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Abstract. A main tool in studying topological properties of sets definable in o-
minimal structures is the Cell Decomposition Theorem. This paper proposes its
metric counterpart.

1.Introduction.

Fix any o-minimal structure on a real closed field R (for the definition and
fundamental properties of o-minimal structures the reader is referred to [vdD]). Let
n be a positive integer.

A subset S of Rn will be called an (open) cell in Rn iff

(1.1) S = {(x′, xn) ∈ Rn : x′ ∈ ∆, ϕ1(x′) < xn < ϕ2(x′)},

where x′ = (x1, . . . , xn−1), ∆ is an open definable subset of Rn−1, every ϕi (i ∈
{1, 2}) is either a definable continuous function ϕi : ∆ −→ R or ϕi ≡ −∞ or
ϕi ≡ +∞ and, for each x′ ∈ ∆, ϕ1(x′) < ϕ2(x′).

For any positive M ∈ R, a definable continuous function ϕ : ∆ −→ R defined on
an open subset ∆ of Rn−1 will be called an M -function iff

(1.2)
∣∣∣ ∂ϕ

∂xj
(a)

∣∣∣ ≤ M (j ∈ {1, . . . , n− 1}),

at each point a ∈ ∆ in a neighborhood of which ϕ is of class C1.
An cell S in Rn will be called an M -cell (a semi-M -cell) iff, for each i ∈ {1, 2}

(for at least one i ∈ {1, 2}), if ϕi is finite, it is an M -function. A cell S in Rn will
be called a regular M -cell iff it is any open interval in the case n = 1 and, in the
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case n > 1, for each i ∈ {1, 2}, if ϕi is finite it is an M -function of class C1 on ∆
and the projection ∆ of S into Rn−1 is a regular M -cell in Rn−1.

An M -cell will be called an M -disc iff it is any open interval in the case n = 1
and, in the case n > 1, the both ϕi (i ∈ {1, 2}) are finite and admit continuous
extensions

(1.3) ϕi : ∆ −→ R

onto the closure of ∆ in Rn−1, and

(1.4) ϕ1 = ϕ2 on ∂∆.

Proposition 1. Let S be a regular M -cell in Rn and let ϕ : S −→ R be an L-
function (L > 0 ) of class C1.

Then
(1) for any two different points a, b ∈ S, there is a definable continuous mapping

λ = (λ1, . . . , λn) : [0 , |a− b|] −→ S

such that λ(0) = a,λ(|a − b|) = b and |λ′j(t)| ≤ (j − 1)!M j−1, for any
j ∈ {1, . . . , n} and any t such that λ′j(t) exists1;

(2) for any two points a, b ∈ S,

|ϕ(a)− ϕ(b)| ≤ n!Mn−1L|a− b|.

Proof. (1) Let S be as in (1.1). Arguing by induction and assuming that a′ 6= b′,
one can find a mapping

ω = (ω1, . . . , ωn−1) : [0 , |a′ − b′|] −→ ∆

such that ω(0) = a′, ω(|a′ − b′|) = b′ and |ω′j(τ)| ≤ (j − 1)!M j−1, for any j ∈
{1, . . . , n− 1} and any τ such that ω′j(τ) exists. Let ε > 0 be such that

ϕ1(ω(τ)) + ε < ϕ2(ω(τ))− ε, for any τ ∈ [0 , |a′ − b′|],
and

ϕ1(a′) + ε < an < ϕ2(a′)− ε and ϕ1(b′) + ε < bn < ϕ2(b′)− ε.

Now, it suffices to put

λj(t) = ωj(t
|a′ − b′|
|a− b| ), for j ∈ {1, . . . , n− 1},

and

λn(t) = max
{
ϕ1

(
ω
(
t
|a′ − b′|
|a− b|

))
+ ε, min

{
ϕ2

(
ω
(
t
|a′ − b′|
|a− b|

))− ε, an + t
bn − an

|a− b|
}}

.

(2) follows from (1), by the Mean Value Theorem (see [vdD, Chapter 7, (2.3)]).

1|a− b| =
qPn

j=1(aj − bj)2
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Kurdyka-Parusiński Theorem ([K, P]). Any open definable subset G of Rn

has a finite decomposition

G = S1 ∪ · · · ∪ Sk ∪ Σ,

where every Sν is a regular Mn-cell in some linear coordinate system in Rn and Σ
is nowhere dense, Mn being a constant depending only on n.

The aim of the present article is to show that in fact permutations of coordinates
are sufficient in the above theorem. We will prove simultaneously by induction on
n the following three theorems.

Theorem 1n (2n, 3n). Any open definable subset G of Rn has a finite decomposi-
tion

(1.5) G = S1 ∪ · · · ∪ Sk ∪ Σ,

where every Sν is an M1n-cell (M2n-disc, a regular M3n-cell) in Rn after a permu-
tation of coordinates and Σ is nowhere dense, M1n (M2n, M3n) being a constant
≥ 1 depending only on n.

For simplicity we will often skip the adjective definable, when considering subsets
of spaces Rn and mappings between such subsets. Also, we adopt the following
conventions. A local property (w) of a mapping f : A −→ Rm, where A ⊂ Rn,
is said to be satisfied almost everywhere iff there is a closed subset E of A such
that dim E < dim A and (w) is satisfied at each point of A \ E. A finite sequence
B1, . . . , Bk of subsets of a set A ⊂ Rn is said to be an almost decomposition of A
iff Bν (ν = 1, . . . , k) are pairwise disjoint and dim

(
A \ (B1 ∪ · · · ∪ Bk)

)
< dim A.

This will be denoted by writing

G ' B1 ∪ · · · ∪Bk.

Since Theorem 2n easily implies both Theorems 1n and 3n, it suffices to derive first
Theorem 1n from Theorem 2n−1 and then Theorem 2n from Theorems 1n, 2n−1

and 3n−1. From now on, we will assume that n ≥ 2 is fixed.

2. A preparation.

Lemma 1. If G ⊂ Rn−1 is open and E ⊂ ∂G is closed of dimension < n− 2 and
Theorem 2n−1 is true, then G has an almost decomposition

G ' ∆1 ∪ · · · ∪∆p,

where every ∆ν , after a permutation of coordinates in Rn−1, is an M2n−1-disc:

∆ = {(x′′, xn−1) : x′′ ∈ Ω, σν(x′′) < xn−1 < ρν(x′′)}2,

such that the both (graphs of )3 σν and ρν are disjoint with E.

2x′′ = (x1, . . . , xn−2)
3We will identify functions with their graphs.
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Proof. Take the projections

πj : Rn−1 3 (x1, . . . , xn−1) 7→ (x1, . . . , xj−1, xj+1, . . . , xn−1) ∈ Rn−2,

for j ∈ {1, . . . , n− 1}, and set

Z = the closure of
⋃

j

π−1
j (πj(E)).

Then dim Z ≤ n− 2 and it suffices to use Theorem 2n−1 to G \ Z.

As a corollary one easily gets (see [vdD]) the following

Lemma 2. If G ⊂ Rn−1 is open and ϕ : G −→ R is continuous, then G has an
almost decomposition

G ' ∆1 ∪ · · · ∪∆p ,

where every ∆ν , after a permutation of coordinates in Rn−1, is an M2n−1-disc

∆ν = {(x′′, xn−1) : x′′ ∈ Ω, σν(x′′) < xn−1 < ρν(x′′)}

such that ϕ|∆ν has a continuous extension

ϕν : ∆ν ∪ σν ∪ ρν −→ R = R ∪ {−∞, +∞}

such that ϕν(σν) ⊂ R orϕν(σν) = {−∞}, orϕν(σν) = {+∞} and the same for ρν .

Proposition 2. Let f : S −→ R be a definable C1-function defined on a cell

S = {(x′, xn) ∈ Rn : x′ ∈ ∆, ϕ(x′) < xn < ψ(x′)}

in Rn such that ϕ : ∆ −→ R is of class C1.

Assume that
∂f

∂xn
has a finite limit value4 at (almost) each point of ϕ ( for

example, when
∂f

∂xn
is bounded ).

Then there is a closed nowhere dense subset Z of ϕ such that f extends to a
C1-function

f : S ∪ (ϕ \ Z) −→ R

to S ∪ (ϕ \ Z) as a C1-submanifold with boundary.

Proof. It is left to the reader as an exercise (cf [vdD]).

4An element α ∈ R is a limit value of a function g : S −→ R at a ∈ S iff there is an arc
γ : (0, 1) −→ S such that lim

t→0
γ(t) = a and lim

t→0
g(γ(t)) = α.
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Lemma 3. Let L,M,N, P ∈ R be positive and let

G = {(x′, xn) : x′ ∈ ∆, ϕ1(x′) < xn < ϕ2(x′)}

be a semi-M -cell in Rn such that ∆ is an N -cell in Rn−1, ϕi : ∆ −→ R, for each
i ∈ {1, 2},and the following conditions are satisfied almost everywhere in ∆:

(2.1)
∣∣∣∣
∂ϕ1

∂xj

∣∣∣∣ ≤ M, for each j ∈ {1, . . . , n− 1};

(2.2)
∣∣∣∣

∂ϕ1

∂xn−1

∣∣∣∣ < L <

∣∣∣∣
∂ϕ2

∂xn−1

∣∣∣∣;

(2.3)

∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣
∣∣∣∣

∂ϕ2

∂xn−1

∣∣∣∣
≤ P, for each j ∈ {1, . . . , n− 1};

(2.4) sgn
∂ϕ2

∂xn−1
= const.

Then G admits an almost decomposition

G ' S1 ∪ · · · ∪ Sk,

where every Sν is an M̃ -cell, possibly after transposition (xn−1, xn), where M̃ is a
positive constant depending only on L,M, N and P .

Proof. Put
∆ = {(x′′, xn−1) : x′′ ∈ Ω, σ(x′′) < xn−1 < ρ(x′′)}.

One can assume that

(2.5)
∂ϕ2

∂xn−1
> 0 ;

the other case will follow by a modification. Because of (2.2) and (2.5), it is clear
that σ : ∆ −→ R. By a subdivision of Ω one can assume that σ is of class C1 and
that (2.2) is satisfied almost everywhere on every segment {(x′′, xn−1) : σ(x′′) <
xn−1 < ρ(x′′)}, where x′′ ∈ Ω and that ϕi admit continuous extensions

ϕi : ∆ ∪ σ −→ R (i = 1, 2)

and
ϕ2 : ∆ ∪ ρ −→ R ∪ {+∞}

such that ϕ2(ρ) ⊂ R or ϕ2(ρ) = {+∞}.
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By Proposition 2, ϕ1 is of class C1 almost everywhere on σ. Put

ψ(x′′, xn−1) = ϕ1(x′′, σ(x′′)) + L(xn−1 − σ(x′′)), for (x′′, xn−1) ∈ ∆.

Then ψ is an max(M + MN + LN, L)-function and ϕ1 < ψ < ϕ2.

Now G ' S1 ∪ S2, where S1 = {(x′, xn) : ϕ1(x′) < xn < ψ(x′)} and S2 =
{(x′′, xn−1, xn) : x′′ ∈ Ω, Φ1(x′′, xn) < xn−1 < Φ2(x′′, xn)}, where

Φ2(x′′, xn) =





ψ−1(x′′, xn) = L−1(xn − ϕ1(x′′, σ(x′′))) + σ(x′′),
if ϕ1(x′′, σ(x′′)) < xn < ψ(x′′, ρ(x′′))

ρ(x′′), if ψ(x′′, ρ(x′′)) ≤ xn < ϕ2(x′′, ρ(x′′))

and

Φ1(x′′, xn) =
{

σ(x′′), if ϕ1(x′′, σ(x′′)) < xn ≤ ϕ2(x′′, σ(x′′))

ϕ−1
2 (x′′, xn), if ϕ2(x′′, σ(x′′)) < xn < ϕ2(x′′, ρ(x′′)),

where ψ−1 and ϕ−1
2 stand for inversions with respect to xn−1.

Lemma 4. Let A ⊂ Rn−1 be open and let M ∈ R,M > 0. Let fα : A −→ R
(α ∈ {1, . . . , k + l}) be M -functions on A each of which has a continuous extension
to A:

fα : A −→ R.

Assume that for each a ∈ ∂A there are α ≤ k and β > k such that fβ(a) ≤ fα(a).

Then the set

S = {(x′, xn) ∈ A×R : max
1≤α≤k

fα(x′) < xn < min
k<β≤k+l

fβ(x′)}

is an M -disc in Rn.

Proof. Indeed,

S = {(x′, xn) ∈ B ×R : max
1≤α≤k

fα(x′) < xn < min
k<β≤k+l

fβ(x′)},

where B is the natural projection of S to A. It is clear that max
1≤α≤k

fα = min
k<β≤k+l

fβ

on ∂B and the lemma follows.

Lemma 5. Let α1, α2 ∈ R,α1 < α2 and let f, g, h : (α1, α2) −→ R be three
continuous definable functions such that

(2.6) g ≤ f on (α1, α2);

(2.7) for each i ∈ {1, 2}, if αi ∈ R, then lim
t→αi

g(t) = lim
t→αi

h(t) ∈ R;
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(2.8) sgnf ′(t) = const almost everywhere in (α1, α2),

and there is ε > 0 such that

(2.9) |f ′(t)| ≥ |g′(t)|+ ε and |f ′(t)| > |h′(t)| almost everywhere in (α1, α2).

Then h < f on (α1, α2).

Proof. One can assume that f ′(t) > 0. Then α1 ∈ R, since otherwise by (2.9),
lim

t→−∞
(f(t) − g(t)) = −∞, a contradiction with (2.6). By (2.9), f − h is strictly

increasing and, by (2.6) and (2.7),

lim
t→α1

(f(t)− h(t)) ≥ lim
t→α1

(g(t)− h(t)) = 0.

Hence, f − h > 0 on (α1, α2).

3. Reduction of Theorem 1n to a special case of semi-M-cells.

By the standard cell decomposition theorem (see [vdD]) and since

Rn =
n⋃

j=1

{(x1, . . . , xn) ∈ Rn : |xk| ≤ |xj |, for any k 6= j},

it suffices to derive Theorem 1n for any cell G in Rn such that

(3.1) G = {(x′, xn) : x′ ∈ ∆, ϕ1(x′) < xn < ϕ2(x′)},

where ϕi : ∆ −→ R (i = 1, 2) are continuous.

For given positive L,P ∈ R such a cell G will be called an (L,P )-cell (with
respect to the variable xr), where r ∈ {1, . . . , n− 1}, iff

(3.2)
∣∣∣∣
∂ϕi

∂xr

∣∣∣∣ ≥ L and

∣∣∣∣
∂ϕi

∂xj

∣∣∣∣
∣∣∣∣
∂ϕi

∂xr

∣∣∣∣
≤ P ,

almost everywhere on ∆, for i ∈ {1, 2}, j ∈ {1, . . . , n− 1}.
Proposition 3.

(1) Any open cell G ⊂ Rn has an almost decomposition

(3.3) G ' S1 ∪ · · · ∪ Sk,

where every Sν is either a semi-Mn-cell or an (Ln, Pn)-cell after a permu-
tation of coordinates, where positive constants Mn, Ln and Pn depend only
on n.

(2) If a cell G is an (L,P )-cell, then G has an almost decomposition (3.3) with
only semi-M -cells, where a constant M depends only on n,L and P .

To prove Proposition 3 we first have the following
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Lemma 6. Let H be an open subset of Rn and let E be a closed subset of ∂H such
that dim E < n− 1. Let ri ∈ {1, . . . , n− 1} (i ∈ {1, 2}). Assume that L,P ∈ R are
positive and such that, for each a ∈ ∂H \ E:

(3.4− i) there exists a neighborhood U of a in Rn such that ∂H ∩ U is (the graph
of) a C1-function ψ : V −→ R defined on an open V ⊂ Rn−1 and such that

∣∣∣∣
∂ψ

∂xri

∣∣∣∣ ≥ L and

∣∣∣∣
∂ψ

∂xj

∣∣∣∣
∣∣∣∣

∂ψ

∂xri

∣∣∣∣
≤ P on V for j ∈ {1, . . . , n− 1},

for i = 1 or i = 2.

Then:
(1) H admits an almost decomposition

(3.5) H ' S1 ∪ · · · ∪ Sk,

where every Snu is either a semi-max(L−1, P )-cell or a (P−1, max(L−1, P ))-
cell in Rn after transposition (xri , xn).

(2) If r1 = r2 = r,H has such an almost decomposition (3.5) that every Sν is
a max(L−1, P )-cell after transposition (xr, xn).

Proof of Lemma 6. After transposition (xr1 , xn) take a C1-cell decomposition com-
patible with each of the sets

Λi = {a ∈ ∂H \ E : a satisfies (3.4− i)}

(i = 1, 2) and with E. This gives an almost decomposition

H ' S1 ∪ · · · ∪ Sk,

where every cell Sν is of the form

Sν = {(x′, xn) : x′ ∈ ∆ν , ϕ1ν(x′) < xn < ϕ2ν(x′)},

such that, for i ∈ {1, 2}, either ϕiν ⊂ Λ1 or ϕiν ⊂ Λ2, or ϕiν ≡ −∞, or ϕiν ≡ +∞.
One can assume that for each i either ϕiν ⊂ Λ1 or ϕiν ⊂ Λ2, since otherwise Sν

is trivially a semi-max(L−1, P )-cell.
If ϕiν ⊂ Λ1, for at least one i, then Sν is a semi-max(L−1, P )-cell.
If ϕiν ⊂ Λ2, for each i ∈ {1, 2}, and r1 6= r2, then it is easy to check that Sν is

an (L,max(L−1, P ))-cell with respect to xr2 .

Proof of Proposition 3. One can assume that G is as in (3.1). The proof will be by
descending induction on the number

〈G〉 =
2∑

i=1

]

{
j :

∣∣∣∣
∂ϕi

∂xj

∣∣∣∣ < 1 + 2M2n−1 almost everywhere on ∆
}

.
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If 〈G〉 = 2(n−1), G is a (1+2M2n−1)-cell, so assume that 〈G〉 < 2(n−1). Observe
that if ∆̃ ⊂ ∆ is open, then for G̃ = G ∩ (∆̃ × R), 〈G̃〉 ≥ 〈G〉. Hence, one can
assume that every ϕi is C1 and

(3.6) for each j ∈ {1, . . . , n− 1}, sgn
∂ϕi

∂xj
= const on ∆;

(3.7) for each j ∈ {1, . . . , n− 1}, either
∣∣∣∣
∂ϕi

∂xj

∣∣∣∣ < 1 + 2M2n−1

or
∣∣∣∣
∂ϕi

∂xj

∣∣∣∣ > 1 + 2M2n−1, or
∣∣∣∣
∂ϕi

∂xj

∣∣∣∣ = 1 + 2M2n−1 on ∆

and there is ri ∈ {1, . . . , n− 1} such that

(3.8) for each j ∈ {1, . . . , n− 1},
∣∣∣∣
∂ϕi

∂xj

∣∣∣∣ ≤
∣∣∣∣
∂ϕi

∂xri

∣∣∣∣ on ∆.

Moreover, one can assume that

(3.9)
∣∣∣∣
∂ϕi

∂xri

∣∣∣∣ ≥ 4M2n−1(1 + 2M2n−1), for i ∈ {1, 2},

since otherwise G is a semi-4M2n−1(1 + 2M2n−1)-cell. Besides, by Lemma 2, one
can assume that

∆ = {(x′′, xn−1) : x′′ ∈ Ω, σ(x′′) < xn−1 < ρ(x′′)}

is an M2n−1-disc and every ϕi has a continuous extension

ϕi : ∆ ∪ σ ∪ ρ −→ R

such that ϕi(σ) ⊂ R or ϕi(σ) = {−∞} or ϕi(σ) = {+∞}, and the same for
ρ.

Observe that if
∂ϕ1

∂xn−1
¦ ∂ϕ2

∂xn−1
≤ 0,

then clearly G is a semi-M2n−1-cell after transposition (xn−1, xn), so without any
loss of generality one can assume that

∂ϕi

∂xn−1
> 0 on ∆, for i ∈ {1, 2}.

By (3.7), one can distinguish the following three cases:

(3.10)
∣∣∣∣

∂ϕi

∂xn−1

∣∣∣∣ ≤ 1 + 2M2n−1, for i ∈ {1, 2};

(3.11)
∣∣∣∣

∂ϕi

∂xn−1

∣∣∣∣ ≥ 1 + 2M2n−1, for i ∈ {1, 2};
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(3.12)
∣∣∣∣

∂ϕ1

∂xn−1

∣∣∣∣ < 1 + 2M2n−1 and
∣∣∣∣

∂ϕ2

∂xn−1

∣∣∣∣ > 1 + 2M2n−1 (or vice-versa).

Case (3.10 ) Here we will be using only that every ϕi : ∆ ∪ σ ∪ ρ −→ R is
continuous and there is a closed nowhere dense Z ⊂ ∆ such that ϕi is C1 on ∆ \Z
and

(3.13)
∣∣∣∣

∂ϕi

∂xn−1

∣∣∣∣ ≤ 1 + 2M2n−1, on ∆ \ Z;

(3.14)
∣∣∣∣
∂ϕi

∂xj

∣∣∣∣ ≤ 3
∣∣∣∣
∂ϕi

∂xri

∣∣∣∣ on ∆ \ Z (j = 1, . . . , n− 1)

and

(3.15)
∣∣∣∣
∂ϕi

∂xri

∣∣∣∣ ≥ 2M2n−1(1 + 2M2n−1) on ∆ \ Z.

Put
H = {(x′′, xn−1, xn) ∈ G : ϕ2(x′′, σ(x′′)) < xn < ϕ1(x′′, ρ(x′′))} =

{(x′, xn) ∈ Rn : x′ ∈ D, Φ1(x′) < xn < Φ2(x′)},
where

D = {(x′′, xn−1) ∈ ∆ : ϕ2(x′′, σ(x′′)) < ϕ1(x′′, ρ(x′′))},
Φ1(x′′, xn−1) = max(ϕ2(x′′, σ(x′′)), ϕ1(x′′, xn−1))

and
Φ2(x′′, xn−1) = min(ϕ2(x′′, xn−1), ϕ1(x′′, ρ(x′′))).

Observe that Φ1 = Φ2 on (∂D) ∩ (∆ ∪ σ ∪ ρ), so almost everywhere on ∂D.
Besides, if ϕ2(x′′, σ(x′′)) 6≡ −∞, we have by Proposition 2

∂

∂xj
ϕ2(x′′, σ(x′′)) =

∂ϕ2

∂xj
(x′′, σ(x′′)) +

∂ϕ2

∂xn−1
(x′′, σ(x′′))

∂σ

∂xj
(x′′),

almost everywhere on Ω, for j ∈ {1, . . . , n− 2}. Hence, by (3.13) and (3.15)
∣∣∣∣

∂

∂xj
ϕ2(x′′, σ(x′′))

∣∣∣∣ ≤
7
2

∣∣∣∣
∂ϕ2

∂xr2

(x′′, σ(x′′))
∣∣∣∣

and
∣∣∣∣

∂

∂xr2

ϕ2(x′′, σ(x′′))
∣∣∣∣ ≥

1
2

∣∣∣∣
∂ϕ2

∂xr2

(x′′, σ(x′′))
∣∣∣∣ ≥ M2n−1(1 + 2M2n−1).

Consequently,
∣∣∣∣

∂

∂xj
ϕ2(x′′, σ(x′′))

∣∣∣∣
∣∣∣∣

∂

∂xr2

ϕ2(x′′, σ(x′′))
∣∣∣∣
≤ 7, for any j ∈ {1, . . . , n− 1}.
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In the same way, if ϕ1(x′′, ρ(x′′)) 6≡ +∞, we have almost everywhere on D

∣∣∣∣
∂

∂xr1

ϕ1(x′′, ρ(x′′))
∣∣∣∣ ≥ M2n−1(1 + 2M2n−1)

and ∣∣∣∣
∂

∂xj
ϕ1(x′′, ρ(x′′))

∣∣∣∣
∣∣∣∣

∂

∂xr1

ϕ1(x′′, ρ(x′′))
∣∣∣∣
≤ 7, for any j ∈ {1, . . . , n− 1}.

By Lemma 6 (1), H admits an almost decomposition

(3.16) H ' S1 ∪ · · · ∪ Sk,

where every Sν is either a semi-7-cell or a (
1
7
, 7)-cell in Rn after transposition

(xr1 , xn).
Since G \ H easily almost decomposes into a finite union of semi-M2n−1-cells

after transposition (xn−1, xn), (3.16) extends to a similar decomposition of G.

Now, repeating the same argument for any (
1
7
, 7)-cell Sν in the place of G with

Lemma 6 (2) ends the proof in this case.

Case (3.11 ) Let ϕ−1
i denotes the inversion of ϕi with respect to xn−1 (i ∈ {1, 2}).

Observe that if
∣∣∣∣
∂ϕi

∂xj

∣∣∣∣ < 1 + 2M2n−1, then

∣∣∣∣
∂ϕ−1

i

∂xj

∣∣∣∣ =

∣∣∣∣
∂ϕi

∂xj

∣∣∣∣
∣∣∣∣

∂ϕi

∂xn−1

∣∣∣∣
< 1 < 1 + 2M2n−1

and, moreover, ∣∣∣∣
∂ϕ−1

i

∂xn

∣∣∣∣ =
1∣∣∣∣

∂ϕi

∂xn−1

∣∣∣∣
< 1 < 1 + 2M2n−1.

Hence,

]

{
j :

∣∣∣∣
∂ϕi

∂xj

∣∣∣∣ < 1 + 2M2n−1

}
< ]

{
ν :

∣∣∣∣
∂ϕ−1

i

∂xν

∣∣∣∣ < 1 + 2M2n−1

}
for i ∈ {1, 2}.

Then, after transposition (xn−1, xn), G is the following cell

G∗ = {(x′′, xn, xn−1) : x′′ ∈ Ω, ϕ1(x′′, σ(x′′)) < xn < ϕ2(x′′, ρ(x′′)),

χ1(x′′, xn) < xn−1 < χ2(x′′, xn)},
where

χ1(x′′, xn) =
{

σ(x′′) , if ϕ1(x′′, σ(x′′)) < xn ≤ ϕ2(x′′, σ(x′′))

ϕ−1
2 (x′′, xn) , if ϕ2(x′′, ρ(x′′)) < xn < ϕ2(x′′, ρ(x′′))
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and

χ2(x′′, xn) =
{

ϕ−1
1 (x′′, xn) , if ϕ1(x′′, σ(x′′)) < xn < ϕ1(x′′, ρ(x′′))

ρ(x′′) , if ϕ1(x′′, ρ(x′′)) ≤ xn < ϕ2(x′′, ρ(x′′)).
Since 〈G∗〉 > 〈G〉 , the induction hypothesis gives the desired decomposition.

Case (3.12 ) Then ϕ1(σ) ⊂ R and define

ψ(x′′, xn−1) = ϕ1(x′′, σ(x′′)) + (1 + 2M2n−1)(xn−1 − σ(x′′)),

for (x′′, xn−1) ∈ ∆. Now G splits into two cells:

S1 = {(x′, xn) : x′ ∈ ∆, ϕ1(x′) < xn < ψ(x′)}
and

S2 = {(x′, xn) : x′ ∈ ∆, ψ(x′) < xn < ϕ2(x′)}.
Observe that

∂ψ

∂xj
=

∂ϕ1

∂xj
+

[
∂ϕ1

∂xn−1
− (1 + 2M2n−1)

]
∂σ

∂xj
,

for j ∈ {1, . . . , n− 2}, almost everywhere on ∆.
Hence, by (3.8), (3.12) and (3.9),∣∣∣∣

∂ψ

∂xj

∣∣∣∣ ≤
∣∣∣∣
∂ϕ1

∂xr1

∣∣∣∣ + 2M2n−1(1 + 2M2n−1) ≤ 3
2

∣∣∣∣
∂ϕ1

∂xr1

∣∣∣∣
and∣∣∣∣

∂ψ

∂xr1

∣∣∣∣ ≥
∣∣∣∣
∂ϕ1

∂xr1

∣∣∣∣− 2M2n−1(1 + 2M2n−1) ≥ 1
2

∣∣∣∣
∂ϕ1

∂xr1

∣∣∣∣ ≥ 2M2n−1(1 + 2M2n−1).

Therefore, ∣∣∣∣
∂ψ

∂xj

∣∣∣∣
∣∣∣∣

∂ψ

∂xr1

∣∣∣∣
≤ 3,

for any j ∈ {1, . . . , n − 2}. Thus S1 satisfies the conditions (3.13)–(3.15) and the
case (3.10) applies.

On the other hand, if j ∈ {1, . . . , n− 2} and∣∣∣∣
∂ϕ1

∂xj

∣∣∣∣ < 1 + 2M2n−1,

then

∣∣∣∣
∂ψ−1

∂xj

∣∣∣∣ =

∣∣∣∣
∂ψ

∂xj

∣∣∣∣
∣∣∣∣

∂ψ

∂xn−1

∣∣∣∣
≤

∣∣∣∣
∂ϕ1

∂xj

∣∣∣∣ + 2M2n−1(1 + 2M2n−1)

1 + 2M2n−1
< 1 + 2M2n−1;

hence,

]

{
j :

∣∣∣∣
∂ϕ1

∂xj

∣∣∣∣ < 1 + 2M2n−1

}
≤ ]

{
ν :

∣∣∣∣
∂ψ−1

∂xν

∣∣∣∣ < 1 + 2M2n−1

}
,

while

]

{
j :

∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣ < 1 + 2M2n−1

}
< ]

{
ν :

∣∣∣∣
∂ϕ−1

2

∂xν

∣∣∣∣ < 1 + 2M2n−1

}

and we finish by the induction hypothesis as in Case (3.11).
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4. Theorem 1n for a semi-M-cell.

Proposition 4. Any semi-M -cell G in Rn (where M > 0) admits an almost de-
composition

(4.1) G ' S1 ∪ · · · ∪ Sk,

where every Sν is an M ′-cell after a permutation of coordinates and M ′ ≥ 1 is a
constant depending only on M and n.

Proof. One can assume that G is in the form (3.1), where ϕi : ∆ −→ R (i = 1, 2)
are continuous and

(4.2)
∣∣∣∣
∂ϕ1

∂xj

∣∣∣∣ < M almost everywhere on ∆, for j ∈ {1, . . . , n− 1}.

Indeed, in the case ϕ1 ≡ −∞ or ϕ1 ≡ +∞ reduces to the above by assuming
first that ∆ is an M2n−1-disc and applying next transposition (xn−1, xn).

The proof will be by descending induction on the number

[G] = ]

{
j :

∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣ ≤ M2n−1 almost everywhere on ∆
}

.

If [G] = n − 1, G is a max(M, M2n−1)-cell, so assume that [G] < n − 1. Notice
that if ∆̃ ⊂ ∆, then for G̃ = G ∩ (∆̃×R), [G̃] ≥ [G].

Fix any L > max(M, M2n−1) and any M∗ > M + (L + M)M2n−1. Dividing ∆,
one can assume that every ϕi is C1 on ∆ and

(4.3) for each j ∈ {1, . . . , n− 1}, sgn
∂ϕi

∂xj
= const;

(4.4) for each j ∈ {1, . . . , n− 1},
∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣ > L on ∆ or
∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣ ≤ L on ∆

and

(4.5) there exists r ∈ {1, . . . , n− 1} such that
∣∣∣∣
∂ϕ2

∂xr

∣∣∣∣ ≥
∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣

for each j ∈ {1, . . . , n− 1}, and either
∣∣∣∣
∂ϕ2

∂xr

∣∣∣∣ ≥ M∗ or
∣∣∣∣
∂ϕ2

∂xr

∣∣∣∣ ≤ M∗ on ∆.

Clearly, one can assume that

(4.6)
∣∣∣∣
∂ϕ2

∂xr

∣∣∣∣ ≥ M∗ on ∆.

Finally, by Theorem 2n−1 and Lemma 2, one can assume that

∆ = {(x′′, xn−1) : x′′ ∈ Ω, σ(x′′) < xn−1 < ρ(x′′)}
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is an M2n−1-disc in Rn−1 and every ϕi admits a continuous extension

ϕi : ∆ ∪ σ ∪ ρ −→ R

such that ϕi(σ) ⊂ R or ϕi(σ) = {−∞}, or ϕi(σ) = {+∞}, and the same for ρ.
Because of (4.2), ϕ1 : ∆ ∪ σ ∪ ρ −→ R.

Case I :
∣∣∣∣

∂ϕ2

∂xn−1

∣∣∣∣ > L on ∆.

Assume that
∂ϕ2

∂xn−1
> L; the case

∂ϕ2

∂xn−1
< −L will follow by a modification.

Consider the following function

(4.7) ψ(x′′, xn−1) = ϕ1(x′′, σ(x′′)) + L(xn−1 − σ(x′′)),

for (x′′, x′) ∈ ∆.

Then ϕ1 < ψ < ϕ2 and G ' S1 ∪ S2, where

S1 = {(x′, xn) : x′ ∈ ∆, ϕ1(x′) < xn < ψ(x′)}

is an M∗-cell and

S2 = {(x′, xn) : x′ ∈ ∆, ψ(x′) < xn < ϕ2(x′)}

can be interpreted after transposition (xn−1, xn) as

S2 = {(x′′, xn−1, xn) : x′′ ∈ Ω, ϕ1(x′′, σ(x′′)) < xn < ϕ2(x′′, ρ(x′′)),

θ2(x′′, xn) < xn−1 < θ1(x′′, xn)},
where

θ2(x′′, xn) =
{

σ(x′′) , if ϕ1(x′′, σ(x′′)) < xn ≤ ϕ2(x′′, σ(x′′))

ϕ−1
2 (x′′, xn) , if ϕ2(x′′, σ(x′′)) < xn < ϕ2(x′′, ρ(x′′))

and

θ1(x′′, xn) =
{

ψ−1(x′′, xn) , if ϕ1(x′′, σ(x′′)) < xn ≤ ψ(x′′, ρ(x′′))
ρ(x′′) , if ψ(x′′, ρ(x′′)) < xn < ϕ2(x′′, ρ(x′′)),

and where ϕ−1
2 (and ψ−1) stands for the inversion of ϕ2 (and ψ) with respect to

xn−1. Now, if j ∈ {1, . . . , n− 2} and
∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣ ≤ M2n−1,

then
∣∣∣∣
∂ϕ−1

2

∂xj

∣∣∣∣ =

∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣
∣∣∣∣

∂ϕ2

∂xn−1

∣∣∣∣
<

∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣ ≤ M2n−1
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and, moreover, ∣∣∣∣
∂ϕ−1

2

∂xn

∣∣∣∣ =
1∣∣∣∣

∂ϕ2

∂xn−1

∣∣∣∣
<

1
L

< M2n−1.

Hence, [S2] > [G] and the induction hypothesis ends the proof in this case.

Case II :
∣∣∣∣

∂ϕ2

∂xn−1

∣∣∣∣ ≤ L on ∆.

By (4.6) and (4.3), one can assume without any loss of generality that

∂ϕ2

∂xr
≥ M∗ ,

∂ϕ2

∂xn−1
> 0 and

∂ϕ1

∂xn−1
> 0 ;

other possibilities will follow by simple modifications.

Since M∗ > L , r ∈ {1, . . . , n−2}. By Proposition 2, we have almost everywhere
on ∆:

∂

∂xr
ϕ2(x′′, σ(x′′)) =

∣∣∣∣
∂ϕ2

∂xr
(x′′, σ(x′′)) +

∂ϕ2

∂xn−1
(x′′, σ(x′′))

∂σ

∂xr
(x′′)

∣∣∣∣ ≥

M∗ − LM2n−1,

while

∣∣∣∣
∂

∂xr
ϕ1(x′′, σ(x′′))

∣∣∣∣ ≤ M + MM2n−1 and
∣∣∣∣

∂

∂xr
ϕ1(x′′, ρ(x′′))

∣∣∣∣ ≤ M + MM2n−1.

Thus, by Lemma 5,

ϕ2(x′′, σ(x′′)) > ϕ1(x′′, ρ(x′′)) on Ω.

Hence,
G ' S1 ∪ S2 ∪ S3,

where

S1 = {(x′′, xn−1, xn) : (x′′, xn−1) ∈ ∆, ϕ1(x′′, xn−1) < xn < ϕ1(x′′, ρ(x′′))},

S2 = {(x′′, xn−1, xn) : x′′ ∈ Ω, ϕ1(x′′, ρ(x′′)) < xn < ϕ2(x′′, σ(x′′)),

σ(x′′) < xn−1 < ρ(x′′)}
and

S3 = {(x′′, xn−1, xn) : (x′′, xn−1) ∈ ∆, ϕ2(x′′, ρ(x′′)) < xn < ϕ2(x′′, xn−1)}.

S1 is an M∗-cell, while S2 is an M2n−1-cell after transposition (xn−1, xn). We will
investigate S3. Put

∆̃ = {(x′′, xn) : x′′ ∈ Ω, ϕ2(x′′, σ(x′′)) < xn < ϕ2(x′′, ρ(x′′))}.
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Now,

S3 = {(x′′, xn−1, xn) : (x′′, xn) ∈ ∆̃, ϕ−1
2 (x′′, xn) < xn−1 < ρ(x′′)},

where ϕ−1
2 stands for the inversion of ϕ2 with respect to xn−1.

We will use Lemma 3 to get a desired decomposition of S3. Observe first that

∂ϕ−1
2

∂xr
=

∂ϕ2

∂xr

∂ϕ2

∂xn−1

≥
∂ϕ2

∂xr

L
≥ M∗

L
>

M + (L + M)M2n−1

L
> M2n−1 ≥

∣∣∣∣
∂ρ

∂xr

∣∣∣∣

and ∣∣∣∣
∂ϕ−1

2

∂xj

∣∣∣∣
∣∣∣∣
∂ϕ−1

2

∂xr

∣∣∣∣
=

∣∣∣∣
∂ϕ2

∂xj

∣∣∣∣
∣∣∣∣
∂ϕ2

∂xr

∣∣∣∣
≤ 1 , for j ∈ {1, . . . , n− 2},

and ∣∣∣∣
∂ϕ−1

2

∂xn

∣∣∣∣
∣∣∣∣
∂ϕ−1

2

∂xr

∣∣∣∣
=

1∣∣∣∣
∂ϕ−1

2

∂xr

∣∣∣∣
≤ 1

M∗ < 1.

Now it suffices to check that ∆ has an almost decomposition into N -cells with
respect to the variable xr, where a constant N depends only on M, L,M∗ and
M2n−1. We will check this using Lemma 6 (2).

We have almost everywhere on Ω:

∂

∂xr
ϕ2(x′′, σ(x′′)) ≥ ∂ϕ2

∂xr
(x′′, σ(x′′))

(
1− LM2n−1

M∗

)
≥ M∗ − LM2n−1

and
∣∣∣∣

∂

∂xj
ϕ2(x′′, σ(x′′))

∣∣∣∣
∣∣∣∣

∂

∂xr
ϕ2(x′′, σ(x′′))

∣∣∣∣
≤

∣∣∣∣
∂ϕ2

∂xj
(x′′, σ(x′′)) +

∂ϕ2

∂xn−1
(x′′, σ(x′′))

∂σ

∂xj
(x′′)

∣∣∣∣
∣∣∣∣
∂ϕ2

∂xr
(x′′, σ(x′′))

∣∣∣∣
M(1 + M2n−1)

M∗

≤ M∗

M
.

The same is true for ρ in the place of σ. Moreover, by the assumption of Case II,

|ϕ2(x′′, σ(x′′))− ϕ2(x′′, ρ(x′′))| ≤ |σ(x′′)− ρ(x′′)| on Ω.

Hence,
lim

x′′→a′′
[ϕ2(x′′, σ(x′′))− ϕ2(x′′, ρ(x′′))] = 0,

for any a′′ ∈ ∂Ω, so the assumptions of Lemma 6 (2) are satisfied.
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5. Proof of Theorem 2n for any M-cell.

Let
G = {(x′, xn) : x′ ∈ ∆ , ϕ1(x′) < xn < ϕ2(x′)}

be any M -cell, where M ∈ R, M ≥ 1. Observe that all possible cases reduce to the
case ϕi : ∆ −→ R (i ∈ {1, 2}). Indeed, suppose for example that ϕ1 : ∆ −→ R
and ϕ2 ≡ +∞. Then one can assume first that ϕ1 is C1 on ∆ and, for each
j ∈ {1, . . . , n− 1},

sgn
∂ϕ1

∂xj
= const on ∆,

and next that

∆ = {(x′′, xn−1) : x′′ ∈ Ω, σ(x′′) < xn−1 < ρ(x′′)}

is an M2n−1-disc in Rn−1 such that ϕ1 has a continuous extension

ϕ1 : ∆ ∪ σ ∪ ρ −→ R.

Then, assuming that
∂ϕ1

∂xn−1
> 0,

G ' S1 ∪ S2,

where

S1 = {(x′′, xn−1, xn) : (x′′, xn−1) ∈ ∆, ϕ1(x′, xn−1) < xn < ϕ1(x′′, ρ(x′′))}

is an M(1 + M2n−1)-cell, while

S2 = {(x′′, xn−1, xn) : x′′ ∈ Ω, ϕ1(x′′, ρ(x′′)) < xn, σ(x′′) < xn−1 < ρ(x′′)}

is an M2n−1-cell after transposition (xn−1, xn).

Consequently, assume that ϕi : ∆ −→ R (i ∈ {1, 2}) and that they are C1.
By Theorem 3n−1, one can assume that ∆ is a regular M3n−1-cell and then, by
Proposition 1, that every ϕi has a continuous extension

ϕi : ∆ −→ R (i ∈ {1, 2}).

Now, still keeping the last property, one can assume that

∆ = {(x′′, xn−1) : x′′ ∈ Ω, σ(x′′) < xn−1 < ρ(x′′)}

is an M2n−1-disc. Put

λ1(x′′, xn−1) = ϕ1(x′′, σ(x′′)) + 2M(xn−1 − σ(x′′)),

λ2(x′′, xn−1) = ϕ1(x′′, ρ(x′′))− 2M(xn−1 − ρ(x′′)),

λ3(x′′, xn−1) = ϕ2(x′′, ρ(x′′)) + 2M(xn−1 − ρ(x′′)),
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and
λ4(x′′, xn−1) = ϕ2(x′′, σ(x′′))− 2M(xn−1 − σ(x′′)),

for any (x′′, xn−1) ∈ Ω×R. Every λi has a continuous extension to Ω×R and is an
M(1 + 3M2n−1)-function. Its inversion λ−1

i with respect to xn−1 has a continuous

extension to Ω×R as well and is a
1
2
(1 + 3M2n−1)-function.

For any subset I ⊂ {1, 2, 3, 4}, put

SI = {(x′, xn) ∈ G : xn < λi(x′), if i ∈ I and λi(x′) < xn, if i 6∈ I}.

Then
G '

⋃

I

SI .

It suffices to show that every SI is an M(1+3M2n−1)-disc after perhaps trans-
position (xn−1, xn).

Fix any I ⊂ {1, 2, 3, 4}.
If {1, 2} ⊂ I, then

SI = {(x′, xn) ∈ ∆×R : ϕ1(x′) < xn < ϕ2(x′), xn < λi(x′), if i ∈ I,

λi(x′) < xn, if i 6∈ I},
and λ1 = ϕ1 on σ, while λ2 = ϕ1 on ρ and Lemma 4 applies.

Similarly, when {3, 4} ∩ I = ∅.
If {1, 2} 6⊂ I and {3, 4} ∩ I 6= ∅, we have 1 6∈ I and 3 ∈ I or 1 6∈ I and 4 ∈ I (or,

similarly, 2 6∈ I and 3 ∈ I or 2 6∈ I and 4 ∈ I).

Suppose first that 1 6∈ I and 3 ∈ I. Then

(5.1) SI = {(x′′, xn−1, xn) : x′′ ∈ Ω, ϕ1(x′′, σ(x′′)) < xn < ϕ2(x′′, ρ(x′′)),

σ(x′′) < xn−1 < ρ(x′′), xn−1 < λ−1
i (x′′, xn) if i ∈ Ĩ, λ−1

i (x′′, xn) < xn−1 if i 6∈ Ĩ},
where Ĩ ⊂ {1, 2, 3, 4} is defined by the formula:

i ∈ Ĩ if and only if i ∈ I and i is even or i 6∈ I and i is odd.
Since

λ−1
1 (x′′, ϕ1(x′′, σ(x′′)) = σ(x′′)

and
λ−1

3 (x′′, ϕ2(x′′, ρ(x′′)) = ρ(x′′),

for each x′′ ∈ Ω and
σ(x′′) = ρ(x′′),

for each x′′ ∈ ∂Ω, we are done by Lemma 4.

Let now 1 6∈ I and 4 ∈ I. Then (5.1) holds and since

λ−1
1 (x′′, ϕ1(x′′, σ(x′′)) = σ(x′′), λ−1

4 (x′′, ϕ2(x′′, σ(x′′)) = σ(x′′),

for each x′′ ∈ Ω and σ(x′′) = ρ(x′′), for each x′′ ∈ ∂Ω, we are again done due to
Lemma 4.
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