PIECEWISE DEFINABLE C"G TRIVIALITY AND DEFINABLE C"G
COMPACTIFICATION

TOMOHIRO KAWAKAMI

ABSTRACT. Let G be a definably compact definable C” group and 1 < r < co. Let X be
a definable C" G submanifold of a representation of G and Y a definable C" submanifold of
R"™. We prove that every G invariant surjective submersive definable C" map f: X — Y
is piecewise definably C"G trivial.

1. INTRODUCTION

Let N = (R, +,-,<,...) be an o-minimal expansion of a real closed field R. Everything
is considered in AV, the term “definable” is used throughout in the sense of “definable with
parameters in N7, each definable map is assumed to be continuous and 1 < r < oo unless
otherwise stated.

General references on o-minimal structures are [2], [3], also see [12].

Definable C" manifolds are studied in [11], [1], and definable C"G manifolds are studied
in [5], [10]. If R is the field R of real numbers, then definable C"G manifolds are considered
in [9], [8], [7] [6].

Let f be a G invariant surjective submersive definable C" map from a definable C"G
manifold X to a definable C" manifold Y. We say that f is definably C"G trivial if
there exist a definable C"G diffeomorphism %k : X — Y x f~1(a) with f = p o k, where
a € X and p denotes the projection Y x f~1(a) — Y. We call f piecewise definably C"G
trivial if there exist a finite partition {C;}; of Y into definable C" submanifolds such that
each f|f~1(C;) is definably C"G trivial.

A definable C" manifold X possibly with boundary is definably compact if for every
a,b € RU{oo} U{—0o0} with a < b and for every definable map f : (a,b) — X,
lim, o0 f(z) and lim, ., o f(x) exist in X.

If R = R, then for any definable C" submanifold X of R”, X is compact if and only
if it is definably compact. In general a definably compact definable C™ manifold is not
necessarily compact. For example, if R = Rgy, then [0,1]g,,, = {7 € Ryy|0 <o < 1} s
definably compact but not compact.

Theorem 1.1. Let G be a definably compact definable C™ group and 1 < r < oco. Let X
be a definable C"G submanifold of a representation of G and'Y a definable C™ submanifold
of R*. Then every G invariant surjective submersive definable C™ map f : X — Y s
piecewise definably C"G trivial.
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If R is the field R of real numbers, Theorem 1.1 is proved in [9].

A non-definably compact definable C"G manifold is definably compactifiable as a
de finable C"G mani fold if it is definably C"G diffeomorphic (definably G homeomorphic
if r = 0) to the interior of some definably compact definable C"G manifold with boundary.

Theorem 1.2. Let G be a definably compact definable C” group and 2 < r < co. Then
every definable C"G submanifold X of a representation Q of G such that Q@ — {0} has one

orbit type and 0 & X is either definably compact or definably compactifiable as a definable
C™ G manifold.

If R =R, then a stronger result of Theorem 1.2 is proved in [9].

In the rest of Introduction, we assume R = R.

Let L > 0 and X C R"Y C R™ definable sets. A definable map f: X — Y is a
definable L-Lipschitz map if for any x,y € X, f satisfies the inequality || f(z) — f(y)|| <
Ll|lz = yl|.

Theorem 1.3. Let G be a compact definable C? group, X a definable C*G submanifold of
a representation of G such that X has one orbit type. LetY a definable C* submanifold of
R™, f: X —Y a G invariant definable L-Lipschitz map, e : X — (0,00) a G invariant
definable function and ¢ > 0. Then there exists a G invariant definable C* (L+¢)-Lipschitz
map h: X — Y such that ||h — f|| < e on X.

2. PROOF OF RESULTS.

Let U C R™,V C R™ be definable open sets and f : U — V a definable map. We say
that f is a definable C™ map if f is of class C". A definable C" map is a definable C"
di f feomorphism if f is a C" diffeomorphism.

Definition 2.1. A Hausdorff space X is an n-dimensional definable C" manifold if there
exist a finite open cover {U;}r_, of X, finite open sets {V;}¥_, of R", and a finite collection
of homeomorphisms {¢; : U; — Vi}¥_| such that for any i, j with U; N U; # 0, ¢;(U; N U;)
is definable and ¢; o ¢;' = ¢i(U; NU;) — ¢;(U; NU;) is a definable C™ diffeomorphism.
This pair ({U}r_y, {¢: : Uy — Vi}E_|) of sets and homeomorphisms is called a definable
C" coordinate system. We can define a definable C™ manifold with boundary.

Let GG be a definable group. Let f be a G invariant surjective definable map from a
definable G set X to a definable set Y. We say that f is definably G trivial if there exist
a definable G homeomprphism k : X — Y x f~1(a) with f = po k, where a € X and p
denotes the projection Y x f~1(a) — Y.

By a way similar to the proof of 2.5 [9], we have the following theorem.

Theorem 2.2. Let G be a definably compact group, X a definable G set, Y a definable
set and f : X — Y a G invariant definable map. Then there exists a finite partition {C;};
of Y into definable sets such that each f|f~1(C;) : f~HC;) — C; is definably G trivial.

By the C" cell decomposition theorem (e.g. 7.3.3.2 [2]), we have the following lemma.

Lemma 2.3. Let XY be definable C" submanifolds of R™, R™, respectively, and 1 <r <
0o. For every definable map f: X — Y, there exists a definable open subset Z such that
flZ:Z =Y is a definable C" map and dim(X — Z) < dim X.



Proof of Theorem 1.1. We proceed by induction on dim X. If dimX = 0, X is a
finite set. Thus the result is clear. Assume dim X =/ > 0. By Theorem 2.2, there exists
a finite partition {D,} of Y into definable sets such that each f|f~*(D;): f~Y(D;) — D;
is definably G trivial. Applying a C” cell decomposition of Y compatible with {D;} and
replacing them, we may assume that each D; is a definable C” submanifold of Y.

Let X; = f~!(D;). Then since f is G invariant and submersive, X is a definable C"G
submanifold of X. If dim X; < [, then f|X; : X; — D; is piecewise definably C"G trivial
by the inductive hypothesis. We now consider the case where dim X; = [. Note that
f1X; : X; — Dj is a submersion.

Since f|X; : X; — Dj is definably G trivial, there exists a definable G map h; : X; — F;
such that (f|X;,h;) : X; — D; x Fj is a definable G homeomorphism, where F; =
f7'(a;),a; € D;. Note that Fj is a definable C"G submanifold of X since f is submersive.
Applying Lemma 2.3 to h;, we have a G invariant definable closed subset X’ of X; such
that dim X} < [ and hy|X; — X} : Xj — X} — h;(X; — X}) C Fj is a definable C"G' map.
Since X; — X7 is open and G invariant in X;, f(X; — X7) is a G invariant definable open
subset of f(Xj). Hence (f, hj)|X;— X : X;— X} — f(X;—X})xh;(X;—X}) is a definable
C"G map. Applying the same argument to the inverse of (f, h;)|X; — X}, we obtain a G
invariant definable closed subset W; of X; — X7 and a G invariant definable closed subset
Wof f(X;—X7)x h;(X;—X7) such that dim Wy, dim W} < [l and (f, hy)[(X; — X —Wj) :
Xj—X; =W, — ((f(X; = X}) x hj(X; — X})) — WJ) is a definable C"G diffeomorphism.
Let {Uj} be a C" cell decomposition of X; — X} — W;. Since (f, h;)(W;) = Wj, each
(f, h)|Uf - Uf — f(UF) x hy(U}) is a definable C"G' diffeomorphism.

Take a C" cell decoposition {Ex} of f(Xj U W;). Then each f~'(Ej) is a definable
C"G submanifold of X and f|f~'(Ey) : f~'(Ey) — Ej satisfies the inductive hypothesis.
Hence it is piecewise definably C"G trivial. O

Theorem 2.4 ([1]). Let A be a definable closed subset of R™ and 0 < r < co. Then there
exists a definable C" function f: R® — R such that A = f~1(0).

Theorem 2.5 ([10]). Let G be a definably compact definable C™ group, H a definable C"
subgroup of G, X an affine definable C"G manifold and 1 < r < oco. Suppose that every
orbit in X has type G/H. Then the orbit space X/G admits a unique structure of affine
definable C"= manifold such that:
(1) The orbit map 7 : X — X/G is a definable C"™' map.
(2) For any definable C™~' manifold Y and a map h : X/G — Y, h is a definable
C™ Y map if and only if so is ho.

Proposition 2.6. Let G be a definably compact definable C™ group, X a definable C"G
submanifold of a representation Q of G such that Q — {0} has one orbit type and 0 ¢ X
and 2 < r < co. Then X is definably C"™7'G imbeddable into Q x R* such that X is
bounded and X — X consists of at most one point, X denotes the closure of X.

Proof. We may assume that X is non-definably compact. Then X — X is a G invariant
definable closed subset of Q. Let 7 : Q — {0} — (2 — {0})/G(C R?®) be the orbit map.
Then 7 is definably proper. Thus 7(X — X) is a definable closed subset of R®*. By
Theorem 2.4, there exists a definable C” function f: R® — R with 7((X — X) = f~(0).
By Theorem 2.5, 7 is a definable C"~! map. Thus replacing X by the graph of 1/(f o),



we may assume that X is a definable C"71G submanifold of Q x R which is closed in
2 x R. Using the stereographic projection s : Q@ x R — S(Q2 x R), s(X) satisfies our

conditions, where S(£2 x R) denote the unit sphere of 2 x R. O
Proposition 2.7. Let X be a definable C" submanifold of R™ and {U;}'_, a finite definable
open cover of X and 1 < r < oo. Then there exist definable C" functions Aq,..., N\ : X —

R such that 0 < \; < 1, supp \; C U; and Zézl Ai(x) =1 for any z € X.
We call {\;} in Proposition 2.7 a de finable C" partition of unity subordinate to {U,}.

Proof of Proposition 2.7. As in the proof of Proposition 2.6, we may assume that X
is closed in R"™. Hence every R" — U, is a definable closed subset of R". By Theorem 2.4,
we have a definable C” function h; : R* — R with h; '(0) = R — U;. For every i, define
Vi ={z € X|hi(z) > L maxi<j<; hj(z)}. Then {V;}\_; is a definable open cover of X and
the closure V; of V; in X lies in U;. By Theorem 2.4, there exists a definable C" function
hi: R" — R with hi2(0) = R* — V. Hence \; := R}/ S_._, h,1 < i <, are the required
definable C" functions. OJ

Proposition 2.8. Let X be a definable C"G submanifold closed in a representation (2
of G such that Q — {0} has one orbit type and 0 ¢ X and {U;}\_, a finite G invariant
definable open cover of X and 2 < r < oo. Then there exist G invariant definable C"~1
functions Ai,..., N\ : X — R such that 0 < X\; < 1, supp A\; C U; and Zizl Xi(z) =1 for
any v € X.

We say that {\;} in Proposition 2.8 an equivariant definable C™=1 partition of
unity subordinate to {U;}

Proof of Proposition 2.8. By Theorem 2.5, the orbit map 7 : Q—{0} — (2—{0})/G C
R® is a definable C"~! map. Since 7|X : X — X/G is open, {m(U;)}._, is a finite definable
open covering of a definable C"~! manifold X/G. Note that 7(X) is closed in R* because
X is closed in Q. By Proposition 2.7, we can find a definable partition of unity {\;}\_,
subordinate to {7 (U;)}._,. Thus A\, := A\jo,...,\; := \jon are the required G invariant
definable C"~! functions. O

Proof of Theorem 1.2. Assume that X is non-definably compact. By Proposition 2.6,
we can find a representation Q of G and a definable C"'G imbedding i : X — € such

that i(X) is bounded and i(X) — i(X) = {0}, where i(X) denotes the closure of X in 2.
Let f:i(X) — R, f(z) = -, where ||z|| denotes the standard norm of x in . By

R
Theorem 1.1, there exist a positive element k € R and a definable C" '@ diffeomorphism
h:=(f h): fH((k,00)) — (k,00) x f~1(k). If k is sufficiently large, then f~1([0,k]) is
a definably compact C"~'G manifold with boundary. Hence using h and by construction
of i(X) and Proposition 2.8, i(X) is definably C™"'G diffeomorphic to f~!([0, %)) which
is the interior of f~1([0, k]). O

Proof of Theorem 1.3. Since X is a definable C? manifold with one orbit type and
by Theorem 2.5, X/G is a definable C'!' submanifold in some R"™ and the orbit map
7m: X — X/G is a definable C!' map. Since f,e are G invariant, they induce a definable
C'map f : X/G — Y and a definable function @ : X/G — R such that f = 7o f,e = moe.

Since f is L-Lipschitz, f is L'-Lipschitz for some L' > 0. By [4], there exists a definable



C' (L' + €)-Lipschitz map h : X/G — Y such that ||h — f|| < € Therefore h = 7o h is
the required definable C* (L + ¢)-Lipschitz map X — Y. O
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