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Abstract. We generalize the work of [13] on expansions of o-minimal struc-
tures with dense independent subsets, to the setting of geometric structures.
We introduce the notion of an H-structure of a geometric theory T , show that

H-structures exist and are elementarily equivalent, and establish some basic
properties of the resulting complete theory T ind, including quantifier elimina-
tion down to “H-bounded” formulas, and a description of definable sets and
algebraic closure. We show that if T is strongly minimal, supersimple of SU-
rank 1, or superrosy of thorn rank 1, then T ind is ω-stable, supersimple, and
superrosy, respectively, and its U-/SU-/thorn rank is either 1 (if T is trivial)
or ω (if T is non-trivial). In the supersimple SU-rank 1 case, we obtain a
description of forking and canonical bases in T ind. We also show that if T is
(strongly) dependent, then so is T ind, and if T is non-trivial of finite dp-rank,
then T ind has dp-rank greater than n for every n < ω, but bounded by ω.
In the stable case, we also partially solve the question of whether any group
definable in T ind comes from a group definable in T .

1. Introduction

We say a theory T is geometric if for any model M |= T the algebraic closure
satisfies the exchange property and T eliminates the quantifier ∃∞ (see [20, Def.
2.1], [17]). There are many examples of geometric theories, among them dense o-
minimal theories, strongly minimal theories, SU-rank 1 theories, the p-adics in a
single sort, etc.

Expansions of geometric theories with a unary predicate have been studied ex-
tensively. There are expansions where the underlying model M is an algebraically
closed or a real closed field and the predicate is interpreted as a multiplicative sub-
group, for example to study groups with the Mann property [15]. This expansion
created a nice framework for studying groups satisfying the Mordell-Lang property
inside a fixed field. In the same way, the work on rational points of eliptic curves
from [18] gives connections with number theory.

Another such expansion corresponds to lovely pairs [6, 3]. Let L be the language
of T , let M |= T and let H be a new unary predicate that does not belong to L.
For M |= T , we say that (M,H(M)) is a lovely pair if H(M) is an elementary
substructure of M , the predicate satisfies the density property (for any infinite L-

formula ϕ(x,~b) with parameters in M , ϕ(H(M)) 6= ∅) and M satisfies the extension
property overH(M) (for any infinite L-formula ϕ(x) with parameters inM , (ϕ(M)\

acl(H(M)~b)) 6= ∅). Lovely pairs are a tool for understanding the properties of the
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underlying geometry such as linearity. The structure imposed on the predicate, i.e.
being an elementary substructure, a subgroup, allows one to use the expansion to
get an insight into different properties of T or structures living inside a model of T .

Generic (random) predicate expansions have also been studied extensively, e.g.
by Chatzidakis and Pillay in [11]. In the strongly minimal case they provide “nat-
ural” examples of unstable supersimple structures of SU-rank 1. Baldwin and
Benedikt [1] have also considered expansions by indiscernible sequences.

In this paper we will explore an expansion, introduced in the o-minimal case in
[13], which in some sense is dual to the lovely pairs expansion. We will assume that
H(M) is a collection of algebraically independent elements satisfying the density
and extension properties. The construction is a dual in the sense that instead
of assuming the predicate to be an elementary substructure, we assume it is a
collection of “geometrically unrelated” (algebraically independent) elements. We
call such an expansion (M,H) an H-structure, and we write T ind for its theory.

Examples of T ind include the theory of a vector space with a distinguished basis
and the theory of a real closed field with a distinguished dense transcendence basis.

Some properties of this expansion are very similar to those of lovely pairs. For
example, we show in Section 2 that saturated models of T ind are againH-structures.
We show in Section 3 that the definable subsets of H(M) are just intersections of L-
definable formulas with H . We also show that the definable subsets of (M,H(M))
come as boolean combinations of L-formulas enlarged by existential quantifiers over
H . While the question of elimination of ∃∞ in T ind remains open, we show that
it holds for formulas where parameters are assumed to be in H(M). As in the
pairs setting, one of the central notions in the study of H-structures is that of the
large and small set. What is different from the case of pairs is that in H-structures
we also have the notion of “H-basis” of a tuple (over ∅ or another set). On one
hand, this notion allows one to “coordinatize” the structure by elements of H and
elements orthogonal to H , while on the other hand it generates a variety of new
definable functions from definable sets in (M,H) to H(M).

In Section 4 we explore some additional topics related to H-structures moti-
vated by the analogies with the pair expansions. In subsection 4.1 we compare
H-structures with lovely pairs and show how to build a lovely pair out of an H-
structure. Subsection 4.2 iterates the construction of H-structures to tuples, fol-
lowing similar ideas of Poizat on beautiful pairs [24] and of Fornasiero for closure
relations [16]. In subsection 4.3, we show elimination of ∃y ∈ H for the expansion
of H(M) by externally definable sets.

In Section 5 we show that if T is strongly minimal (respectively T has SU-rank
1, thorn-rank 1), then MR(T ind) ≤ ω (respectively SU-rank(T ind) ≤ ω, thorn-
rank(T ind) ≤ ω). We obtain a description of forking and canonical bases in T ind

when T is supersimple of SU-rank 1. We also observe a (somewhat surprising) fact
that that one-basedness is not preserved when passing to T ind.

In the lovely pair case, the rank of the expansion captured the geometric complex-
ity of the base theory (along the lines of the trivial/linear/non-linear trichotomy).
Similar, but much less refined, connection takes place in the case of H-structures:
non-triviality of the base theory guarantees that the expansion will have the maxi-
mal rank ω.

Finally in this section we show that if T is (strongly) dependent, T ind is also
(strongly) dependent. As before there is a connection between the triviality of T
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and the dp-rank. When T is trivial and T has dp-rank n, then so does T ind, if T
is not trivial and T has dp-rank n, then T ind has dp-rank greater than or equal to
k for all k.

In Section 6 we study groups definable in a H-structure (M,H). Since the
geometry on H is trivial, we expected that adding H should not introduce new
definable groups. We managed to show this claim only partially. When T is stable
we show that every connected group definable in (M,H) is definably isomorphic to
a group interpretable in M .

Acknowledgements. The authors thank Alf Dolich for many helpful discus-
sions on the topic.

2. H-structures: definition and first properties

Let T be a complete geometric theory in a language L. Thus, in any model
M |= T , the algebraic closure satisfies the Exchange Property and T eliminates the
quantifier ∃∞. LetH be a new unary predicate and let LH = L∪{H}. Let T ′ be the
LH -theory of all structures (M,H), where M |= T and H(M) is an L-algebraically
independent subset of M . Note that saying that H(M) is independent is a first
order property, it is simply the conjunctions of formulas of the form ¬ϕ(x1, . . . , xn),
where dim(ϕ(x1, . . . , xn)) < n.

Notation 2.1. Let (M,H(M)) |= T ′ and let A ⊂M . We write H(A) for H(M)∩
A.

Notation 2.2. Throughout this paper independence (and the corresponding nota-
tion |⌣) means acl-independence, where acl stands for the algebraic closure in the
sense of L. We write tp(~a) for the L-type of a and dcl, acl for the definable closure
and the algebraic closure in the language L. Similarly we write dclH , aclH , tpH for
the definable closure, the algebraic closure and the type in the language LH . For
A ⊂ B sets and q ∈ Sn(B), we say that q is free over A or that q is a free extension
of q ↾A if for any (all) ~c |= q, ~c is independent from B over A.

Definition 2.3. We say that (M,H(M)) is an H-structure if

(1) (M,H(M)) |= T ′

(2) (Density/coheir property) If A ⊂M is finite dimensional and q ∈ S1(A) is
non-algebraic, there is a ∈ H(M) such that a |= q.

(3) (Extension property) If A ⊂ M is finite dimensional and q ∈ S1(A) is
non-algebraic, there is a ∈M , a |= q and a 6∈ acl(A ∪H(M)).

Lemma 2.4. Let (M,H(M)) |= T ′. Then (M,H(M)) is an H-structure if and
only if:

(2’) (Generalized density/coheir property) If A ⊂ M is finite dimensional and
q ∈ Sn(A) has dimension n, then there is ~a ∈ H(M)n such that ~a |= q.

(3’) (Generalized extension property) If A ⊂ M is finite dimensional and q ∈
Sn(A), then there is ~a ∈ Mn realizing q such that tp(~a/A ∪H(M)) is free
over A.

Proof. We prove (2’) and leave (3’) to the reader. Let ~b |= q, we may write ~b =
(b1, . . . , bn). Since (M,H(M)) is an H-structure, applying n times the density
property we can find a1, . . . , an ∈ H(M) such that

tp(a1, . . . , an/ acl(A)) = tp(b1, . . . , bn/ acl(A)).
3
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Note that if (M,H(M)) is an H-structure, the extension property implies that
M is ℵ0-saturated.

Remark 2.5. Assume now that T is a geometric theory expanding DLO and that
(M,H(M)) is an H-structure. Let a, b ∈ M be such that a < b; then the partial
type a < x < b is non-algebraic and by the density property it is realized in H(M).
Thus, the density property implies that H(M) is dense in M . The density property
that we use in this paper can be traced back to Macintyre [21], it also appears under
the name of coheir property in [2].

Definition 2.6. Let A be a subset of an H-structure (M,H(M)). We say that A
is H-independent if A is independent from H(M) over H(A).

Lemma 2.7. Any model M of T with a distinguished independent subset H(M)
can be embedded in a model of T ′ in an H-independent way.

Proof. Given any model M with a distinguished independent subset H(M), we can
always find an elementary extension N of M and a set H(N) extending H(M) such
that for every non-algebraic 1-type p(x, acl(~m)), where ~m ∈ M , there are d ∈ N
and b ∈ H(N) such that both b and d realize p(x, acl(~m)) and d 6∈ acl(M,H(N)).
Now apply a chain argument. �

In particular, for a geometric theory T , H-structures exist.

Lemma 2.8. Let (M,H) and (N,H) be sufficiently saturated models of T ′, ~a ∈M
and ~a′ ∈ N H-independent tuples such that tp(~a,H(~a)) = tp(~a′, H(~a′)). Then
tpH(~a) = tpH(~a′).

Proof. Let ~a = ~a0~a1
~h, where ~a0 is independent over H , ~h ∈ H and ~a1 ∈ acl(~a0

~h).

Similarly write ~a′ = ~a′0~a
′
1
~h′.

To prove the Lemma we show that the partial isomorphism that sends ~a to ~a′

can be extended, so it suffices to show that for any b ∈ M there are ~h1 ∈ H(M),
~h′1 ∈ H(N) and b′ ∈ N such that ~a~h1b and ~a′~h′1b

′ are each H-independent,

tp(~a0~a1
~h~h1b) = tp(~a′0~a

′
1
~h′~h′1b

′), and b ∈ H(M) iff b′ ∈ H(N).

Case 1: b ∈ acl(~a). By H-independence, either b ∈ ~h or b 6∈ H(M). Let b′ ∈ acl(~a′)
be such that tp(b′~a′) = tp(b~a). Clearly, b ∈ H(M) iff b′ ∈ H(N). Here we can take
~h1 and ~h′1 to be empty.

Case 2: b ∈ H and is non algebraic over ~a. By the density property, we can

find b′ ∈ H(N) such that tp(b′~a′) = tp(b~a). Here again we can take ~h1 and ~h′1 to
be empty.

Case 3: b ∈ acl(H~a). Add a tuple ~h1 ∈ H such that ~ab~h1 is H-independent,
and use Cases 1 and/or 2.

Case 4: b 6∈ acl(H~a). By the extension property, there is b′ ∈ N such that
b′ 6∈ acl(H~a′) and tp(b′~a′) = tp(b~a). The tuples stay H-independent, so again

we can take ~h1 and ~h′1 to be empty.
�
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The previous result has the following consequence:

Corollary 2.9. All H-structures are elementarily equivalent.

We write T ind for the common complete theory of all H-structures of models of
T .

To axiomatize T ind we follow the ideas of [27, Prop 2.15]. Here we use for the
first time the fact that T eliminates ∃∞. Recall that whenever T eliminates ∃∞ the
expression the formula ϕ(x,~b) is nonalgebraic is first order.

Proposition 2.10. The theory T dim is axiomatized by:

(1) T ′.
(2) For all L-formulas ϕ(x, ~y)

∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H)).
(3) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)

such that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-
braic in x)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧
∀w1 . . . ∀wm ∈ H¬ψ(x,w1, . . . , wm, ~y))

Furthermore, if (M,H(M)) |= T ind is |T |+-saturated, then (M,H(M))
is an H-structure.

The second scheme of axioms corresponds to the density property and the third
scheme to the extension property. The first axiom says that H is a collection of
independent elements. The proof is the same on as the one in [3, Thm 2.10].

Example 2.11. Let T be the theory of infinite dimensional vector spaces over a
fixed finite field, say F2. Note that T is strongly minimal so T is geometric. Let
V |= T be countable and let H = {vj : j ∈ ω} be its basis. Then (V,H) |= T ind but
it is NOT an H-structure since it does not satisfy the extension property.

Example 2.12. Let T = Th(R,+,×, 0, 1, <), T is o-minimal extending DLO so
T is geometric. Let H = {ei : i ∈ I} be a dense trascendence basis, then (R, H) |=
T ind. Note that (R, H) is not an H-structure, since it does not satisfy the extension
property.

3. Definable sets in H-structures

Fix T a geometric theory and let (M,H(M)) |= T ind. Our next goal is to obtain
a description of definable subsets of M and H(M) in the language LH . We will
also address the question of the elimination of ∃∞ in T ind.

Notation 3.1. Let (M,H(M)) be an H-structures. Let ~a be a tuple in M . We de-
note by etpH(~a) the collection of formulas of the form ∃x1 ∈ H . . . ∃xm ∈ Hϕ(~x, ~y),

where ϕ(~x, ~y) is an L formula such that there exists ~h ∈ H with M |= ϕ(~h,~a).

Lemma 3.2. Let (M,H(M)), (N,H(N)) be H-structures. Let ~a, ~b be tuples of
the same arity from M , N respectively. Then the following are equivalent:

(1) etpH(~a) = etpH(~b).

(2) ~a, ~b have the same LH-type.

Proof. Clearly (2) implies (1). Assume (1), then tp(~a) = tp(~b).

Claim dim(~b/H) = dim(~a/H).
5



Let ~h = (h1, . . . , hl) ∈ H(M) be such k := dim(~a/~h) = dim(~a/H(M)). We may
assume that ~a1 = (a1, . . . , ak) are independent over H and ~a2 = (ak+1, . . . , an) ∈

acl(a1, . . . , ak, h1, . . . , hl). Choose ψ(~x, ~y, ~z) such that for any ~b ∈ M , ~c ∈ M

ψ(~b,~c, ~z) is always algebraic in ~z and M |= ψ(~h,~a1,~a2). Since etpH(~a) = etpH(~b)

we get that dim(~b/H) ≤ k. A similar argument shows that dim(~a/H(M)) ≤

dim(~b/H(N)).

Claim tpH(~b) = tpH(~a).

As before, let ~h = (h1, . . . , hl) ∈ H(M) be such that k := dim(~a/~h) = dim(~a/H(M)).

Then ~a~h is H-independent. Since N is saturated as an L-structure there are
~h′ = (h′1, . . . , h

′
l) ∈ H such that tp(~a,~h) = tp(~b,~h′). By the claim above ~b~h′ is

H-independent, so the result follows from Lemma 2.8. �

Corollary 3.3. Let (M,H(M)) be a sufficiently saturated H-structure, assume
that T = Th(M) is trivial and that dcl = acl in T . Then every LH formula ϕ(~x)
in (M,H(M)) is equivalent to a boolean combination of L formulas and formulas
of the form H(f(~x)), where f is an L-definable function.

Proof. It suffices to check that types of tuples in (M,H(M)) are isolated by the
the L-formulas that they satisfy and the values of expressions of the form H(f(~x)),
where f is an L-definable function..

Let ~a, ~b be tuples of the same arity from M and assume that they satisfy the
same L-type and that for every L-definable function f(~x) we have that H(f(~a))

holds if and only if H(f(~b)) holds. We will prove that tpH(~a) = tpH(~b).

Claim dim(~b/H) = dim(~a/H).

Let ~h = (h1, . . . , hl) ∈ H(M) be such k := dim(~a/~h) = dim(~a/H(M)) and

assume that ~h is a minimal such tuple. Then since T is trivial, for each i ≤ k we
have that hi = fi(aji

) for some ji and some L-definable function fi. Let h′i = fi(bji
)

and let ~h′ = (h′1, . . . , h
′
l). Then H(h′i) holds for each i ≤ l and dim(~b/H) ≤ l =

dim(~a/H). The other inequality follows in the same way.

Note that for ~h and ~h′ defined as above, we have that ~a~h and ~b~h′ are H-

independent and thus by Lemma 2.8 we have that tp(~a) = tp(~b) as desired. �

Now we are interested in the LH -definable subsets of H(M). This material is
very similar to the results presented in [14, Theorem 2].

Lemma 3.4. Let (M0, H(M0)) � (M1, H(M1)) and assume that (M1, H(M1)) is
|M0|-saturated. Then M0 (seen as a subset of M1) is a H-independent set.

Proof. Assume not. Then there are a1, . . . , an ∈ M0 \ H(M0) such that an ∈
acl(a1, . . . , an−1, H(M1)) and an 6∈ acl(a1, . . . , an−1, H(M0)). Let ϕ(x, ~y, ~z) be a

formula and ~b ∈ H(M1)~z be a tuple such that

ϕ(an, a1, . . . , an−1,~b) ∧ ∃≤nxϕ(x, a1, . . . , an−1,~b)

holds. Since (M0, H(M0)) � (M1, H(M1)) there is ~b′ ∈ H(M0)~y such that

ϕ(an, a1, . . . , an−1,~b
′) ∧ ∃≤nxϕ(x, a1, . . . , an−1,~b

′)

holds, so an ∈ acl(a1, . . . , an−1, H(M0)), a contradiction. �

Proposition 3.5. Let (M,H(M)) be an H-structure and let Y ⊂ H(M)n be LH -
definable. Then there is X ⊂Mn L-definable such that Y = X ∩H(M)n.
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Proof. Let (M1, H(M1)) � (M,H(M)) be κ-saturated where κ > |M |+ |L| and let

~a,~b ∈ H(M1)
n be such that tp(~a/M) = tp(~b/M). We will prove that tpH(~a/M) =

tpH(~b/M) and the result will follow by compactness. Since ~a,~b ∈ H(M1)
n, we get

by Lemma 3.4 that M~a, M~b are H-independent sets and thus by Lemma 2.8 we

get tpH(~a/M) = tpH(~b/M). �

Remark 3.6. A small warning is due here. In the previous proof, we may need
extra parameters in the small model to define an L-formula equivalent to the original
LH-formula.

Definition 3.7. Let (M,H) |= T ind be saturated. We say that an LH formula
ψ(x,~c) defines a large subset of M is there is b |= ψ(x,~c) such that b 6∈ scl(~c). This
is equivalent as requiring that there are infinitely many realizations of ψ(x,~c) that
are algebraically independent over H(M)~c.

Definition 3.8. Let (M,H) |= T ind be κ-saturated and let A ⊂ M be smaller

than κ. Let ~b ∈ M be a tuple. We say that ~b is in the small closure of A if
~b ∈ acl(AH(M)) and write ~b ∈ scl(A). Let X ⊂ Mn be A-definable. We say that
X is small if X ⊂ scl(A).

Since T is geometric, scl satisfies the exchange property and thus it is a closure
operator.

Next, we introduce the notion of the H-basis, which first appeared in [13] in the
o-minimal context.

Proposition 3.9. Let (M,H(M)) be an H-structure. Let ~a = (a1, . . . , an) ∈ M .

Then there is a unique smallest tuple ~h ∈ H(M) such that ~a |⌣~h
H.

Proof. Clearly there is a tuple ~h ∈ H such that ~a |⌣~h
H . Choose such a tuple so

that |~h| (the length of the tuple) is minimal. We will now show such a tuple ~h is
unique (up to permutation).

We can write ~a = (~a1,~a2) so that ~a1 is independent over H(M) and ~a2 ∈ scl(~a1).

If ~a2 = ∅, then ~h = ∅ and the result follows. So we may assume that ~a2 6= ∅.
Then ~a2 ∈ acl(~a1,~h). Let ~h′ be another such tuple. Let ~h1 be the list of common

elements in both ~h and ~h′, so we can write ~h = (~h1,~h2) and ~h′ = (~h1,~h
′
2).

Claim ~h2 = ~h′2 = ∅.

Assume otherwise. Since ~a2 ∈ acl(~a1,~h1,~h2)\acl(~a1,~h1) and ~a2 ∈ acl(~a1,~h1,~h
′
2)\

acl(~a1,~h1) then by the exchange property dim(~h′2/~a1
~h1
~h2) < dim(~h′2/~a1

~h1). Since

~a1 is independent over H we get that dim(~h′2/
~h1
~h2) < dim(~h′2/

~h1) and thus since

H is independent, ~h2 has a common element with ~h′2, a contradiction. �

Remark 3.10. Let (M,H(M)) be an H-structure. Let ~a = (a1, . . . , an) ∈ M and
let C ⊂ M be such that C = acl(C) and C is H-independent. As before, there is a

unique smallest tuple ~h ∈ H(M) such that ~a |⌣~hC
H.

Definition 3.11. Let (M,H(M)) be an H-structure. Let ~a = (a1, . . . , an) ∈ M .

Let ~h ∈ H(M) be the smallest tuple such that ~a |⌣~h
H . We call ~h the H-basis

of ~a and we denote it as HB(~a). Given C ⊂ M such that C = acl(C) and C is

H-independent, let ~h ∈ H(M) the smallest tuple such that ~a |⌣C~h
H . We call ~h

the H-basis of ~a over C and we denote it as HB(~a/C). Note that H-basis is unique
7



up to permutation, therefore we will view the H-basis ~h = (h1, . . . , hk) either as a
finite set {h1, . . . , hk} or as the imaginary representing this finite set. If we view it
as a tuple, we will explicitly say so.

We will first apply the H-basis to characterize definable sets in terms of L-
definable sets.

Proposition 3.12. Let (M,H(M)) be an H-structure and let Y ⊂ M be LH -
definable. Then there is X ⊂ M L-definable such that Y△X is small, where △
stands for a boolean connective for the symmetric difference.

Proof. If Y is small or cosmall, the result is clear, so we may assume that both Y
and M \Y are large. Assume that Y is definable over ~a and that ~a = ~aHB(~a). Let
b ∈ Y be such that b 6∈ scl(~a) and let c ∈M \ Y be such that c 6∈ scl(~a). Then b~a,
c~a are H-independent and thus there is Xbc an L-definable set such that b ∈ Xbc

and c 6∈ Xbc. By compactness, we may first assume that Xbc only depends on
tp(b/~a) and applying compactness again we may assume that Xbc does no depend
on tp(b/~a) and we will call it simply X . Thus for b′ ∈ Y and c′ ∈ M \ Y not in
the small closure of ~a, we have b′ ∈ X and c′ ∈ M \X . This shows that Y△X is
small. �

Our next goal is to characterize the algebraic closure in H-structures. The key
tool is the following result:

Lemma 3.13. Let T be a geometric theory, M |= T , (M,H(M)) an H-structure,
and let A ⊂M be acl-closed and H-independent. Then A is aclH-closed.

Proof. Suppose a ∈ M , a 6∈ A. If a 6∈ scl(A), then A ∪ {a} is H-independent, and
using the extension property, we can find ai, i ∈ ω, acl-independent over A∪H(M),
realizing tp(a/A). By Lemma 2.8, each ai realizes tpH(a/A), and thus a 6∈ aclH(A).

If a ∈ scl(A), take a minimal tuple ~b ∈ H(M) such that a ∈ acl(A~b). Using

the coheir property of H-structures, we can find ~bi ∈ H(M), i ∈ ω, such that
~bi are acl-independent over A and realize tp(~b/A). Take ai ∈ acl(A~bi) such that

tp(ai
~bi/A) = tp(a~b/A). Then {ai : i ∈ ω} are acl-independent over A. On the

other hand, for any i ∈ ω, A~biai is a H-independent set and thus by Lemma 2.8

tpH(ai
~bi/A) = tpH(a~b/A) and in particular tpH(ai/A) = tpH(a/A). �

Corollary 3.14. Let T be a geometric theory, M |= T , (M,H(M)) an H-structure,
and let A ⊂M . Then aclH(A) = acl(A,HB(A)).

Proof. By Proposition 3.9, it is clear thatHB(A) ∈ acl(A), so aclH(A) ⊃ acl(A,HB(A)).
On the other hand, A,HB(A) isH-closed, so by the previous Proposition, acl(A,HB(A)) =
aclH(A,HB(A)) and thus aclH(A) ⊂ acl(A,HB(A)) �

It is interesting to check which properties of T are preserved in T ind.

Question 3.15. Does T ind eliminate the quantifier ∃∞?

We give a partial answer. Namely, we will show the elimination of the ∃∞x for

LH-formulas φ(x, ~z) implying H(~z). Note that if a ∈ H(M) and ~h ∈ H(M) then

a ∈ aclH(~h) exactly when a is a part of ~h. Thus we may assume that φ(x, ~z) implies
¬H(x) ∧H(~z). We will be working in a sufficiently saturated H-structure (M,H)
of a geometric theory T .
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First, note that if ~h ∈ H(M) and |φ(M,~h)| = n < ω, then for any a ∈ M

with |= φ(a,~h), we have a ∈ acl(~h), and there is an L-formula φn(x, ~z) such that

φn(M,~h) = φ(M,~h). By compactness, φn(x, ~z) does not depend on the choice

of ~h ∈ H(M), but it may still depend on n (unless T is ω-categorical). Thus,
this approach does not seem to work. Instead, we will take a closer look at the
LH-formula φ(x, ~z).

We say that an L-formula ψ(x, ~y) has a bounded finite number of realizations in

x, if there exists n < ω such that for any ~b, |ψ(M,~b)| < n. Thus, φ(x,~b) is either

inconsistent or witnesses x ∈ acl(~b).

Lemma 3.16. For any ~h ∈ H(M) and a ∈ M with a 6∈ H(M), tpH(a,~h) is
axiomatized by ¬H(x), H(~z), L-formulas, and the formulas of the form

∃~y ∈ H θ(x, ~y, ~z)

or
¬∃~y ∈ H θ(x, ~y, ~z),

where θ(x, ~y, ~z) is an L-formula having a bounded finite number of realizations in
x.

Proof. Assuming a 6∈ H(M) and ~h ∈M , the LH -type of the tuple a~h is determined

by its L-type, and either the fact that a 6∈ scl(~h) or the L-type of some ~k ∈ H(M)

over ~h, such that a ∈ acl(~k,~h). All these properties can be expressed with the given
types of formulas. �

Note that φ(x, ~z) is a conjunction of H(~z), ¬H(x), Boolean combination of L-
formulas and formulas of the form ∃~y ∈ H θ(x, ~y, ~z), where θ(x, ~y, ~z) is an L-formula
having a bounded finite number of realizations in x. Note that elimination of ∃∞x is
preserved under disjunction. Thus, we may assume that φ(x, ~z) is a conjunction of
H(~z), ¬H(x), an L-formula Γ(x, ~z), and/ or formulas of the form ∃~y ∈ H θ(x, ~y, ~z)
or ¬∃~y ∈ H θ(x, ~y, ~z), where θ(x, ~y, ~z) is an L-formula having a bounded finite
number of realizations in x. Note that the class of L-formulas θ(x, ~y, ~z) having a
bounded finite number of realization in x is closed under conjunction and disjunc-
tion. Thus, we may assume that φ(x, ~z) has one of the four forms:

(1) ¬H(x) ∧H(~z) ∧ Γ(x, ~z),
(2) ¬H(x) ∧H(~z) ∧ Γ(x, ~z) ∧ ∃~y ∈ H θ(x, ~y, ~z),
(3) ¬H(x) ∧H(~z) ∧ Γ(x, ~z) ∧ ¬∃~y ∈ H θ(x, ~y, ~z),
(4) ¬H(x) ∧H(~z) ∧ Γ(x, ~z) ∧ ∃~y ∈ H θ1(x, ~y, ~z) ∧ ¬∃~y′ ∈ H θ2(x, ~y

′, ~z),

where Γ(x, ~z) is an L-formula, and θ(x, ~y, ~z), θ1(x, ~y, ~z) and θ2(x, ~y
′, ~z) are L-

formulas having a bounded finite number of realizations in x.

Clearly, in cases (1) and (3), the algebraicity of φ(x,~h) is determined by alge-

braicity of Γ(x, ~z). Indeed, in (3), if Γ(x,~h) is infinite, it defines a large set, and
clearly has an infinite number of realizations that do not satisfy the small formula

∃~y ∈ H θ(x, ~y,~h). Also in cases (2) and (4) we can absorb Γ(x, ~z) in θ(x, ~y, ~z) or
θ1(x, ~y, ~z).

We will now reduce case (4) to case (2). Note that we can assume that θ1(x, ~y, ~z)
implies that ~y is a tuple of distinct elements and is disjoint from ~z, and θ2(x, ~y

′, ~z)
implies the same about ~y′.

The idea of the proof is the following. If we assume that θ(a,~k,~h) holds for some
~k ∈ H(M), then to analyze ∃~y′ ∈ H θ2(a, ~y

′,~h), we will look at the relationship
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between ~k and ~y′, namely, how much of an overlap do we have between ~y′ and ~k. For

each subtuple ~k∗ of ~k, we consider all the tuples ~y′ ∈ H(M) such that ~y′∩~k = ~k∗. It

will turn out that the existence of such ~y′ in H(M) with |= θ2(a, ~y
′,~h) is (uniformly)

L-definable in x~y~z. Then we take the disjunction over all the subtuples of ~y.

Claim 1: Let ~h ∈ H(M), a 6∈ H(M). Suppose ~k ∈ H(M) is such that |=

θ1(a,~k,~h). Let ~k′ be a subtuple of ~k. Suppose ~b ∈ H(M) is such that ~b ∩ ~k = ~k′

and |= θ2(a,~b,~h). Then a ∈ acl(~k′,~h).

Proof of Claim 1: Since |= θ2(a,~b,~h), we have a ∈ acl(~b,~h). On the other hand,

a ∈ acl(~k,~h). Since ~b~h is independent from ~k~h over ~k′~h, we have a ∈ acl(~k′,~h).
Claim 2: Suppose ~y∗ is a subtuple of ~y. Then the formula

∃~y′ ∈ H (~y′ ∩ ~y = ~y∗ ∧ θ2(x, ~y
′, ~z))

is equivalent to an L-formula ∆(x, ~y, ~z) modulo

H(~z) ∧ ¬H(x) ∧H(~y) ∧ θ1(x, ~y, ~z).

Proof of Claim 2: By Claim 1 and compactness, there exists an L-formula
ψ(x, ~y∗, ~z) having a bounded finite number of realizations in x, such that

|= (H(~z) ∧ ¬H(x) ∧H(~y) ∧ θ1(x, ~y, ~z) ∧ ~y
′ ∩ ~y = ~y∗ ∧ θ2(x, ~y

′, ~z)) → ψ(x, ~y∗, ~z).

Let ~y∗∗ be such that ~y′ = ~y∗~y∗∗ (permute the variables if needed). Then modulo
H(~z) ∧ ¬H(x) ∧H(~y) ∧ θ1(x, ~y, ~z),

∃~y′ ∈ H (~y′ ∩ ~y = ~y∗ ∧ θ2(x, ~y
′, ~z))

is equivalent to

∃~y∗∗ ∈ H (θ2(x, ~y
∗~y∗∗, ~z) ∧ ψ(x, ~y∗, ~z)).

The latter is equivalent, modulo H(~z) ∧ ¬H(x) ∧ H(~y∗) ∧ ~y∗∗ ∩ ~y∗~z = ∅ and the
statement that ~y∗∗ is a tuple of distinct elements, to the existence of a tuple ~y∗∗,
acl-independent over x~y~z, such that θ2(x, ~y

∗~y∗∗, ~z)∧ψ(x, ~y∗, ~z) holds true. Indeed,

suppose ~h,~k∗ ∈ H(M), a 6∈ H(M). Note that

θ2(a,~k
∗~y∗∗,~h) ∧ ψ(a,~k∗,~h)

implies that a ∈ acl(~k∗,~h). Then there exists a tuple of distinct elements ~k∗∗ ∈

H(M), disjoint from ~k∗~h, such that

|= θ2(a,~k
∗~k∗∗,~h) ∧ ψ(a,~k∗,~h)

exactly when there exists a tuple ~k∗∗ ∈M , acl-independent over a~k∗~h, such that

|= θ2(a,~k
∗~k∗∗,~h) ∧ ψ(a,~k∗,~h).

This condition is L-definable in x~y~z, as needed, which proves Claim 2.
Next, rewrite

¬H(x) ∧H(~z) ∧ ∃~y ∈ H θ1(x, ~y, ~z) ∧ ¬∃~y′ ∈ H θ2(x, ~y
′, ~z)

as

¬H(x) ∧H(~z) ∧ ∃~y ∈ H (θ1(x, ~y, ~z) ∧ ¬∃~y′ ∈ H θ2(x, ~y
′, ~z)),

and note that it is equivalent to
10



¬H(x) ∧H(~z) ∧ ∃~y ∈ H (θ1(x, ~y, ~z) ∧ ¬
∨

~y∗⊂~y

∃~y′ ∈ H (~y′ ∩ ~y = ~y∗ ∧ θ2(x, ~y
′, ~z))).

By Claim 2, the disjunction above can be replaced with an L-formula in x~y~z, and
therefore can be absorbed in θ1(x, ~y, ~z). This reduces case (4) to case (2). Thus,
we may assume that φ(x, ~z) has form

¬H(x) ∧H(~z) ∧ ∃~y ∈ H θ(x, ~y, ~z),

where θ(x, ~y, ~z) is an L-formula having a bounded finite number of realizations in
x.

Lemma 3.17. Suppose θ(x, y, ~z) is an L-formula having a bounded finite number

of realizations in x. Then for any ~h ∈ H(M), ∃y ∈ H θ(x, y,~h) is infinite if and

only if M |= ∃∞x∃y θ(x, y,~h).

Proof. Left to right is clear. For the other direction, supposeM |= ∃∞x∃y θ(x, y,~h).

Then we can find a sequence (ai : i ∈ ω) of realizations of ∃y θ(x, y,~h), acl-

independent over ~h. For each ai there exists bi ∈M such that M |= θ(ai, bi,~h). We

have ai ∈ acl(bi~h). Thus, bi 6∈ acl(~h), and acl(ai
~h) = acl(bi~h). Then the sequence

(bi : i ∈ ω) is also acl-independent over ~h, and thus we may assume that bi ∈ H(M).

Then ai all realize ∃y ∈ H θ(x, y,~h), as needed.
�

Lemma 3.18. Suppose ~h ∈ H(M), θ(x, ~y, ~z) an L-formula having a bounded finite
number of realizations in x, and implying that ~y = y1 . . . yn is a tuple of distinct

elements and ~y ∩ ~z = ∅. Then the formula ∃~y ∈ H θ(x, ~y,~h) is infinite if and only
if there exists 1 ≤ i ≤ n and b1, . . . bi−1, bi+1, . . . , bn ∈ H(M) such that

∃yi ∈ H θ(x, b1, . . . , bi−1, yi, bi+1, . . . , bn,~h)

is infinite.

Proof. Right to left is clear. For the other direction, suppose ∃~y ∈ H θ(x, ~y,~h) is

infinite. Then it has infinitely many realizations a 6∈ acl(~h). For each such a there

exists ~b ∈ H such that

|= θ(a,~b,~h).

Then a ∈ acl(~b,~h). Note that the tuple ~b acl-independent over ~h. There is a

nonempty minimal subtuple~b′ of~b such that a ∈ acl(~b′,~h). Take any bi contained in
~b′. Then clearly a is interalgebraic (in terms of acl) with bi over b1 . . . bi−1bi+1 . . . bn~h.

Taking infinitely many acl-independent L-conjugates a′b′i of abi over b1 . . . bi−1bi+1 . . . bn~h,
with bi ∈ H(M), we get infinitely many realizations of

∃yi ∈ H θ(x, b1, . . . , bi−1, yi, bi+1, . . . , bn,~h).

�

Proposition 3.19. Suppose φ(x, ~z) is an LH-formula implying H(~z). Then ∃∞x φ(x, ~z)
is first order.

11



Proof. We may assume that φ(x, ~z) has form

¬H(x) ∧H(~z) ∧ ∃~y ∈ H θ(x, ~y, ~z),

where θ(x, ~y, ~z) is an L-formula having a bounded finite number of realizations in
x, and θ(x, ~y, ~z) implies that ~y = y1 . . . yn is a tuple of distinct elements, disjoint
form ~z.

Then by Lemma 3.18, ∃∞x φ(x, ~z) is equivalent (modulo ¬H(x) ∧H(~a)) to

∨

1≤i≤n

∃y1 ∈ H . . . yi−1 ∈ H yi+1 ∈ H . . . yn ∈ H ∃∞x∃yi ∈ H θ(x, ~y, ~z).

By Lemma 3.17, ∃∞x∃y ∈ H θ(x, ~y, ~z) is a first order formula. �

We finish this section with a property of non-trivial geometric theories that we
will use in the next sections.

Definition 3.20. Let T be a geometric theory, letM |= T and let ~a = (a1, . . . , an−1, an) ∈
Mn be such that dim(~a) = n− 1 but any n− 1 subset of {a1, . . . , an−1, an)} is in-
dependent. We call such a tuple an algebraic n-gon.

Proposition 3.21. Let T be a non-trivial geometric theory and let M |= T be
saturated. Then for every n there is m ≥ n and an algebraic m-gon.

Proof. Working over a finite independent tuple, if necessary, me may assume that
T has an algebraic triangle, i.e. an algebraic 3-gon (triangle) abc. Let a′ |= tp(a/b)
be independent from ac over b. Note that then aca′ is an independent tuple. Let c′

be such that tp(a′c′/b) = tp(ac/b). Then aca′c′ is an algebraic 4-gon (quadrangle).
Then take a′′ such that tp(a′′c′) = tp(ac) and a′′ is independent from abca′c′ over
c′. Then aca′a′′ is an independent tuple. Let b′′ be such that tp(a′′b′′c′) = tp(abc).
Then aca′a′′b′′ is an algebraic 5-gon. Continuing in this way, we can generate
algebraic n-gons for an arbitrarily large n. �

4. Lovely pairs, iterated H-structures, and externally definable

sets

In this section we will explore topics motivated by analogies betweenH-structures
and lovely pairs. First, we take a closer look at the connections between the two
constructions. Then we look at the iterated version of the H-structures (similar
to “tuples” of structures and “double pairs”). Finally, we look at the expansion of
H(M) with traces of externally definable sets.

4.1. Independent subsets and lovely pairs. In this subsection we study the
connections between H-structures and lovely pairs. Let T be a geometric theory in
a language L and let N �M |= T . We say that the pair (M,N) is a lovely pair of
models of T if

(1) (Density/coheir property) If A ⊂M is finite dimensional and q ∈ S1(A) is
non-algebraic, there is a ∈ N such that a |= q.

(2) (Extension property) If A ⊂ M is finite dimensional and q ∈ S1(A) is
non-algebraic, there is a ∈M , a |= q and a 6∈ acl(A ∪N).

Note that the properties characterizing lovely pairs are very similar to the ones
of H-structures, the role of the independent set H is played by the elementary

12



substructure N . In this section we will only use the definition of lovely pairs. More
information on lovely pairs of geometric structures can be found in [3].

Proposition 4.1. Let T be a geometric theory and let (M,H) be an H-structure.
Let N = acl(H). Then (M,N) is a lovely pair of models of T .

Proof. Let T , (M,H) and N be as above.
Claim N �M .
We apply the Tarski-Vaught test. Let ~a ∈ N , let b ∈ M and assume that

M |= ϕ(b,~a). If b ∈ acl(~a) then b ∈ N and N |= ϕ(b,~a). If b 6∈ acl(~a) let
p(x) = tp(b/~a). By the coheir property for H-structures there is b′ ∈ H such that
tp(b′/~a) = tp(b/~a)

Now we check that (M,N) satisfies the coheir property. Let A ⊂ M be finite
dimensional and let q ∈ S1(A) be non-algebraic. By the coheir property for H-
structures, there is b ∈ H such that b |= q. Since N = acl(H) we have b ∈ N .

Now we check that (M,N) satisfies the extension property. Let A ⊂M be finite
dimensional and let q ∈ S1(A) be non-algebraic. By the extension property for H-
structures, there is b ∈ M such that b |= q and b 6∈ acl(A ∪H). Since N = acl(H)
then b 6∈ acl(A ∪N) as desired. �

Let P be a new predicate that does not appear in L and let LP = L ∪ {P} be
the old language extended with a new predicate symbol. If (M,N) is a lovely pair
of models of T , we can study (M,N) as an LP structure by interpreting P as N .
In [3] it is shown that if (M,N) and (M ′, N ′) are lovely pairs of models of T , then
Th((M,N)) = Th((M ′, N ′)) (seen as LP structures). Note that Corollary 2.9 is
the analogous result for H-structures. We denote by TP this common theory in the
language LP .

It is shown in [3] that when T is geometric, weakly 1-based, and ω-categorical,
then the associated theory TP of lovely pairs is also ω-categorical. This is not the
case for the associated theory T ind:

Example 4.2. Let T be the theory of infinite dimensional vector spaces over a fixed
finite field, say F2. Note that T is strongly minimal, ω-categorical and 1-based. Let
V |= T be countable and let H = {vj : j ∈ ω} be an enumeration of a basis. Let
i < ω and let Hi = {vj : j ∈ ω, j > i}. Then (V,Hi) |= T ind for every i and the
models (V,Hi), (V,Hj) are not isomorphic for i < j. Thus the theory T ind is not
ω-categorical.

Now let Heven = {v2j : j ∈ ω}, then as before (V,Heven) |= T ind and it is not
isomorphic to any of the pairs (V,Hi). Also note that (V,Heven) is an H-structure,
but for every i ∈ ω the pair (V,Hi) is NOT an H-structure.

If we take algebraic closures, then we see that for every i < ω, (V, acl(Hi)) is
not a model of Tp, since it does not satisfy the axiom corresponding to the ex-
tension property (see the third scheme of axioms in 2.10). On the other hand,
(V, acl(Heven)) is a model of Tp and it is the unique model up to isomorphism.

The previous example shows:

Remark 4.3. Let T be geometric and let (M,H) |= T ind. Then (M, acl(H))
may not be a model of TP . The pair (M, acl(H)) will satisfy the scheme of axioms
corresponding to the density property, but it may fail to satisfy the scheme of axioms
corresponding to the extension property.
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4.2. Iterating the construction: H-tuples. In this subsection we show how to
iterate the process of expanding by H-structures. We will do the details for an
expansion with two extra predicates but this procedure can be easily generalized to
n tuples of predicates. As before, we start with T a geometric theory in a language
L and we consider H1, H2 two new predicate symbols. Let L2H = L∪{H1}∪{H2}.
Let T ′ be the LH -theory of all structures (M,H1, H2), where M |= T and H1(M)∪
H2(M) is an L-algebraically independent subset of M and H1(M) ∩H2(M) = ∅.

Definition 4.4. We say that (M,H1(M), H2(M)) is an H-triple if

(1) (M,H(M)) |= T ′

(2) (Density/coheir property for H1) If A ⊂ M is finite dimensional and q ∈
S1(A) is non-algebraic, there is a ∈ H1(M) such that a |= q.

(3) (Density/coheir property for H2/H1) If A ⊂ M is finite dimensional and
q ∈ S1(A) is non-algebraic, there is a ∈ H2(M) such that a |= q and
a 6∈ acl(A ∪H1(M)).

(4) (Extension property) If A ⊂ M is finite dimensional and q ∈ S1(A) is
non-algebraic, there is a ∈M , a |= q and a 6∈ acl(A ∪H1(M) ∪H2(M)).

As before, if (M,H1(M), H2(M)), (N,H1(N), H2(N)) areH-triples, then Th(M,H1(M), H2(M)) =
Th(N,H1(N), H2(N)), we denote the common theory by T tri.

We will now follow the approach from Fornasiero [16] and consider anH-structure
associated to the small closure in (M,H1). Fornasiero [16] considers lovely pairs in
a general framework of a closure operator associated to an existential matroid. In
this paper we will only consider the special case of the small closure.

Let T2 be the LH -theory of all structures (M,H1, H2), where (M,H1(M)) is an
H-structure and H2(M) is an algebraically independent subset of M over H1(M) =
scl(∅).

Definition 4.5. We say that (M,H(M), H2(M)) is an scl-structure if

(1) (M,H1(M), H2(M)) |= T2

(2) (Density/coheir property for scl) If A ⊂ M is finite dimensional and q ∈
Sind

1 (A) is non-small, there is a ∈ H2(M) such that a |= q.
(3) (Extension property) If A ⊂ M is finite dimensional and q ∈ Sind

1 (A) is
non-small, there is a ∈M , a |= q and a 6∈ scl(A ∪H2(M)).

Now we will show that considering H-triples is equivalent as considering scl-
structures

Proposition 4.6. Let T be a geometric structure, let M |= T and let H1(M) ⊂M ,
H2(M) ⊂M be distinguished subsets. Then (M,H1(M), H2(M)) is a scl-structure
if and only if (M,H1(M), H2(M)) is an H-triple.

Proof. Assume first that (M,H1(M), H2(M)) is a scl-structure. Then the pair
(M,H1(M)) is an H-structure and thus (M,H1(M), H2(M)) satisfies the den-
sity/coheir axiom forH1. Now letA ⊂M be finite dimensional and let q ∈ S1(A) be
non-algebraic. Let q̂ ∈ Sind

1 (A) be an extension of q that contains no small formula
with parameters in A. Then by the Density/coheir property for scl it follows that
there is a ∈ H2(M) such that a |= q̂. In particular, a |= q and a 6∈ acl(A ∪H1(M))
and it follows the density/coheir property for H2/H1. Finally, since the same q̂ is
not small, there is c ∈M , c |= q̂ and c 6∈ scl(A∪H2(M)) = acl(A∪H1(M)∪H2(M)).
Thus the extension property H-triples holds.
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Now assume that (M,H1(M), H2(M)) is an H-triple. By the density property
for H1 and the extension property it follows that (M,H1(M)) is an H-structure
and that (M,H1(M), H2(M)) |= T2. Now let A ⊂M be finite dimensional and let
q̂ ∈ Sind

1 (A) be non-small. We may enlarge A and assume that A = A ∪HB(A),
so that A is H1-independent. Let q be the restriction of q̂ to the language L. Note
that q̂ is the unique extension of q to a non-small type. By the density/coheir
property for H2/H1 there is a ∈ H2(M) such that a |= q, a 6∈ acl(H1A) and thus
a |= q̂. Finally the extension property follows from the extension property for
H-triples. �

We will now show that the class of scl-structures is "first order", that is, that
there is a set of axioms whose |T |+-saturated models are the scl-structures. For
this we consider H-triples.

Proposition 4.7. Assume T eliminates ∃∞. Then the theory T tri is axiomatized
by:

(1) T ′.
(2) For all L-formulas ϕ(x, ~y)

∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H1)).
(3) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)

such that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-
braic in x)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H2) ∧
∀w1 . . . ∀wm ∈ H1¬ψ(x,w1, . . . , wm, ~y))

(4) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)
such that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-
braic in x)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x 6∈ H1 ∧ x 6∈ H2) ∧
∀w1 . . . ∀wm ∈ H1 ∪H2¬ψ(x,w1, . . . , wm, ~y))

Furthermore, if (M,H1(M), H2(M)) |= T tri is |T |+-saturated, then (M,H1(M), H2(M))
is an H-triple.

The proof is the same one as for H-structures and we leave it for the reader.
Note that since T eliminates the quantifier ∃∞, then T ind eliminates the quan-

tifier ∃large. This is the main reason why the theory of H-triples is axiomatizable.

4.3. Elimination of ∃y ∈ H. In this subsection we will look at elimination of
quantifiers in the structure obtained by naming all the externally definable relations
on H(M) in an H-structure (note we have already shown any LH -definable relation
on H(M) is L-definable). This problem is known as elimination of ∃y ∈ P , where
P is a unary predicate symbol. Such an elimination is known to hold in the case
when P is an elementary submodel of a model of a stable theory (by definability
of types), or an elementary submodel of a sufficiently saturated model of an NIP
theory (established by Shelah [25]). The case when P is the smaller model in a
lovely pair of models of a simple theory has been considered in [22], where the
elimination of ∃y ∈ P has been shown to be equivalent to the property called
weak lowness. In the case of lovely pairs of geometric structures, the elimination of
∃y ∈ P was shown in [3]. Here we will show that any H-structure of a geometric
theory eliminates ∃y ∈ H .

We will follow the Definition 1.1 from [22].
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Definition 4.8. Let T be a first order theory in a language L, and let (M,H) be
an expansion of M with a new unary predicate. We say that (M,H) eliminates
the quantifier ∃y ∈ H , if for any L-formula φ(~x, y, ~z) and ~a ∈ M , there exists an

L-formula ψ(~x, ~w) and ~b ∈M , such that for any ~c ∈ H(M),

(M,H) |= ∃y ∈ H φ(~c, y,~a) ⇐⇒ M |= ψ(~c,~b).

If the choice of ψ(~x, ~w) does not depend on the choice of ~a ∈ M (i.e. depends
only of the formula φ(~x, y, ~y)), we say that the elimination is uniform.

Proposition 4.9. Let T be a geometric theory, and let (M,H) be an H-structure
of T . Then (M,H) eliminates the quantifier ∃y ∈ H.

Proof. Let φ(~x, y, ~z) be an L-formula, and let ~a ∈M . Let ~c ∈ H(M).
If the formula φ(~c, y,~a) is non-algebraic, then clearly , it is realized in H(M).
Now, suppose the formula φ(~c, y,~a) is algebraic and is realized by e ∈ H(M),

where e is not a part of the tuple ~c. Let ~d = HB(~a), viewed as a tuple. If e is not

a part of ~d, then e is not algebraic over ~c~d, and thus ~ce 6 |⌣ ~d
~a. This contradicts the

definition of HB(~a). Thus e is a part of ~d.
Thus for any c ∈ H(M), we have (M,H) |= ∃y ∈ H φ(c, y,~a) if and only if
either φ(~c, y,~a) is non-algebraic,
or M |= φ(~c, e,~a) where e is a part of ~cHB(~a).
Both conditions on ~c are L-definable over the elements of ~aHB(~a).

�

Question 4.10. Is this elimination uniform? Note that the L-definition of ∃y ∈
H φ(~c, y,~a) involves HB(~a), and this tuple could be arbitrarily long.

5. Strongly minimal, SU-rank 1 and thorn rank 1 cases

In this section we study four special cases of geometric theories, when the under-
lying theory T is strongly minimal, SU -rank 1, thorn rank 1 or strongly dependent
of finite dp-rank. In these cases, we show that the theory T ind becomes ω-stable,
supersimple of SU -rank less than or equal to ω, super-rosy of thorn-rank less than
or equal to ω or strongly dependent respectively. We also characterize in each of
these cases when T is trivial in terms of the rank of T ind.

5.1. Strongly minimal case. Let T be a strongly minimal theory (in particular
it is a geometric theory). In this section we prove that T ind is ω-stable and has
Morley rank less than or equal to ω.

Proposition 5.1. Let T be strongly minimal. Then T ind is ω-stable.

Proof. Suppose (M,H(M)) is a sufficiently saturated model of T ind, and A ⊂ M
is a countable set. We may assume that A is H-independent. We will count the
number of types of the form tpH(b/A) where b ∈M .

Case 1: b ∈ H(M). Then bA is H-independent, and tpH(b/A) is determined by
tp(b/A) and the fact that b ∈ H(M). By strong minimality of T , there are at most
countably many such types.

Case 2: b ∈ scl(A). Then there are h1, . . . , hl ∈ H(M) such that b ∈ acl(h1 . . . hlA).
By Case 1, there are at most countably many types of the form tpH(h1, . . . , hl/A)
where hi ∈ H(M), and thus at most countably many types of the form tpH(b/A)
for b as above.
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Case 3: b 6∈ scl(A). Note that bA is H-independent, and thus tpH(b/A) is
determined by tpH(b/A) and the fact that b 6∈ scl(A). There is a unique such
type. �

In the setting of lovely pairs of strongly minimal theories, there is a strong
connection between the underlying geometry of the theory T and the Morley rank
of the associated theory of lovely pairs TP . Buechler [9] showed that T is trivial iff
MR(TP ) = 1, T is locally modular non-trivial iff MR(TP ) = 2 and T is not locally
modular iff MR(TP ) = ω. He used this result to prove that pseudolinearity implies
linearity. We will now show that the Morley rank of the theory T ind “detects”
trivial theories, in the sense that T is trivial iff MR(T ind) ≤ 2 and non-trivial iff
MR(T ind) = ω.

Proposition 5.2. Let T be strongly minimal and trivial (i.e acl(A) =
⋃

a∈A acl(a)).

Let (M,H) |= T ind. Then T ind has Morley rank 1 iff for all a ∈ M , a 6∈ acl(∅),
acl(a)\ acl(∅) is finite. Otherwise, T has Morley rank 2.

Proof. Let (M,H) be a sufficiently saturated model of T ind. Note that because of
triviality, aclH = acl in (M,H).

Let b ∈ H(M). Note for any (small) A ⊂ M , there is a unique non-algebraic
LH-type of an element of H(M) over A. Thus MR(b) = 1. This shows that
MR(H(x)) = 1.

Now, let b 6∈ H(M). Let A be a small subset of M . If b ∈ scl(A), by triviality of
T , either b ∈ acl(A), in which case, MR(b/A) = 0, or b ∈ acl(h)\ acl(A) for some
h ∈ H(M). Note also that h ∈ acl(b). Then MR(b/A) = MR(h/A) = MR(h) = 1.
This shows that Morley rank of any small definable set in (M,H) is ≤ 1 (=1 if the
set is infinite).

Note that any two large definable sets in (M,H) have a large intersection, so
there is a unique large type. It follows that T ind has Morley rank ≤ 2.

Suppose acl(a)\ acl(∅) is finite for all non-algebraic a ∈ M , say of size n. Let
θ(x) be the first order formula expressing “x ∈ acl(h)\ acl(∅) for some h ∈ H(M)”.
Then θ(x) has n non-algebraic extensions over any small A ⊂ M . Since there is a
unique large type over A, there are only finitely many non-algebraic types over A.
Thus, in this case T ind has Morley rank 1.

Suppose acl(a)\ acl(∅) is infinite for all non-algebraic a ∈ M . Then we can find
L-formulas φn(x, y), n ∈ ω, such that for a ∈ M\ acl(∅), we have φn(M,a) ⊂
acl(a)\ acl(∅), and φn(M,a) are finite, disjoint and non-empty. Let ψn(x) = ∃y ∈
H φn(x, y). Then ψn(M) are infinite and small. From the disjointness of φn(M,a)
for a fixed a and independence of H(M) it follows that ψn(M) are disjoint. Thus,
in this case, T ind has Morley rank 2.

�

Proposition 5.3. Let T be strongly minimal and non-trivial. Then T ind has Mor-
ley rank ω.

Proof. Suppose (M,H(M)) is sufficiently saturated model of T ind, and A ⊂ M is
a countable set. We may assume that A is H-independent. Let b ∈M .

Case 1: b ∈ H(M). Then bA is H-independent, and tpH(b/A) is determined by
tp(b/A) and the fact that b ∈ H(M). In this case MR(b/A) ≤ 1.

Case 2: b ∈ scl(A). Then there are h1, . . . , hl ∈ H(M) such that b ∈ acl(h1 . . . hlA).
We may assume that l is minimal. Then b is LH -interalgebraic with h1 . . . hl over
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A. Thus MR(b/B) = MR(h1 . . . hl/A) = l. Since T is not trivial, by Proposition
3.21 for every n there exists an algebraic n-gon a1, . . . , an−1, an, and we can assume
that a1, . . . , an−1 ∈ H(M) (and thus an 6∈ H). We may also assume that a1 . . . an

is independent from A over ∅. Thus for any b ∈ scl(A), MR(b/A) < ω but can have
arbitrarily large finite values.

Case 3: b 6∈ scl(A). As noted in the proof of Proposition 5.1, there a unique such
1-type overA. ThenMR(b/A) ≤ ω. Since T is not trivial, for every n there exists an
algebraic n+2-gon a1, . . . , an+2, where an+2 = b, an+1 6∈ H(M), a1, . . . , an ∈ H(M)
and a1 . . . an+2 is independent from A over ∅. Then tpH(b/a1 . . . an+1A) has Morley
rank n. Therefore MR(b/A) ≥ ω. Thus MR(b/A) = ω.

�

Next we will take a look at the geometric properties of T ind. It is well-known
that in case of lovely pairs (or belles paires, in the stable case), if T is one-based,
then so is the pair theory TP . This is no longer the case for T ind, as the following
example illustrates.

Example 5.4. Let (V,+, 0, H) be a vector space over Q, where H(V ) = {vi :
i ∈ ω} consists of linearly independent vectors over Q. Furthermore assume that
V 6= span({vi : i ∈ ω}). Then (V,+, 0, {vi : i ∈ ω}) |= T ind where T is the theory
of vector spaces over Q. Let u ∈ V \ span({vi : i ∈ ω}). Note that u being generic
is H-independent and that aclH(u) = span(u). Let t = u+ v1.

Claim T ind is not 1-based.
Note that t is small over u, t is interdefinable with v1 over u and that MR(tp(t/u)) =

1. Let t′ = u+v2, then tpH(v1/u) = tpH(v2/u) (since they are H-independent) and

thus tpH(t/u) = tpH(t′/u). Note that t |⌣
ind

u
t′. Note also that t− t′ = v1 − v2 so t

is interdefinable with {v1, v2} over t′. Thus MR(tpH(t/t′)) = 2 and thus t 6 |⌣
ind

t′
u.

Hence T ind is not 1-based.

Carmona showed in [10] that when T is linear, T ind is CM-trivial.

5.2. SU-rank one theories. Let T be an SU -rank one theory.

Theorem 5.5. The theory T ind is supersimple.

Proof. We will prove that non-dividing has local character.
Let (M,H(M)) |= T ind be saturated. Let C ⊂ D ⊂M be small sets and assume

that C = aclH(C) and D = aclH(D). Note that both C and D are H-independent.
Let ~a ∈ M . We will find "geometric conditions" for the type of ~a over C and D
that guarantee that tpH(~a/D) does not divide over C.

We may write ~a = (~a1,~a2,~a3) ∈M so that ~a1 is an independent tuple over CH ,
~a2 is an independent tuple over C~a1, ~a2 ∈ acl(HC~a1) and ~a3 ∈ acl(C~a1~a2). Assume
that ~a1 is an independent tuple over DH and that HB(~a/D) = HB(~a/C).

Claim tpH(~a/D) does not divide over C.
Let p(~x,D) = tp(~a1, D). Let {Di : i ∈ ω} be an LH -indiscernible sequence

over C. Since ~a1 is independent over D, tp(~a1, D) does not divide over C and
∪i∈ωp(~x,Di) is consistent. We can find ~a′1 |= ∪i∈ωp(~x,Di) such that {~a′1Di : i ∈ ω}
is indiscernible and ~a′1 is independent over ∪i∈ωDi. By the generalized extension
property, we may assume that ~a′1 is independent over ∪i∈ωDiH . Note that ~a1D
is H-independent, ~a1Di is also H-independent for any i ∈ ω. So by Lemma 2.8
tpH(~a1D) = tpH(~a′1Di) for any i ∈ ω.
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Now let ~h = HB(~a/C) (viewed as a tuple) and let q(~y,~a1, D) = tp(~h,~a1, D).

Note that ~h is an independent tuple over ~a1D (as well as an independent tu-
ple over ~a1C). Since {Dia

′
1 : i ∈ ω} is an L-indiscernible sequence, there is

~h′ |= ∪i∈ωq(~y,~a
′
1, Di). We may assume that ~h′ is independent from ∪i∈ωDia

′
1.

By the generalized coheir/density property, we may assume that ~h′ ∈ H . Note

that since each ~a′1Di is H-independent, then ~h′~a′1Di is also H-independent. On

the other hand, tp(~h,~a1, D) = tp(~h′,~a′1, Di) for each i, so by Lemma 2.8 we have

tpH(~h,~a1, D) = tpH(~h′,~a′1, Di). This shows that tp(~a1,~h/D) does not divide over

C and since ~a ∈ acl(~a1,~hC) we get that tp(~a/D) does not divide over C.
Since for anyD and ~a we can always choose a countable set C with the properties

described above, T is simple.
Given any D = aclH(D) and a tuple ~a ∈ M , write ~a = (~a1,~a2,~a3) ∈ M so

that ~a1 is an independent tuple over DH , ~a2 is an independent tuple over D~a1,
~a2 ∈ acl(HD~a1) and ~a3 ∈ acl(D~a1~a2). We can always choose a finite B ⊂ D such
that for C = aclH(B) we haveHB(~a/C) = HB(~a/D) and ~a3 ∈ acl(C,~a1,~a2). Then
tp(~a/D) does not divide over B and T is supersimple. �

Proposition 5.6. Let (M,H) |= T ind be saturated, let C ⊂ D ⊂ M be small and
such that C = aclH(C), D = aclH(D) and let a ∈ M . Then tp(a/D) forks over C
iff a ∈ D \C or a ∈ scl(D) \ scl(C) or HB(a/C) 6= HB(a/D).

Proof. In the proof of Theorem 5.5 we showed that if a ∈ C or if HB(a/C) =
HB(a/D) then tp(a/D) does not fork over C. So it remains to show the other
direction, which we do case by case.

Case 1: Assume that a ∈ D \ C, then a became algebraic over D and tp(a/D)
forks over C.

Case 2: Assume that a ∈ scl(D) \ scl(C). Let ~d ∈ D and let ~c ∈ C be such that

a ∈ acl(~c~dH). We can choose ~d independent over HC. Let ~h ∈ H be such that

a ∈ acl(~c~d~h). Let p(x, ~y) = tpH(a, ~d/C).

Let {~di : i ∈ ω} be an L -indiscernible sequence in tp(~d/C) over C such that

{~di : i ∈ ω} is independent over C. By the generalized extension property, we

may assume that {~di : i ∈ ω} is independent over HC. Note that by Lemma 2.8

{~di : i ∈ ω} is an LH -indiscernible sequence over C. Assume, in order to get a

contradiction, that there is a′ |= ∪i∈ωp(x, ~di). Then there are {~hi : i ∈ ω} such

that a′ ∈ acl(~di,~c,~hi) for every i. But a′ 6∈ acl(CH), so ~d0 6 |⌣CH
~d1, a contradiction.

Case 3: Assume that HB(a/D) 6= HB(a/C). Then HB(a/D) is a proper

subset of HB(a/C). Write ~hC = HB(a/C), ~hD = HB(a/D) and let ~hE ∈ H be

such that ~hC = ~hD
~hE . Note that ~hE 6= ∅ and that ~hE ∈ D is an independent tuple

over C.
Let p(x, ~y) = tpH(a,~hE/C). Let {~hi

E : i ∈ ω} be an indiscernible sequence in

tp(~hE/C) such that {~hi
E : i ∈ ω} is independent over C. Then by the generalized

density property, we may assume that the sequence {~hi
E : i ∈ ω} belongs to H .

Note that by Lemma 2.8, the sequence {~hi
E : i ∈ ω} is indiscernible over C. We

will show that ∪i∈ωp(x,~h
i
E) is inconsistent.

Assume, not, so there is a′ |= ∪i∈ωp(x,~h
i
E). Then we can find ~hDi

in H such

that HB(a′/C) = ~hDi

~hi
E . Since the hi

E are independent, we get that the H-basis
of a′ over C is not unique, a contradiction. �
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Corollary 5.7. Let (M,H) |= T ind be saturated, let C ⊂ M be small and such
that C = aclH(C) and let a ∈ H(M). Then SU(a/C) ≤ 1.

Proof. Clearly SU(a/C) = 0 iff a ∈ C. If a 6∈ C, then HB(a/C) = {a} so if it forks
over some supersetD of C by Proposition 5.6 we must have thatHB(a/ aclH(D)) =
∅ and that means that a ∈ aclH(D). �

Corollary 5.8. Let T be non-trivial and let (M,H) |= T ind be saturated, let C ⊂M
be small such that C = aclH(C) and let a ∈M . Then

(1) a ∈ C iff SU(tpH(a/C)) = 0
(2) a ∈ scl(C) iff SU(tpH(a/C)) < ω and SU(tpH(a/C)) = |HB(a/C)|.
(3) a 6∈ scl(C) iff SU(tpH(a/C)) = ω.

Proof. If a ∈ scl(C), then a is interalgebraic with HB(a/C) over C. By Corollary
5.7, SU(tpH(HB(a/C)/C)) = |HB(a/C)| and thus SU(tpH(a/C)) = |HB(a/C)|.
Since T is not trivial, there are algebraic n-gons for n large enough and thus we can
get arbitrarily large values for SU(a/C). If a 6∈ scl(C), then by Proposition 5.6 and
the existence of algebraic n-gons for n large enough shows that SU(tp(a/C)) = ω.
The other statements are clear. �

Corollary 5.9. Let T be trivial and let (M,H) |= T ind be saturated, let C ⊂M be
small such that C = aclH(C) and let a ∈M . Then

(1) a ∈ C iff SU(a/C) = 0
(2) If a ∈ scl(C) \ C then SU(tpH(a/C)) = 1.
(3) If a 6∈ scl(C) then SU(tpH(a/C)) = 1.

Proof. The first statement is clear. If a ∈ scl(C) \C then by triviality of T there is
a single h ∈ H such that a ∈ acl(h) and by Corollary 5.7 SU(a/C) = SU(h/C) = 1.
If a 6∈ scl(C) and D is a superset of C such that tpH(a/D) forks over C, then by
Proposition 5.6 and triviality we must have that a ∈ aclH(D). �

Remark 5.10. Note that in the case when T is strongly minimal, the behav-
ior of Morley rank maybe different form that of the SU-rank (U-rank). Namely,
as we showed in Proposition 5.3, for a trivial strongly minimal theory T where
acl(a)\ acl(∅) is infinite for a 6∈ acl(∅), the theory T ind has Morley rank 2 (while its
U-rank is 1).

Corollary 5.11. (Coordinatization) Let (M,H) |= T ind be κ-saturated, let C ⊂M
be such that C = aclH(C), |C| < κ and let ~a ∈ Mn. Write ~a = ~a1~a2~a3 where ~a1

is algebraically independent over HC, ~a2 is algebraically independent over C~a1 and
~a2 ∈ scl(C~a1) and ~a3 ∈ acl(~a1~a2C). Then for every e ∈ ~a1, tpH(e/C) is regular, ~a2

is interalgebraic with HB(~a/C) over C~a1 and for each h ∈ HB(~a/C), tpH(h/C~a1)
is regular. So there is an explicit coordinatization in T ind in terms of types of real
elements.

Our next goal is to describe canonical bases in T ind, for any SU-rank 1 theory
T . Note that since T ind is supersimple, it eliminates hyperimaginaries, so canonical
bases exist as imaginaries, both in T and T ind. Let Cb(~a/B) denote Cb(stp(~a/B)),
and CbH(~a/B) denote Cb(stpH(~a/B)).

Lemma 5.12. Let (M,H) be a sufficiently saturated H-structure of T , B ⊂ M
an H-independent set, and ~a ∈ M , h = HB(~a/B) (viewed as an imaginary rep-
resenting a finite set). Suppose e ∈ acleq(B) (in the original theory) is such that

~ah |⌣e
B. Then ~a |⌣

ind

e
B.
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Proof. We may assume that ~a = ~a1~a2~a3, where ~a1 acl-independent over B∪H(M),
~a2 ∈ acl(H(M)B~a1)\ acl(B~a1), ~a3 ∈ acl(B~a1~a2). Note that ~a2 ∈ acl(~a1Bh), so
~ah |⌣e

B implies that ~a2 ∈ acl(~a1eh) and thus HB(~a/B) = HB(~a/e). Since

~ah |⌣e
B, we also have ~a3 ∈ acl(e~a1~a2). Since HB(~a/B) = HB(~a/e) and ~ah |⌣e

B

by our characterization of forking in T ind we get ~a |⌣
ind

e
B. �

Proposition 5.13. Let (M,H) be a sufficiently saturated H-structure of T , B ⊂M
an H-independent set, and ~a ∈ M . Then CbH(~a/B) and Cb(~aHB(~a/B)/B)) are
interalgebraic.

Proof. Let e = Cb(~aHB(~a/B)/B)). We saw in the previous lemma that ~a |⌣
ind

e
B

and thus CbH(~a/B) ∈ acleq(e). Now let {~ai : i < ω} be an LH -Morley sequence in
tpH(~a/ acleq

H (B)). Let hj = HB(~aj/B) (viewed as an imaginary representing a finite
set). Note that hj ∈ dclH(~ajB). Thus {~aihi : i < ω} is also an LH -Morley sequence
over B. This implies hj = HB(~aj/B~a<jh<j), and hence tp(~ajhj/B~a<jh<j) does
not fork (in the sense of L) over B. Thus, {~aihi : i < ω} is also an L-Morley
sequence over B in tp(~ah/B). Since tp(~a0h0/{~aihi : 0 < i < ω}B) is a free
extension of tp(~a0h0/{~aihi : 0 < i < ω}) we also get that e = Cb(~a0h0/{~aihi : 0 <
i < ω}). It follows that e ∈ acleq({~aihi : i < ω}).

Since T ind is supersimple there is N ∈ ω such that for all n ≥ N , ~an |⌣
ind

~a<N

B. In

particular HB(~an/B) = HB(~an/~a<N ) and thus hn ∈ dclH(~ai : i < ω) for every n.
We then get e ∈ acleq

H ({~ai : i < ω}). Now, since {~ai : i < ω} is a Morley sequence
in tpH(~a/ acleq

H (B)), we have

{~ai : i < ω}
ind

|⌣
CbH(~a/B)

B,

and thus also

{~ai : i < ω}
ind

|⌣
CbH(~a/B)

e.

It follows that e ∈ acleq
H (CbH(~a/B)), as needed.

�

Remark 5.14. Note that Proposition 5.13 implies geometric elimination of imag-
inaries in T ind down to imaginaries of T , when T is a supersimple SU-rank 1
structure.

Question 5.15. If T is a geometric theory, does T ind have (geometric) elimination
of imaginaries down to imaginaries of T?

Example 5.16. Let (V,+, 0, H) = (V,+, 0, {vi : i ∈ ω}) be the structure from Ex-
ample 5.4. We will give another proof of non-1-basedness of T ind = Th(V,+, 0, H),
using Lemma 5.13. Take t, u, v1 as in Example 5.4, so u, t are generic and t = u+v1.

First note that HB(t/u) = {v1}. Now, by Lemma 5.13, CbH(t/u) is interal-
gebraic (in (T ind)eq) with Cb(tv1/u). Note that Cb(tv1/u) is interdefinable with
u. On the other hand, u 6∈ aclH(t) = acl(t) = span(t). Thus, CbH(t/u) is not
algebraic over t, and therefore T ind is not 1-based.

Let t′ = u + v2, then t, t′ are the first two elements in a Morley sequence in
tpH(t/u). Note that t− t′ = v1 − v2, so v1, v2 ∈ aclH(t, t′) and thus u ∈ aclH(t, t′).
We will show below that when T is 1-based, T ind is 2-based : we need two elements
in a Morley sequence in T ind to recover the canonical base.
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Carmona [10] proved that when T is linear SU -rank one theory, T ind is CM-
trivial. We will show below that if T is 1-based, then T ind is 2-based:

Proposition 5.17. Let T be a simple theory of SU -rank 1 and assume that T is
1-based. Let (M,H) |= T ind be saturated, let A ⊂ M be small and let p ∈ SH

k (A).
Then whenever {~ai : i ∈ ω} is an LH -Morley sequence in p over A we have that

~a2 |⌣
ind

~a0~a1
A.

Proof. Let {~ai : i ∈ ω} be an LH -Morley sequence in p over A. We can write
~ai = ~ai

1~a
i
2~a

i
3 where ~ai

1 is an independent tuple over AH(M), ~ai
2 is an independent

tuple over A~ai
1 and ~ai

2 ∈ scl(A~ai
1) and ~ai

3 ∈ acl(A~ai
1a

i
2). Let ~hi = HB(~ai/A) seen as

a tuple. We may choose the ordering of ~hi so that {~ai~hi : i ∈ ω} is an LH -Morley

sequence in tp(~a0~h0/A). Note that both {~ai : i ∈ ω} and {~ai~hi : i ∈ ω} are L-

Morley sequences over A. Indeed, since ~ai~hi |⌣
ind

A
~a0~h0 . . .~ai−1~hi−1, we have that

~ai
1
~hi is an acl-independent tuple over A~a0~h0 . . .~ai−1~hi−1. Since ~ai~hi ∈ acl(A~ai

1
~hi),

it follows that ~ai~hi |⌣A
~a0~h0 . . .~ai−1~hi−1, and thus, {~ai~hi : i ∈ ω} is an L-Morley

sequence over A. Then clearly {~ai : i ∈ ω} is also L-Morley over A.

Since T is 1-based and {~ai~hi : i ∈ ω} is an L-Morley sequence, we have that

~a1~h1 |⌣~a0~h0
A, in particular ~a1

2 ∈ acl(~a1
1
~h1~a0

1~a
0
2
~h0). Since T is 1-based and {~ai : i ∈

ω} is a L-Morley sequence, we also get ~a1
3 ∈ acl(~a1

1~a
1
2~a

0
1~a

0
2~a

0
3). Thus HB(~a1/~a0) ⊂

{~h0~h1}. Similarly, HB(~a2/~a0) ⊂ {~h0~h2} and HB(~a2/~a1) ⊂ {~h1~h2}.

Note that ~h2 = HB(~a2/A) = HB(~a2/A~a0~a1) ⊂ HB(~a2/~a0~a1). We want to show

that ~a2 |⌣
ind

~a0~a1
A, so it suffices to show that ~h2 = HB(~a2/~a0~a1) and to show this it

suffices to prove that HB(~a2/~a0~a1) ⊂ ~h2. Note that HB(~a2/~a0~a1) ⊂ HB(~a2/a0)∩

HB(~a2/~a1) = {~h0~h2} ∩ {~h1~h2}. Since ~hi = HB(~ai/A) are disjoint from acl(A),

and {~ai~hi : i ∈ ω} is an L-Morley sequence, the tuples ~hi are disjoint. Thus,

{~h0~h2} ∩ {~h1~h2} = ~h2. Hence HB(~a2/~a0~a1) ⊂ ~h2, as needed.
�

Remark 5.18. Note that a 2-based SU-rank 1 theory is 4-pseudolinear, meaning
that canonical bases of plane curves have SU-rank ≤ 4. Indeed, suppose SU(ab/A) =
1, and let {aibi : i ∈ ω} be a Morley sequence in tp(ab/A). Then 2-basedness implies
Cb(ab/A) ⊂ acleq(a0b0, a1b1), and therefore SU(Cb(ab/A)) ≤ 4. In [9], it is shown
that pseudolinear strongly minimal theories are locally modular (1-based). In [26],
it is shown that a pseudolinear ω-categorical SU-rank 1 theory is 1-based. In [19],
Hrushovski gives an example of an ω-categorical SU-rank 1 theory which is not 1-
based. By the above, this theory is not 2-based (or even finitely based), but it is
known to be CM-trivial. Thus, CM-triviality does not imply 2-basedness.

5.3. Thorn rank one. Assume that T is a thorn rank one theory. The goal of
this subsection is to show that T ind is super-rosy of thorn-rank ≤ ω. Our proof
follows the proof of super-rosyness given by Boxall for lovely pairs of thorn rank
one theories.

Theorem 5.19. The theory T ind is super-rosy of thorn rank less that or equal to
ω.

Proof. Let (M,H) |= T ind be highly saturated. In order to show that T ind is
super-rosy, we need to understand two steps:
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Claim 1 Let ϕ(x,~c) define an infinite subset of H(M). Then ϕ(x,~c) does not
thorn divide over ∅.

The proof is word by word the same one as the one presented in [6].
Claim 2 Let θ(x,~a) be an LH formula defining a large subset of M . Then θ(x,~a)

does not thorn divide over ∅.
The proof is again very similar to the one presented by Boxall in [6] for lovely

pairs of thorn rank one theories, but we will do some small changes to see how the
arguments adapt to the new setting.

Suppose θ(x,~a) thorn divides. Let â be the canonical parameter of θ(x,~a), we will
also write the definable set as θ(x, â). Let D be a finite set such that â 6∈ acleq

H (D)
and such that {θ(x, â′) : â′ |= tp(â/D)} is k -inconsistent. We may assume that
D ⊂M , that is, it contains only real elements. By noticing that HB(D) ∈ aclH(D)
and exchanging D for D ∪HB(D) we may also assume that D is H-independent.

Let b ∈ θ(x, â), since the family {θ(x, â′) : â′ |= tp(â/D)} is k -inconsistent,
there are at most k − 1 conjugates of â over bD, so â ∈ aclH(bD). Since θ(x, â)
defines an infinite large set, we may assume that b 6∈ sclH(âD). Let ϕ(ŷ, x) be
an algebraic formula in the variable ŷ such that (M,H) |= ϕ(â, b). Let â∗ be the
canonical parameter of ϕ(â, x). Note that â∗ ∈ dcl(â).

Claim 3 â ∈ acl(â∗D).
Let n be the multiplicity of ϕ(ŷ, x) (in the variable ŷ). Let â1,. . . , ân+1 be realiza-

tions of tp(â/â∗D). Then for any b′ with ϕ(â∗, b′), we also have ϕ(â1, b
′), . . . , ϕ(ân+1, b

′)
and thus there are i < j ≤ n+ 1 such that âi = âj .

Thus, â, â∗ be interalgebraic over D. By Proposition 3.12 there is an L-definable
set ψ(x,~c), where ~c is a real tuple, such that ψ(x,~c)△ϕ(â∗, x) is small, where △ is
a boolean connective for the symmetric difference. Note that we can choose ~c to be
a real base of â∗.

Let E(~u,~v) be the equivalence relation ψ(x, ~u)△ψ(x,~v) is finite. Since T elimi-
nates ∃∞, E(~z, ~w) is a definable equivalence relation. Let e = ~c/E.

Let ψ(x,~c′) be such that ψ(x,~c′)△ψ(x,~c) is small. It is were infinite, since
ψ(x,~c′)△ψ(x,~c) is an L definable set it would be large. Thus if ψ(x,~c′)△ψ(x,~c) is
small, then ψ(x,~c′)△ψ(x,~c) is finite and E(~c,~c′). Thus e = ~c/E ∈ aclH(âD).

Claim 4 â ∈ acl(eD).
Recall that n is the multiplicity of ϕ(ŷ, x) (in the variable ŷ). Let â1,. . . , ân+1 be

realizations of tp(â/eD). Then there are c1, . . . , cn+1 such that ψ(x, ci)△ϕ(âi, x)
is small for i ≤ n+ 1. Since e = ci/E for i ≤ n+ 1, we have that ψ(x, ci)△ψ(x, ci)
is finite for i ≤ n + 1. Let b′′ ∈

∧
i≤n+1 ψ(x, ci) ∧

∧
i≤n+1 ϕ(âi, x). Then we have

ϕ(â1, b
′′), . . . , ϕ(ân+1, b

′′) and thus there are i < j ≤ n+ 1 such that âi = âj .
Thus e and â are interalgebraic over D. Note that e ∈ aclH(bD) \ aclH(D).

Since b 6∈ scl(D) the set bD is H-independent and thus e ∈ acl(bD) \ acl(D), but
b 6∈ acl(eD), a contradiction since T has thorn rank one. �

As with the supersimple case, when T is trivial, the thorn rank of T ind is one
and when T is not trivial, the thorn rank of T ind is ω. The proof follows easily
from the previous theorem and we leave the details to the reader.

Question 5.20. In [4] the authors developed a theory of weakly one-based geometric
theories. A generalization of this notion appears in [7] in the setting of structures
with a robust independence notion (for example rosy theories), where it is proved
that when T is rosy of thorn rank one, weakly one-basedness coincides with linearity.
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Find a reasonable notion of weak 2-basedness in the setting of rosy theories and
explore its properties, in particular does Proposition 5.17 hold in this setting?

5.4. NIP theories. We finish this section by addressing the question of preserva-
tion of NIP.

Proposition 5.21. Let T be a geometric theory, (M,H) a sufficiently saturated
H-structure of T , and suppose T has NIP. Then Th(M,H) also has NIP.

Proof. We apply the criterion from [12, Thm 2.4]. We begin by showing that every
formula φ(~x, ~y) has NIP over H(~x). Assume otherwise, so there is an LH -formula

φ(~x, ~y), I = (~bi : i ∈ ω) an indiscernible sequence of elements in H(M) and ~a ∈M

such that φ(~bi,~a) holds iff i is even. Then by Proposition 3.5 we have that there is

an L-formula ψ(~x, ~z) and an element ~d such that ψ(~x, ~d) ∧H(~x) holds if and only
if φ(~x,~a)∧H(~x) holds. Thus the L-formula ψ(~x, ~y) has the IP, a contradiction. By
Proposition 3.2 every formula in (M,H) is equivalent to a boolean combination of
existential formulas over H . This fact together with Theorem 2.4 [12] shows that
Th(M,H) also has NIP. �

Remark 5.22. The above result could also have been proved doing very small mod-
ifications on Theorem 2.8 [5]. Also, Theorem 2.11 [5] can be easily modified to show
that if T is strongly dependent then Th(M,H) is strongly dependent.

Now we will study the special case when T is geometric and has finite dp-rank

Proposition 5.23. Let T be a geometric theory of dp-rank k < ω and let (M,H)
be a sufficiently saturated H-structure of T . If T is trivial and dcl = acl, then
Th(M,H) has dp-rank k.

Proof. Since T is trivial, every formula ψ(x, ~y) in T ind is a boolean combination
of L-formulas and formulas of the form H(f(x, ~y)) where f(x, ~y) is an L-definable
function over ∅.

Claim Let (~ai : i ∈ ω) be an LH -indiscernible sequence and let b ∈ M and let
f(x, ~y) be an definable function over ∅ in the language L. Then for all i ∈ ω either
H(f(b,~ai)) or ¬H(f(b,~ai)).

Since T is trivial and f(x, ~y) is an L-definable function, either there is an L-
definable function h(x) such that for all i t(x,~ai) = h(x) or there is L-definable
function g(~y) such that for all i t(x,~ai) = g(~ai). The existence of h or g only
depends on the type of ~ai. If t(x,~ai) = g(~ai) then since (~ai : i ∈ ω) is LH -
indiscernible we have that the value ofH(f(b,~ai)) agrees with the value ofH(g(~a0)).
If t(x,~ai) = h(x) then the value of H(f(b,~ai)) agrees with the value of H(h(b)). In
any case, the value of H(f(b,~ai)) does not depend on i.

Assume there is an ICT pattern of depth n in (M,H). Then there are LH for-
mulas ψ1(x, ~y1), . . . , ψn(x, ~yn) and there are LH -indiscernible sequences sequences

{(~aj
i : i < ω) : j ≤ n} that form a ICT pattern of depth n. Let i1, i2, . . . , in < ω

and let b realize ψ1(x,~a
i1
1 ) ∧ ψ2(x,~a

i2
2 ) ∧ · · · ∧ ψn(x,~ain

n ) and the negation of all
other formulas. Each formula ψ1(x, ~y1) is a boolean combination of L-formulas and
formulas of the form H(f(x, ~y1)) where f(x, ~y1) is an L-definable function. Since

the value of H(f(b, ~a1
i)) does not depend on i we may replace each ψi(x, ~y1) just

by the L-formulas inside it and obtain an ICT pattern of depth n in (M,H). �

Question 5.24. Does the result of the previous Proposition remain true if we
remove the assumption acl = dcl?
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Proposition 5.25. Let T be a geometric theory of dp-rank k < ω. Then T ind has
dp-rank greater than n for every n ∈ N but bounded by ℵ0.

Proof. Since T ind is strongly dependent, then the dp-rank is bounded by ℵ0. Let
(M,H) be a sufficiently saturated H-structure. Let a1, . . . , an, an+1 ∈ M be an
algebraic n + 1-gon. We may assume that a1, . . . , an ∈ H(M), thus HB(an+1) =
{a1, . . . , an} and a1, . . . , an ∈ acl(an+1). Since dp − rk(H(x1) ∧ · · · ∧H(xn)) ≥ n,
we have dp-rank(x = x) ≥ n. �

Remark 5.26. Let T be a geometric theory which is dp-minimal and let (M,H) be
a sufficiently saturated H-structure of T . Let C ⊂M and let ~a ∈Mn be such that

~a ∈ scl(C). Let ~h = HB(~a/C). Then ~a is interalgebraic with ~h over C. Each d ∈ ~h
has a type of dp-rank one over C, so small tuples can be coordinatized in terms
of dp-rank one types. In the stable setting, for a 6∈ scl(C) we had that tp(a/C)
was regular. What is the corresponding notion in the setting of strongly dependent
theories? Does it have burden one?

6. Groups

In this section we study the special case where M is rosy. As before we consider
the H-structure (M,H) and our aim in this section is to study definable groups in
(M,H). We will show that there are no small definable groups. Then we consider
the special case where M = G is a group with RM(G) = 1. We will show that the
LH -definable subgroups of Gn are L-definable. Finally we show that if M is stable
of U -rank one, the connected component of any LH -definable group is isomorphic
to an L-type definable group.

We will use the following tool in the rosy setting:

Fact 6.1. Let T be rosy, let M |= T and let G ⊂ Mn be a definable group. Then
G has generics in the sense that there is g ∈ G such that for h ∈ G with g |⌣h we
have gh |⌣h.

We start by showing that the generic elements in definable groups are indepen-
dent from H :

Proposition 6.2. Let M be a model of a thorn rank one theory and assume that
(M,H) is a ℵ0-saturated H-structure. Let A ⊂ M be finite and let T ≤ Mn be

a LH-definable group over A. Let ~b ∈ T be a generic element of the group, then

HB(~b/A) = ∅.

Proof. We may assume that A = A ∪HB(A) and thus that A is H-independent.

Let ~b,~c ∈ T be independent generics (over A) and let ~b · ~c stand for the product

of ~b,~c in the group T . Since ~c |⌣
H

A
~b, HB(~c/A) = HB(~c/A~b) and HB(~c~b/A) =

HB(~c/A) ∪HB(~b/A) and thus HB(~c ·~b/A) ⊂ HB(~c/A) ∪HB(~b/A).

Since~b,~c are independent generics, ~b·~c |⌣
H

A
~b and thus HB(~b·~c/A) |⌣

H

A
HB(~b/A)

and so HB(~b ·~c/A)∩HB(~b/A) = ∅. Similarly one has HB(~b ·~c/A)∩HB(~c/A) = ∅.

This together with HB(~c·~b/A) ⊂ HB(~c/A)∪HB(~b/A) proves that HB(~c·~b/A) = ∅.

Since ~c ·~b is generic, and ~c−1 is also generic and independent from ~c ·~b over A, we

get that HB(~b/A) = HB(~b · ~c · ~c−1/A) = ∅. �
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Corollary 6.3. Let M be a model of a thorn rank one theory and assume that
(M,H) is a ℵ0-saturated H-structure. Let A ⊂ M be finite and let T ≤ Mn be a
LH-definable group over A and assume that T is small. Then T is finite.

We will now consider two settings, first the stable one and then topological one.
Our goal is to see how close are LH -definable groups from being L-definable.

6.1. Stable groups.

Notation 6.4. Let M be a structure of Morley rank one and assume that (M,H)
is an H-structure. For an L-formula ψ, we denote by RM(ψ) the Morley rank and
dM(ψ) the Morley degree calculated within Th(M). Similarly, for an LH-formula
ψ we denote by RMH(ψ), dMH(ψ) the Morley rank and the Morley degree inside
the theory Th(M,H).

Assume now that M is a group. For a complete L-type p, we denote by Stab(p)
the stabilizer of p in the language L and for a complete LH-type q we write StabH(p)
for its stabilizer.

Proposition 6.5. Let G be group with RM(G) = 1 and assume that (G,H) is a
ℵ0-saturated H-structure. Let A ⊂ G be finite and let T ≤ Gn be a LH-definable
subgroup over A. Then T is L-definable.

Proof. Let A and T be as above. By exchanging A for A∪HB(A) we may assume

that A is H-independent. Let ~b ∈ T be generic, so HB(~b/A) = ∅.

Assume first that T = T 0, that is, T is connected. Since HB(~b/A) = ∅, we

may assume that we can write ~b = (b1, . . . , bl, bl+1, . . . , bn), where (b1, . . . , bl) are

H-independent and bl+1, . . . , bn ∈ acl(b1, . . . , bl). Let p = tpH(~b/A) and note that

RMH(~b/A) = ωl. Since ~b is generic, StabH(p) = T . Let q = tp(~b/A), so q is the
restriction of p to the old language.

Claim Let ~c |= q be such that ~b |⌣A
~c, then ~b · ~c |= q.

We may assume that ~b,~c |⌣A
H , so ~b,~c |= p and ~b |⌣

H

A
~c. Since p is the unique

generic type of T , we must have that ~b · ~c |= p and thus ~b · ~c |= q as we wanted.
Let D = Stab(q), where we now take the stabilizer in the L language. Since q is

closed under generic multiplication and inverses, every member of D is a product
of two realizations of q, we have that D = q · q. Since q is a generic for D, we
obtain then that RM(D) = l, dM(D) = 1, RMH(D) = ωl, dMH(D) = 1. Also
p · p ⊂ q · q = D, so T = p · p ≤ D. Since MRH(T ) = ωl and dMH(D) = 1 we must
have that D = T .

Now assume that T is not necessarily connected. Then T = T 0∪~b1T 0∪· · ·∪~bkT 0

for some finite ~b1, . . . ,~bk ∈ T . Since T 0 is L-definable so is T . �

Proposition 6.6. Let M be a stable structure of U -rank one and let H be a subset
of M such that (M,H) is a ℵ1-saturated H-structure. Let A ⊂M be countable and
let T ⊂ Mn be a LH-definable group over A. Let T 0 be the connected component
of T . Then T 0 is definably isomorphic to an L-definable group.

Proof. We may assume by enlarging A that (A,H ∩A) � (M,H) and that (M,H)
is saturated and strongly homogeneous over A. Thus every complete L-type and
every complete LH -type over A is stationary. Also note that T 0 is A-definable.
Let b1, b2, a2 be independent generics in T 0. Let a3 = b1 · a2, let a1 = b−1

2 · a3,

b3 = b2 ·b
−1
1 . Note that since b1 and a2 are independent generics, HB(b1, a2/A) = ∅
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and thus by Lemma 2.8 a3 ∈ acl(b1, a2, A). To simplify the argument we will assume
that a3 ∈ dcl(b1, a2, A). Similarly a1 ∈ dcl(b2, a3, A), b3 ∈ dcl(b1, b2, A). Then
{a1, a2, a3, b1, b2, b3} forms an algebraic quadrangle in the language L. Applying the
group configuration construction to {a1, a2, a3, b1, b2, b3} (see for example [8, 23])
we obtain a connected L-type-definable group G. We will now follow the proof in [8]
to understand how G is related to T 0. Let p = tp(b2/A), note that p = tp(a1/A),
and that b2 defines a unique germ given by hb2(x) = b2 · x, and this L-function
is defined for elements satisfying p that are independent from b2. The group G is
given by p × p/E, where for d1, d2 ∈ p, c1, c2 ∈ p, (d1, d2)E(c1, c2) if for a |= p
independent from {d1, d2, c1, c2}, d1 · (d2 · a) = c1 · (c2 · a). In few words, every
element in G is formed as the product of two generics (realizations of p) and we
identify the product d1 · d2 with c1 · c2 if they agree generically. We will now build
a definable isomorphism between T 0 and G. For t ∈ T 0, let b |= p be independent
from t and define ϕ(t) = (b−1, b · t)/E. Note that ϕ is A-definable and does not
depend on the choice of b.

Claim The map ϕ is 1 − 1.
Let t1, t2 ∈ T and let b |= p be independent from t1, t2. If (b−1, b · t1)E(b−1, b · t2)
then for a |= p generic, b−1 · b · t1 · a = b−1 · b · t2 · a and thus t1 = t2.

Claim The map ϕ is onto.
Let d1, d2 |= p be generics. Let a |= p be generic such that a |⌣A

Hd1d2. Note that
by stationarity a realizes the unique extension of p which is H-independent and
thus a is a generic of the group T 0. Again by stationarity, d1 · a is generic in T 0,
a−1 ·d2 is also generic in T 0 and (d1, d2)E(d1 ·a, a−1 ·d2). Thus t = (d1 ·a) ·(a−1 ·d2)
being a product of generics in T 0 belongs to T 0 and ϕ(t) = (d1, d2)/E.

It is easy to see that ϕ is a homomorphism of groups and thus ϕ is an isomorphism
between T 0 and G. �

Remark 6.7. Let (M,H), T and A be as in the previous proposition. Note that
the connected component T 0 of T is isomorphic to an L-definable group and thus
T is L-definable-by-bounded. In the case where M is ω-stable, the index of T 0 in T
is finite and thus T is L-definable-by-finite. In the later case, T can be written as
a semidirect product of T 0 and T/T 0, but the action of T 0 is LH -definable and it
is not clear we can recover a L-definable copy of T .

References

[1] J. Baldwin and M. Benedikt, Stability theory, Permutations of Indiscernibles, and Em-
bedded Finite Models, Trans. Amer. Math. Soc, 2000, vol 352, pp. 4937–4969

[2] I. Ben Yaacov, A. Pillay, E. Vassiliev, Lovely pairs of models, Annals of pure and
applied logic 122 (2003), pp. 235–261.

[3] A. Berenstein and E. Vassiliev, On lovely pairs of geometric structures, Annals of Pure
and Applied Logic, Volume 161, Issue 7, April 2010, pp. 866-878.

[4] A. Berenstein and E. Vassiliev, Weakly one-based geometric theories , J. Symbolic Logic,
77 (2), 2012, pp. 392-422.

[5] A. Berenstein, A. Dolich and A. Onshuus, The independence property in generalized
dense pairs of structures, Journal of Symbolic Logic, 76 (2), 2011, pp. 391-404.

[6] G Boxall, Lovely pairs and dense pairs of real closed fields, Ph.D. thesis, University of
Leeds, 2009.

[7] Gareth Boxall, David Bradley-Williams, Charlotte Kestner, Alexandra Omar

Aziz and Davide Penazzi, Weak one-basedness, preprint 2012.
[8] E Bouscaren, The group configuration-after E. Hrushovski, in The Model Theory of Groups,

Nore Dame mathematical Lectures, Number 11, 1989.

27



[9] S. Buechler, Pseudoprojective Strongly Minimal Sets are Locally Projective, Journal of
Symbolic Logic, 56, (1991) , pp. 1184-1194

[10] J. F. Carmona, Forking geometry on theories with an independent predicate, preprint 2012.
[11] Z. Chatzidakis and A. Pillay, Generic structures and simple theories, Annals of Pure and

Applied Logic, (1998), pp. 71–92.
[12] A. Chernikov and P. Simon, Externally definable sets and dependent pairs, to be published

in Israel Journal of Mathematics.
[13] A. Dolich, C. Miller and C. Steinhorn, Expansions of O-minimal Structures by Dense

Independent Sets, preprint 2012.
[14] L. van den Dries, Dense pairs of o-minimal structures, Fund. Math. 157 (1998), pp. 61–78.
[15] L. van den Dries and A. Gunaydin, The fields of real and complex numbers with a

multiplicative subgroup, Proceedings of London Mathematical Society, 93, (2006), pp. 43–81.
[16] A. Fornasiero, Dimension, matroids, and dense pairs of first-order structures, APAL, Vol-

ume 162, No. 7, 2011, pp. 514-543.
[17] J. Gagelman, Stability in geometric theories, Annals of Pure and Applied Logic 132 (2005),

313-326.
[18] J. Gunaydin and P. Hyeronimi, The real field with the rational points of an elliptic curve,

to be published in Fundamenta Mathematica.
[19] E. Hrushovski, Simplicity and the Lascar group, preprint 1997.

[20] E. Hrushovski and A. Pillay, Groups definable in local fields and psedofinite fields, Israel
Journal of Mathematics 85 (1994), no. 1-3, 203-262.

[21] A. Macintyre, Dense embeddings I: A Theorem of Robinson in a general setting, in Model

Theory and Algebra, a memorial tribute to Abraham Robinson, Lecture Notes in Mathematics
498, 1975, pp. 200–219.

[22] A. Pillay, E. Vassiliev, On lovely pairs and the (∃y ∈ P ) quantifier, Notre Dame Journal
of Formal Logic, vol. 46, no. 4, 2005.

[23] A. Pillay, Geometric Stability Theory, Oxford Science publications, 1996.
[24] B. Poizat Paires de Structures Stables, Journal of Symbolic Logic, 48 (1983), pp 239–249.
[25] S.Shelah, Strongly dependent theories, arXiv:math.LO/0504197, 2005.
[26] I. Tomasic and F. Wagner, Applications of the group configuration theorem in simple

theories, Journal of Math. Logic, 3(2), pp. 239–255, 2003.
[27] E. Vassiliev, Generic pairs of SU-rank 1 structures, Annals of Pure and Applied Logic, 120,

(2003), pp. 103–149.

Universidad de los Andes, Cra 1 No 18A-10, Bogotá, Colombia

URL: www.matematicas.uniandes.edu.co/~aberenst

Sir Wilfred Grenfell College, Memorial University of Newfoundland, Corner

Brook, NL A2H 6P9, Canada

E-mail address: yvasilyev@swgc.mun.ca

28


