaluation and p being either one of
the two product operations A⊗AM → M or M ⊗A A → M) is a connection
on M∗, and the application φM∗ satis�es, for all m ∈M ,

p(idΩ ⊗ ε)(φM∗(n∗ ⊗ ω)⊗m) = p(n∗ ⊗ idΩ)(φ−1M (ω ⊗m))

The formulas in the preceding proposition can seem obscure, but they are
nothing more than the formal translation of the fact that we want to de�ne a
connection on the dual of M (see [1] for the details). This proposition permits
in particular to prove the following:

Proposition 3.8 ([1], Lemma II.4.2.1) A module with a connection M is
rigid if and only if it is projective and �nitely generated and the application
φ(∇M ) is invertible.

3.1.3 Subquotients

To achieve the closure of the category under subquotients, we need the follow-
ing additional hypothesis :

Hypothesis 3 Denote by Q(A) the total ring of fractions of A. Assume that
Q(A) is semisimple (which means in particular that Q(A) is a �nite product
of �elds), that (A, d) is simple (that is its only di�erential ideals are 0 and A),
and that Ω ⊗A Q(A) ' Q(A)⊗A Ω.

Proposition 3.9 ([1], Theorem II.5.3.2) Under the hypotheses 3, 1.1 (A
is noetherian), 1.3 (Ω is reduced), and 1.4 (Ω is faithful and projective �nitely
generated), any subquotient of a �nitely generated projective module M with a
connection which is rigid is also rigid.

Under those hypotheses, we de�ne the category CM to be the subcategory
of the category of A-modules with a connection generated byM and the tensor
product, the direct sum, the dualization and the subquotients.

Proposition 3.10 ([1], Theorem II.5.3.2) Under the hypotheses 3, 1.1 (A
is noetherian), 1.3 (Ω is reduced), and 1.4 (Ω is faithful and projectif �nitely
generated), the category CM is abelian, monoidal, symmetric, and rigid. Any
set of morphisms has an A-module structure. Moreover, the "forgetful" functor
ω : CM →ModA respects the rigid monoidal symmetric structure, and the A-
module structure on the sets of morphisms.
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3.2 Model-theoretical study

We will assume in this section that A is a commutative generalized di�eren-
tial ring, and that CM is a Tannakian category over A, with M an object
generating CM . We also assume that any object in CM is �nitely presented,
though we will only need this assumption from lemma 3.13. We will study
some model-theoretic properties of the resulting theory TM .

We begin by proving a result about elimination of quanti�ers in TM , though
this will not be used in the sequel :

Proposition 3.11 (Elimination of quanti�ers for TM) The theory TM
eliminates quanti�ers for formulas involving any sort but the sort for A.

Proof The proof uses a back-and-forth argument. Consider a model CM of TM
(which we assume to be saturated in a cardinal strictly greater to the cardinal
of the substructures we will consider in the following), and two substructures
D and D′ of CM , of which the restriction to the sort of A are the same,
with an isomorphism u : D → D′ �xing A pointwise. We consider an element
a ∈ CM \D, and we try to �nd a′ such that we can extend the isomorphism
u to an isomorphism between the substructure generated by D ∪ {a} and the
substructure generated by D′ ∪ {a′} sending a on a′.

What is a substructure D of CM ? Each sort in CM is nonempty in D
since D contains at least the zero vector of each module; by assumption, D
also contains the whole sort A. Moreover, the fact that each sort in D is stable
by multiplication by a scalar means that each sort of D is a module over A.
The choice of an element of CM not belonging to D is the same as the choice
of an element a in a sort S of CM not belonging to the module corresponding
to this sort. To choose the image of a, we know that we have to choose it in
the same sort, and not belonging to the corresponding module (in D′). Choose
such an a′, and de�ne u(a) = a′. Since each sort in CM is endowed with the
language of modules, the structure generated by D and a corresponds on the
sort S to the module generated by D|S and a. The application u extends then
naturally to all this module, its image being extended to the module generated
by D′|S and a′.

The language of TM contains � beyond the language of modules on each
sort � some symbols of functions between the sorts coding the linear applica-
tions, symbols of functions coding the tensor product, and symbols of functions
coding the applications ∇. Any of those functions send a to an element aS′ in
a certain sort S′, and we can as above extend u on the modules generated by
those elements. The application u obtained is then an isomorphism between
the substructure generated by D and a and the substructure generated by D′

and a′.



Title Suppressed Due to Excessive Length 13

Hence, the theory TM eliminates quanti�ers in this language as long as the
sort for A is not involved.

ut

We will now try to build the binding group BG(CM/A), which we want
to be type-de�nable in the theory TM . We need for this to prove that CM is
internal to A, and that the sort of A is stably embedded in TM .

Proposition 3.12 (Internality in TM) Each sort of TM is internal to the
generalized di�erential ring A.

Proof The choice of a generating family of M permits, using the di�erent
categorical operations studied above, to deduce a generating family for each
module in the category CM : For the direct sum, this is obvious; for the tensor
product, the tensor product of two generating families is a generating family;
for the dual, consider the dual family; same thing for the quotient; �nally,
a submodule of N is the dual of a quotient of N . Hence, the choice of this
generating family of M permits to de�ne a de�nable function from any of the
objects of CM into the underlying model of T , which gives the internality of
TM into T .

ut

We will now prove (proposition 3.15) that the sort of the ring A is stably
embedded in TM , and that any subset of some An which is de�nable in TM
is already de�nable in A ; in order to do this, we need a description of the
terms and the formulas in the language, given in the following lemmas. A
term can be seen as a map from a cartesian product of sorts to another sort,
t :

∏
iNi → N . The modules in TM being �nitely presented, there exists

isomorphisms ui : Ni → Ani/Ii for all i and u : N → An/I, for some integers
ni and n and some �nitely generated submodules Ii of A

ni and I of An. Note
that the equivalence relations de�ned by the submodules Ii is de�nable in A,
because of the �nite generation of these. Hence, the modules Ani/Ii are in
Aeq.

Lemma 3.13 (Description of the terms in TM) Consider a term t (with
parameters in a model of TM ) and the isomorphisms ui and u with notations
as above. Then there exists a �rst-order formula tA in the language of Aeq,
with parameters from Aeq, such that the isomorphisms ui and u realize an
isomorphism restricted to the graph of t, with image the set de�ned by tA.

Proof We prove it by induction on the size of the terms.

If the term t consists of only a variable symbol, then it corresponds to
the identity on some sort N , and clearly corresponds to the formula tA in
the language of Aeq de�ned by x = y in An/I. If the term consists of only a
constant symbol c, then tA is the formula de�ned by the constant x = u(c)
with u(c) an element of An/I.
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The language 3.2 contains function symbols for the A-module structures on
the sorts, for the morphisms in the category CM , and for the tensor product
of any two sorts.

For the A-module structure, consider two terms t and t′ with values in
N . Then, the term t +N t′ corresponds to the formula ∃y ∈ tA, z ∈ t′A, x =
y +An/I z. If t is a term with values in A and t′ a term with values in N ,
then the term t.N t

′ corresponds to the formula ∃y ∈ tA, z ∈ t′A, x = y .An/I z.

For the maps in the category CM , if t is a term with values in N , and f is a
function symbol for a map in the category CM , then the term f(t) corresponds
to the formula (with variables x and z) �∃y, tA(x) = y ∧ z = fA(y)�, where fA
is de�ned as follows : f being an A-linear map, it is completely determined
by the images of some generating family of its domain N in its codomain
N ′ ; so we choose such a generating family (xi)i, and we associate to it the
corresponding tuple (x̄i)i with x̄i ∈ An/I for all i, and we do the same for the
family (f(xi))i in A

n′/I ′, associating to it the tuple (x̄′i)i. Then fA is de�ned
as the de�nable map sending (x̄i)i to (x̄′i)i, extended by linearity (since the
generating family is �nite, this can be expressed as a �rst order term in the
language of Aeq).

For the tensor product, consider two terms t and t′ with values in N and
N ′ respectively. Then the term bN,N ′(t, t

′) corresponds to the formula (with
variables x, x′, and z) �∃y, y′, tA(x) = y ∧ t′A(x′) = y′ ∧ z = bA(y, y′)�, where
bA is de�ned as follows : as above, we choose generating families (xi)i and
(x′j)j for N and N ′, and consider their images in N ⊗ N ′ ; to each of these

families is associated the corresponding element in An/I, An
′
/I, and An

′′
/I ′′

(the last one being isomorphic to N⊗N ′), and the de�nable map bA is de�ned
by extending it by bilinearity.

At this point, all the function symbols in the language of TM have been
taken care of, so by induction on the size of the terms, the lemma is true.

ut

Lemma 3.14 (Description of the formulas in TM) Using the same nota-
tions as above, given a formula φ(x1, . . . , xn) de�ning a subset Xφ of

∏
iNi,

there exists a formula ψφ(y1, . . . , yn) in the language of Aeq with parameters
from Aeq such that the map

∏
i ui realizes an isomorphism restricted to Xφ,

with image Xψφ .

Proof We prove it by induction on the size of φ.

If φ is an atomic formula, then it is of the form t = t′ for two terms t and
t′, and by linearity, we may assume that it is of the form t = 0. By lemma
3.13, the map

∏
i ui realize a map between the graph of t and the set de�ned

by tA in the language of Aeq ; hence the formula ψφ can be taken as being
(x, 0) ∈ tA.
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If φ and φ′ are two formulas for which the lemma is true, then clearly the
formula ψ¬φ is ¬ψφ, and the formula ψφ∧φ′ is the formula ψφ ∧ ψφ′ .

If φ(x1, . . . , xn) is a formula for which the lemma is true, we seek the
formula ψ∃x1,φ. In this case, the existential quanti�er is over x1 which is in
some sort N1 corresponding to some An1/I1, so it is enough, when we replace
φ by ψφ, to replace the quanti�cation over N1 by a quanti�cation over An/I
in Aeq ; the formula ψ∃x1,φ is then ∃y1, ψφ, and the induction is done.

ut

Proposition 3.15 (Stable embedding of A in TM) The sort of A is stably
embedded in TM , and TM does not de�ne any new de�nable set on the models
of Th(A).

Proof Let Xφ be a subset of some An, de�nable in TM by some formula
φ(x1, . . . , xn) whose free variables lie in the sort of A. By lemma 3.14, there
exists a formula ψφ(x1, . . . , xn) in the language of Aeq over the same variables
(since we can obviously choose the isomorphisms ui to be the identity in this
case), such that Xψφ is equal to Xφ. The formula being in the language of Aeq,
we know by the eq-construction that there exists a formula θ(x1, . . . , xn) in the
language of A (eventually with parameters from A) such that θ(x1, . . . , xn) is
equivalent modulo Th(A) to ψφ(x1, . . . , xn). Hence, any subset of some An de-
�nable in TM with parameters from a model of TM is in fact de�nable in the
structure of generalized di�erential ring of A with parameters from A, which
concludes the proof.

ut

Remark 3.16 We could have done the preceding reasonings, and obtain the
same conslusions, for other kinds of categories. What we use there is only the
linear or multilinear nature of the function symbols in the theory. So, if we
replace the Tannakian category by a category endowed with function symbols
being interpreted as multilinear maps (such as the tensor product), and keep
assuming the �nite presentation of all the modules involved, then the category
is still stably embedded in the sort of the ring A, which is stably embedded
(and we have a similar description of the terms and formulas in the theory).

3.3 The Tannakian formalism

We can now prove the Tannakian formalism, still following the inspiration
given by [8]. We will admit the following proposition, proved in [7], proposition
12, saying that any (type-de�nable) binding group is in fact an ω-group:

Proposition 3.17 ([7], proposition 12) Let BG be the binding group asso-
ciated to the internality of B into A, A being stably embedded, and the inter-
nality being witnessed by the function fc whose parameter c is in the de�nable
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set C. Then BG is equal to the intersection of the groups of bijections from B
to itself �xing a �nite subset of the de�nable sets in B, and each of which is
de�nable.

Recall that given a group H, a H-torsor is a set on which H acts freely
and faithfully.

Theorem 3.18 (Tannakian formalism) Let G be an a�ne algebraic group
in the theory T having a faithful representation in a �nitely generated projective
A-module with a connection M , this representation generating the category of
its �nitely generated representations. Then, G is de�nably (in TM ) isomorphic
to the group Aut⊗(ω) of the automorphisms (preserving the tensor structure)
of the forgetful functor ω from the category of A-modules with a connection to
the category of A-modules.

Proof Under these hypotheses, we can construct the theory TM as above,
and consider its binding group BG associated to the internality of TM in T
(see propositions 3.12 and 3.15). Denote by CM the model of TM considered
here, with M the corresponding generator of C. The group BG � which is
type-de�nable (as its action) in TM � acts by automorphisms on each of
the representations of G generated by M , so necessarily, G and its action
are type-de�nably (in TM ) isomorphic to a type-de�nable subgroup of BG
endowed with the induced action.

Start by proving that the subgroup of BG corresponding to G is in fact
de�nable in TM . By proposition 3.17, there exists a group GLf of permutations
of a model of TM , de�nable in TM , and admitting BG as a subgroup. We can
now de�ne the subgroup of BG corresponding to G (that is, the set of elements
in BG whose action on a generating family of M corresponds to the action
of one of the elements of G) in the following way. The group G is the set of
elements of GLf whose action on a generating family of M is the same as the
action of one of the elements of G. The groups GLf (as a binding group) and
G (as an a�ne group) are both de�nable in TM (as is their action), so this
group is de�nable in TM . We can then suppose that G is a subgroup of BG
which is de�nable, and not only type-de�nable.

Next, we prove that a torsor of the form G.c is �xed setwise by the group
BG. This will permit us to use the lemma 1.6 to prove the equality between
G and BG.

By proposition 3.4, and since G is de�ned by good polynomials, a torsor
of G of the form G.c for c a generating family of M is coded by an element
a of some projective space. Thus, the element a corresponds then to a repre-
sentation (which is generated by only one element) of G, and hence is a sort
of TM , since TM is, by assumption, (equivalent to) the category of �nitely
generated representations of G on A; in particular, it is a 0-de�nable set, and
BG also stabilizes it. Hence, a is �xed by BG. By lemma 1.6, we have then
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that G ' BG. The isomorphism in question is even type-de�nable, since in
order to de�ne it, it is enough to �x a generating family of M and to de�ne
the image of g ∈ G as the element g′ ∈ BG having the same action on this
family.

To conclude, consider the forgetful functor ω : CM → ModA . By con-
struction of TM , the binding group BG is necessarily the group Aut⊗(ω) of
the (tensor) automorphisms of ω: it preserves the operations (used to construct
CM ) of tensor product, dual, direct sum and subquotient.

ut

We conclude this section by stating the other part of what is usually called
the �Tannakian duality�, and explaining how it �ts into our context.

Proposition 3.19 ([5], theorem 2.11) If C is a neutral Tannakian category
over A, let G be the group Aut⊗(ω); then the category of �nitely generated
representations of G over A is equivalent (as a tensor category) to the category
C.

The obstacle to prove this statement in full generality is the following: if
C is a neutral Tannakian category over A, then we can build its associated
binding group G in the same way as above, and conclude that it is type-
de�nable and isomorphic to the group Aut⊗(ω). We can then build its category
of representations, and consider its associated binding group. But in order to
prove that these groups are the same, we should use again the lemma 1.6.
But not knowing if G is de�ned by polynomial formulas, we cannot use the
proposition 3.4.

We prove below a partial remedy to this obstacle:

Proposition 3.20 If the group H can be de�ned by a boolean combination of
existential formulas, and if C is a Tannakian category over which H acts, then
every H-orbit of the form G.c with c a basis of a module V in C is coded by
an element of a projective space associated to an object of C.

Proof We can assume that H is de�ned by a formula of the form �∃y, φ(x, y)�,
the formula φ being a polynomial equation. If H is de�ned by the formula φ,
then the reasoning of the proof of proposition 3.4 works identically.

Consider the subset X of Am de�ned by φ(x, y).c, m being the number of
variables in x and y. The choice of the generating family c of V gives a basis for
every object of the Tannakian category under consideration, and there exists
such an object W , generated by m elements, such that V is a submodule of
W .

The set X is de�ned by a polynomial equation; it is thus coded by the
ideal generated by these polynomials in A[X1, . . . , Xm], which corresponds
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to a �nitely generated ideal I of S(W ∗). The set S, being the projection of
X on the subspace V , is then coded by the quotient of I by the submodule
S(V ∗), so by a submodule of S(W ∗)/S(V ∗). Since the Tannakian category is
closed under quotienting, we know that this module (or rather again a �nitely
generated submodule of it) is a sort of the theory TC (that is, an object of the
category C), and the reasoning is the same as in proposition 3.4 to conclude
(passing to the exterior power, then to the projective space).

ut

This result, however partial, covers an important case. In the article [4],
1.6, it is proved that in ACFA, any formula is equivalent to a disjunction
of existential formulas. Hence, we obtain the following ACFA version of the
Tannakian duality:

Corollary 3.21 Let C be a neutral Tannakian category over a model K of
ACFA, and let G be the group Aut⊗(ω); then the category of �nitely generated
representations of G over K is equivalent (as a tensor category) to the category
C.

4 Applications of Tannakian methods

The aim of this section is to generalize some of the results of [3] on di�erence
�elds to the case of generalized di�erential �elds, using in this respect the
model-theoretic techniques developed in this paper. Namely, we will prove
that two distinct ways of de�ning the Galois group associated to an equation
over a generalized di�erential �eld lead to essentialy the same Galois group,
up to the algebraical closedness of the constants.

In [1], a general notion of a Picard-Vessiot extension associated to module
with a connection is introduced. We start the section by stating this de�nition,
and verifying that the notion of a Picard-Vessiot extension de�ned in [3] is a
particular case of it. In the next two subsections, we �rst verify that our
model-theoretical tools �t in the context of [1], and �nally state and prove the
theorem of comparison of the several notions of Galois groups.

We consider a generalized di�erential ring A, and a module M with a
connection ∇ over A. We denote by ωA′ the functor associating to a module
N in the Tannakian category generated byM over A′ the module Ker(∇, N),
and we denote by < ., . > the evaluation map from M∗ ×M to A.

De�nition 4.1 ([1], de�nition III.4.1.1) An extension A′ of A is called a
Picard-Vessiot extension for M if:

� A′, as a pure ring, is faithfully �at over A;
� A′ is simple as a generalized di�erential ring (that is, has no nontrivial
d-invariant ideal);
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� the constants CA′ of A
′ are the constants CA of A;

� the connection on M is trivial when extended to A′;
� A′, as an A-algebra, is generated by the elements of < M∗, ωA′(M) > and
< M,ωA′(M

∗) >.

We will compare this de�nition with the de�nition of a Picard-Vessiot
extension in [11] (extended to generalized di�erential rings, instead of di�er-
ence rings). For this de�nition, we need to consider an equation of the form
dX = BX for some B ∈ GLn(A). We recall that a fundamental system of
solutions of this equation is a matrix C ∈ GLn(A′) in some extension A′ of A
such that each column of C is a solution.

De�nition 4.2 ([11], de�nition 1.5) Assume that A is a �eld. Then a
Picard-Vessiot extension of the equation is an extension ring A′ such that
:

� A′ is simple as a generalized di�erential ring;
� A′ is generated by a fundamental system of solutions of the equation.

We will prove that a Picard-Vessiot extension of the equation in the sense
of de�nition 4.2 is a Picard-Vessiot extension for the module M generated by
a fundamental system of solutions in the sense of de�nition 4.1, provided that
the constants of A are algebraically closed. We assume in the following that
A′ is a Picard-Vessiot extension in the sense of de�nition 4.2, and that CA is
algebraically closed.

Proposition 4.3 If A is a generalized di�erential �eld with an algebraically
closed �eld of constants, then any Picard-Vessiot extension of A for some
equation over A (in the sense of de�nition 4.2) is a Picard-Vessiot extension
for the module of solutions M (in the sense of de�nition 4.1).

Proof First, we note that the simplicity condition appear in both de�nitions.

We then prove that A′ is faithfully �at over A. Since A is a �eld, A′ is an A-
vector space, hence it is free, which implies that it is �at. By [2], proposition
1.9, we only need to prove that for every left A-module F , the canonical
isomorphism x 7→ 1⊗ x from F to A′ ⊗ F is injective, which is obvious since
A is a �eld and A′ and F are A-vector spaces.

The fact that the connection on M is trivial when extended to A′ comes
from the fact that M is generated by a fundamental system of solutions. The
connection on M describes the action of d on the solutions of the equation,
hence it is trivial on M ⊗A′.

The condition that A′ is generated as an A-algebra by < M∗, ωA′(M) >
and < M,ωA′(M

∗) >, for the same reason as in the preceding paragraph, is
satis�ed because A′ is generated by a fundamental system of solutions of the
equation, since M is generated by such a system.
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Finally, the fact that CA is algebraically closed implies that CA′ is equal to
it, since CA′ is necessarily a �nite algebraic extension of CA (theorem III.4.3.1
of [1]). This completes the proof.

ut

4.1 Correspondence between �bre functors and Picard-Vessiot extensions

In [1], theorem III.4.2.3, it is proven that there is an equivalence between the
category of the �bre functors on a neutral Tannakian category associated to
an equation and the strong Picard-Vessiot extensions of this equation. This
equivalence involves the construction of a Picard-Vessiot extension associated
to a �bre functor (which we will not discuss here), and the construction of an
isomorphism between two particular �bre functors; for this second part of the
proof, we can use some of our Tannakian tools to recover this isomorphism.

We �rst �x a generalized di�erential �eld k with algebraically closed con-
stant �eld, an equation over k, and a Picard-Vessiot extension R associated to
this equation. We de�ne the Galois group associated to it :

De�nition 4.4 The strong Galois group of k is the group of automorphisms
of R over k.

If CM is a neutral Tannakian category with �bre functor ω, we construct
a Picard-Vessiot extension R as it is done in [1], and consider the functor
ωk associated to it (that is, the functor associating to N the Ck-vector space
Ker(∇, N ⊗R)). The aim is then to prove that ω and ωk are isomorphic.

Note that by proposition 4.3 and lemma III.4.1.4 in [1], we know that ωk
is a �bre functor.

Under the assumptions of proposition 3.20, it is possible to prove the exis-
tence of an isomorphism between the groups of tensor automorphisms of the
two �bre functors, using as above the proposition 3.4: the group Aut⊗(ω) is
a subgroup of Aut⊗(ωk), and the latter �xes every torsor for the former since
such a torsor is coded by an element of a projective space, which corresponds
to a representation of Aut⊗(ω); this representation becomes a representation
of Aut⊗(ωk) by tensoring by R, and so is �xed by the latter group; we conclude
by using the lemma 1.6. This isomorphism gives an isomorphism between the
two considered functors, which is what we are aiming at.

4.2 Identi�cation of di�erent Galois groups

In the paper [3], the authors describe, in the context of di�erence �elds, several
de�nitions of the Galois group associated to an equation; they prove that the
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di�erent suggested de�nitions lead to the same Galois group, up to an exten-
sion of the constants to the algebraic closure of the constants. They then use
Tannakian ideas to reprove this statement in a particular case (concerning the
�eld of meromorphic functions over C). Their arguments �t in the context of
generalized di�erential rings and, supported by the model-theoretic techniques
we presented above, yield a slight generalization of their theorem 2.9.

We start by recalling another de�nition of the Galois groups that we will
try to compare with those introduced in section 4.1. This one is a Tannakian
version, that is the binding group of the category generated by the module
generated by a fundamental system of solutions of the considered equation.
The one presented in section 4.1 is a more Galois-theoretic version, de�ned as
the group of automorphisms of some generalized di�erence �eld �xing a given
sub�eld. For a discussion about the motivation for both of them, we refer to
[3].

Following the terminology of [3], we de�ne another notion of Picard-Vessiot
extensions to which we will associate their Galois groups:

De�nition 4.5 ([3], de�nition 2.1) We call weak Picard-Vessiot ring of the
equation over k a ring R extending k such that:

� CR = Ck, and
� R = k[Z,det(Z)−1] for a Z ∈ GLn(R) whose columns are solutions of the
equation.

If R is the quotient �eld of such a ring, still with the same constants as k,
then R is called a weak Picard-Vessiot �eld of the equation. The weak Galois
group of k is de�ned to be the group of automorphisms of R over k when R is
a weak Picard-Vessiot �eld.

We will try to compare these two Galois groups by realizing them as binding
groups of a particular Tannakian category. One of them will be a subgroup of
the other, and a reasoning as in the preceding section will allow us to identify
them in some situations. We assume in all of the following that the constants
Ck of k are algebraically closed.

Given a �nitely generated module with a connectionM over k, call CM the
category generated by M using the direct sum, the dualization, the subquoti-
enting and the tensor product. If K is a �eld extension of k, then call MK the
module M ⊗kK, and CMK

the corresponding category. We will de�ne a �bre
functor associated to each of these categories, so that we will be able to build
the binding group associated to it, and de�ne them as the strong and weak
Galois group of the equation, then proving equality of these groups when we
extend the constants to their algebraic closure.



22 Simon Iosti

From now on, we assume that there exists a weak Picard-Vessiot exten-
sion �eld R of the equation, and a Picard-Vessiot extension R′ of the exten-
sion (which has been proven to exist when CM is Tannakian by [1], theorem
III.4.2.3).

We de�ne ωK in the same way we de�ned ωk in the previous section, with
the notations above, and the same reasoning proves that it is also a �bre
functor. Finally, both CM and CMK

endowed with these functors are neutral
Tannakian categories, and we can build their binding groups GM and GMK

.

We now prove the following theorem:

Theorem 4.6 ([3], theorem 2.9) The groups GM and GMK
are identi�ed

respectively with the group of the k-automorphisms of R, and the group of the
K-automorphisms of R′. We have

GM ⊗ CK = GMK
⊗ CK

Proof To prove that the binding groups can be identi�ed with the automor-
phisms groups of the di�erent kinds of Picard-Vessiot extensions, we use the-
orem 3.2 in [5]: for any �bre functor η of CM over k, the functor N 7→
Hom⊗(ωN , ηN ) is representable by Spec(R), and similarly for CMK

. Hence,
each of the groups GM and GMK

can be identi�ed with the corresponding
group of automorphisms of the (weak) Picard-Vessiot extension.

To prove the equality between these groups over the algebraic closure of
the constants, we �rst extend the functor ωk to the category CMK

by putting
ω̄k(N) = ker(δ,N ⊗K (R ⊗k K)). We will �rst prove that Aut⊗(ωk) ⊗ CK =
Aut⊗(ω̄k). Since any tensor automorphism of ω̄k induces an automorphism of
ωk �xing the constants ofK, we see immediately that Aut⊗(ω̄k) ⊆ Aut⊗(ωk)⊗
CK . Moreover, the group Aut⊗(ω̄k) being a binding group, the proposition 3.17
implies that it is equal to an intersection of de�nable subgroups of Aut⊗(ωk)⊗
CK . We will prove that each of them is equal to Aut⊗(ωk) ⊗ CK , which will
prove the desired equality. Let G be one of these de�nable subgroups.

We can now use the same reasoning as in theorem 3.18 to prove equality
between G and Aut⊗(ωk)⊗CK : if we consider a G-torsor, then by proposition
3.4, it is coded by an element of some projective space of an object in the
category CMK

; this element corresponds to a subrepresentation of the group
G over CK , and is then �xed by the group Aut⊗(ωk) ⊗ CK . The lemma 1.6
then proves that the two groups are equal.

We will now prove that the group Aut⊗(ω̄k) is equal to the group GMK
=

Aut⊗(ωK) when we extend the constants to their algebraic closure. But ωK
and ω̄k are two �ber functors over CK for the category CMK

. As in the proof of
the theorem 3.1 of [3], we use the fact that these functors become isomorphic



Title Suppressed Due to Excessive Length 23

over the algebraic closure of the base �eld to say that the two groups, tensored
by CK , are isomorphic. This concludes the proof of the theorem.

ut

In particular, we know that the existence of the di�erent Picard-Vessiot
extensions considered here is ensured when we are in the situation of a dif-
ference �eld, or a di�erential �eld. The theorem above is then true in these
situations, permitting in particular to recover the theorem 2.9 of [3].
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