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ABSTRACT. Let G be a compact definable C” group, X a compact affine definable C"G
manifold and 2 < r < co. We prove that the set of equivariant definable Morse functions
on X whose loci are finite unions of nondegenerate critical orbits is open and dense in
the set of G invariant definable C” functions with respect to the definable C” topology.

1. INTRODUCTION

Let N = (R,+,-,<,...) be an expansion of a real closed field R. We say that A
is definably complete if every nonempty definable subset A of R, supA,infA € R U
{00, —0}. Every o-minimal expansion of R is definably complete. Definably complete
structures are studied in [1], [2]. A weakly o-minimal structure is not always definably
complete. For example (Rg,, +, -, <, (—7, m) NR,y,) is weakly o-minimal but not definably
complete.

If R is the field R of real numbers, then an expansion M of the standard structure
R = (R, +,, <) is definably complete.

In this paper we consider its equivariant definable C” version of Morse theory on M. It
is a generalization of [8], [12]. Everything is considered in M, r > 2 and every definable
map is continuous unless otherwise stated. Remark that the condition that r» > 2 is
necessary to define Morse functions. Definable C"G manifolds in o-minimal structures
are studied in [10], [9]. Their definitions work in M.

Let X be an n-dimensional definable C™ manifold and f : X — R a definable C"
function. We say that a point p € X is a critical point of f if the differential of f at p is
zero. We say that f(p) is called a critical value of f if p is a critical point of f. Let p be
a critical point of f and (U, u) a definable C" coordinate system on X at p. The critical
point p is nondegenerate if the Hessian matrix of f o u™! at 0 is nonsingular. Direct
computations show this definition is well-defined.

In the non-equivariant setting, Y. Peterzil and S. Starchenko [15] introduced definable
C" Morse functions in an o-minimal expansion of the standard structure of a real closed
field.

Let G be a definable C" group, X a definable C"G manifold and f : X — R a G
invariant definable C" function on X. A closed definable C"G submanifold Y of X is
a critical manifold (resp. a nondegenerate critical manifold) of f if each p € Y is a
critical point (resp. a nondegenerate critical point) of f. We say that f is an equivariant
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definable Morse function if the critical locus of f is a finite union of nondegenerate
critical manifolds of f without interior.

Theorem 1.1. Let G be a compact definable C" group, f an equivariant definable Morse
function on a compact affine definable C"G manifold X and 2 < r < oo. If f has
no critical value in [a,b], then f* := f~Y((—o0,d]) is definably C"G diffeomorphic to
fP = f1((—o0,b)). If M is exponential, then we can take r = oc.

Theorem 1.1 is an equivariant definable C" version of Theorem 4.3 [17]. An O-minimal
version of Theorem 1.1 is considered in [8], [12].

Note that the method of the proof Theorem 4.3 [17] is the integration of a G invari-
ant C'™ vector field. This method does not work in the definable category because the
integration of a G invariant definable C" vector field is not always definable.

In the non-equivariant o-minimal case, T.L. Loi [13] proved density and openness of
definable Morse functions.

Let Def"(R™) denote the set of definable C” functions on R™. For each f € Def"(R")
and for each positive definable function € : R” — R, the e-neighborhood N(f;€) of f in
Defm(R™) is defined by {h € Def"(R™)||0%(h — f)| < ¢,YVa € (NU{0})", |a] < r}, where
a=(o,...,0,) € (NU{OP)™" |a| =1+ +a,,0°F = %. We call the topology

defined by these e-neighborhoods the de finable C" topology.

Theorem 1.2 ([13]). Let L be an o-minimal expansion of R and X a definable C" sub-
manifold of R™. Then the set of definable C" functions on R™ which are Morse functions
on X and have distinct critical values are open and dense in Def"(R™) with respect to the
definable C™ topology.

Theorem 1.2 is generalized in o-minimal expansions of real closed fields ([6]).

Remark that the definable C" topology and the C" Whitney topology do not coincide
in general. If X is compact, then these topologies of the set Def"(X) of definable C"
functions on X are the same (P156 [16]).

A nondegenerate critical manifold of an equivariant Morse function on a definable C"G
manifold is called a nondegenerate critical orbit if it is an orbit.

Theorem 1.3. Let G be a compact definable C" group, X a compact affine definable C"G
manifold and 2 < r < oo.

(1) The set Defequi—morseo(X) of equivariant definable Morse functions on X whose
critical loci are finite unions of nondegenerate critical orbits is dense in the set C}, (X)
of G invariant C" functions on X with respect to the C" Whitney topology. Moreover
De fequi—nrorse.o(X) is open and dense in the set Def] (X) of G invariant definable C”
functions with respect to the definable C" topology.

(2) If M is exponential, then the set De fequi—norseo(X) of equivariant definable Morse
functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense
in the set C52 (X) of G invariant C* functions on X with respect to the C" Whitney
topology. Moreover De fequi—norse.o(X) is open and dense in the set Def (X) of G
wvariant definable C*° functions with respect to the definable C" topology.

Definable G C'W complexes are introduced in [5]. They are generalized in o-minimal

expansions of real closed fields ([4]). In the o-minimal setting £, the following result holds.



Theorem 1.4 ([8]). Let L be an o-minimal expansion of R, G a compact definable group
and X a definable G manifold.

(1) X is definably G homeomorphic to a finite union of open G cells of a definable G
CW complex.

(2) If X is compact, then X is definably G homeomorphic to a definable G CW com-
plex. In particular, X is G homeomorphic to a finite G CW complex.

However if M = (R, +,-,<,Z), then Theorem 1.4 does not hold even when G is the
trivial group because a definable set Z is not homeomorhic to a finite union of open cells.

By a way similar to the proof of 1.6 [8], we have the following result. It is a definable
version of a well-known topological result (e.g. 6.2.4 [3]).

Theorem 1.5. Let X be an n-dimensional compact definable C" manifold having a de-
finable Morse function f : X — R with only two critical points and 2 < r < oco. Then
X 1is definably homeomorphic to the n-dimensional unit sphere S™. If n < 6, then X is
definably C" diffeomorphic to S™. If M 1is exponential, then we can take r = oco.

Remark that if n = 7, then there exsits a C™ manifold which is homeomorphic to S7,
but not C* diffeomorphic to S7 ([14]).

2. PRELIMINARIES AND PROOF OF THEOREM 1.1.

A group G is a definable C" group if G is a definable C" manifold such that the group
operations G Xx G — G and G — G are definable C" maps. Let G be a definable C”
group. A definable C"G manifold is a pair (X, ¢) consisting of a definable C" manifold
X and a group action ¢ : G x X — X such that ¢ is a definable C" map. For simplicity,
we write X instead of (X, ¢).

Let G be a definable C" group. A representation map of G means a group homomor-
phism from G to some O,,(R) which is of class definable C" and the representation of this
representation map is R™ with the orthogonal action induced by the representation map.
In this paper, we always assume that every representation is orthogonal. A definable
C"G submani fold of a representation €2 of GG is a G invariant definable C" submanifold of
). We say that a definable C"G manifold is af fine if it is definably C"G diffeomorphic
to a definable C"G submanifold of some representation of G.

Theorem 2.1. Let X and Y be compact affine definable C"G manifolds possibly with
boundary and 2 < r < co. Then X and Y are C'G diffeomorphic if and only if they are
definably C"G diffeomorphic. If M s exponential, then we can take r = oo.

Let G be a compact group, f a map from a C"G manifold X to a representation {2 of
G and 0 < r < oco. Denote the Haar measure of G by dg, and let = be a point in X.
Recall the averaging operator A defined by

A(f)(x) = /G g f(gz)dg.

Proposition 2.2 (e.g. 2.11 [7]). Let G be a compact group and 0 < r < oo. Suppose that
C"(X, Q) denotes the set of C" maps from a C"G submanifold X of a representation of
G to a representation ) of G.

(1) The averaged map A(f) of [ is equivariant, and A(f) = f if f is equivariant.



2) If f € C"(X,Q), then A(f) € C"(X, Q).

(3) If f is a polynomial map, then so is A(f).

(4) If X is compact and r < oo, then A : C"(X,Q) — C"(X,Q) is continuous in the
C" Whitney topology.

By a way similar to the proofs of 4.5, 4.6 [7], we have the following two propositions.

Proposition 2.3. Let X be a compact definable C"G submanifold possibly with boundary
of a representation €2 of G and 1 < r < co. Then there exists a definable C"G tubular
neighborhood (U, 0) of X in Q. If M is exponential, then we can take r = co.

Proposition 2.4. Let X be a compact affine definable C"G manifold with boundary and
2 <r <oo. Then X admits a definable C"G collar, namely there exists a definable C"G
imbedding ¢ : 0X x [0,1] — X such that ¢|(0X x {0}) is the inclusion 0X — X, where
the action on [0, 1] is trivial. If M is exponential, then we can take r = oco.

Theorem 2.5 (P 38 [3]). (1) Let X,Y be C' manifolds. Then the set of C* diffeomor-
phisms from X onto Y is open in the set C*(X,Y) of C' maps from X toY with respect
to the C' Whitney topology.
(2) Let X,Y be C' manifolds with boundary 0X,dY , respectively. Then the set of C!
diffeomorphisms from X ontoY is open in {f € CY(X,Y)|f(0X) C f(OY)} with respect
to the C' Whitney topology.

By a way similar to the proof of 2.5 [11], we have the following theorem.

Theorem 2.6. Let G be a compact definable C" group and X a compact affine definable
C"G manifold and 1 < r < oo. Suppose that A, B are G invariant definable disjoint
closed subsets of X. Then there exists a G invariant definable C" function f : X — R
such that f|A =1 and f|B = 0. If M is exponential, we can take r = co.

Proof of Theorem 2.1. Let Q (resp. Z) be a representation of G containing X (resp.
Y) as a definable C"G submanifold of Q (resp. =). We first assume that 0X = 9Y = 0.
By Polynomial Approximation Theorem, Proposition 2.2, Proposition 2.3 and Theorem
2.5, X and Y are C'@ diffeomorphic if and only if they are definably C"G diffeomorphic.
If M is exponential, then we can take r = oo.

We assume that 90X # () and 9Y # ). Let f : X — Y be a C'G diffeomorphism. Since
floX : 90X — 9Y is a C'G diffeomorphism and X is compact, one can find a definable
C"G diffeomorphism f': X — JY as an approximation of f|0X : X — 9Y in the C*
Whitney topology. Using definable C"G collars of X and dY in X and Y, respectively,
we have a GG invariant definable open neighborhoods U and V of X and dY in X and
Y, respectively, and a definable C"G diffeomorphism f; : U — V with f1]0X = f’.

Take a G invariant definable open neighborhood U’ of 0X in X with U" C U. By
Theorem 2.6, there exists a GG invariant definable C" function A : X — R such that A =1
on U’ and the support lies in U. By Proposition 2.3 and since Y is compact, there exists
a definable C"G tubular neighborhood (V;#) of Y in =. By Polynomial Approximation
Theorem, Proposition 2.2 and since X is compact, there exists a polynomial G map
fo + X — Z which is an approximation of i o f in the C' Whitney topology, where
1 : Y — = denotes the inclusion. If our approximation is sufficiently close, then H :

X =Y H(x) =0(A(z)fi(x) + (1 — X)) f2(x)) is a definable C"G map such that it is an



approximation of f in the C!' Whitney topology and H(9X) C Y. Therefore by Theorem
2.5 and the inverse function theorem, H is the required definable C"G diffeomorphism. If
M is exponential, then we can take r = co in the general case. ([l

Proof of Theorem 1.1. By the proof of Theorem 4.3 [17], f* = f~!((—00,d]) is C"7'G
diffeomorphic to f* = f~1((—o0,b]). Since X is compact and affine, these two manifolds
are compact affine definable C"G manifolds with boundary. Thus Theorem 1.1 follows
from Theorem 2.1. 0

3. PROOF OF THEOREM 1.3.

By the proof of Lemma 4.8 [17] proves the following.

Theorem 3.1 ([17]). Let G be a compact C" group, X a compact C"G manifold and
2 <r < oo. Then the set C! (X) of equivariant Morse functions on X whose

equi— M orse,o
critical loci are finite unions of nondegenerate critical orbits is open and dense in the set

Cr (X)) of G invariant C" functions on X with respect to the C"™ Whitney topology.

mu

Proof of Theorem 1.3. Let f € C! (X) and N C C?, (X) an open neighborhood of f

in C7 (X). By Theorem 3.1, there exists an open subset N/ C A such that each h € N’

wmv
is an equivariant Morse function whose critical locus is a finite union of nondegenerate

critical orbits. Let C"(X') denote the set of C" functions on X. Since A : C"(X) — C"(X)
is continuous and A(C"(X)) = C! (X)), A: C"(X) — CI . (X) is continuous. Fix h € .
Since A(h) = h, A~}(N”) is an open neighborhood of h in C"(X). Applying Polynomial
Approximation Theorem, we have a polynomial function A’ lies in A=*(N”). Applying
the averaging function, we have a G invariant polynomial function F := A(h') lies in .
Since F'is a G invariant polynomial function, it is a GG invariant definable C" function.
Thus F is an equivariant definable Morse function lies in .

We now prove the second part. By the first part, Defequi—nmorseo(X) is dense in C,

(X). Thus it is dense in Def], (X). Let h € Defequi—rorse,o(X). By Theorem 3.1, there

exists an open neighborhood V of h in C},,(X) such that each h € V is an equivariant

mv
Morse function whose critical locus is a finite union of nondegenerate critical orbits. Thus

V N Defl (X) is the required open neighborhood of h in Def] (X).

inv inv
If M is exponential, then the above argument works when r = oc. 0J
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