HOMOGENEITY IN RELATIVELY FREE GROUPS

OLEG BELEGRADEK

ABSTRACT. We prove that any torsion-free, residually finite relatively free group of infinite rank is not \aleph_1 -homogeneous. This generalizes R. Sklinos' result that a free group of infinite rank is not \aleph_1 -homogeneous, and, in particular, gives a new simple proof of that result.

1. INTRODUCTION

A. Ould Houcine [6] and independently C. Perin and R. Sklinos [9] proved that any free group of finite rank is strongly homogeneous. Also, it is shown in [9] that any free group is strongly \aleph_0 -homogeneous. R. Sklinos [12] showed that any free group of uncountable rank is not \aleph_1 -homogeneous. His proof was based on the deep Z. Sela's result [11] on stability of the theory of free groups and used some sophisticated technique of model-theoretic stability theory.

The aim of this note is to give a simple direct proof of a more general result: any torsion-free, residually finite relatively free group F of infinite rank is not \aleph_1 -homogeneous.

As a by-product of the proof we show that F has an isomorphic elementary substructure G such that no basis of G can be extended to a basis of F. This generalizes R. Sklinos' result [12] who showed that a free group of countable rank has an elementary substructure which is not a free factor. Note that it is well-known and easy to see that in a relatively free group any infinite subset of a basis always generates an elementary substructure. A motivation for his result was C. Perin's theorem [8] that in a non-cyclic free group of finite rank any elementary substructure is a non-cyclic free factor. Note that a non-cyclic free factor of any free group is always an elementary substructure — this is a hard fundamental result due to Z. Sela [10] and O. Kharlampovich–A. Myasnikov [4].

2. Preliminaries

We recall some well-known definitions and facts.

A partial map f from \mathcal{M} to \mathcal{M} is called *elementary* in a structure \mathcal{M} if $\phi(\bar{a})$ holds in \mathcal{M} iff $\phi(f(\bar{a}))$ holds in \mathcal{M} , for any first order formula $\phi(\bar{v})$ and tuple \bar{a} in dom(f). Obviously, any restriction of any automorphism is an elementary map. For a cardinal κ , a structure is called *strongly* κ -homogeneous

²⁰⁰⁰ Mathematics Subject Classification. Primary: 20E10; Secondary: 03C50.

OLEG BELEGRADEK

if any elementary map f with $|\operatorname{dom}(f)| < \kappa$ extends to an automorphism. A structure is called κ -homogeneous if, for any of its elements a, any elementary map f with $|\operatorname{dom}(f)| < \kappa$ extends to an elementary map h with $a \in \operatorname{dom}(h)$. Clearly, strong κ -homogeneity implies κ -homogeneity; in general, the converse fails. However, it is known that if $\kappa = |\mathcal{M}|$ then \mathcal{M} is κ -homogeneous iff \mathcal{M} is strongly κ -homogeneous. A structure \mathcal{M} is called homogeneous if it is κ -homogeneous for $\kappa = |\mathcal{M}|$.

Let \mathcal{V} be a group variety. A subset X of a group G is called \mathcal{V} -independent if, for any group word $w(u_1, \ldots, u_n)$ and different $x_1, \ldots, x_n \in X$, the equality $w(x_1, \ldots, x_n) = 1$ holds in G only if $w(u_1, \ldots, u_n) \equiv 1$ is an identity in \mathcal{V} . For a \mathcal{V} -group F, a generating \mathcal{V} -independent subset of F is called a \mathcal{V} -basis of F. A \mathcal{V} -group having a \mathcal{V} -basis is called \mathcal{V} -free. It is easy to see that a subset X of a \mathcal{V} -free group F is a \mathcal{V} -basis iff X generates F, and for any \mathcal{V} -group H any map from X to H extends to a homomorphism from Gto H. It is known that any two \mathcal{V} -bases of a \mathcal{V} -free group are of the same cardinality; that cardinality is called the rank of the \mathcal{V} -free group. For any cardinal κ there is a unique, up to isomorphism, \mathcal{V} -free group of rank κ . The groups that are \mathcal{V} -free for some variety \mathcal{V} are called relatively free.

For a subset Y of a group, we denote by $\langle Y \rangle$ and $\langle \langle Y \rangle \rangle$ the subgroup and normal subgroup of the group generated by Y, respectively.

Here are some known simple properties of \mathcal{V} -bases we will need.

- (1) If $Y \sqcup Z$ is \mathcal{V} -independent then $\langle Y \rangle \cap \langle Z \rangle = \{1\}$.
- (2) If $Y \sqcup Z$ is a \mathcal{V} -basis of F, and $\alpha \in \operatorname{Aut}\langle Y \rangle$, $\beta \in \operatorname{Aut}\langle Z \rangle$, then $\alpha \cup \beta$ extends to an automorphism of F.
- (3) If $Y \sqcup Z$ is a \mathcal{V} -basis of F, and $K = \langle \langle Z \rangle \rangle$ then $\overline{F} = F/K$ is \mathcal{V} -free with \mathcal{V} -basis $\{\overline{a} : a \in Y\}$, where $\overline{a} = aK$.
- (4) Let X be a V-basis of F, and $N = \langle \langle R \rangle \rangle$, where R is a set of group words over X. Then, for any map γ from X to a V-group G such that $w(\gamma(x_1), \ldots, \gamma(x_n)) = 1$ in G for all $w(x_1, \ldots, x_n) \in R$, there is a homomorphism $\rho: F/N \to G$ such that $\rho(xN) = \gamma(x)$ for $x \in X$.

For basics of model theory, see [2]. The facts on group varieties we need can be found in [5]. For the results on abelian groups we will use, see [1].

3. Non- \aleph_1 -homogeneity of relatively free groups

Our goal is to prove the following

Theorem 1. Let \mathcal{V} be a group variety of exponent 0 such that all \mathcal{V} -free groups are residually finite. Then any \mathcal{V} -free group of infinite rank is not \aleph_1 -homogeneous.

Remark 1. Examples of such \mathcal{V} are

- the variety of all groups,
- the variety of all abelian groups,
- the variety of all solvable groups of a given class,
- the variety of all poly-nilpotent groups of a given class,

• any nilpotent group variety of exponent 0;

see [5]. I do not know whether relatively free groups of infinite rank are not \aleph_1 -homogeneous for an arbitrary variety of exponent 0. Note that there exist varieties of exponent 0 not satisfying the assumption of the theorem; in fact, there exists a variety of exponent 0 in which all relatively free groups of rank more than one are non-hopfian [3].

Remark 2. The assumption that \mathcal{V} is of exponent 0 is essential: In the variety \mathcal{V} of abelian groups of exponent n > 1 all \mathcal{V} -free groups are saturated and, in particular, homogeneous. Indeed, if $n = q_1 \dots q_s$, where q_1, \dots, q_s are powers of different primes, then any \mathcal{V} -free group F of infinite rank κ is of the form $A_1 \oplus \dots \oplus A_s$, where A_i is a direct sum of κ cyclic groups of order q_i . Such groups F are known to be saturated.

Remark 3. The assumption of infinity of rank in the theorem is essential: any free abelian group F of finite rank is strongly κ -homogeneous for any κ . Indeed, let f be an elementary map in F. Let A and B be the pure subgroups of F generated by the domain and range of f, respectively. Since F is a free abelian group of finite rank, A and B are free abelian groups of finite rank. The map f extends to an elementary isomorphism h between A and B. It is known that a pure subgroup H of an abelian group G is a direct summand in G if G/H is finitely generated. Therefore A, B have direct complements A', B' in F; clearly,

$$\operatorname{rk}(A') = \operatorname{rk}(F) - \operatorname{rk}(A) = \operatorname{rk}(F) - \operatorname{rk}(B) = \operatorname{rk}(B').$$

Hence $A' \simeq B'$. Therefore h extends to an automorphism of F.

An absolutely free group F of finite rank is strongly κ -homogeneous for any κ as well. Indeed, let f be an elementary map in F. Then f extends to an elementary isomorphism h between the subgroups $\operatorname{acl}(\operatorname{dom}(f))$ and $\operatorname{acl}(\operatorname{range}(f))$. A. Ould Houcine and D. Vallino [7] proved that the subgroup $\operatorname{acl}(C)$ is finitely generated for any subset C of F. Since F is strongly homogeneous [6],[9], the map h extends to an automorphism of F.

Remark 4. Free abelian groups of infinite rank are strongly \aleph_0 -homogeneous, even though they are not \aleph_1 -homogeneous by the theorem. Indeed, let F be a free abelian group of infinite rank, and f an elementary map in F with a finite domain. Let A and B be the pure subgroups of F generated by the domain and range of f, respectively; they are free abelian groups of finite rank. Clearly, A and B are contained in a finitely generated direct summand C of F. The map f extends to an elementary isomorphism h between A and B. As above, A and B are direct summands of C, and so of F; therefore hextends to an automorphism of F.

Remark 5. For an arbitrary variety \mathcal{V} , any \mathcal{V} -free group F of infinite rank κ is not κ^+ -homogeneous. Indeed, let X be a \mathcal{V} -basis of F, and $e \in X$, and $f : X \setminus \{e\} \to X$ a bijection. The map f is elementary in F because the restriction of f on any finite set extends to a permutation of X and so to an

automorphism of F. However, f cannot be extended to an elementary map h defined on e. Suppose not. Since X generates F, there are a group word $w(u_1, \ldots, u_n)$ and $e_1, \ldots, e_n \in X$ such that $h(e) = w(e_1, \ldots, e_n)$. Let $e_i = f(c_i)$, where $c_i \in X \setminus \{e\}$. Then $e_i = h(c_i)$. So $h(e) = w(h(c_1), \ldots, h(c_n))$, and hence $e = w(c_1, \ldots, c_n)$, contrary to $e \notin \langle X \setminus \{e\} \rangle$ which holds by property (1) in Preliminaries.

Now we pass to a proof of Theorem 1.

Proof. Let F be a \mathcal{V} -free group of infinite rank. Let X be a \mathcal{V} -free basis of F, and e_1, e_2, \ldots be a sequence of distinct elements of X. Consider the map

$$f: \{e_1, e_2, \dots\} \to F, \quad f(e_i) = e_i e_{i+1}^{-(i+1)}.$$

To prove that F is not \aleph_1 -homogeneous, it suffices to show that the map f is elementary but cannot be extended to an elementary map h such that $e_1 \in \operatorname{range}(h)$.

First we show that f is elementary. For $n \ge 1$ denote

$$Y_n = \{e_1, \dots, e_n, e_{n+1}\}, \quad G_n = \langle Y_n \rangle, \quad H_n = \langle f(e_1), \dots, f(e_n), e_{n+1} \rangle$$

Clearly, H_n is contained in G_n and contains $e_{n+1}, e_n, \ldots, e_1$; hence $H_n = G_n$. Then there exists an epimorphism $\alpha_n : G_n \to G_n$ such that $\alpha_n(e_{n+1}) = e_{n+1}$ and $\alpha_n(e_i) = f(e_i)$ for $1 \leq i \leq n$. Since G_n is \mathcal{V} -free, it is residually finite. By classical Maltsev's theorem, any finitely generated residually finite group is hopfian, that is, every surjective endomorphism of it is an automorphism. Thus G_n is hopfian, and so α_n is an automorphism of G_n . Let β_n be the identity automorphism of $\langle X \setminus Y_n \rangle$. By property (2) in Preliminaries, $\alpha_n \cup \beta_n$ extends to an automorphism of F, and so is elementary. Let $q : X \to F$ be the map that extends f and is the identity on $X \setminus \text{dom}(f)$. We show that q is elementary; in particular, f is elementary. Any finite subset S of X is contained in the union of $\{e_1, \ldots, e_n\}$ and $X \setminus \text{dom}(f)$, for some n. Since qand $\alpha_n \cup \beta_n$ coincide on S, the restriction of q on S is elementary. Therefore q is elementary.

Towards a contradiction, suppose that f extends to an elementary map h such that $e_1 \in \operatorname{range}(h)$, and $e_1 = h(a)$, where $a \in F$.

Let $N = \langle \langle R \rangle \rangle$, where

$$R = \operatorname{range}(q) = \{ e_i e_{i+1}^{-(i+1)} : i = 1, 2, \dots \} \cup (X \setminus \operatorname{dom}(f)).$$

We show that $e_1 \notin N$. For $g \in F$ denote $\bar{g} = gN$. Then $\bar{e}_i = \bar{e}_{i+1}^{i+1}$ in F/N, for all *i*. Since \mathcal{V} is of zero exponent, it contains a nontrivial divisible group D because the infinite cyclic groups are in \mathcal{V} and, being the union of an increasing chain of cyclic subgroups, the additive group of rationals is in \mathcal{V} . Choose in D elements a_1, a_2, \ldots such that $a_1 \neq 1$ and $a_i = a_{i+1}^{i+1}$ for all *i*. By the property (4) in Preliminaries, there exists a homomorphism $\rho: F/N \to D$ such that $\rho(\bar{e}_i) = a_i$ for all *i*. Since $\rho(\bar{e}_1) = a_1 \neq 1$, we have $\bar{e}_1 \neq \bar{1}$ and so $e_1 \notin N$. In particular, $e_1 \notin \langle \langle f(e_i) : 1 \leq i < \omega \rangle \rangle$.

Let Γ be the set of formulas of the form

$$(\exists v_1 \dots v_k)u = (v_1^{-1}u_1^{\epsilon_1}v_1) \dots (v_k^{-1}u_k^{\epsilon_k}v_k),$$

where all ϵ_i are ± 1 . For any subset C of F and $g \in F$, we have $g \in \langle \langle C \rangle \rangle$ iff $F \models \phi(g, c_1, \ldots, c_k)$ for some $\phi(u, u_1, \ldots, u_k) \in \Gamma$ and $c_1, \ldots, c_k \in C$.

Applying this to $C = \{f(e_i) : 1 \le i < \omega\}$, we have that for all i_1, \ldots, i_k and all $\phi(u, u_1, \ldots, u_k) \in \Gamma$

$$F \models \neg \phi(e_1, f(e_{i_1}), \dots, f(e_{i_k})),$$

that is,

$$F \models \neg \phi(h(a), h(e_{i_1}), \dots, h(e_{i_k}))$$

that is,

$$F \models \neg \phi(a, e_{i_1}, \dots, e_{i_k}).$$

Hence $a \notin K = \langle \langle e_i : 1 \leq i < \omega \rangle \rangle$.

For any n the element e_1 satisfies in F the formula

$$\exists v_2 \dots v_{n+1} \bigwedge_{1 \le i \le n} v_i = f(e_i) v_{i+1}^{i+1}$$

with the free variable v_1 ; the elements e_2, \ldots, e_{n+1} witness that. Since h is an elementary map, $e_1 = h(a)$, and $f(e_i) = h(e_i)$ for all i, the element a satisfies in F the formula

$$\exists v_2 \dots v_{n+1} \bigwedge_{1 \le i \le n} v_i = e_i v_{i+1}^{i+1}.$$

Then in $\overline{F} = F/K$ the element $\overline{a} = aK$ is nontrivial and satisfies the formula

$$\theta_n(v_1) := \exists v_2 \dots v_{n+1} \bigwedge_{1 \le i \le n} v_i = v_{i+1}^{i+1}$$

for any $n \ge 1$. By the property (3) in Preliminaries, the group \overline{F} is \mathcal{V} -free, and hence residually finite. Then there is a homomorphism τ from \overline{F} to a finite group B such that $\tau(\overline{a}) \ne 1$. Clearly, the element $\tau(\overline{a})$ satisfies in Bthe formula $\theta_n(v_1)$ for every $n \ge 1$. Let n = |B| - 1; then $b^{n+1} = 1$ for every $b \in B$. Since

$$\tau(\bar{a}) = b_2^2, \qquad b_2 = b_3^3, \qquad \dots \qquad b_n = b_{n+1}^{n+1},$$
for some $b_2, \dots, b_{n+1} \in B$, we have $\tau(\bar{a}) = 1$ in B . Contradiction.

Theorem 2. Let \mathcal{V} be a group variety of exponent 0 such that all \mathcal{V} -free groups are residually finite. Then any \mathcal{V} -free group F of infinite rank has an isomorphic elementary substructure G such that no \mathcal{V} -basis of G can be extended to a \mathcal{V} -basis of F.

Proof. The elementary map $q : X \to F$ from the proof of Theorem 1 uniquely extends to an elementary isomorphism between the groups F and $G = \langle \operatorname{range}(q) \rangle$. Then $G \prec F$. Towards a contradiction, suppose some \mathcal{V} -basis Z of G extends to a \mathcal{V} -basis $Y \sqcup Z$ of F. We have

$$N = \langle \langle \operatorname{range}(q) \rangle \rangle = \langle \langle G \rangle \rangle = \langle \langle Z \rangle \rangle.$$

Therefore, by (3) in Preliminaries,

$$F/N \simeq F/\langle\langle Z \rangle\rangle \simeq \langle\langle Y \rangle\rangle$$

and so the group F/N is \mathcal{V} -free, and therefore residually finite. As $\bar{e}_1 \neq \bar{1}$ and $\bar{e}_i = \bar{e}_{i+1}^{i+1}$ in F/N for all i, the subgroup generated by $\bar{e}_1, \bar{e}_2, \ldots$ is nontrivial, abelian, and divisible. But a residually finite group cannot have a nontrivial divisible subgroup because a nontrivial finite group cannot be divisible. Contradiction.

Remark 6. As we mentioned in the introduction, for an absolutely free group F of finite rank the assertion of the theorem fails [8]. For free abelian groups of finite rank the theorem fails as well but for a different reason: a free abelian group F of finite rank has no proper elementary substructures. Indeed, if $G \prec F$ then G is a proper pure subgroup with finitely generated F/G, and hence G is a direct factor of F. Then G is a free abelian subgroup of smaller rank, and hence G/2G and F/2F are of different finite orders, which is impossible because $G \equiv F$.

Remark 7. The assumption that \mathcal{V} is of exponent 0 is essential. For example, if \mathcal{V} is the variety of abelian groups of prime exponent p then Theorem 2 fails because any basis of a subspace of a vector space over \mathbb{F}_p extends to a basis of the space.

In fact, Theorem 2 fails for any variety of abelian groups of prime power exponent because the following holds. Let \mathcal{V} be the variety of abelian groups of prime power exponent q, and F, G be \mathcal{V} -free groups. If G is a pure subgroup of F then every \mathcal{V} -basis of G extends to a \mathcal{V} -basis of F. Indeed, the \mathcal{V} -groups are exactly the direct sums of cyclic groups of exponent q, and the number of cyclic factors of each type is an isomorphism invariant of the group. A group is \mathcal{V} -free iff it is a direct sum of cyclic groups of order q. Since G is a pure subgroup of F, and F/G is a direct sum of cyclic groups, G has a direct complement H in F. In any decomposition of H into a direct sum of cyclic groups of exponent q all summands are of order q; otherwise Fadmits a decomposition into a direct sum of cyclic subgroups in which not all summands are of order q. Thus H is \mathcal{V} -free. If Y, Z are \mathcal{V} -bases of G, H then $Y \sqcup Z$ is a \mathcal{V} -basis of F.

Note that Theorem 2 still holds for the variety \mathcal{V} of abelian groups of exponent n > 1 if n is not a prime power. Let $n = q_1 \dots q_s$, where q_i are powers of different primes, s > 1. Any \mathcal{V} -free group F of infinite rank κ is of the form $A_1 \oplus A_2 \oplus \dots \oplus A_s$, where

$$A_i = \bigoplus_{\gamma < \kappa} \langle a_{i,\gamma} \rangle,$$

and each $a_{i,\gamma}$ is an element of order q_i . Let $G = A_1^- \oplus A_2 \oplus \ldots A_s$, where

$$A_1^- = \bigoplus_{0 < \gamma < \kappa} \langle a_{1,\gamma} \rangle.$$

It is easy to see that G is an isomorphic elementary substructure of F. If some \mathcal{V} -basis of G extended to a \mathcal{V} -basis of F then, by (3), F/G would be \mathcal{V} -free. But F/G is a cyclic group of order q_1 , which is not \mathcal{V} -free.

References

- L. Fuchs: Infinite abelian groups. Vol. I. Pure and Applied Mathematics 36. Academic Press, New York-London (1970)
- [2] W. Hodges: Model theory. Encyclopedia of Mathematics and its Applications, 42. Cambridge University Press, Cambridge (1993).
- [3] S. V. Ivanov, A. M. Storozhev: Non-Hopfian relatively free groups. Geom. Dedicata. 114, 209–228 (2005).
- [4] O. Kharlampovich, A. Myasnikov: Elementary theory of free non-abelian groups. J. Algebra 302, 451–552 (2006).
- [5] H. Neumann: Varieties of groups. Springer, New York (1967).
- [6] A. Ould Houcine: Homogeneity and prime models in torsion-free hyperbolic groups. Confluentes Mathematici 3, 121–155 (2011).
- [7] A. Ould Houcine, D. Vallino: Algebraic and definable closure in free groups. ArXiv-Mathematics http://arxiv.org/pdf/1108.5641.pdf. 29 August 2011.
- [8] C. Perin: Elementary embeddings in torsion-free hyperbolic groups. ArXiv-Mathematics http://arxiv.org/pdf/0903.0945.pdf. 25 August 2010.
- [9] C. Perin, R. Sklinos: Homogeneity in the free group. ArXiv–Mathematics http://arxiv.org/pdf/1003.4095.pdf. 22 March 2010.
- [10] Z. Sela: Diophantine geometry over groups. VI. The elementary theory of a free group. Geom. Funct. Anal. 16, 707–730 (2006)
- Z. Sela: Diophantine geometry over groups. VIII. Stability. ArXiv-Mathematics http://arxiv.org/pdf/math/0609096v1.pdf. 4 September 2006.
- [12] R. Sklinos: On the generic type of the free group. J. Symbolic Logic 76, 227–234 (2011).

DEPARTMENT OF MATHEMATICS, ISTANBUL BILGI UNIVERSITY, DOLAPDERE 34440, ISTANBUL, TURKEY

E-mail address: olegb@bilgi.edu.tr