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Abstract. Let G be a compact definable Cr group, X a compact affine definable CrG
manifold and 2 ≤ r < ∞. We prove that the set of equivariant definable Morse functions
on X whose loci are finite unions of nondegenerate critical orbits is open and dense in
the set of G invariant definable Cr functions with respect to the definable Cr topology.

1. Introduction

Let N = (R, +, ·, <, . . . ) be an expansion of a real closed field R. We say that N
is definably complete if every nonempty definable subset A of R, sup A, inf A ∈ R ∪
{∞,−∞}. Every o-minimal expansion of R is definably complete. Definably complete
structures are studied in [1], [2]. A weakly o-minimal structure is not always definably
complete. For example (Ralg, +, ·, <, (−π, π)∩Ralg) is weakly o-minimal but not definably
complete.

If R is the field R of real numbers, then an expansion M of the standard structure
R = (R, +, ·, <) is definably complete.

In this paper we consider its equivariant definable Cr version of Morse theory on M. It
is a generalization of [8], [12]. Everything is considered in M, r ≥ 2 and every definable
map is continuous unless otherwise stated. Remark that the condition that r ≥ 2 is
necessary to define Morse functions. Definable CrG manifolds in o-minimal structures
are studied in [10], [9]. Their definitions work in M.

Let X be an n-dimensional definable Cr manifold and f : X → R a definable Cr

function. We say that a point p ∈ X is a critical point of f if the differential of f at p is
zero. We say that f(p) is called a critical value of f if p is a critical point of f . Let p be
a critical point of f and (U, u) a definable Cr coordinate system on X at p. The critical
point p is nondegenerate if the Hessian matrix of f ◦ u−1 at 0 is nonsingular. Direct
computations show this definition is well-defined.

In the non-equivariant setting, Y. Peterzil and S. Starchenko [15] introduced definable
Cr Morse functions in an o-minimal expansion of the standard structure of a real closed
field.

Let G be a definable Cr group, X a definable CrG manifold and f : X → R a G
invariant definable Cr function on X. A closed definable CrG submanifold Y of X is
a critical manifold (resp. a nondegenerate critical manifold) of f if each p ∈ Y is a
critical point (resp. a nondegenerate critical point) of f . We say that f is an equivariant
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definable Morse function if the critical locus of f is a finite union of nondegenerate
critical manifolds of f without interior.

Theorem 1.1. Let G be a compact definable Cr group, f an equivariant definable Morse
function on a compact affine definable CrG manifold X and 2 ≤ r < ∞. If f has
no critical value in [a, b], then fa := f−1((−∞, a]) is definably CrG diffeomorphic to
f b := f−1((−∞, b]). If M is exponential, then we can take r = ∞.

Theorem 1.1 is an equivariant definable Cr version of Theorem 4.3 [17]. An O-minimal
version of Theorem 1.1 is considered in [8], [12].

Note that the method of the proof Theorem 4.3 [17] is the integration of a G invari-
ant C∞ vector field. This method does not work in the definable category because the
integration of a G invariant definable Cr vector field is not always definable.

In the non-equivariant o-minimal case, T.L. Loi [13] proved density and openness of
definable Morse functions.

Let Def r(Rn) denote the set of definable Cr functions on Rn. For each f ∈ Def r(Rn)
and for each positive definable function ε : Rn → R, the ε-neighborhood N(f ; ε) of f in
Def r(Rn) is defined by {h ∈ Def r(Rn)||∂α(h− f)| < ε, ∀α ∈ (N ∪ {0})n, |α| ≤ r}, where

α = (α1, . . . , αn) ∈ (N∪{0})n, |α| = α1 + · · ·+αn, ∂
αF = ∂|α|F

∂x
α1
1 ...∂xαn

n
. We call the topology

defined by these ε-neighborhoods the definable Cr topology.

Theorem 1.2 ([13]). Let L be an o-minimal expansion of R and X a definable Cr sub-
manifold of Rn. Then the set of definable Cr functions on Rn which are Morse functions
on X and have distinct critical values are open and dense in Def r(Rn) with respect to the
definable Cr topology.

Theorem 1.2 is generalized in o-minimal expansions of real closed fields ([6]).
Remark that the definable Cr topology and the Cr Whitney topology do not coincide

in general. If X is compact, then these topologies of the set Def r(X) of definable Cr

functions on X are the same (P156 [16]).
A nondegenerate critical manifold of an equivariant Morse function on a definable CrG

manifold is called a nondegenerate critical orbit if it is an orbit.

Theorem 1.3. Let G be a compact definable Cr group, X a compact affine definable CrG
manifold and 2 ≤ r < ∞.

(1) The set Defequi−Morse,o(X) of equivariant definable Morse functions on X whose
critical loci are finite unions of nondegenerate critical orbits is dense in the set Cr

inv(X)
of G invariant Cr functions on X with respect to the Cr Whitney topology. Moreover
Defequi−Morse,o(X) is open and dense in the set Def r

inv(X) of G invariant definable Cr

functions with respect to the definable Cr topology.
(2) If M is exponential, then the set Defequi−Morse,o(X) of equivariant definable Morse

functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense
in the set C∞

inv(X) of G invariant C∞ functions on X with respect to the Cr Whitney
topology. Moreover Defequi−Morse,o(X) is open and dense in the set Def∞inv(X) of G
invariant definable C∞ functions with respect to the definable Cr topology.

Definable G CW complexes are introduced in [5]. They are generalized in o-minimal
expansions of real closed fields ([4]). In the o-minimal setting L, the following result holds.



Theorem 1.4 ([8]). Let L be an o-minimal expansion of R, G a compact definable group
and X a definable G manifold.

(1) X is definably G homeomorphic to a finite union of open G cells of a definable G
CW complex.

(2) If X is compact, then X is definably G homeomorphic to a definable G CW com-
plex. In particular, X is G homeomorphic to a finite G CW complex.

However if M = (R, +, ·, <,Z), then Theorem 1.4 does not hold even when G is the
trivial group because a definable set Z is not homeomorhic to a finite union of open cells.

By a way similar to the proof of 1.6 [8], we have the following result. It is a definable
version of a well-known topological result (e.g. 6.2.4 [3]).

Theorem 1.5. Let X be an n-dimensional compact definable Cr manifold having a de-
finable Morse function f : X → R with only two critical points and 2 ≤ r < ∞. Then
X is definably homeomorphic to the n-dimensional unit sphere Sn. If n ≤ 6, then X is
definably Cr diffeomorphic to Sn. If M is exponential, then we can take r = ∞.

Remark that if n = 7, then there exsits a C∞ manifold which is homeomorphic to S7,
but not C∞ diffeomorphic to S7 ([14]).

2. Preliminaries and proof of Theorem 1.1.

A group G is a definable Cr group if G is a definable Cr manifold such that the group
operations G × G → G and G → G are definable Cr maps. Let G be a definable Cr

group. A definable CrG manifold is a pair (X,φ) consisting of a definable Cr manifold
X and a group action φ : G×X → X such that φ is a definable Cr map. For simplicity,
we write X instead of (X, φ).

Let G be a definable Cr group. A representation map of G means a group homomor-
phism from G to some On(R) which is of class definable Cr and the representation of this
representation map is Rn with the orthogonal action induced by the representation map.
In this paper, we always assume that every representation is orthogonal. A definable
CrG submanifold of a representation Ω of G is a G invariant definable Cr submanifold of
Ω. We say that a definable CrG manifold is affine if it is definably CrG diffeomorphic
to a definable CrG submanifold of some representation of G.

Theorem 2.1. Let X and Y be compact affine definable CrG manifolds possibly with
boundary and 2 ≤ r < ∞. Then X and Y are C1G diffeomorphic if and only if they are
definably CrG diffeomorphic. If M is exponential, then we can take r = ∞.

Let G be a compact group, f a map from a CrG manifold X to a representation Ω of
G and 0 ≤ r ≤ ∞. Denote the Haar measure of G by dg, and let x be a point in X.
Recall the averaging operator A defined by

A(f)(x) =

∫

G

g−1f(gx)dg.

Proposition 2.2 (e.g. 2.11 [7]). Let G be a compact group and 0 ≤ r ≤ ∞. Suppose that
Cr(X, Ω) denotes the set of Cr maps from a CrG submanifold X of a representation of
G to a representation Ω of G.

(1) The averaged map A(f) of f is equivariant, and A(f) = f if f is equivariant.



(2) If f ∈ Cr(X, Ω), then A(f) ∈ Cr(X, Ω).
(3) If f is a polynomial map, then so is A(f).
(4) If X is compact and r < ∞, then A : Cr(X, Ω) → Cr(X, Ω) is continuous in the

Cr Whitney topology.

By a way similar to the proofs of 4.5, 4.6 [7], we have the following two propositions.

Proposition 2.3. Let X be a compact definable CrG submanifold possibly with boundary
of a representation Ω of G and 1 ≤ r < ∞. Then there exists a definable CrG tubular
neighborhood (U, θ) of X in Ω. If M is exponential, then we can take r = ∞.

Proposition 2.4. Let X be a compact affine definable CrG manifold with boundary and
2 ≤ r < ∞. Then X admits a definable CrG collar, namely there exists a definable CrG
imbedding φ : ∂X × [0, 1] → X such that φ|(∂X × {0}) is the inclusion ∂X → X, where
the action on [0, 1] is trivial. If M is exponential, then we can take r = ∞.

Theorem 2.5 (P 38 [3]). (1) Let X,Y be C1 manifolds. Then the set of C1 diffeomor-
phisms from X onto Y is open in the set C1(X, Y ) of C1 maps from X to Y with respect
to the C1 Whitney topology.
(2) Let X,Y be C1 manifolds with boundary ∂X, ∂Y , respectively. Then the set of C1

diffeomorphisms from X onto Y is open in {f ∈ C1(X, Y )|f(∂X) ⊂ f(∂Y )} with respect
to the C1 Whitney topology.

By a way similar to the proof of 2.5 [11], we have the following theorem.

Theorem 2.6. Let G be a compact definable Cr group and X a compact affine definable
CrG manifold and 1 ≤ r < ∞. Suppose that A,B are G invariant definable disjoint
closed subsets of X. Then there exists a G invariant definable Cr function f : X → R
such that f |A = 1 and f |B = 0. If M is exponential, we can take r = ∞.

Proof of Theorem 2.1. Let Ω (resp. Ξ) be a representation of G containing X (resp.
Y ) as a definable CrG submanifold of Ω (resp. Ξ). We first assume that ∂X = ∂Y = ∅.
By Polynomial Approximation Theorem, Proposition 2.2, Proposition 2.3 and Theorem
2.5, X and Y are C1G diffeomorphic if and only if they are definably CrG diffeomorphic.
If M is exponential, then we can take r = ∞.

We assume that ∂X 6= ∅ and ∂Y 6= ∅. Let f : X → Y be a C1G diffeomorphism. Since
f |∂X : ∂X → ∂Y is a C1G diffeomorphism and ∂X is compact, one can find a definable
CrG diffeomorphism f ′ : ∂X → ∂Y as an approximation of f |∂X : ∂X → ∂Y in the C1

Whitney topology. Using definable CrG collars of ∂X and ∂Y in X and Y , respectively,
we have a G invariant definable open neighborhoods U and V of ∂X and ∂Y in X and
Y , respectively, and a definable CrG diffeomorphism f1 : U → V with f1|∂X = f ′.

Take a G invariant definable open neighborhood U ′ of ∂X in X with U ′ ( U . By
Theorem 2.6, there exists a G invariant definable Cr function λ : X → R such that λ = 1
on U ′ and the support lies in U . By Proposition 2.3 and since Y is compact, there exists
a definable CrG tubular neighborhood (V, θ) of Y in Ξ. By Polynomial Approximation
Theorem, Proposition 2.2 and since X is compact, there exists a polynomial G map
f2 : X → Ξ which is an approximation of i ◦ f in the C1 Whitney topology, where
i : Y → Ξ denotes the inclusion. If our approximation is sufficiently close, then H :
X → Y, H(x) = θ(λ(x)f1(x) + (1− λ(x))f2(x)) is a definable CrG map such that it is an



approximation of f in the C1 Whitney topology and H(∂X) ⊂ ∂Y . Therefore by Theorem
2.5 and the inverse function theorem, H is the required definable CrG diffeomorphism. If
M is exponential, then we can take r = ∞ in the general case. ¤

Proof of Theorem 1.1. By the proof of Theorem 4.3 [17], fa = f−1((−∞, a]) is Cr−1G
diffeomorphic to f b = f−1((−∞, b]). Since X is compact and affine, these two manifolds
are compact affine definable CrG manifolds with boundary. Thus Theorem 1.1 follows
from Theorem 2.1. ¤

3. Proof of Theorem 1.3.

By the proof of Lemma 4.8 [17] proves the following.

Theorem 3.1 ([17]). Let G be a compact Cr group, X a compact CrG manifold and
2 ≤ r ≤ ∞. Then the set Cr

equi−Morse,o(X) of equivariant Morse functions on X whose
critical loci are finite unions of nondegenerate critical orbits is open and dense in the set
Cr

inv(X) of G invariant Cr functions on X with respect to the Cr Whitney topology.

Proof of Theorem 1.3. Let f ∈ Cr
inv(X) and N ⊂ Cr

inv(X) an open neighborhood of f
in Cr

inv(X). By Theorem 3.1, there exists an open subset N ′ ⊂ N such that each h ∈ N ′

is an equivariant Morse function whose critical locus is a finite union of nondegenerate
critical orbits. Let Cr(X) denote the set of Cr functions on X. Since A : Cr(X) → Cr(X)
is continuous and A(Cr(X)) = Cr

inv(X), A : Cr(X) → Cr
inv(X) is continuous. Fix h ∈ N ′.

Since A(h) = h, A−1(N ′) is an open neighborhood of h in Cr(X). Applying Polynomial
Approximation Theorem, we have a polynomial function h′ lies in A−1(N ′). Applying
the averaging function, we have a G invariant polynomial function F := A(h′) lies in N ′.
Since F is a G invariant polynomial function, it is a G invariant definable Cr function.
Thus F is an equivariant definable Morse function lies in N .

We now prove the second part. By the first part, Defequi−Morse,o(X) is dense in Cr
inv

(X). Thus it is dense in Def r
inv(X). Let h ∈ Defequi−Morse,o(X). By Theorem 3.1, there

exists an open neighborhood V of h in Cr
inv(X) such that each h ∈ V is an equivariant

Morse function whose critical locus is a finite union of nondegenerate critical orbits. Thus
V ∩Def r

inv(X) is the required open neighborhood of h in Def r
inv(X).

If M is exponential, then the above argument works when r = ∞. ¤
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