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Abstract. Let M be an o-minimal expansion of a real closed field R.
We define the notion of a lattice in a locally definable group and then
prove that every connected, definably generated subgroup of 〈Rn,+〉
contains a definable generic set and therefore admits a lattice.

The goal of this note is to re-formulate some problems which appeared in
[4], introduce the notion of a lattice in a locally definable group (a notion
which also appeared in that paper, but not under this name) and establish
connections between various related concepts. Finally, we return to the main
conjecture from [4]:

Every locally definable connected, abelian group, which is generated by a
definable set contains a definable generic set.

We prove the conjecture for subgroups of 〈Rn,+〉, in the context of an
o-minimal expansion M of a real closed field R.

1. Locally definable groups and lattices

We first recall some definitions: Let M be an arbitrary κ-saturated o-
minimal structure (for κ sufficiently large). By a locally definable group we
mean a group 〈U , ·〉, whose universe U =

⋃
n∈NXn, is a countable union

of definable subsets of Mk, for some fixed k, and the group operation is
definable when restricted to each Xm ×Xn (equivalently, to each definable
subset of U × U). We say that a function f : U → Mn is locally definable
if its restriction to each Xi (equivalently, to each definable subset of U) is
definable. We let dimU be the maximum of dimXn, n ∈ N. While some
notions treated here make sense under the more general “

∨
-definable group”

(no restriction on the number of Xi’s), we mostly work in the context of a
group which is generated, as a group, by a definable subset and hence it is
locally definable. Note that another related concept, that of an ind-definable
group (see [6]) is identical to our definition when one further assumes that
the group is a subset of a fixed Mk.

As was shown in [7], every locally definable group admits a group topology.
This topology agrees with the Mk-topology in neighborhoods of generic
points, namely, points g ∈ U such that dim(g/A) = dim(U) (we assume
here that all the Xi’s above are defined over A). We therefore obtain a
definable family of neighborhoods {Ut : t ∈ T} of the identity element, such
that {gUt : t ∈ T, g ∈ U} is a basis for the group topology on U . In [2]
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it was further shown that the topology can be realized by countably many
definable open charts, each definably homeomorphic to an open subset of
Mn, where n = dim(U).

A subset X ⊆ U is called compatible (see [3]) if for every Y ⊆ U which
is definable, the set X ∩ Y is also definable. It easily follows that X itself
is also locally definable (namely, given as a countable union of definable
subsets of U). As was shown in [3], if U is locally definable and H is a
normal compatible subgroup of U then there is a locally definable group K
and a locally definable surjective homomorphism f : U → K whose kernel
is H. The converse is true as well, namely if such a homomorphism exists
then H is necessarily compatible.

A locally definable group is called connected (see [1]) if it has no compati-
ble subset which is both closed and open, with respect to the group topology.
As is shown in [2, Remark 4.3], a locally definable group U is connected if
and only if it is path connected, namely for any two points x, y ∈ U there
exists a definable continuous σ : [0, 1]→ U such that σ(0) = x and σ(1) = y.

A typical example of a locally definable group is obtained by taking a
definable subset of a definable group (say, of 〈Rn,+〉) and letting U be the
subgroup generated by X. When the generating set is definably connected
and contains the identity one obtains a connected locally definable group.
We call a locally definable group U definably generated if it is generated, as
a group, by some definable subset.

Definition 1.1. For H ⊆ U a locally definable normal subgroup, we say
that the quotient U/H is definable if there exists a definable group G and a
locally definable surjective homomorphism from U onto G, whose kernel is
H.

Definition 1.2. A locally definable normal subgroup Λ ⊆ U is called a lattice
in U if dim(Λ) = 0 and U/Λ is definable.

Notice that any countable group can be realized as a locally definable
group, and therefore it is also a lattice in itself.

If U is the subgroup of Rn generated by the unit n-cube [−1, 1]n then
Zn is a lattice in U . The quotient is definably isomorphic to the group Hn,
where H = [0, 1), with addition modulo 1.

In [4, Lemma 2.1] we prove the following equivalence:

Lemma 1.3. Let U be a locally definable group in an o-minimal expansion
of an ordered group and Λ a locally definable normal subgroup of dimension
0. The following are equivalent.

(1) Λ is a lattice in U .
(2) Λ is compatible, and there exists a definable set X ⊆ G such that

Λ ·X = U .

It is easy to see that every lattice in a locally definable group is countable
(the intersection with every definable set is finite). We prove a stronger
statement:

Lemma 1.4. If Λ is a lattice in a locally definable connected group U then
Λ is finitely generated as a group.
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Proof. Let φ : U → G be a locally definable surjective homomorphism onto a
definable group G, with kerφ = Λ. By compactness there exists a definable
set X ⊆ U such that φ(X) = G. Because we have definable choice for
subsets of U ([3, Corollary 8.1]) we can find a definable section s : G → X
(i.e. φ ◦ s = id), and so we replace X by the image of this section, and call
it X again. We may assume that e ∈ X.

Consider the topological closure (with respect to the group topology),
Cl(X) ⊆ U .

Claim There exists a finite set F ⊆ Λ such that for every g ∈ Λ, if the
intersection gCl(X) ∩ Cl(X) 6= ∅ then g ∈ F .

Proof of Claim. Let X ′ ⊆ U be any definable open set containing Cl(X).
By saturation, there is a finite F ⊆ Λ, which we may assume is minimal,
such that X ′ ⊆ F · X. Because gX ∩ hX = ∅ for every g 6= h ∈ Λ, if
gX ∩ X ′ 6= ∅ then necessarily g ∈ F . Now, if gCl(X) ∩ Cl(X) 6= ∅ then
necessarily gX ∩X ′ 6= ∅ so g ∈ F . �

We now claim that F generates Λ, namely every element of Λ is a finite
word in F and F−1.

Take λ ∈ Λ. Since U is path connected, there exists a definable path
γ : [0, 1] → U , with γ(0) = e and γ(1) = λ. Let Γ ⊆ U be the image of
γ. Because Γ is definable it can be covered by finitely many Λ-translates
of X. By taking a minimal number of translates, we obtain λ1, . . . , λk ∈
Λ (possibly with repetitions), such that e ∈ λ1X, λ ∈ λkX and for i =
1, . . . , k − 1, we have Cl(λiX) ∩ Cl(λi+1X) 6= ∅.

By the Claim, it follows that λ−1i+1λi ∈ F , for i = 1, . . . , k − 1. But since
e ∈ X, we must have λ1 = e and λk = λ, so λ1, . . . , λk are all in the group
generated by F , and in particular, λ belongs to that group. �

We say that U admits a lattice if there is a lattice in U . Note that not
every locally definable group admits a lattice. For example, if r ∈ R is larger
than all elements of N then the subgroup of 〈R,+〉 given by

⋃
[−rn, rn] does

not admit any lattice.
As we point out in [4], there are many consequences, for a given group U ,

to the fact that it admits a lattice. Hence, our main question is:

Question 1 Which locally definable groups in M admit a lattice?

We start with some basic observations.

Definition 1.5. A definable subset X of a locally definable group U is called
left generic in U if there exists a bounded set ∆ ⊆ U (namely, |∆| < κ) such
that U = ∆ ·X. Equivalently, for every definable Y ⊆ U there is a finite set
F ⊆ U such that Y ⊆ F ·X.

Lemma 1.3 immediately gives:

Lemma 1.6. If a locally definable group U admits a lattice then U contains
a definable left generic set.
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Lemma 1.7. Let U be a connected locally definable group which contains a
left generic definable set X (e.g. if U admits a lattice). Then U is definably
generated.

Proof. Let X ⊆ U be a definable, left generic set, namely there is a bounded
set ∆ ⊆ U such that ∆ · X = U . The group generated by X, call it H, is
therefore locally definable, of bounded index in U (since 〈∆〉 ·H = U , where
〈∆〉 is the group generated by ∆). But then, if Y ⊆ U is a definable set
then Y ∩H and Y ∩ (U \H) are both bounded unions of definable sets. By
saturation, this forces Y ∩ H to be definable, hence H is compatible. It is
easy to see that H is both closed and open so by connectedness of U must
equal U . �

It is now natural to ask:

Question 2 Does every connected, definably generated group admit a lat-
tice?

2. Lattices in abelian groups

We still work in a sufficiently saturated structure M.
Recall that for a locally definable group U , we say that U00 exists, if there

is a smallest type-definable normal subgroup of U of bounded index (note
that a type-definable subgroup of U is necessarily contained in a definable
subset of U). We denote that subgroup by U00.

One of the main results in [4] is the following: (the equivalence of the
bottom three clauses is given in [4, Theorem 3.9]; the addition of Clause (1)
is obtained using Lemma 1.6):

Theorem 2.1. Let U be a connected, abelian definably generated group.
Then there is k so that the following are equivalent:

(1) U admits a lattice.
(2) U admits a lattice, isomorphic to Zk.
(3) U contains a definable generic set.
(4) U00 exists, and U/U00 is isomorphic to Rk ×K, for some compact

Lie group K.

In particular, we see that a connected, abelian, locally definable U admits
a lattice if and only if it contains a definable generic set. Note that by (4),
the above k is determined by U/U00 and thus unique.

In [4] we made the conjecture that the conclusions of the above theorem
are always true:

Conjecture A. Let U be an abelian, connected, definably generated group.
Then U contains a definable generic set (so in particular admits a lattice).

The number k in Theorem 2.1 can be viewed as a measure of how “non-
definable” the group U is. Namely, if k = 0 then U is outright definable,
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while if k = dimU > 0, then U will not contain any infinite definable
subgroup. We prove the latter statement in Corollary 2.6 below.

In fact, we can define an invariant for every locally definable group U (not
necessarily satisfying Conjecture A) which gives some indication as to how
“non-definable” U is.

Definition 2.2. The
∨

-dimension of U , denoted by vdim(U), is the maxi-
mum k such that U contains a compatible subgroup isomorphic to Zk, if such
k exists, and ∞, otherwise.

We prove in Theorem 2.8 below that Conjecture A is equivalent to the
following.

Conjecture B. Let U be a connected, abelian, definably generated group.
Then,

(1) vdim(U) ≤ dim(U). In particular, vdim(U) is finite.
(2) If U is not definable, then vdim(U) > 0.

In Section 3 we will prove Conjecture A for definably generated subgroups
of 〈Rn,+〉, where R is a real closed field and M is an o-minimal expansion
of R.

Unless otherwise stated, U denotes a connected, abelian, definably gener-
ated group.

We first prove:

Lemma 2.3. Assume that U contains a definable group H. Then U admits
a lattice Γ isomorphic to Zk if and only if U/H (which is also definably
generated) contains a lattice ∆ isomorphic to Zk.

Proof. Let ψ : U → U/H be a locally definable surjective homomorphism.
Assume that U contains a lattice Γ ' Zk. Because H is definable the

intersection Γ ∩ H is finite so must equal {0}. Let ∆ = ψ(Γ) ' Zk. To
see that ∆ is compatible in U/H, take a definable Y ⊆ U/H and find a
definable X ⊆ U such that ψ(X) = Y . Our goal is to show that Y ∩∆ is
finite. But Y ∩∆ = φ((X+H)∩Γ) and since Γ is compatible its intersection
with X +H is finite. Thus Y ∩∆ is finite and so ∆ is compatible in U/H.

Let φ : U → G be a locally definable surjective homomorphism onto a
definable group, with Γ = kerφ. Notice that φ(H) is a definable subgroup
of G. To see that ∆ is a lattice in U/H, we note that

(U/H)/∆ ' U/(H + Γ) ' G/φ(H),

and therefore (U/H)/∆ is definable.
Assume now that U/H admits a lattice ∆ ' Zk. We can find u1, . . . , uk ∈

U with φ(u1), . . . , φ(uk) generators of ∆. Let Γ ⊆ U be the group generated
by the ui’s.

We first show that Γ is compatible. Because ∆ is torsion free, φ is injective
on Γ. Therefore, if X ⊆ U is definable the intersection X ∩Γ must be finite,
or else φ(X) ∩ ∆ is infinite, contradicting the compatibility of ∆. To see
that Γ is a lattice it is sufficient, by Lemma 1.3, to see that U contains a
definable set X with X + Γ = U . We first find a definable Y ⊆ U/H such
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that Y + ∆ = U/H, then a definable X ′ ⊆ U with ψ(X ′) = Y , and finally
take X = X ′ +H. It is easy to verify that X + Γ = U . �

Lemma 2.4. Assume that U contains a definable generic set. Then U is
definable if and only if vdim(U) = 0.

Proof. One direction is obvious for if U is definable then it cannot contain
any infinite 0-dimensional compatible subgroup. For the converse, assume
that U is not definable.

By Theorem 2.1, the group U00 exists and for some k ∈ N, we have
U/U00 ' Rk×K, for a compact Lie group K. We claim that k > 0. Indeed,
if k = 0 then U/U00 = K is compact. But then, by [4, Lemma 3.3], the
preimage of K would be contained in a definable subset of U , and thus U
would be definable, a contradiction.

If we now apply Theorem 2.1 (4) ⇒ (2), we see that U admits a lattice
isomorphic to Zk so vdim(U) ≥ k > 0. �

Proposition 2.5. Assume that U admits a lattice.
(i) If Λ is a 0-dimensional, compatible subgroup of U , then Λ ' Zl + F ,

with l ≤ vdim(U) and F a finite subgroup of U .
(ii) vdim(U) ≤ dim(U).
(iii) If Λ is a lattice in U , then Λ ' Zl + F , with l = vdim(U) and F a

finite subgroup of U .
(iv) If U is torsion-free and generated by a definably compact set then

every lattice in U is isomorphic to Zl, with l = dim(U) = vdim(U).

Proof. By [4, Claim 3.4], there exists a definable torsion-free subgroup H ⊆
U such that the group U/H is generated by a definably compact set.

By [4, Theorem 3.9], there exists a unique k such that U/H admits a
lattice isomorphic to Zk and moreover, because U/H is generated by a
definably compact set, we have k ≤ dim(U/H) and hence k ≤ dim(U).
Also, by Lemma 2.3, the group U also admits a lattice isomorphic to Zk, so
k ≤ vdim(U). Our proof below implies that k = vdim(U).

Again, by [4, Theorem 3.9], the groups U/U00 is isomorphic to Rk ×K,
where K is a compact Lie group. The rest of the argument is extracted from
the proof of [4, Lemma 3.7].

(i) Assume that Λ ⊆ U is a 0-dimensional compatible subgroup. Consider
φ : U → U/Λ. We claim that ker(φ)∩U00 = {0}. Indeed, take any definable
set X ⊆ U containing U00. Then, since φ � X is definable, the intersection
ker(φ) ∩ U00 ⊆ ker(φ) ∩ X is finite. However, by [4, Proposition 3.5], the
group U00 is torsion-free, so ker(φ) ∩ U00 = {0}.

Consider the map πU : U → Rk × K and let Γ be the image of ker(φ)
under πU . We just showed that Γ is isomorphic to Λ = ker(φ). We claim
that Γ is discrete. Indeed, using X as above we can find another definable
set X ′ whose image πU (X ′) contains an open neighborhood of 0 and no other
elements of Γ, so Γ is discrete.

Now, since K is compact, the projection Γ′ of Γ into Rk has a finite
kernel F ⊆ K. Furthermore, Γ′ is a discrete subgroup of 〈Rk,+〉, and hence
Γ′ ' Zl, for some l ≤ k. Therefore, Γ ' Zl+F , so Λ ' Zl+F . In particular,
if Λ ' Zl, then l ≤ k, which implies vdim(U) ≤ k. Since U does contain
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a compatible copy of Zk it follows that k = vdim(U), so l ≤ vdim(U), as
required.

(ii) Since k ≤ dim(U) we have vdim(U) ≤ dim(U).
(iii) Assume now that Λ ' Zl + F is a lattice in U . Namely, U/Λ is a

definable group G. We proceed to show that l = k. Let X ⊆ U be a definable
set so that φ(X) = G. Then X + ker(φ) = U . Thus, πU (X) + Γ = Rk ×K.
Let Y , F ′ and Γ′ be the projections of πU (X), F and Γ, respectively, into
Rk. We have Y + Γ′ = Rk. Since X is definable, the set πU (X) is compact
and so Y is also compact.

We let λ1, . . . , λl be the generators of ker(φ) and let v1, . . . , vl ∈ Rk be
their images in Γ′. If H ⊆ Rk is the real subspace generated by v1, . . . , vl
then Y +H + F ′ = Rk, and therefore, since Y is compact and F ′ finite, we
must have H = Rk. This implies that l = k.

(iv) By [4, Proposition 3.8], if U is generated by a definably compact

group and is torsion-free then U/U00 ' Rdim(U), so by Theorem 2.1 every
lattice is isomorphic to ZdimU . By (iii), dim(U) = vdim(U). �

We can now see better why vdim(U) gives an indication as to how “non-
definable” U is.

Corollary 2.6. Assume that U admits a lattice and H is a definable sub-
group of U . Then

(i) vdim(U) = vdim(U/H).
(ii) If vdim(U) = dim(U), then H must be finite.
(iii) If U is torsion-free, and H has maximal dimension among all defin-

able subgroups of U , then dimH = dim(U)− vdim(U).

Proof. (i) By Theorem 2.1 U admits a lattice isomorphic to Zk, and by
Proposition 2.5 (iii), k = vdim(U). By Lemma 2.3, U/H also admits a
lattice isomorphic to Zk and so by again by the same proposition, we have
vdim(U/H) = k.

(ii) Assume that H is an infinite definable subgroup of U . Then by (i),
we have vdim(U/H) = vdim(U) = dim(U) > dim(U/H), which contradicts
Proposition 2.5 (ii) for U/H.

(iii) If dimH has maximal dimension among the definable subgroups of
U then, as we already noted, U/H is generated by a definably compact
set. Because H is torsion-free, as a subgroup of U , it must be definably
connected and therefore divisible. It follows that U/H is torsion-free as
well. By Proposition 2.5 (iv), vdim(U/H) = dim(U/H). But then, by (i)
we have

dimH = dim(U)− dim(U/H) = dim(U)− vdim(U).

�

The torsion-free condition in (iii) above is necessary. For example, the
group Ḡ in [5, Example 6.2] does not contain any non-trivial definable sub-
groups, yet dim(G) = 2 and vdim(G) = 1. We describe below a gen-
eral method to obtain a locally definable group V, generated by a de-
finably compact set, such that V has no infinite definable subgroups and
vdim(V) < dim(V).
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Example 2.7. Let G be a k-dimensional definably compact abelian group
which has no proper definable subgroups of positive dimension and let U be
the universal covering of G, so dim(U) = k. Let Γ ' Zk be the kernel of the
covering map, so Γ is compatible in U . Write Γ = Γ1 ⊕ Γ2 with Γ1 ' Zm,
Γ2 ' Zk−m and 0 < m < k. Obviously, Γ1 is still compatible in U and
therefore V = U/Γ1 is a locally definable group with dim(V) = dim(U). It is
not hard to see that the covering map U → G factors through V and hence
V cannot have any proper definable subgroup of positive dimension. We
claim that vdim(V) = k −m.

Let φ : U → V be a locally definable projection. The image of Γ under φ
is a group ∆ ' Zk−m which we claim to be compatible in V. We start with
Y ⊆ V definable and claim that Y ∩∆ is finite.

Let π2 : Γ→ Γ2 be the projection with respect to the direct sum decom-
position. For every W ⊆ Γ, φ(W ) is in bijection with π2(W ), so it is enough
to prove that π2(φ

−1(Y ∩∆)) = π2(φ
−1(Y ) ∩ Γ) is finite.

If we choose a definable X ⊆ U such that φ(X) = Y then φ−1(Y ) =
X + Γ1. But (X + Γ1) ∩ Γ = (X ∩ Γ) + Γ1 and because Γ is compatible the
set X ∩ Γ is finite. It follows that

π2(φ
−1(Y ) ∩ Γ) = π2((X ∩ Γ) + Γ1) = π2(X ∩ Γ)

is finite so Y ∩ ∆ is finite, showing that ∆ is compatible in V. Hence,
vdim(V) ≥ k −m.

For the opposite inequality, assume V contains a compatible subgroup
∆ isomorphic to Zr and choose u1, . . . , ur ∈ U so that φ(u1), . . . , φ(ur)
are generators of ∆. It is not hard to see that Γ1 + Zu1 + · · · + Zur is a
compatible subgroup of U , isomorphic to Zm+r, so necessarily m + r ≤ k.
Hence, r ≤ k −m, so vdim(V) = k −m.

Note that V has non-trivial torsion since any a ∈ U for which na ∈ Γ1

will be mapped to an n-torsion element of V.

We end by noting that the two conjectures mentioned above are equiva-
lent.

Theorem 2.8. Conjecture A is equivalent to Conjecture B. More precisely,
(i) If U admits a definable generic set then U satisfies clauses (1), (2) of

Conjecture B.
(ii) Conjecture B implies Conjecture A.

Proof. (i). By Proposition 2.5 and Lemma 2.4.
(ii). Let Λ ' Zk be a compatible subgroup of U with k = vdim(U). We

will prove that the locally definable group U/Λ is actually definable.
Assume that U/Λ is not definable. By Conjecture B(2) (applied to U/Λ),

there exists some a ∈ U/Λ such that Za is a compatible subgroup of U/Λ,
and for every n, na 6= 0. Let b ∈ U be an element that projects via φ : U →
U/Λ to a. Clearly, Zb ∩ Λ = {0}. We claim that Λ + Zb is a compatible
subgroup of U , contradicting k = vdim(U). Let X ⊆ U be definable. The
image of X ∩ (Λ +Zb) under φ is contained in φ(X)∩Za. Since φ is locally
definable, φ(X) is definable. Therefore φ(X)∩Za is finite, by compatibility
of Za. The preimage of this finite set under π is a union of sets Λ+x, x ∈ B,
for some finite B ⊆ Zb. So X ∩ (Λ + Zb) is equal to the finite union of the
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sets X ∩ (Λ + x), x ∈ B, each of which is finite, because so is (X − x) ∩ Λ
by compatibility of Λ. Hence X ∩ (Λ + Zb) is finite, and thus Λ + Zb is
compatible. �

3. Locally definable subgroups of 〈Rn,+〉

We assume here that M is an o-minimal expansion of a real closed field
R

Our goal is to prove Conjecture A for subgroup of 〈Rn,+〉 but in fact we
prove a stronger result (as was suggested to us by the referee):

Theorem 3.1. Let U be a connected definably generated subgroup of 〈Rn,+〉
of dimension k. Then there are linearly independent one-dimensional R-
subspaces R1, . . . , Rk and intervals Ii = (−ai, ai) ⊆ Ri (with ai possibly ∞)
such that U is generated by the set X = I1 + · · ·+ Ik. The set X is generic
in U .

Proof. Recall that for X ⊆ Rn, we write X(m) for the addition of X − X
to itself m times. If 0 ∈ X then X ⊆ X(m).

Definition 3.2. A subset of Rn is called convex with respect to R (or R-
convex) if for all x, y ∈ X, the line segment connecting x and y is also in
X.

The R-convex hull of X is the smallest R-convex subset of Rn containing
X. It consists of all finite combinations

∑m
i=1 tixi, where the xi’s are in X,

all t1 ≥ 0 and
∑
ti = 1.

Lemma 3.3. If X ⊆ Rn is definable then the R-convex hull of X is also
definable.

Proof. More precisely, we claim that the following set equals the R-convex
hull of X:

X ′ =

{
n+1∑
i=1

tixi : t1 + · · ·+ tn+1 = 1, ti ∈ [0, 1], xi ∈ X

}
.

Indeed, by Caratheodory’s Theorem, every convex combination of any
number of points from X can also be realized as a combination of n + 1 of
these points, hence the R-convex hull of X equals X ′. (Note that although
Caratheodory’s theorem is usually proved over the reals the same proof
works over any ordered field. Alternatively, the statement over the real
numbers implies, by transfer, the same result over any real closed field). �

Lemma 3.4. Assume that X ⊆ Rn is a definably connected set containing
0. Then there is m such that X(m) (in the sense of the additive group
〈R,+〉) contains the R-convex hull of X.

Proof. Given f : X → Z, the fiber power of X is defined as:

X ×f X = {〈x, y〉 ∈ X ×X : f(x) = f(y)}.
Clearly, the diagonal ∆ is contained in X ×f X.

Note that for 〈x1, x2〉, 〈y1, y2〉 ∈ X ×f X, there is a continuous definable
path in X ×f X, connecting the two points if and only if there are definable
continuous curves γ1, γ2 : [0, 1] → X such that γi(0) = xi, γi(1) = yi, and
for every t ∈ [0, 1] we have f(γ1(t)) = f(γ2(t)).
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Claim 3.5. For X ⊆ Rn, consider the projection π : Rn → R onto the
first coordinate. Assume that π(x1) = π(x2), π(y1) = π(y2) (in particular,
π1(x1−x2) = π(y1− y2) = 0). Assume further that 〈x1, x2〉 and 〈y1, y2〉 are
in the same connected component of X×πX. Then the elements x1−x2 and
y1−y2 are in the same connected component of the set (X−X)∩{0}×Rn−1.

Proof. Note that the image of X ×πX under the binary map 〈x, y〉 7→ x− y
is contained in the set {0} × Rn−1. Consider the restriction of this map to
the connected component of X ×π X which contains 〈x1, x2〉 and 〈y1, y2〉.
The image is connected and clearly contains x2 − x1 and y2 − y1. �

Claim 3.6. Assume that x, y ∈ X, π(x) = π(y) and that there is a curve

γ = (γ1, . . . , γn) : [0, 1]→ X

connecting x and y inside X (note that γ1(0) = γ1(1)). Let Γ be the image
of γ.

(1) If γ1 is constant on [0, 1] then Γ ×π Γ is definably connected. In
particular, for every x, y, z ∈ Γ, 〈x, y〉 and 〈z, z〉 are in the same definably
connected component of X ×π X.

(2) If for some a ∈ (0, 1), γ1 is increasing on (0, a) and decreasing on (a, 1)
then y−x and 0 are in the same connected component of (X−X)∩{0}×Rn−1.

(3) If for some a1 < a2 in (0, 1), γ1 is increasing on (0, a1), constant on
(a1, a2) and decreasing on (a2, 1) then y−x and 0 are in the same connected
component of (X −X) ∩ {0} ×Rn−1.

Proof. (1) By assumption the map π is constant on Γ and therefore Γ×πΓ =
Γ× Γ, which is clearly definably connected.

(2) Let [b1, b2] be the image of γ under π. By assumptions, π(γ1(0)) =
π(γ1(1)) = b1, π(γ1(a)) = b2 and the restrictions of π to the pieces γ([0, a])
and γ([a, 1]) are both injective. Let α1, α2 be their inverse maps, respectively
(so these are maps from [b1, b2] into Γ). We have α1(b1) = x, α2(b1) = y,
α1(b2) = α2(b2) = γ(a). Moreover, for every t ∈ [b1, b2] we have π(α1(t)) =
π(α2(t)) = t. It follows that 〈x, y〉 and 〈γ(a), γ(a)〉 are in the same compo-
nent of X ×πX, so by Claim 3.5, y− x and 0 are in the same component of
(X −X) ∩ {0} ×Rn−1.

(3) As in (2), let [b1, b2] be the image of γ under π. It is easy to see
that γ1(t) = b2 for all t ∈ [a1, a2]. Similarly to the proof of (2), 〈x, y〉 and
〈γ(a1), γ(a2)〉 are in the same component of X×πX. Using (1), we see that
〈γ(a1), γ(a2)〉 is in the same component as 〈z, z〉 for some z ∈ γ([a1, a2]).
Applying Claim 3.5, we conclude that x−y and 0 are in the same component
of (X −X) ∩ {0} ×Rn−1. �

We now return to the proof of Lemma 3.4. So, X is a definably connected
subset of Rn containing 0, and we want to show that for some m, the convex
hull of X is contained in X(m).

We will use induction on n. If n = 1 then X is already convex. So, we
assume that the result is true for X ⊆ Rn and prove it for X ⊆ Rn+1. We
take x, y ∈ X and first want to show that for some m the line segment [x, y]
(i.e the line connecting x and y in Rn+1) is contained in X(m).

Using a linear automorphism of Rn, we may assume that π(x) = π(y) = 0.
Since X is definably connected, there exists a definable curve γ : [0, 1]→ X
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connecting x and y. Let Γ ⊆ X be the image of γ and again let γ1 = π ◦ γ.

Notation: For f : [0, 1] → R continuous, let k = k(f) be the minimal
natural number so that there are 0 = a0 < a1 < · · · < ak = 1 and f is either
constant or strictly monotone on [ai, ai+1].

We consider the map γ1 : [0, 1]→ R and prove the result by sub-induction
on k(γ1).

Assume first that k(γ1) = 1, namely that γ1 is constant on [0, 1]. In this
case, Γ is contained in {0}×Rn, so we can work in Rn and use the inductive
hypothesis to conclude that the line segment [x, y] is contained in Γ(m) for
some m. Clearly, Γ(m) ⊆ X(m) so we are done.

Assume then that k(γ1) > 1, so γ1 is not constant. Without loss of gen-
erality, γ1 takes some positive value on (0, 1), so let a ∈ (0, 1) be a point
where γ1 takes its maximum value in [0, 1].

Case 1 Assume first that γ1 is not locally constant at a.

Then there are a1 < a < a2 such that γ1 is increasing on (a1, a), decreas-
ing on (a, a2), γ1(a1) = γ1(a2), and furthermore, either a1 or a2 are local
minimum for γ1. Indeed, we take a′1 < a to be the minimum of all points t
such that γ1 is increasing on (t, a), take a′2 > a be the maximum of all t > a
such that γ1 is decreasing on (a, t). (In this case, a′1 and a′2 are local minima
for γ1). We then compare γ1(a

′
1) and γ1(a

′
2). If γ1(a

′
1) > γ1(a

′
2) then we

take a1 := a′1 and take a2 to be the unique element of the interval (a, a′2)
such that γ1(a2) = γ1(a1). Otherwise, we do the opposite.

Let x1 = γ(a1) and x2 = γ(a2). Consider now the curve Γ′ which is the
image of [a1, a2] under γ. By Claim 3.6 (2), x2 − x1 and 0 are in the same
connected component of (Γ′ − Γ′) ∩ {0} × Rn. But then, we can view this
component as living in Rn, so by inductive hypothesis there exists m such
that the line segment connecting 0 and x2−x1 is contained in (Γ′−Γ′)(m).
By adding x1 to both sides, we see that the line segment connecting x1 and
x2 is contained in (X − X)(m + 1). Hence, after replacing X with X(m),
we can also replace the original curve Γ with a new curve Γ′′, in which the
piece γ([a1, a2]) was replaced by a linear segment all of whose points project
to the same point π(x1). Let γ′′ : [0, 1]→ X be the map whose image is Γ′′

(so γ′′ = γ everywhere, except on [a1, a2], in which the image is linear and
γ′′1 is constant). Because a1 or a2 is a local minimum of γ1, it is easy to see
that k(γ′′1 ) = k(γ1)− 1. By sub-inductive hypothesis, the line connecting x
and y is contained in some X(m′).

Case 2 Assume that γ1 is locally constant at a.

So, there are a′1 ≤ a ≤ a′2 such that γ1 is constant on [a′1, a
′
2] and this is a

maximal such interval. As in Case 1, we can find a1 < a′1 and a2 > a′2 such
that γ1 is increasing on [a1, a

′
1], decreasing on [a′2, a2], γ1(a1) = γ1(a2) and

furthermore, either a1 or a2 is a local minimum of γ1.
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Let Γ′ be the piece of Γ connecting γ(a1) and γ(a2). Then, by Claim
3.6(3), the points γ(a2) − γ(a1) and 0 are in the same component of (Γ′ −
Γ′)∩{0}×Rn. Again, by inductive hypothesis, the line segment connecting
0 and γ(a2) − γ(a1) is contained in (Γ′ − Γ′)(m) for some m, so the line
segment connecting γ(a1) and γ(a2) is contained in X(m + 1). As in Case
(1), we can replace Γ by Γ′′, in which the piece γ([a1, a2]) is replaced by the
line segment connecting γ(a1) and γ(a2). Again, the map γ′′ : [0, 1] → X
whose image is Γ′′ now satisfies k(γ′′1 ) = k(γ1)−2 (because we replaced three
pieces by one). By sub-inductive hypothesis, the line connecting x and y is
in some X(m′).

We therefore showed that for every x, y ∈ X, there exists m such that the
line segment [x, y] is contained in X(m). To see that we can find a uniform
m for all x, y ∈ X, we use logical compactness (writing a type p(x, y), which
says that the line segment [x, y] is not contained in any X(m)). This ends
the proof of Lemma 3.4. �

Question It is interesting to ask what is the required m in the above result.
The argument suggests that it depends on the possible number of “twist-
ings” of the curve connecting two points in X. But maybe this is just an
effect of the proof and one can find uniform such m which depends only on
the ambient Rn.

Next, we show that U ⊆ Rn can be generated by a sum of intervals in
linearly independent one-dimensional spaces. By Lemma 3.4 we can assume
that it is generated by a definably connected convex set X 3 0. In particular,
U is convex. Since U is closed, we may replace X by its closure, which is still
convex, and assume that X is closed. We may also assume that −X = X
(otherwise we replace it with X −X).

We prove the result by induction on n. When U is a subset of R then any
convex subset of R is an interval (possibly equaling the whole of R) so we
are immediately done.

We now consider the case U ⊆ Rn+1.
Assume first that X is bounded. Consider all line segments contained in

X and let J0 be such segment of maximal length (it exists by o-minimality
and the fact that X is closed). Since we work in a field we may assume that
J0 is parallel to the xn+1-coordinate and furthermore that 0 ∈ J0 divides it
exactly into two equal parts. We can therefore write J0 = (−ak+1, ak+1).
Let π(X) be the projection onto the first n coordinates. By induction,
there are linearly independent 1-dimensional spaces R1, . . . , Rk ⊆ Rn, and
in each Ri an interval Ii = (−ai, ai) (with ai possibly ∞) such that the sum
Y = I1 + · · · + Ik generates the same group as π(X). In particular, there
is an m ∈ N such that Y ⊆ π(X)(m). Our goal is to show that Y + J0
generates the group U . It is thus sufficient to prove the following:

Claim. X ⊆ Y + J0 ⊆ X(2m).

Proof. Consider 〈x̄, y〉 ∈ X, with x̄ ∈ π(X). Note that |y| ≤ ak+1/2, because
if y > ak+1/2 then the length of the line segment connecting 〈x̄, y〉 to 0 is
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then greater than ak+1/2. Because X is symmetric, the point 〈−x̄,−y〉 is
also in X and thus the line segment connecting 〈−x̄,−y〉 and 〈x̄, y〉 is longer
than ak+1 = |J0|, contradiction. We therefore showed that y ≤ ak+1/2 and
hence

〈x̄, y〉 ∈ {〈x̄, 0〉}+ J0 ⊆ π(X) + J0 ⊆ Y + J0.

For the opposite inclusion, take 〈x̄, y〉 ∈ Y + J0. Since Y ⊆ π(X)(m) =
π(X(m)), there exists y′ ∈ R, such that 〈x̄, y′〉 ∈ X(m). Because max{|y| :
〈x̄, y〉 ∈ X} = ak+1/2, we have |y′| ≤ mak+1/2. But then

〈x̄, y〉 ∈ X(m)−mJ0 ⊆ X(2m).

This ends the proof of the claim and the case wehre the generating set X is
bounded. �

In the general case, we first find a definable subgroup H such that U/H is
generated by a definably compact set. Since all definable subgroups ofRn are
R-vector spaces, the group H is linear. Without loss of generality, H = Rk,
for k ≤ n, identified with the first k coordinates. Let π1 : U → Rn−k be the
projection onto the last n−k coordinates and let V = π1(U). We claim that
U = H + V.

Indeed, assume that 〈x̄, ȳ〉 ∈ U . Since U is convex, the line segments
which connect 〈x̄, ȳ〉 to arbitrary large points in Rk belong to U . Hence
we can approach every point on the affine space Rk × {ȳ} by points inside
U . Since U is closed, we have that H + {(0̄, ȳ〉} is contained in U . This
shows that H + V is contained in U . The converse is immediate. This ends
the proof that U is generated by a sum of intervals in linearly independent
one-dimensional spaces.

Our final goal is to show that Y0 = I1 + · · · + Ik + J0 is generic in U .
We have Ii = (−ai, ai) and J0 = (−ak+1, ak+1). If we let Vi be the 1-
dimensional group generated by (−ai, ai) then we have U = V1 + · · ·+Vk+1.
Each (−ai, ai) is generic in Vi so it is easy to verify that Y0 is generic in U .
This ends the proof of Theorem 3.1. �

As noted in the above proof, U is convex in Rn. This immediately implies
that U is divisible. In [4], we prove more generally that Conjecture A implies
that every connected definably generated abelian group is divisible.
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