EQUIVARIANT DEFINALE MORSE FUNCTIONS IN DEFINABLY COMPLETE STRUCTURES

TOMOHIRO KAWAKAMI

ABSTRACT. Let G be a compact definable C^r group, X a compact affine definable C^rG manifold and $2 \leq r < \infty$. We prove that the set of equivariant definable Morse functions on X whose loci are finite unions of nondegenerate critical orbits is open and dense in the set of G invariant definable C^r functions with respect to the definable C^r topology.

1. INTRODUCTION

Let $\mathcal{N} = (R, +, \cdot, <, ...)$ be an expansion of a real closed field R. We say that \mathcal{N} is *definably complete* if every nonempty definable subset A of R, $\sup A$, $\inf A \in R \cup \{\infty, -\infty\}$. Every o-minimal expansion of R is definably complete. Definably complete structures are studied in [1], [2]. A weakly o-minimal structure is not always definably complete. For example $(\mathbb{R}_{alg}, +, \cdot, <, (-\pi, \pi) \cap \mathbb{R}_{alg})$ is weakly o-minimal but not definably complete.

If R is the field \mathbb{R} of real numbers, then an expansion \mathcal{M} of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ is definably complete.

In this paper we consider its equivariant definable C^r version of Morse theory on \mathcal{M} . It is a generalization of [8], [12]. Everything is considered in \mathcal{M} , $r \geq 2$ and every definable map is continuous unless otherwise stated. Remark that the condition that $r \geq 2$ is necessary to define Morse functions. Definable $C^r G$ manifolds in o-minimal structures are studied in [10], [9]. Their definitions work in \mathcal{M} .

Let X be an n-dimensional definable C^r manifold and $f : X \to \mathbb{R}$ a definable C^r function. We say that a point $p \in X$ is a *critical point* of f if the differential of f at p is zero. We say that f(p) is called a *critical value* of f if p is a critical point of f. Let p be a critical point of f and (U, u) a definable C^r coordinate system on X at p. The critical point p is *nondegenerate* if the Hessian matrix of $f \circ u^{-1}$ at 0 is nonsingular. Direct computations show this definition is well-defined.

In the non-equivariant setting, Y. Peterzil and S. Starchenko [15] introduced definable C^r Morse functions in an o-minimal expansion of the standard structure of a real closed field.

Let G be a definable C^r group, X a definable C^rG manifold and $f: X \to \mathbb{R}$ a G invariant definable C^r function on X. A closed definable C^rG submanifold Y of X is a critical manifold (resp. a nondegenerate critical manifold) of f if each $p \in Y$ is a critical point (resp. a nondegenerate critical point) of f. We say that f is an equivariant

²⁰¹⁰ Mathematics Subject Classification. 14P10, 14P20, 57R35, 58A05, 03C64.

Keywords and Phrases. Definably complete structures, Morse theory, equivariant definable Morse functions.

definable Morse function if the critical locus of f is a finite union of nondegenerate critical manifolds of f without interior.

Theorem 1.1. Let G be a compact definable C^r group, f an equivariant definable Morse function on a compact affine definable C^rG manifold X and $2 \leq r < \infty$. If f has no critical value in [a,b], then $f^a := f^{-1}((-\infty,a])$ is definably C^rG diffeomorphic to $f^b := f^{-1}((-\infty,b])$. If \mathcal{M} is exponential, then we can take $r = \infty$.

Theorem 1.1 is an equivariant definable C^r version of Theorem 4.3 [17]. An O-minimal version of Theorem 1.1 is considered in [8], [12].

Note that the method of the proof Theorem 4.3 [17] is the integration of a G invariant C^{∞} vector field. This method does not work in the definable category because the integration of a G invariant definable C^r vector field is not always definable.

In the non-equivariant o-minimal case, T.L. Loi [13] proved density and openness of definable Morse functions.

Let $Def^r(\mathbb{R}^n)$ denote the set of definable C^r functions on \mathbb{R}^n . For each $f \in Def^r(\mathbb{R}^n)$ and for each positive definable function $\epsilon : \mathbb{R}^n \to \mathbb{R}$, the ϵ -neighborhood $N(f;\epsilon)$ of f in $Def^r(\mathbb{R}^n)$ is defined by $\{h \in Def^r(\mathbb{R}^n) || \partial^{\alpha}(h-f)| < \epsilon, \forall \alpha \in (\mathbb{N} \cup \{0\})^n, |\alpha| \leq r\}$, where $\alpha = (\alpha_1, \ldots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n, |\alpha| = \alpha_1 + \cdots + \alpha_n, \partial^{\alpha}F = \frac{\partial^{|\alpha|}F}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$. We call the topology defined by these ϵ -neighborhoods the *definable* C^r topology.

Theorem 1.2 ([13]). Let \mathcal{L} be an o-minimal expansion of \mathcal{R} and X a definable C^r submanifold of \mathbb{R}^n . Then the set of definable C^r functions on \mathbb{R}^n which are Morse functions on X and have distinct critical values are open and dense in $Def^r(\mathbb{R}^n)$ with respect to the definable C^r topology.

Theorem 1.2 is generalized in o-minimal expansions of real closed fields ([6]).

Remark that the definable C^r topology and the C^r Whitney topology do not coincide in general. If X is compact, then these topologies of the set $Def^r(X)$ of definable C^r functions on X are the same (P156 [16]).

A nondegenerate critical manifold of an equivariant Morse function on a definable C^rG manifold is called a *nondegenerate critical orbit* if it is an orbit.

Theorem 1.3. Let G be a compact definable C^r group, X a compact affine definable C^rG manifold and $2 \leq r < \infty$.

(1) The set $Def_{equi-Morse,o}(X)$ of equivariant definable Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense in the set $C_{inv}^r(X)$ of G invariant C^r functions on X with respect to the C^r Whitney topology. Moreover $Def_{equi-Morse,o}(X)$ is open and dense in the set $Def_{inv}^r(X)$ of G invariant definable C^r functions with respect to the definable C^r topology.

(2) If \mathcal{M} is exponential, then the set $Def_{equi-Morse,o}(X)$ of equivariant definable Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense in the set $C^{\infty}_{inv}(X)$ of G invariant C^{∞} functions on X with respect to the C^r Whitney topology. Moreover $Def_{equi-Morse,o}(X)$ is open and dense in the set $Def^{\infty}_{inv}(X)$ of G invariant definable C^{∞} functions with respect to the definable C^r topology.

Definable $G \ CW$ complexes are introduced in [5]. They are generalized in o-minimal expansions of real closed fields ([4]). In the o-minimal setting \mathcal{L} , the following result holds.

Theorem 1.4 ([8]). Let \mathcal{L} be an o-minimal expansion of \mathcal{R} , G a compact definable group and X a definable G manifold.

- (1) X is definably G homeomorphic to a finite union of open G cells of a definable G CW complex.
- (2) If X is compact, then X is definably G homeomorphic to a definable G CW complex. In particular, X is G homeomorphic to a finite G CW complex.

However if $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \mathbb{Z})$, then Theorem 1.4 does not hold even when G is the trivial group because a definable set \mathbb{Z} is not homeomorphic to a finite union of open cells.

By a way similar to the proof of 1.6 [8], we have the following result. It is a definable version of a well-known topological result (e.g. 6.2.4 [3]).

Theorem 1.5. Let X be an n-dimensional compact definable C^r manifold having a definable Morse function $f: X \to \mathbb{R}$ with only two critical points and $2 \leq r < \infty$. Then X is definably homeomorphic to the n-dimensional unit sphere S^n . If $n \leq 6$, then X is definably C^r diffeomorphic to S^n . If \mathcal{M} is exponential, then we can take $r = \infty$.

Remark that if n = 7, then there exsits a C^{∞} manifold which is homeomorphic to S^7 , but not C^{∞} diffeomorphic to S^7 ([14]).

2. Preliminaries and proof of Theorem 1.1.

A group G is a definable C^r group if G is a definable C^r manifold such that the group operations $G \times G \to G$ and $G \to G$ are definable C^r maps. Let G be a definable C^r group. A definable C^rG manifold is a pair (X, ϕ) consisting of a definable C^r manifold X and a group action $\phi : G \times X \to X$ such that ϕ is a definable C^r map. For simplicity, we write X instead of (X, ϕ) .

Let G be a definable C^r group. A representation map of G means a group homomorphism from G to some $O_n(\mathbb{R})$ which is of class definable C^r and the representation of this representation map is \mathbb{R}^n with the orthogonal action induced by the representation map. In this paper, we always assume that every representation is orthogonal. A definable C^rG submanifold of a representation Ω of G is a G invariant definable C^r submanifold of Ω . We say that a definable C^rG manifold is affine if it is definably C^rG diffeomorphic to a definable C^rG submanifold of some representation of G.

Theorem 2.1. Let X and Y be compact affine definable C^rG manifolds possibly with boundary and $2 \leq r < \infty$. Then X and Y are C^1G diffeomorphic if and only if they are definably C^rG diffeomorphic. If \mathcal{M} is exponential, then we can take $r = \infty$.

Let G be a compact group, f a map from a C^rG manifold X to a representation Ω of G and $0 \leq r \leq \infty$. Denote the Haar measure of G by dg, and let x be a point in X. Recall the averaging operator A defined by

$$A(f)(x) = \int_G g^{-1} f(gx) dg.$$

Proposition 2.2 (e.g. 2.11 [7]). Let G be a compact group and $0 \le r \le \infty$. Suppose that $C^r(X, \Omega)$ denotes the set of C^r maps from a C^rG submanifold X of a representation of G to a representation Ω of G.

(1) The averaged map A(f) of f is equivariant, and A(f) = f if f is equivariant.

- (2) If $f \in C^r(X, \Omega)$, then $A(f) \in C^r(X, \Omega)$.
- (3) If f is a polynomial map, then so is A(f).
- (4) If X is compact and $r < \infty$, then $A : C^r(X, \Omega) \to C^r(X, \Omega)$ is continuous in the C^r Whitney topology.

By a way similar to the proofs of 4.5, 4.6 [7], we have the following two propositions.

Proposition 2.3. Let X be a compact definable C^rG submanifold possibly with boundary of a representation Ω of G and $1 \leq r < \infty$. Then there exists a definable C^rG tubular neighborhood (U, θ) of X in Ω . If \mathcal{M} is exponential, then we can take $r = \infty$.

Proposition 2.4. Let X be a compact affine definable C^rG manifold with boundary and $2 \leq r < \infty$. Then X admits a definable C^rG collar, namely there exists a definable C^rG imbedding $\phi : \partial X \times [0,1] \to X$ such that $\phi|(\partial X \times \{0\})$ is the inclusion $\partial X \to X$, where the action on [0,1] is trivial. If \mathcal{M} is exponential, then we can take $r = \infty$.

Theorem 2.5 (P 38 [3]). (1) Let X, Y be C^1 manifolds. Then the set of C^1 diffeomorphisms from X onto Y is open in the set $C^1(X, Y)$ of C^1 maps from X to Y with respect to the C^1 Whitney topology.

(2) Let X, Y be C¹ manifolds with boundary $\partial X, \partial Y$, respectively. Then the set of C¹ diffeomorphisms from X onto Y is open in $\{f \in C^1(X, Y) | f(\partial X) \subset f(\partial Y)\}$ with respect to the C¹ Whitney topology.

By a way similar to the proof of 2.5 [11], we have the following theorem.

Theorem 2.6. Let G be a compact definable C^r group and X a compact affine definable C^rG manifold and $1 \leq r < \infty$. Suppose that A, B are G invariant definable disjoint closed subsets of X. Then there exists a G invariant definable C^r function $f : X \to \mathbb{R}$ such that f|A = 1 and f|B = 0. If \mathcal{M} is exponential, we can take $r = \infty$.

Proof of Theorem 2.1. Let Ω (resp. Ξ) be a representation of G containing X (resp. Y) as a definable $C^r G$ submanifold of Ω (resp. Ξ). We first assume that $\partial X = \partial Y = \emptyset$. By Polynomial Approximation Theorem, Proposition 2.2, Proposition 2.3 and Theorem 2.5, X and Y are $C^1 G$ diffeomorphic if and only if they are definably $C^r G$ diffeomorphic. If \mathcal{M} is exponential, then we can take $r = \infty$.

We assume that $\partial X \neq \emptyset$ and $\partial Y \neq \emptyset$. Let $f: X \to Y$ be a C^1G diffeomorphism. Since $f|\partial X: \partial X \to \partial Y$ is a C^1G diffeomorphism and ∂X is compact, one can find a definable C^rG diffeomorphism $f': \partial X \to \partial Y$ as an approximation of $f|\partial X: \partial X \to \partial Y$ in the C^1 Whitney topology. Using definable C^rG collars of ∂X and ∂Y in X and Y, respectively, we have a G invariant definable open neighborhoods U and V of ∂X and ∂Y in X and Y, respectively, and a definable C^rG diffeomorphism $f_1: U \to V$ with $f_1|\partial X = f'$.

Take a G invariant definable open neighborhood U' of ∂X in X with $U' \subsetneq U$. By Theorem 2.6, there exists a G invariant definable C^r function $\lambda : X \to \mathbb{R}$ such that $\lambda = 1$ on U' and the support lies in U. By Proposition 2.3 and since Y is compact, there exists a definable $C^r G$ tubular neighborhood (V, θ) of Y in Ξ . By Polynomial Approximation Theorem, Proposition 2.2 and since X is compact, there exists a polynomial G map $f_2 : X \to \Xi$ which is an approximation of $i \circ f$ in the C^1 Whitney topology, where $i : Y \to \Xi$ denotes the inclusion. If our approximation is sufficiently close, then H: $X \to Y, H(x) = \theta(\lambda(x)f_1(x) + (1 - \lambda(x))f_2(x))$ is a definable $C^r G$ map such that it is an approximation of f in the C^1 Whitney topology and $H(\partial X) \subset \partial Y$. Therefore by Theorem 2.5 and the inverse function theorem, H is the required definable $C^r G$ diffeomorphism. If \mathcal{M} is exponential, then we can take $r = \infty$ in the general case.

Proof of Theorem 1.1. By the proof of Theorem 4.3 [17], $f^a = f^{-1}((-\infty, a])$ is $C^{r-1}G$ diffeomorphic to $f^b = f^{-1}((-\infty, b])$. Since X is compact and affine, these two manifolds are compact affine definable C^rG manifolds with boundary. Thus Theorem 1.1 follows from Theorem 2.1.

3. Proof of Theorem 1.3.

By the proof of Lemma 4.8 [17] proves the following.

Theorem 3.1 ([17]). Let G be a compact C^r group, X a compact C^rG manifold and $2 \leq r \leq \infty$. Then the set $C^r_{equi-Morse,o}(X)$ of equivariant Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is open and dense in the set $C^r_{inv}(X)$ of G invariant C^r functions on X with respect to the C^r Whitney topology.

Proof of Theorem 1.3. Let $f \in C_{inv}^r(X)$ and $\mathcal{N} \subset C_{inv}^r(X)$ an open neighborhood of fin $C_{inv}^r(X)$. By Theorem 3.1, there exists an open subset $\mathcal{N}' \subset \mathcal{N}$ such that each $h \in \mathcal{N}'$ is an equivariant Morse function whose critical locus is a finite union of nondegenerate critical orbits. Let $C^r(X)$ denote the set of C^r functions on X. Since $A : C^r(X) \to C^r(X)$ is continuous and $A(C^r(X)) = C_{inv}^r(X)$, $A : C^r(X) \to C_{inv}^r(X)$ is continuous. Fix $h \in \mathcal{N}'$. Since A(h) = h, $A^{-1}(\mathcal{N}')$ is an open neighborhood of h in $C^r(X)$. Applying Polynomial Approximation Theorem, we have a polynomial function h' lies in $A^{-1}(\mathcal{N}')$. Applying the averaging function, we have a G invariant polynomial function F := A(h') lies in \mathcal{N}' . Since F is a G invariant polynomial function, it is a G invariant definable C^r function. Thus F is an equivariant definable Morse function lies in \mathcal{N} .

We now prove the second part. By the first part, $Def_{equi-Morse,o}(X)$ is dense in $C_{inv}^r(X)$. Thus it is dense in $Def_{inv}^r(X)$. Let $h \in Def_{equi-Morse,o}(X)$. By Theorem 3.1, there exists an open neighborhood \mathcal{V} of h in $C_{inv}^r(X)$ such that each $h \in \mathcal{V}$ is an equivariant Morse function whose critical locus is a finite union of nondegenerate critical orbits. Thus $\mathcal{V} \cap Def_{inv}^r(X)$ is the required open neighborhood of h in $Def_{inv}^r(X)$.

If \mathcal{M} is exponential, then the above argument works when $r = \infty$.

References

- M. Aschenbrenner and A. Fischer, Definable versions of theorems by Kirszbraun and Helly, Proc. Lond. Math. Soc. 102 (2011), 468–502.
- [2] A. Fornasiero and T. Servi, *Definably complete Baire structures*, Fund. Math. **209** (2010), 215–241.
- [3] M.W. Hirsch, *Differential topology*, Graduate Texts in Mathematics **33**, Springer-Verlag, (1976).
- [4] T. Kawakami, A definable strong G retract of a definable G set in a real closed field, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 61 (2011), 7–11.
- [5] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 54, (2004), 1–15.
- [6] T. Kawakami, Definable Morse functions in a real closed field, Bull. Fac. Edu. Wakayama Univ. 62 (2012), 35–38.

- [7] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 55 (2005), 23–36.
- [8] T. Kawakami, Equivariant definable Morse functions on definable C^rG manifolds, Far East J. Math. Sci. (FJMS) 28 (2008), 175–188.
- T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [10] T. Kawakami, Imbeddings of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183–201.
- [11] T. Kawakami, Relative properties of definable C[∞] manifolds with finite abelian group actions in an o-minimal expansion of R_{exp}, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. **59** (2009), 21–27.
- [12] T. Kawakami and H. Tanaka, Equivariant definable Morse functions on definable $C^{\infty}G$ manifolds, Surikaisekikenkyusho Kokyuroku **1718** (2010), 58-63.
- [13] T.L. Loi, Density of Morse functions on sets definable in o-minimal structures, Ann. Polon. Math. 89, (2006), 289–299.
- [14] J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2) 64 (1956), 399–405.
- [15] Y. Peterzil and S. Starchenko, Computing o-minimal topological invariants using differential topology, Trans. Amer. Math. Soc. 359, (2006), 1375-1401.
- [16] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser, Boston, 1997.
- [17] G. Wasserman, Equivariant differential topology, Topology 8, (1969), 127-150.

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail address: kawa@center.wakayama-u.ac.jp