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ABSTRACT

We consider a class of weakly o-minimal structures admitting an o-minimal style cell decomposition, for

which one can construct certain canonical o-minimal extension. The paper contains several fundamental

facts concerning the structures in question. Among other things, it is proved that the strong cell decom-

position property is preserved under elementary equivalences. We also investigate fiberwise properties (of

definable sets and definable functions), definable equivalence relations and conditions implying elimination

of imaginaries.

0 Introduction

Weak o-minimality for totally ordered structures was introduced by M.A. Dickmann in [Di]. It
generalizes the notion of o-minimality and belongs to the family of so called minimality conditions
in model theory, widely studied during the recent years. The difference between o-minimality and
weak o-minimality is that in the definition of the former one uses convex sets instead of intervals.
To be precise, a first order structure equipped with a linear ordering is weakly o-minimal if every
set definable in dimension 1 is a finite union of convex sets.

Weakly o-minimal structures in general appear to be much more difficult to handle than the
o-minimal ones. The main problem is that they lack so called finiteness properties, and therefore
one cannot expect a reasonable cell decomposition for sets definable in them. As weak o-minimality
is not preserved under elementary equivalences, one defines a notion of a weakly o-minimal theory,
that is a first-order theory whose all models are weakly o-minimal structures. Although in a model
of such a theory one can prove a weak form of cell decomposition, the topological dimension for
definable sets does not behave as well as it does in the o-minimal setting. For example, it does not
satisfy the addition property. One can, for instance, define a set of dimension one whose projection
onto some coordinate has infinitely many infinite fibers.

A class of weakly o-minimal structures in which one can smoothly develop an o-minimal style
description of definable sets was considered in [MMS]. The authors prove that sets definable in
weakly o-minimal expansions of ordered fields without non-trivial definable valuations are finite
unions of so called strong cells, which are constructed more or less as cells in the o-minimal
setting. It turns out that this result can be generalized to certain weakly o-minimal expansions
of ordered groups. It was proved in [We07] that every weakly o-minimal expansion of an ordered
group without a non-trivial definable subgroup has the strong cell decomposition property. One of
the basic consequences of strong cell decomposition for a given weakly o-minimal structure M is
existence of an o-minimal extension of M, closely related to it.

In this paper we explore further consequences of the strong cell decomposition property for
weakly o-minimal structures. We generalize several facts (mainly concerning definable sets) known
in the o-minimal setting. We also investigate the relation between weakly o-minimal structures
with the strong cell decomposition property and their canonical o-minimal extensions.

1Research supported by the Polish Government grant N N201 545938.
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The paper is organized as follows. In §1 we mainly fix notation and recall some necessary defi-
nitions and facts. In §2 we prove monotonicity theorem and finiteness lemma. We also observe that
a model elementarily equivalent to a weakly o-minimal structure with the strong cell decomposi-
tion property is weakly o-minimal itself and has the strong cell decomposition property. Another
result of §2 is that some relativization of the construction of the canonical o-minimal extension
M of a weakly o-minimal structure with the strong cell decomposition property M determines a
covariant functor between the category of elementary embeddings ofM to the category of elemen-
tary embeddings of M. §3 is devoted to investigation of fiberwise properties of definable sets and
functions. In §4 we examine equivalence relations definable in weakly o-minimal structures with
the strong cell decomposition property generalizing earlier results of A. Pillay. The final section of
the paper is devoted to elimination of imaginaries in weakly o-minimal structures with the strong
cell decomposition property.

1 Preliminaries

Let (M,≤) be a dense linear ordering without endpoints. A set I ⊆M is called convex in (M,≤)
if for any a, b ∈ I and c ∈ M with a ≤ c ≤ b, we have that c ∈ I. If additionally I 6= ∅ and I
has both infimum and supremum in M ∪ {−∞,+∞}, then I is said to be an interval in (M,≤).
A maximal convex subset of a non-empty set contained in M is called its convex component. An
ordered pair 〈C,D〉 of non-empty subsets of M is called a cut in (M,≤) if C < D, C ∪D = M and
D has no lowest element. If I1, . . . , Im ⊆ M are open intervals with all endpoints in M , then the
set I1 × . . .× Im ⊆Mm is called an open box in Mm.

A first order structure M = (M,≤, . . .) expanding (M,≤) is said to be weakly o-minimal if
every subset of M , definable inM, is a finite union of convex sets. A complete first order theory T
whose language contains a binary relational symbol ≤ is called weakly o-minimal if ≤ is interpreted
in all models of T as a linear ordering, and all models of T are weakly o-minimal with respect to
this ordering.

Assume thatM = (M,≤, . . .) is a weakly o-minimal structure. A cut 〈C,D〉 in (M,≤) is called
definable in M [over A ⊆ M ] if the sets C,D are definable in M [over A]. The set of all such
cuts will be usually denoted by M (note that M depends on M, so when necessary, we add the
superscriptM to M). The universe M can be regarded as a subset of M by identifying an element
a ∈ M with the cut 〈(−∞, a], (a,+∞)〉. After such an identification, M is naturally equipped
with a dense linear ordering without endpoints extending that of (M,≤), and (M,≤) is dense in
(M,≤). Clearly, if M is o-minimal, then M = M .

The linear orderings (M,≤) and (M,≤) determine Hausdorff topologies on M and M respec-
tively in a natural way as well as the product topologies on cartesian powers of these. For m ∈ N+

and a set X ⊆Mm, we will denote by cl(X) and int(X) the closure and the interior of X in Mm.
Note that if X is definable in M over some set A ⊆ M , then also cl(X) and int(X) are definable
over A. We will also write CL(X) for the closure of a set X ⊆ M

m
(or of X ⊆ Mm) in M

m
. In

case of o-minimal M we have cl(X) = CL(X).
For a set X ⊆Mm definable inM [over A ⊆M ], a function f : X −→M ∪ {−∞,+∞} is said

to be definable inM [over A] if the set {〈x, y〉 ∈ X ×M : f(x) > y} is definable inM [over A]. So
in particular the functions identically equal to −∞ and +∞ with domain X are definable over A.
If I ⊆ M is a convex open definable set with a = inf(I) ∈ M ∪ {−∞}, b = sup(I) ∈ M ∪ {+∞}
and f : I −→M is a definable function, then (by weak o-minimality ofM), the limits lim

x−→a+
f(x)

and lim
x−→b−

f(x) are both well defined elements of M ∪ {−∞,+∞}.
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A dimension of an infinite definable set X ⊆Mm (notation: dim(X)) is the largest r ∈ N+ for
which there exists a projection π : Mm −→ Mr such that the set π[X] has non-empty interior.
Non-empty finite subsets of Mm are said to have dimension 0. We also put dim(∅) = −∞. If
X,Y ⊆Mm are definable sets, then X is said to be large in Y if dim(Y \X) < dim(Y ).

If M = (M,≤,+, . . .) is a weakly o-minimal expansion of an ordered group, then a cut 〈C,D〉
in (M,≤) is called non-valuational if inf{y − x : x ∈ C, y ∈ D} = 0. The structure M is non-
valuational if all cuts in (M,≤) definable in M are non-valuational. It is not difficult to show
that a weakly o-minimal structure M = (M,≤,+, . . .) is non-valuational iff the only subgroups of
(M,+) definable in M are {0} and M (see [We07, Lemma 1.5]).

Assume that M = (M,≤, . . .) is a weakly o-minimal structure. For every m ∈ N+, we induc-
tively define strong cells in Mm and their completions in M

m
. The completion of a strong cell

C ⊆Mm in M
m

is denoted by C. Note that C depends on M, therefore we add a superscript M
to C when necessary.

(1) A singleton in M is a strong 〈0〉-cell in M , equal to its completion.

(2) A non-empty convex open definable subset of M is a strong 〈1〉-cell in M . If C ⊆ M is a
strong 〈1〉-cell in M , then C := {x ∈M : (∃a, b ∈ C)(a < x < b)}.

Assume that m ∈ N+, i1, . . . , im ∈ {0, 1} and suppose that we have already defined strong
〈i1, . . . , im〉-cells in Mm together with their completions in M

m
.

(3) If C ⊆ Mm is a strong 〈i1, . . . , im〉-cell in Mm and f : C −→ M is a continuous definable
function which has a (necessarily unique) continuous extension f : C −→ M , then Γ(f) is a

strong 〈i1, . . . , im, 0〉-cell in Mm+1. The completion of Γ(f) in M
m+1

is defined as Γ(f).

(4) If C ⊆Mm is a strong 〈i1, . . . , im〉-cell in Mm and f, g : C −→M∪{−∞,+∞} are continuous
definable functions such that

(a) each of the functions f, g assumes all its values in one of the sets M,M \M, {−∞}, {∞},
(b) f, g have (necessarily unique) continuous extensions f, g : C −→M ∪ {−∞,+∞},
(c) f(x) < g(x) whenever x ∈ C,

then the set
(f, g)C := {〈a, b〉 ∈ C ×M : f(a) < b < g(a)}

is called a strong 〈i1, . . . , im, 1〉-cell in Mm. The completion of (f, g)C in M
m+1

is defined as

(f, g)C := (f, g)C := {〈a, b〉 ∈ C ×M : f(a) < b < g(a)}.

(5) We say that C ⊆Mm is a strong cell in Mm if there are i1, . . . , im ∈ {0, 1} such that C is a
strong 〈i1, . . . , im〉-cell in Mm.

An example of a strong cell in Mm is an open box contained in Mm. If C ⊆ Mm is a strong
cell and f : C −→ M is a function for which there exists a continuous extension f : C −→ M ,
then f is called strongly continuous. This means that all functions appearing in the construction
of a strong cell are strongly continuous.

Note also that if C ⊆ Mm is a strong cell, f : C −→ M is definable in a weakly o-minimal
structure M = (M,≤, . . .) and a ∈ C, then it makes sense to talk about a limit of f in M ∪
{−∞,+∞} at a. So f is strongly continuous iff f has a limit in M at each a ∈ C and for a ∈ C
this limit is equal to f(a).
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Any finite partition of M into singletons and convex open sets definable in M will be called a
strong cell decomposition of M . A finite partition C of Mm+1 into strong cells is said to be a strong
cell decomposition of Mm+1 if π[C] := {π[C] : C ∈ C} is a strong cell decomposition of Mm (here
π : Mm+1 −→ Mm denotes the projection dropping the last coordinate). We say that a strong
cell decomposition C of Mm partitions X ⊆ Mm if for every C ∈ C, either C ⊆ X or C ∩X = ∅.
A strong cell decomposition of Mm is called definable over A ⊆M if all its members are definable
over A. Note that whenever A ⊆ M and C is an A-definable strong cell decomposition of Mm+n

partitioning X ⊆ Mm+n and π : Mm+n −→ Mm is the projection onto the first m coordinates,
then π[C] := {π[C] : C ∈ C} is an A-definable strong cell decomposition of Mm partitioning
π[X]. Moreover, for every a ∈ Mm, the family Ca := {Ca : C ∈ C} is an Aa-definable strong cell
decomposition of Mn partitioning Xa. Another easy observation is that if C,D are A-definable
strong cell decompositions of Mm and Mn respectively, then {C × D : C ∈ C, D ∈ D} is an
A-definable strong cell decomposition of Mm+n. In particular, a cartesian product of strong cells
is a strong cell. Whenever C ⊆ Mm and D ⊆ Mn are strong cells, then the completion of C ×D
is equal to C ×D. So in particular, Mm = M

m
for m ∈ N+.

A weakly o-minimal structure M = (M,≤, . . .) is said to have the strong cell decomposition
property if for any m ∈ N+, A ⊆ M and A-definable sets X1, . . . , Xk ⊆ Mm, there exists an
A-definable strong cell decomposition of Mm partitioning each of the sets X1, . . . , Xk. As proved
in [We07], a weakly o-minimal expansion of an ordered group has the strong cell decomposition
property iff it is non-valuational. By [KPS] (see also [vdD2, Chapter 3]), every o-minimal structure
expanding a dense linear ordering without endpoints has the strong cell decomposition property.
Weakly o-minimal structures with the strong cell decomposition property have the cell decompo-
sition property in the sense of [Ma].

Remark that the above definition of strong cells slightly differs from that introduced in [We07].
More precisely, in [We07] we allow that the functions used to construct strong cells assume values
both in M and in M \M . Strong cells defined here are exactly the refined strong cells in the sense of
[We07]. Nevertheless, it is not difficult to demonstrate that the notions of strong cell decomposition
property defined with both types of strong cells coincide. More precisely, one can easily show that
ifM = (M,≤, . . .) is a weakly o-minimal structure with the strong cell decomposition property in
the sense of [We07] and A ⊆M , then for every A-definable strong cell decomposition C of Mm (in
the sense of [We07]), there exists an A-definable strong cell decomposition of Mm (in the above
sense) partitioning each member of C.

Unlike in the o-minimal setting, strong cells in weakly o-minimal structures in general are
not definably connected. One can even construct a weakly o-minimal structure whose universe is
totally definably disconnected.

Let Ralg = (Ralg,≤,+, ·) be the ordered field of all real algebraic numbers. For every real tran-
scendental α, let Pα = {x ∈ Ralg : x < α}. Then by [BP] (or [Bz]), the structure (Ralg, (Pα)α∈R\Ralg

)
has weakly o-minimal theory and (by [MMS] or [We07]) the strong cell decomposition property.
All definably connected components of Ralg are singletons.

Assume that m ∈ N+ and C,D are strong cell decompositions of Mm. We say that D refines C
(notation: C ≺ D or D � C) if every cell from D is a subset of some cell from C (equivalently: if
every cell from C is a union of some cells from D). Note that the relation ≺ partially orders the
family of all strong cell decompositions of Mm, whose smallest element is {Mm}. It is a routine
to prove by induction on m the following fact.

Fact 1.1 Assume that A ⊆M and k,m ∈ N+.
(a) If X1, . . . , Xk ⊆Mm are A-definable sets, then there exists a smallest strong cell decompo-

sition of Mm partitioning each of X1, . . . , Xk. Such D is definable over A.
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(b) If C1, . . . , Ck are strong cell decompositions of Mm, then there exists a smallest strong cell
decomposition D of Mm refining each of C1, . . . , Ck. Such D is definable over A.

(c) If X1, . . . , Xk ⊆ Mm are A-definable sets and f1 : X1 −→ M, . . . , fk : Xk −→ M are
A-definable functions, then there exists a smallest strong cell decomposition D of Mm partitioning
each of X1, . . . , Xk and such that for i ∈ {1, . . . , k} and any C ∈ D with C ⊆ Xi, fi � C is strongly
continuous. Such D is definable over A.

Following [We07], for any m ∈ N+ and i1, . . . , im ∈ {0, 1}, we inductively define so called
basic 〈i0, . . . , im〉-cells in M

m
and elementary functions on them (with values in M). If 1 ≤ j1 <

. . . < jk ≤ m, then %mj1,...,jk : Mm −→ Mk and %mj1,...,jk : M
m −→ M

k
are projections onto the

coordinates j1, . . . , jk.

(1) A one-element subset of M
m

is called a basic 〈0, . . . , 0〉-cell in M
m

, where 〈0, . . . , 0〉 is a tuple
of m zeros.

(2) If C ⊆M is a strong 〈1〉-cell, then C is called a basic 〈1〉-cell in M . Note that %11[C] ∩M =
C ∩M = C is an open strong cell in M .

(3) If C = {a} ⊆ M
m

and I is a basic 〈1〉-cell in M , then C × I is a basic 〈0, . . . , 0, 1〉-cell in

M
m+1

. Clearly, %m+1
m+1[C × I] ∩M = I ∩M is an open strong cell in M .

Assume now that i1, . . . , im ∈ {0, 1}, i1+ . . .+im > 0 and suppose that we have already defined
basic 〈i1, . . . , im〉-cells in M

m
. Let {j1, . . . , jk} = {j ∈ {1, . . . ,m} : ij = 1}, j1 < . . . < jk and

suppose we know that if C ⊆ M
m

is a basic 〈i1, . . . , im〉-cell, then %mj1,...,jk [C] ∩Mk is an open

strong cell in Mk.

(4) Let C ⊆Mm
be a basic 〈i1, . . . , im〉-cell and consider D := %mj1,...,jk [C]∩Mk, an open strong

cell in Mk. If f is a strongly continuous definable function from D to M or a strongly continu-
ous definable function from D to M \M , then Γ(f ◦(%mj1,...,jk � C)) is a basic 〈i1, . . . , im, 0〉-cell

in M
m+1

. Note that %m+1
j1,...,jk

[Γ(f ◦ (%mj1,...,jk � C))] ∩Mk = D is an open strong cell in Mk.

(5) Let C ⊆Mm
be a basic 〈i1, . . . , im〉-cell and consider D := %mj1,...,jk [C]∩Mk, an open strong

cell in Mk. If f, g : D −→M ∪ {−∞,+∞} are strongly continuous definable functions such
that

• all values of f, g lie in one of the sets: {−∞}, M , M \M , {+∞},
• f(x) < g(x) for x ∈ D,

then the set

(f ◦ %mj1,...,jk , g ◦ %
m
j1,...,jk

)C := {〈a, b〉 ∈ C ×M : (f ◦ %mj1,...,jk)(a) < b < (g ◦ %mj1,...,jk)(a)}

is called a basic 〈i1, . . . , im, 1〉-cell inM
m+1

. Note that %m+1
j1,...,jk,m+1[(f◦%mj1,...,jk , g◦%

m
j1,...,jk

)C ]∩
Mk = (f, g)D is an open strong cell in Mk+1.

In a standard way we introduce the notion of cell decomposition of M
m

into basic cells in M
m

[partitioning a given set].
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Assume now that M = (M,≤, . . .) is a weakly o-minimal L-structure with the strong cell
decomposition property. For any m ∈ N+ and any strong cell C ⊆ Mm, denote by RC the m-ary
relation in Mm determined by C, i.e. if a ∈Mm, then RC(a) holds iff a ∈ C. The structure

M′ := (M,≤, (RC : C is a strong cell))

has exactly the same definable sets as M. Moreover, Th(M′) admits elimination of quantifiers.

Proposition 1.2 If m ∈ N+, then every basic cell contained in M
m

is a finite Boolean combination
of completions of strong cells in Mm.

Proof. If a ∈M , then {a} = M \ ({x ∈M : x < a} ∪ {x ∈M : x > a}).
Assume now that m ∈ N+ and C ⊆Mm+1

is a basic 〈i1, . . . , im〉-cell. Suppose also that every
basic cell contained in M

m
is a Boolean combination of completions of strong cells in Mm. We

consider three cases.
Case 1. i1 = . . . = im+1 = 1. Then C is a completion of an open strong cell.
Case 2. i1 = . . . = im = 1 and im+1 = 0. Then there are an open strong cell D ⊆ Mm and a

strongly continuous function f : D −→ M (assuming all its values in one of the sets M , M \M)
with a continuous extension f : D −→ M such that C = Γ(f). Note that then (−∞, f)D and
(f,+∞)D are strong cells in Mm+1 and C = Mm+1 \ [(−∞, f)D ∪ (f,+∞)D].

Case 3. There exists j ∈ {1, . . . ,m} with ij = 0. Let π, % : M
m+1 −→ M

m
be projections

such that π drops the last coordinate and % drops the j-th coordinate. Denote also by %0 the
projection from Mm+1 onto Mm dropping the j-th coordinate. By our inductive assumption,
%[C] is a Boolean combination of completions of strong cells D1, . . . , Dk ⊆ Mm. Then %−1[%[C]]

is a Boolean combination of %−10 [D1], . . . , %−10 [Dk]. Similarly, π[C] is a Boolean combination of
completions of strong cells E1, . . . , El ⊆ Mm. Hence π[C] × M is a Boolean combination of
E1 ×M, . . . , El ×M . Note that C = %−1[%[C]] ∩ (π[C]×M). This finishes the proof.

Denote for m ∈ N+ and a strong cell C ⊆ Mm by RC the m-ary relation determined by the
completion of C, i.e. if a ∈Mm

, then RC(a) holds iff a ∈ C. Consider the structure

M := (M,≤, (RC : C is a strong cell)).

Proposition 1.2 implies that every basic cell in M
m

is definable in M without quantifiers. By §3
of [We07], M is o-minimal and every set X ⊆ M

m
definable in M is a finite union of basic cells.

So Th(M) admits elimination of quantifiers. Moreover, if C ⊆Mm
is a basic cell definable in M,

then C ∩Mm is either a strong cell definable in M or an empty set. Consequently, if X ⊆Mm
is

a set definable inM, then X ∩Mm is definable inM. If additionally Y ⊆Mm is definable inM,
then X ∩Y is definable inM. The structureM is called the canonical o-minimal extension ofM.

We end this section with a couple of observations concerning strong cells definable in M and
basic cells definable in M.

Proposition 1.3 Assume that M = (M,≤, . . .) is a weakly o-minimal structure with the strong
cell decomposition property and M = (M,≤, . . .) is its canonical o-minimal extension. Let also
m, k ∈ N+ and n ∈ N.

(a) If X1, . . . , Xk ⊆ M
m

are sets definable in M, then there is a cell decomposition C of M
m

partitioning each of the sets X1, . . . , Xk and such that every member of C is a basic cell.
(b) If C ⊆Mm is an n-dimensional strong cell definable in M and X ⊆Mm

is a set definable
in M, with dim(X ∩ C) = n, then X ∩ C is definable in M and dim(X ∩ C) = n.

(c) If X ⊆ Mm is a set definable in M and Y ⊆ M
m

is a set definable in M such that
dim(Y ∩ CL(X)) = n, then the set Y ∩X is definable in M and dim(Y ∩X) = n.
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Proof. (a) We use induction on m. The case m = 1 is trivial by o-minimality of M. So fix

m ∈ N+ and suppose that the assertion of (a) holds for dimension m. Let X1, . . . , Xk ⊆ M
m+1

be sets definable in M. Each of the sets X1, . . . , Xk,M
m+1 \ (X1 ∪ . . . ∪Xk) is a union of finitely

many basic cells. Let C1, . . . , Cl be all basic cells that appear in these unions. For a ∈ M
m

,
denote by C(a) the cell decomposition of M partitioning (C1)a, . . . , (Cl)a and such that |C(a)| is
as small as possible. Clearly, C(a) partitions (X1)a, . . . , (Xk)a and |C(a)| = 2r(a) + 1 for some
r(a) ∈ {0, . . . , 2l}. Let also C(a) = {I1(a), . . . , I2r(a)+1(a)}, where I1(a) < . . . < I2r(a)+1(a). For

every a ∈Mm
we define a function

fa : {1, . . . , 2r(a) + 1} −→ P ({1, . . . , k})× P ({1, . . . , l})

as follows:

fa(j) = 〈{α ∈ {1, . . . , k} : M
m × Ij(a) ⊆ Xα}, {β ∈ {1, . . . , l} : M

m × Ij(a) ⊆ Cβ}〉.

Denote by f1, . . . , fs all functions that one can obtain in this way and let Zi = {a ∈Mm
: fa = fi}

for i = 1, . . . , s. By the inductive assumption, there is a cell decomposition D of M
m

into basic
cells which partitions each of the sets Z1, . . . , Zs. Then

E := {
⋃
a∈D

({a} × Ij(a)) : D ∈ D, j ∈ {1, . . . , 2r(a) + 1}}

is a cell decomposition of M
m+1

partitioning X1, . . . , Xk. All members of E are basic cells.
(b) The n-dimensional set X∩C contains a basic cell D of dimension n. But then D∩C ⊆Mm

is an n-dimensional strong cell definable in M. Hence dim(X ∩ C) = n.
(c) Suppose that X and Y satisfy our assumptions. The set X can be presented as a disjoint

union of strong cells C1, . . . , Ck ⊆Mm. Note that

CL(X) = CL(C1) ∪ . . . ∪ CL(Ck) = CL(C1) ∪ . . . ∪ CL(Ck).

Thus dim(Y ∩CL(Ci)) = n for some i ∈ {1, . . . , k}. But dim(CL(Ci)\Ci) < n, so dim(Y ∩Ci) = n.
By (b), the set Y ∩ Ci is definable in M and dim(Y ∩ Ci) = n. Hence dim(Y ∩X) = n.

2 Fundamental results

From now on, throughout the paper we assume that M = (M,≤, . . .) is a weakly o-minimal L-
structure with the strong cell decomposition property. Unless otherwise stated, by “definable”
(set, function, relation) we mean “definable with parameters in the language of M”.

As proved in [Ar], in the context of arbitrary weakly o-minimal structures the domain of
a unary A-definable function f assuming values in M may be partitioned into some finite set
and finitely many A-definable convex open sets I1, . . . , In so that on each Ii, f is either locally
strictly increasing, locally strictly decreasing or locally constant. It turns out that for weakly o-
minimal structures with the strong cell decomposition property, we can prove an o-minimal style
monotonicity theorem. In fact this is a special case of so called regular cell decomposition theorem
(see Proposition 2.5).

Proposition 2.1 Assume that A ⊆M , U ⊆M is an infinite A-definable set and f : U −→M is
an A-definable function. Then U is a disjoint union of a finite set X and A-definable convex open
sets I1, . . . , In such that for every i ∈ {1, . . . , n},
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(a) f � Ii is either constant or strictly monotone and strongly continuous,
(b) f � Ii assumes all its values in one of the sets M , M \M .

Proof. Let f : U −→ M be an A-definable function, where U ⊆ M is an A-definable infinite set.
There is an A-definable strong cell decomposition C of M2 partitioning the set {〈a, b〉 ∈ U ×M :
f(a) > b}. Clearly, for every C ∈ C, f � π[C] is strongly continuous and assumes all its values in
one of the sets M , M \M (here π : M2 −→M is the projection onto the first coordinate).

Suppose now that C ∈ C and I = π[C] ⊆ U is a convex open set. Then the unique continuous
extension f : I −→M of f is definable inM. AsM is o-minimal, the open interval I ⊆M may be
partitioned into a disjoint union of a finite set XI and open intervals J1, . . . , Jl such that for each i,
Ji ⊆M is convex open and definable inM, and f � Ji is either constant or strictly monotone and
continuous. Then f � Ji is either constant or strictly monotone and strongly continuous whenever
i ∈ {1, . . . , l}. Apart of this, all values of each f � Ji belong to one of the sets M,M \M . In this
way we obtain a partition of U satisfying all our demands except A-definability of sets of which
such a partition consists.

Define the following sets:

X1 = {a ∈ U : (∃b, c ∈M)(a ∈ (b, c) ⊆ U ∧ f � (b, c) is strictly increasing)},
X2 = {a ∈ U : (∃b, c ∈M)(a ∈ (b, c) ⊆ U ∧ f � (b, c) is strictly decreasing)},
X3 = {a ∈ U : (∃b, c ∈M)(a ∈ (b, c) ⊆ U ∧ f � (b, c) is constant)}.

Clearly, X1, X2 and X3 are open in M , pairwise disjoint and definable over A. By the previous
paragraph, π[C] \ (X1 ∪ X2 ∪ X3) is finite for every C ∈ C. So let D be an A-definable strong
cell decomposition of M2 refining C and partitioning each of the sets Xi ×M (i ∈ {1, 2, 3}). Let
I1, . . . , In be all convex open sets contained in U which are of the form π[D] for D ∈ D. Then the
sets I1, . . . , In and X := U \ (I1 ∪ . . . ∪ In) satisfy all our demands.

Proposition 2.1 easily implies that the definable (equivalently: algebraic) closure has the ex-
change property in M . In other words, (M,dcl) is a pregeometry. So given a set A ⊆ M and a
tuple a, it makes sense to define rk(a/A) as the maximal length of a tuple b ⊆ a such that b is
algebraically independent over A.

It is easy to observe that for any i1, . . . , im ∈ {0, 1}, the dimension of every strong 〈i0, . . . , im〉-
cell is equal to i1 + . . .+ im. Thus for r ∈ N+, a non-empty definable set X ⊆Mm has dimension
at least r iff X contains some 〈i1, . . . , im〉-strong cell with i1 + . . .+ im ≥ r. Moreover, if X ⊆Mm

is a non-empty definable set and C is a strong cell decomposition of Mm partitioning X, then
dim(X) = max{dim(C) : C ∈ C, C ⊆ X}.

Proposition 2.1 together with Theorem 4.2 from [We06] imply that the topological dimension
dim has the addition property. Therefore, by results of [MMS], dim is a dimension function in the
sense of [vdD1]. Note also that addition property of dim and hence (by [We06, Theorem 4.2]) the
strong monotonicity property are elementary properties of weakly o-minimal structures.

Directly from the strong cell decomposition property we can also obtain the following proposi-
tion.

Proposition 2.2 Assume that A ⊆M and m ∈ N+.
(a) If X ⊆ Mm is a non-empty A-definable set and f : X −→ M is an A-definable function,

then there is a decomposition D of Mm into finitely many A-definable strong cells such that for
every D ∈ D, D ⊆ X, the restriction f � D is strongly continuous and f � D assumes all its values
in one of the sets M,M \M .
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(b) If X ⊆ Mm+1 is a definable set, then there exists a positive integer k such that for every
a ∈Mm, the fibre Xa = {b ∈M : 〈a, b〉 ∈ X} has at most k convex components.

Proof. (a) Assume that X ⊆Mm is a non-empty A-definable set and f : X −→M an A-definable
function. Let π : Mm+1 −→Mm be the projection dropping the last coordinate. By assumption,
there is a decomposition C of Mm+1 into finitely many strong cells partitioning the A-definable set
{〈x, y〉 ∈Mm+1 : y < f(x)}. Then D := {π[C] : C ∈ C} is an A-definable strong cell decomposition
of Mm satisfying our demands.

(b) If X is a union of k strong cells, then for every a ∈Mm, the fiber Xa has at most k convex
components.

Corollary 2.3 The theory of M is weakly o-minimal.

Proof. Let N = (N,≤, . . .) ≡ M and fix an L-formula ϕ(x, y). By Proposition 2.2, there is a
positive integer k such that ϕ(M,a) has at most k convex components whenever a ranges over
M |y|. The same is true in N , so N is weakly o-minimal.

Strong cell decomposition has several improvements (as does cell decomposition in the o-
minimal setting). Below we state two exemplary results. The proofs are omitted because they
are almost exactly the same as for o-minimal structures (see [vdD2], p. 58, exercises 2 and 4).

Proposition 2.4 Assume that m, k ∈ N+.
(a) If X1, . . . , Xk ⊆ Mm are definable sets, then there is a strong cell decomposition C of Mm

partitioning each of the sets X1, . . . , Xk, all of whose members are ∅-definable in the structure
(M,≤, X1, . . . , Xk).

(b) If X ⊆ Mm is a definable set and f : X −→ M is a definable function, then there is
a strong cell decomposition C of M

m
partitioning X such that the restriction f � C to each cell

C ∈ C with C ⊆ X is strongly continuous, and each cell from C is ∅-definable in the structure
(M,≤, {〈a, b〉 ∈ X ×M : f(a) > b}).

As in [vdD2] (see p. 58), we can introduce the notions of regularity for open strong cells and
definable functions on them. The following fact is proved as in the o-minimal case.

Proposition 2.5 Assume that A ⊆M and m, k ∈ N+.
(a) If X1, . . . , Xk ⊆ Mm are A-definable sets, then there is an A-definable strong cell decom-

position of Mm partitioning each of the sets X1, . . . , Xk, all of whose open cells are regular.
(b) If X ⊆ Mm is an A-definable set and f : X −→ M is an A-definable function, then there

is an A-definable strong cell decomposition C of Mm partitioning X, all of whose open cells are
regular, and such that for each open cell C ∈ C, the restriction f � C is regular.

Each strong cell decomposition C of Mm, where m ∈ N+, has a natural lexicographic ordering
<C . More precisely, if C is a strong cell decomposition of M , then for C,D ∈ C we put: C <C D
iff (∀x ∈ C)(∀y ∈ D)(x < y). Suppose that we have already defined the ordering <C for any
strong cell decomposition C of Mm. Let D be a strong cell decomposition of Mm+1 and denote
by π the projection from Mm+1 onto the first m coordinates. For C,D ∈ D we put C <D D if
π[C] <π[D]< π[D], or π[C] = π[D] and for all (equivalently: some) a ∈ π[C] = π[D] we have that
Ca <Da

Da.
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With a strong cell C ⊆ Mm we inductively associate its type, that is some sequence saying
how C is constructed. Given a strong cell C ⊆ M , we put γ(C) = 0 if C ia a singleton and
γ(C) = 3α(C) + β(C) + 1 otherwise, where α(C), β(C) are defined as follows:

α(C) =


0 if inf C = −∞
1 if inf C ∈M
2 if inf C ∈M \M

β(C) =


0 if supC = +∞
1 if supC ∈M
2 if supC ∈M \M.

The one-element sequence t(C) := 〈γ(C)〉 is called the type of C. Let D be a strong cell in Mm+1

and denote by π the projection from Mm+1 onto Mm dropping the last coordinate. Fix also
a ∈ π[D]. The type of D is defined as t(D) := 〈i1, . . . , im, γ(Da)〉, where 〈i1, . . . , im〉 = t(π[D]).
This definition does not depend on a.

We also introduce types of strong cell decompositions, namely some sequences carrying the
information how the cells partitioning Mm are constructed and in what way they are arranged.
Let C = {C1, . . . , Ck} be a strong cell decomposition of M with C1 <C . . . <C Ck. The type of C
(notation: τ(C)) is defined as the sequence 〈t(C1), . . . , t(Ck)〉.

Now assume that m ∈ N+, D is a strong cell decomposition of Mm+1 and π is the projection
of Mm+1 onto the first m coordinates. Assume also that π[D] = {C1, . . . , Cn}, where C1 <π[D]

. . . <π[C] Cn, and fix tuples a1 ∈ C1, . . . , an ∈ Cn. We define:

τ(D) = 〈τ(π[D]), 〈τ(Da1), . . . , τ(Dan)〉〉.

Proposition 2.6 Assume that m,n ∈ N+, A ⊆M and S ⊆Mm+n is an A-definable set.
(a) There is k ∈ N+ such that the fiber Sa can be presented as a union of at most k strong cells

as a ranges over Mm. In particular each Sa has at most k isolated points.
(b) There are types τ1, . . . , τl of strong cell decompositions of Mn such that for every a ∈Mm,

there is an Aa-definable strong cell decomposition of Mn partitioning Sa of type τi for some i ∈
{1, . . . , l}.

Proof. Let C be an A-definable strong cell decomposition of Mm+n partitioning S and let k = |C|.
Denote by π the projection onto the first m coordinates. Then for every a ∈ Mm, Ca is an Aa-
definable strong cell decomposition of Mn partitioning Sa. So Sa can be presented as a union of
at most |Ca| ≤ k strong cells. The number of different types that appear in {τ(Ca) : a ∈Mm} does
not exceed |π[C]|. This finishes the proof.

Lemma 2.7 Assume that N = (N,≤, . . .) ≡M and m ∈ N+.
(a)m If i1, . . . , im ∈ {0, 1} and ϕ(x) is an L-formula defining in M a strong 〈i1, . . . , im〉-cell of

type τ , then ϕ(Nm) is also a strong 〈i1, . . . , im〉-cell in Nm of type τ .
(b)m If i1, . . . , im ∈ {0, 1}, C ⊆ Mm is a ∅-definable strong 〈i1, . . . , im〉-cell in Mm of type τ ,

f : C −→M is a ∅-definable strongly continuous function assuming all its values in one of the sets
M , M \M and ϕ(x, y) is an L-formula defining inM the set {〈a, b〉 ∈ C×M : f(a) > b} ⊆Mm+1,
then the set ϕ(Nm+1) is of the form {〈a, b〉 ∈ D × N : g(a) > b}, where D ⊆ Nm is a strong
〈i1, . . . , im〉-cell in Nm of type τ , g : D −→ N is a strongly continuous function assuming all its
values in one of the sets N , N \N . Both D and g are ∅-definable in N . Moreover, if all values of
f lie in M [in M \M ], then all values of g lie in N [in N \N ].

Proof. If ϕ(x) is an L-formula defining in M a strong cell contained in M (i.e. a singleton or a
convex open set), then obviously ϕ(N) is a strong cell of the same type. Thus (a)1 holds.
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To prove (b)1, fix i ∈ {0, 1} and a ∅-definable strong 〈i〉-cell in M . Assume that f : C −→ M
is a ∅-definable strongly continuous function and ϕ(x, y) is an L-formula defining in M the set
{〈a, b〉 ∈ C ×M : f(a) > b}. If i = 0, then ϕ(M2) = {a} × (−∞, b) for some a, b ∈ dcl(∅). It
is clear that the set defined by ϕ(x, y) in N is of the same form. Consider now the case i = 1,
i.e. C is convex and open. One could easily see that the set defined in N by ϕ(x, y) is of the
form {〈a, b〉 ∈ D ×N : g(a) > b}, where D is a convex open ∅-definable set and g : D −→ N is a
∅-definable function. The function g is continuous and piecewise monotone. Moreover, by (a)1 the
types of C and D are equal. Suppose for a contradiction that g is not strongly continuous. Then
there is an L(N)-formula ψ(x) such that d := 〈ψ(N),¬ψ(N)〉 is a cut in (N,≤) which belongs

to the completion of D in N
N

and the limits lim
x−→d−

g(x) and lim
x−→d+

g(x) are different. Since

g is piecewise monotone, by weak o-minimality of N the number of cuts with this property is
finite, so d must be definable over ∅. But then the limits lim

x−→c+
f(x) and lim

x−→c−
f(x) are different,

where c = 〈ψ(M),¬ψ(M)〉 is a cut in (M,≤) which belongs to the completion of C in M
M

. This
contradicts our assumption about f . In a similar manner we analyze the case when f assumes all

its values in M
M \M .

Assume now that m > 1 and suppose that we have already proved (a)k and (b)k for k < m. (a)m
is an immediate consequence of (b)m−1. To prove (b)m, assume that i1, . . . , im ∈ {0, 1}, C ⊆Mm

is a ∅-definable strong 〈i1, . . . , im〉-cell in Mm, f : C −→ M is a ∅-definable strongly continuous
function and ϕ(x, y) is an L-formula defining in M the set {〈a, b〉 ∈ C ×M : f(a) > b} ⊆ Mm+1.
If i1 + . . .+ im < m, then we can homeomorphically project C onto some ∅-definable strong cell in
Mm−1 and then apply (b)m−1. So suppose i1 = . . . = im = 1. By (a)m, the formula (∃y)ϕ(x, y)
defines in N an open strong cell D ⊆ Nm such that τ(D) = τ(C). Also it is clear that ϕ(x, y)
defines in N a set of the form {〈a, b〉 ∈ D×N : g(a) > b} ⊆ Nm+1, where g : D −→ N is continuous
and ∅-definable in N . Suppose for a contradiction that g is not strongly continuous. Then there
are a tuple a ∈ D and elements b, c ∈ N such that b < c and for any open box B ⊆ D with a ∈ B
and any d ∈ (b, c) we have that (B × {d}) ∩ ϕ(Nm+1) 6= ∅ and (B × {d}) \ ϕ(Nm+1) 6= ∅. Let
a = 〈a1, . . . , am〉 and ai = 〈ψi(N, ci),¬ψi(N, ci)〉 for i = 1, . . . ,m, where ψ(z, yi) ∈ L. Denote by Y

the set of all tuples d = d1 . . . dm ∈ N |d| such that |di| = |ci|, each pair ei := 〈ψi(N, di),¬ψi(N, di)〉
is a cut in (N,≤) and e := e1 . . . em (a tuple determined by d) belongs to D. The set Y is defined
by some L-formula χ(y1 . . . ym). Therefore the following statement is true in N :

There exist d ∈ χ(N |d|) (which determines e = e1 . . . em ∈ D
N

) and elements b, c ∈ N such
that b < c and for any d′ ∈ (b, c) and any open box B ⊆ D with e ∈ B, we have that
(B × {d′}) ∩ ϕ(Nm+1) 6= ∅ and (B × {d′}) \ ϕ(Nm+1) 6= ∅.

The same statement holds with N,D replaced by M and C respectively. Consequently, f is
not strongly continuous. The proof is similar in case f assumes all its values in M \M .

Theorem 2.8 If N ≡ M, then N = (N,≤, . . .) is weakly o-minimal and has the strong cell
decomposition property.

Proof. Weak o-minimality of N is a consequence of Corollary 2.3. Assume that m ∈ N+, A ⊆ N
and X1, . . . , Xk ⊆ Nm are definable in N over A. So there are L-formulas ϕ1(x, y1), . . . , ϕk(x, yk)
and tuples a1, . . . , ak ⊆ A such that |x| = m, |yi| = |ai| and Xi = ϕi(N

m, ai) for i = 1, . . . , k. Put
a = a1 . . . ak, y = y1 . . . yk and denote the formula ϕi(x, yi) by ψi(y, x) = ψi(y1 . . . yk, x). Clearly,
the sets Yi := ψi(M

|a|+m) are ∅-definable whenever i ∈ {1, . . . , k}. So there is a ∅-definable strong
cell decomposition C of M |a|+m partitioning each of Y1, . . . , Yk. Denote by τ the type of C. There
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exists an L-formula E(yx, y′x′) defining an equivalence relation onM |a|+m whose classes are exactly
the cells from C, i.e. E(M2(|a|+m)) =

⋃
{C × C : C ∈ C}. Using the lexicographic order <C of C

and Lemma 2.7, we see that E(yx, y′x′) also determines a ∅-definable strong cell decomposition of
type τ of N |a|+m. Let χ(y, x, x′) = E(yx, yx′). Then the formula χ(a, x, x′) defines an equivalence
relation on Nm and determines a strong cell decomposition of Nm partitioning each of the sets
X1, . . . , Xk. This finishes the proof.

The following proposition is proved as a relevant result for sets definable in o-minimal structures.
One uses Theorem 2.8.

Proposition 2.9 Assume that m ∈ N+, k ∈ N, A ⊆M and X ⊆Mm is a non-empty A-definable
set, i.e. X = ϕ(Mm), where ϕ(x) ∈ L(A). Then dim(X) ≥ k iff there exist N � M and a tuple
a ∈ ϕ(Nm) with rk(a/A) ≥ k.

Another consequence of Theorem 2.8 is that it makes sense to relativize the construction ofM
described in the previous section to elementary extensions of M. Assume that N1 = (N1,≤, . . .)
and N2 = (N2,≤, . . .) are weakly o-minimal L-structures, N1 has the strong cell decomposition
property and f : N1 −→ N2 is an elementary map. Then, by Theorem 2.8, N2 has the strong cell

decomposition property too. Clearly, if ϕ(x, y) ∈ L, a ∈ N |y|1 and 〈ϕ(N1, a),¬ϕ(N1, a)〉 is a cut in
(N1,≤), then 〈ϕ(N2, f(a)),¬ϕ(N2, f(a))〉 is a cut in (N2,≤). Hence we obtain an order-preserving
injective map f∗ : N1 −→ N2. The map f∗ is well defined because N1 ≺ N2. Note that the
construction of f∗ described here works for any models expanding dense linear orderings without
endpoints. Apart of this we have f∗(〈(−∞, a]N1 , (a,+∞)N1〉) = 〈(−∞, a]N2 , (a,+∞)N2〉.

Denote for m ∈ N+ and any f [N1]-definable (in N2) strong cell C ⊆ Nm
2 by RC the m-ary

relation determined by the completion of C in N
N2

2 , i.e. if a ∈ Nm
2 , then RC(a) holds iff a ∈ CN2

.
Let

N2
N1

= (N2,≤, (RC : C is a strong cell definable over f [N1])).

The structure N2
N1

is o-minimal because it is a reduct of N2. We will call it a relative o-minimal
extension of N2. Repeating the arguments from the proof of Proposition 1.2, we can see that
every basic cell contained in N2

m
[constructed only with functions definable over f [N1]] is a finite

Boolean combination of completions of strong cells in N2
m

definable in N2 [over f [N1]]. Repeating

suitable arguments from [We07], we can prove that every set X ⊆ Nm

2 definable in N2
N1

is a finite

union of basic cells definable in N2
N1

(and hence a finite Boolean combination of completions of
strong cells contained in N2

m
and definable in N2 over f [N1]).

Fact 2.10 The map f∗ is an elementary embedding of N1 into N2
N1

.

Proof. Note that if C ⊆ Nm
1 is a strong cell definable in N1 by some formula ψ(x) ∈ L(N1), then

also D := ψ(Nm
2 ) is a strong cell whose type is equal to the type of C. Moreover C

N1 ⊆ D
N2

.

Thus f∗ is an embedding of the o-minimal structure N1 into N2
N1

.
To prove that f∗ is elementary, it is enough to demonstrate that the image of f∗ is an elementary

substructure of N2
N1

. We will use Tarski-Vaught test. Let X ⊆ N2
N1

be a non-empty set definable

in N2
N1

over a tuple a ∈ (f∗[N1
N1

])m. We will show that X has a non-empty intersection with

f∗[N1
N1

]. There is a set S ⊆ (N2
N1

)m+1, ∅-definable in N2
N1

, such that Sa = X. By the

construction of N2
N1

, we can find a basic cell C ⊆ S, definable in N2
N1

over f∗[N1
N1

], such that
Ca = C ∩ ({a} × Sa) 6= ∅. Note that Ca ⊆ X, so we will be done if we find in Ca an element
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b ∈ f∗[N
N1

1 ]. This is clear in case Ca is a singleton because Ca is definable over f∗[N1
N1

]. So

assume that Ca is an open interval in (N2
N1
,≤) and denote by k the dimension of C. There is

a projection π : (N2
N2

)m+1 −→ (N2
N2

)k such that π[C] is a completion of an open strong cell

D ⊆ Nk
2 , definable over N1. Moreover, π does not drop the last coordinate, π[C] is open in (N2

N1
)k

and π � C is a homeomorphism. Since N1 ≺ N2, there exists b ∈ N1 such that π(ab) ∈ π[C]. Hence
b ∈ Ca.

Assume now thatM is a weakly o-minimal structure with the strong cell decomposition prop-
erty and f :M−→ N1, g :M−→ N2 and h : N1 −→ N2 are elementary maps such that h ◦ f = g
(then, by Theorem 2.8, N1 and N2 are weakly o-minimal structures with the strong cell decom-
position property). The construction described before Fact 2.10 gives us two elementary maps:

f∗ :M−→ N1
M

and g∗ :M−→ N2
M

. Apart of this, if 〈C,D〉 is a cut in (N1,≤) definable in N1

over f [M ], then h∗(〈C,D〉) := 〈h[C], h[D]〉 is a cut in (N2,≤) definable in N2 over h[f [M ]] = g[M ].
Reasoning as in the proof of Fact 2.10, one can demonstrate that h∗ is an elementary embedding

of N1
M

into N2
M

. Also it is easy to check that h∗ ◦ f∗ = g∗.
For a weakly o-minimal L-structure M with the strong cell decomposition property we define

a category C(M) as follows. Objects of C(M) are weakly o-minimal structures N together with
elementary embeddings of M into N (necessarily such N has the strong cell decomposition prop-
erty; if M is o-minimal, then N is o-minimal). A morphism between N1 and N2 together with
elementary embeddings f : M −→ N1, g : M −→ N2 is an elementary map h : N1 −→ N2 such
that h ◦ g = f .

Theorem 2.11 The construction of relative o-minimal extension determines a covariant functor
F between categories C(M) and C(M). If f : M −→ N is an elementary map, then F sends N
together with f to NM with f∗ :M−→ NM.

3 Fiberwise properties

The goal of this section is to prove two theorems saying that for a set [function] definable in a
weakly o-minimal structure with the strong cell decomposition property, fiberwise open [fiberwise
continuous] implies piecewise open [piecewise continuous]. Results of this kind were proved in
[BCR] in a special case of sets and functions definable in real closed fields. They appear in [vdD2,
Chapter 6] for o-minimal structures expanding an ordered group. Finally, P. Speissegger generalizes
them to the context of arbitrary o-minimal structures (see [Sp]).

Definition 3.1 Assume that m,n ∈ N+ and X ⊆Mm, S ⊆Mm+n are definable sets.
(a) We say that S has nice closure above a tuple a ∈ Mm in Mm+n if for every b ∈ Mn with

〈a, b〉 ∈ cl(S), we have that b ∈ cl(Sa).
(b) We say that S has nice closure above X in Mm+n if for every a ∈ X, S has nice closure

above a in Mm+n.

We will also consider nice closures above tuples and sets for the o-minimal structure M.

Lemma 3.2 Assume that m ∈ N+, A ⊆ M and S ⊆ Mm+1 is an A-definable set such that for
every a ∈ Mm, the fiber Sa is open in M . Then there is an A-definable strong cell decomposition
D of Mm+1 partitioning S such that for every D ∈ D, (π[D]×M)∩S is open in π[D]×M , where
π : Mm+1 −→Mm is the projection dropping the last coordinate.
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Proof. By Lemma 2.2(b), there exists k ∈ N+ such that for every a ∈ Mm, the fiber Sa has
at most k convex components. For i ≤ k, let Xi be the set of all tuples a ∈ Mm such that Sa
has exactly i convex components. Clearly, the sets X0, . . . , Xn are definable over A. Let D be an
A-definable strong cell decomposition of Mm+1 partitioning each of the sets X0×M, . . . ,Xk×M .
Such set D satisfies our demands.

Lemma 3.3 Assume that n ∈ N+, I ⊆ M is an open interval and Y ⊆ H ⊆ M1+n are definable
sets satisfying:

(1) (∀a ∈ I)(Ya 6= ∅) and
(2) for every 〈a, b〉 ∈ Y there is an open box B ⊆ Ha such that ({a} ×B) ∩ Y 6= ∅.

Then there are an open interval J ⊆ I and an open box B ⊆ Mn such that I × B ⊆ H and
({a} ×B) ∩ Y 6= ∅ whenever a ∈ J .

Proof. There exists a strong cell decomposition C of M1+n partitioning each of the sets Y , H and
I×Mn. Let C ∈ C be a strong cell contained in Y and such that the projection π[C] of C onto the
first coordinate is infinite. Fix 〈a, b〉 ∈ C. By assumption, there is an open box B0 ⊆ Ha containing
b. Let B ⊆ B0 be an open box containing b and such that CL(B) ⊆ B0. As all functions used to
construct strong cells are strongly continuous, we can find an open interval J ⊆ π[C] containing a
and such that J ×B ⊆ H, (∀c ∈ J)(({c} ×B) ∩ C 6= ∅).

Theorem 3.4 Assume that m,n ∈ N+ and A ⊆ M . Let π : Mm+n −→ Mm and π : M
m+n −→

M
m

be the projections onto the first m coordinates. If C is an A-definable strong cell decomposition
of Mm+n, then

(a) there exists an A-definable strong cell decomposition D of Mm+n refining C such that every
cell D ∈ D has nice closure above π[D] in Mm+n;

(b) there exists a strong cell decomposition D′ of M
m+n

partitioning {C : C ∈ C} such that

every cell D ∈ D′ has nice closure above π[D] in M
m+n

.

Proof. (a) Let A ⊆M . We proceed inductively on m.
Fix an A-definable strong cell decomposition C of M1+n and let X be the set of all elements

a ∈M such that some cell C ∈ C does not have nice closure above a. Clearly, X is definable over
A. We claim that it is finite.

Suppose for a contradiction that X is infinite. Then there exist an A-definable open interval
I ⊆ X and an A-definable strong cell C ∈ C such that C does not have nice closure above a
whenever a ∈ I. Define

Y = {〈a, b〉 ∈ I ×Mn : 〈a, b〉 ∈ cl(C), b 6∈ cl(Ca)},
H =

⋃
a∈T

[{a} × (Mn \ cl(Ca))] .

Note that the sets Y,H are both A-definable, Y ⊆ H, π[Y ] = π[H] = I and (∀a ∈ I)(Ya 6= ∅).
Moreover, for each 〈a, b〉 ∈ Y we can find an open box B ⊆ Mn such that b ∈ B ⊆ Ha. There is
an A-definable strong cell decomposition C′ of M1+n partitioning each set from C ∪ {Y,H}. Fix
D ∈ C′ with D ⊆ Y and π[D] ⊆ I infinite. By Lemma 3.3, there are an open interval J ⊆ π[D]
and an open box B ⊆Mn such that (∀a ∈ J)(({a}×B)∩ Y 6= ∅) and {a}×B ⊆ H. But then for
a ∈ J, b ∈ B with 〈a, b〉 ∈ Y we have that 〈a, b〉 6∈ cl(Y ), a contradiction.

In case X = ∅ we can take D = C. For X = {a1, . . . , ak}, where a1 < . . . < ak, let a0 = −∞,
ak+1 = +∞ and let D be the family of all non-empty sets of one of the forms (1), (2):
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(1) ({ai} ×Mn) ∩ C, where i ∈ {1, . . . , k} and C ∈ C;
(2) ((ai, ai+1)×Mn) ∩ C, where i ∈ {0, . . . , k} and C ∈ C.

Then D is an A-definable strong cell decomposition of M1+n refining C. Moreover, every cell D ∈ C
has nice closure above π[D] in M1+n. This finishes the proof in case m = 1.

Now assume that m > 1 and the assertion of (a) holds for all l ∈ {1, . . . ,m − 1} and n ∈ N+.
Let C be an A-definable strong cell decomposition of Mm+n. By the inductive hypothesis, there
is an A-definable strong cell decomposition C0 of Mm+n refining C such that each cell C ∈ C0
has nice closure above π′[C], where π′ : Mm+n −→ Mm−1 is the projection onto the first m − 1
coordinates. For each C ∈ C0, let X(C) := {a ∈ π[C] : C has nice closure above a}. We claim that
X(C) is large in π[C] whenever C ∈ C0.

Suppose for a contradiction that there is a strong cell C ∈ C0 such that dim(π[C] \ X(C)) =
dim(π[C]). Let C′ be an A-definable strong cell decomposition refining C0 and partitioning X(C)×
Mn. Fix a strong cell D ∈ π[C′] with D ⊆ π[C]∩X(C) and dim(D) = dim(π[C]). Then D is open
in π[C], (D×Mn)∩C is open in C and for every a ∈ D, (D×Mn)∩C does not have nice closure
above a. Below we consider two cases. Note that D′ := π′[(D ×Mn) ∩ C] is the projection of D
onto the first m− 1 coordinates.

Case 1. D = Γ(f) for some strongly continuous A-definable function f : D′ −→ M . Then
given 〈x, z, y〉 ∈ cl((D × Mn) ∩ C) with x ∈ D′ and z = f(x), we have by hypothesis that
〈z, y〉 ∈ cl(((D × Mn) ∩ C)x) = cl(Cx). One easily verifies that Cx = {f(x)} × C〈x,f(x)〉, so
y ∈ cl(C〈x,f(x)〉) = cl(C〈x,z〉). Therefore (D×Mn)∩C has nice closure above D. A contradiction.

Case 2. D = (α, β)D′ for some strongly continuous A-definable functions α, β : D′ −→
M ∪ {−∞,+∞} such that: (1) each of α, β assumes all its values in one of the sets M,M \
M, {−∞}, {+∞}, (2) α(x) < β(x) for x ∈ D′. Given a ∈ D′, we know from case m = 1 applied to
Ca ∩ (α(a), β(a)) that the Aa-definable set

S(a) := {c ∈ (α(a), β(a)) : 〈c, b〉 ∈ cl(Ca) implies c ∈ cl(C〈a,b〉)}

is cofinite in (α(a), β(a)). Let Ia be the maximal convex open set contained in S(a) such that
inf Ia = α(a). Note that the set

H :=
⋃
a∈D′

({a} × Ia)

is A-definable and each fiber Ha is open in M for a ∈ D′. Applying Lemma 3.2 to H we see that
there is an A-definable strong cell decomposition E of Mm+1 partitioning H such that for every
cell X ∈ E , (π1[D] ×M) ∩H is open in π1[D] ×M , where π1 : Mm+1 −→ Mm is the projection
dropping the last coordinate. So there is an A-definable strong call D′′ ⊆ D′, open in D′, such that
(D′′×M)∩H is open in D′′×M . Then also (D′′×M)∩H is open in π[C]. Let E ⊆ (D′′×M)∩H
be an A-definable strong cell open in (D′′×M)∩H. Then it is easy to see that C has nice closure
above E, a contradiction with our choice of D.

Now, let C1 be an A-definable strong cell decomposition of Mm+n refining C0 and partitioning
each of the sets X(C) ×Mn, where C ∈ C0. Then: (1) each cell C ∈ C1 has nice closure above
π′[C] and (2) each cell C ∈ C1 with dim(π[C]) > m−1 (i.e. dim(π[C]) = m) has nice closure above
π[C].

Repeating the above procedure for k = 2, . . . ,m with Ck−1 in place of C0, we obtain A-definable
strong cell decompositions C2, . . . , Cm of Mm+n such that for every k ∈ {2, . . . ,m}: (1) each cell
C ∈ Ck has nice closure above π′[C] and (2) each cell C ∈ Ck with dim(π[C]) > m − k has nice
closure above π[C]. The property (2) for k = m means that each infinite cell from Cm has nice
closure above π[C]. It is obvious that also every one-element cell from Cm has nice closure above
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its projection onto the first m coordinates. Of course, Cm refines C. Thus D := Cm satisfies our
demands.

(b) Let C′ be a cell decomposition of M
m+n

partitioning each cell C ∈ C. Now, since M is
o-minimal has the strong cell decomposition property, we are done by [Sp] or by (a).

As in [Sp], using Theorem 3.4, we can easily obtain the following result together with Corollary
3.6.

Theorem 3.5 Assume that A ⊆ M , π : Mm+n −→ Mm is the projection onto the first m
coordinates and S ⊆Mm+n is an A-definable set such that for each a ∈Mm, the fiber Sa is open
in Mn. Then there is an A-definable strong cell decomposition C of Mm partitioning π[S] such
that S ∩ (C ×Mn) is open in C ×Mn whenever C ∈ C. The same is true when we replace “open”
with “closed”.

Corollary 3.6 Assume that S′ ⊆ S ⊆ Mm+n are definable sets and X ⊆ Mm such that S′a is
open in Sa for all a ∈ X. Then there is a partition of X into definable sets X1, . . . , Xk such that
S′∩(Xi×Mn) is open in S∩(Xi×Mn) for i = 1, . . . , k. The same is true when we replace “open”
with “closed”.

The following generalizes Theorem 3 from [Sp]. The proof is omitted as it looks almost exactly
as in the o-minimal setting.

Theorem 3.7 Assume that k,m, n ∈ N+, A ⊆M and the sets X ⊆Mm, S ⊆Mm+n are definable
over A. For every A-definable function f : S −→ Mk such that fa : Sa −→ Mk is continuous for
all a ∈ X, there exists an A-definable strong cell decomposition C of Mm partitioning X such that
for each C ∈ D with C ⊆ X, the function f � S ∩ (C×Mn) : S ∩ (C×Mn) −→Mk is continuous.

Corollary 3.8 Assume that k, l,m, n ∈ N+, A ⊆ M , the sets X1, . . . , Xl ⊆ Mm, S ⊆ Mm+n are
definable over A and X1, . . . , Xl are pairwise disjoint. For every A-definable function f : S −→Mk

such that f � S ∩ (Xi ×Mn is injective for i = 1, . . . , l and fa : Sa −→ Mk is a homeomorphism
for all a ∈ Xi, then is an A-definable strong cell decomposition D of Mm partitioning each of the
sets X1, . . . , Xl such that for each C ∈ D, the function f � S ∩ (C ×Mn) is a homeomorphism.

4 Equivalence relations and imaginaries

In this section we deal with definable equivalence relations. We prove several facts concerning
definability of equivalence classes, finiteness of the number of equivalence classes of maximal di-
mension and uniform finiteness for definable families of definable equivalence relations. Some facts
appearing in this section generalize Pillay’s results from [Pi]. We mainly use induction on the
dimension. As strong cells in general are not definably connected, one cannot easily transfer the
methods from [Pi].

Proposition 4.1 Assume that A ⊆M and E is an A-definable equivalence relation on Mm with
only finitely many equivalence classes. Then each class of E is definable over A.

Proof. We proceed inductively on m. Assume first that E is an A-definable equivalence relation
on M with k equivalence classes. Let X0 = Y0 = ∅ and for i = 1, . . . , k define

Xi = {a ∈M \ (Y0 ∪ . . . ∪ Yi−1) : (∀b ∈M \ (Y0 ∪ . . . ∪ Yi−1))(b ≤ a −→ E(a, b))},
Yi = {a ∈M : (∃b ∈ Xi)(E(a, b))}.
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Clearly, the sets Y1, . . . , Yk are A-definable equivalence classes of E. For every i ∈ {1, . . . , k}, Xi

is the leftmost convex component of Yi.
Suppose now that the proposition holds for dimension m. Fix an A-definable equivalence

relation E on Mm+1 with finitely many equivalence classes. Let k be the maximal number of
classes od E intersecting {a} ×M as a ranges over Mm. Let X0 = Y0 = ∅ and for i = 1, . . . , k
define

Xi = {ab ∈Mm+1 \ (Y0 ∪ . . . ∪ Yi−1) :

(∀c ∈M)[(ac ∈Mm+1 \ (Y0 ∪ . . . ∪ Yi−1) ∧ c ≤ b) −→ E(ab, ac)]},
Yi = {ab ∈Mm+1 : (∃c ∈M)(ac ∈ Xi ∧ E(ab, ac))}.

Clearly, the sets Y1, . . . , Yk are pairwise disjoint, A-definable and Y1 ∪ . . . ∪ Yk = Mm+1. Each
Yi is a union of some equivalence classes of E. Moreover, for any a ∈ Mm, i ∈ {1, . . . , k} and
b, c ∈M , if ab, ac ∈ Yi, thenM |= E(ab, ac). Hence for each i ∈ {1, . . . , k}, we have an A-definable
equivalence relation Ei on Mm with finitely many equivalence classes: for a1, a2 ∈Mm,

a1Eia2 ⇐⇒ (∃b1, b2 ∈M)(a1b1, a2b2 ∈ Yi and M |= E(a1b1, a2b2)) or

(∀b1, b2 ∈M)(a1b1, a2b2 6∈ Yi).

By our inductive assumption, all equivalence classes of Ei are A-definable. Note that every equiv-
alence class of E is of the form Yi ∩ (Z ×M), where i ∈ {1, . . . , k} and Z is an equivalence class
of Ei. This finishes the proof.

Lemma 4.2 Assume that A ⊆ M and E is an A-definable equivalence relation on M . Then E
has only finitely many infinite equivalence classes. Each infinite class of E is definable over A.

Proof. Fix an L(A)-formula E(x, y) defining an equivalence relation E on M and denote by
E0(x, y) the L(A)-formula saying that either x = y and x 6∈ int([x]E), or there exists an open
interval I containing {x, y} such that all elements from I are E-equivalent. Clearly, E0(x, y) defines
an equivalence relation E0 on M and each equivalence class of E is a union of some equivalence
classes of E0. Moreover, each equivalence class of E0 is either a singleton or a convex open set.

There is an A-definable strong cell decomposition C of M2 partitioning E0. Note that if I is an
infinite equivalence class of E0 and elements a, b ∈M satisfy one of the inequalities: a < inf I < b,
a < sup I < b, b < inf I < a or b < sup I < a, then a, b are not E0-equivalent. Consequently, if
C ∈ C is open and C ∩ (I × I) 6= ∅, then C ⊆ I × I. This means that E0 (and thus E) has at most
|Ca| ≤ |C| infinite equivalence classes.

To finish the proof, denote by E1(x, y) the formula saying that either x, y belong to the same
infinite E-class or the classes [x]E , [y]E are both finite. Clearly, E1(x, y) determines an A-definable
equivalence relation on M with finitely many classes. Moreover, each infinite class of E is a class
of E1. By Proposition 4.1, each class of E1 is A-definable. Hence each infinite class of E is
A-definable.

Lemma 4.3 Let m ∈ N+. If E(x, y, z) is an L(A)-formula such that |z| = m and for every
a ∈Mm, E(x, y, a) defines an equivalence relation Ea on M with finitely many equivalence classes,
then there exists a positive integer k such that for every a ∈ Mm, Ea has at most k equivalence
classes.

Proof. Reasoning as in the proof of Lemma 4.2, we can define an L(A)-formula E0(x, y, z) with
the following properties:
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• for every a ∈Mm, the formula E0(x, y, a) defines an equivalence relation Ea0 on M ;

• for every a ∈ Mm, each equivalence class of Ea0 is either a singleton or a convex open set;
more precisely: each convex open equivalence class of Ea0 is the interior of some infinite
convex component of some equivalence class of Ea, the relation defined by E(x, y, a);

• for every a ∈Mm, each equivalence class of Ea is a union of some equivalence classes of Ea0 .

• for every a ∈Mm, the number of equivalence classes of Ea0 if finite.

Define
S = {〈a, b, c〉 ∈Mm+2 :M |= E0(b, c, a)}.

Let C be a strong cell decomposition ofMm+2 partitioning S. Then for every a ∈Mm, {Ca : C ∈ C}
is a strong cell decomposition of M2 partitioning Sa. Note that the fiber Sa is equal to the
equivalence relation Ea0 . As in the proof of Lemma 4.2, if I is a convex open equivalence class of
Ea0 and C ∈ C is a strong cell such that Ca is open in M2 and Ca ∩ (I × I) 6= ∅, then Ca ⊆ I × I.
Consequently, each equivalence relation Ea0 has at most |Ca| ≤ |C| infinite equivalence classes. Since
the Ea0 -classes are either singletons or convex open sets, the number of all Ea0 -classes is not greater
than 2|C| − 1. Hence also Ea has at most 2|C| − 1 equivalence classes as a ranges over Mm.

Corollary 4.4 Let m ∈ N+. If E(x, y, z) is an L(A)-formula such that |z| = m and for every
a ∈Mm, E(x, y, a) defines an equivalence relation Ea on M , then there exists a positive integer k
such that for every a ∈Mm, the equivalence relation Ea has at most k infinite equivalence classes.

Proof. Following the last paragraph of the proof of Lemma 4.2, we can define an L(A)-formula
E1(x, y, z) such that for every a ∈ Mm, E1(x, y, a) defines an equivalence relation Ea1 on M
such that x, y are Ea1 -equivalent if either x, y belong to the same infinite Ea-class or the classes
[x]Ea , [y]Ea are both finite. By Lemma 4.2, for every a ∈ Mm, the equivalence relation Ea has
finitely many infinite equivalence classes. Hence Ea1 has finitely many equivalence classes whenever
a ∈ Mn. By Lemma 4.3, there is k ∈ N+ such that Ea1 has at most k + 1 equivalence classes as
a ranges over Mm. Since each infinite class of Ea is also a class of Ea1 , the number of infinite
Ea-classes does not exceed k as a ranges over Mm.

Below we generalize Proposition 2.1 from [Pi].

Theorem 4.5 Assume that A ⊆M and E is an A-definable equivalence relation on Mm. Then E
has only finitely many equivalence classes of dimension m. Moreover, each m-dimensional E-class
is definable over A.

Prof. We proceed inductively on m. The case m = 1 is a consequence of Lemma 4.2. So suppose
that the theorem holds for all A-definable equivalence relations on Mm and fix an A-definable
equivalence relation E on Mm+1. Let X be the set of all tuples a ∈Mm+1 with the property that
there exists an open box B ⊆ Mm+1 containing a such that B ⊆ E(a,M). Clearly, X is open
in Mm+1 and definable over A. Moreover, X is the union of interiors of all m + 1-dimensional
equivalence classes of E.

Consider the formula F (x, y, z) saying that either we can find an open interval I ⊆M containing
x, y such that {z} × I is contained in X and in some E-class, or zx, zy 6∈ X. It is easy to see
that F (x, y, a) defines an equivalence relation F a on M whenever a ∈ Mm. The definition of F
guarantees that for every a ∈Mm, F a has at most one finite class. All F a-classes contained in Xa

are convex open sets. By Lemma 4.2, the number of infinite F a-classes is finite. Consequently, F a
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has only finitely many equivalence classes, and by Lemma 4.3, this number is bounded by some
k ∈ N+ as a ranges over Mm. Note also that the number of convex components of Xa does not
exceed k for a ∈Mm.

Now, for a ∈ Mm and i ∈ {1, . . . , k}, let Ji(a) be the i-th (convex, open) equivalence class
of F a contained in Xa in case F a has at least i such classes, and let Ji(a) = ∅ otherwise. For
i = 1, . . . , k define

Xi =
⋃

a∈Mm

({a} × Ji(a)).

It is easy to see that

• the sets X1, . . . , Xk are A-definable and pairwise disjoint,

• X1 ∪ . . . ∪Xk = X,

• for any i ∈ {1, . . . , k} and a ∈Mm, the set {a}×(Xi)a is contained in some m+1-dimensional
E-class.

For i = 1, . . . , k we can define an equivalence relation Fi on Mm as follows: the tuples a1, a2 ∈
Mm are Fi-equivalent if either (Xi)a1 = (Xi)a2 = ∅ or (Xi)a1 , (Xi)a2 are non-empty subsets of the
same equivalence class of E. Clearly, F1, . . . , Fk are definable over A. By the inductive assumption,
each of the equivalence relations F1, . . . , Fk has finitely many m-dimensional equivalence classes.
Moreover, each m-dimensional class of each Fi is definable over A. For i = 1, . . . , k, let Ci be an
A-definable strong cell decomposition of Mm partitioning all m-dimensional equivalence classes
of Fi. Note that if C is an open strong cell from Ci, then Xi ∩ (C ×M) is an open A-definable
set contained in some m + 1-dimensional E-class. This implies that E has only finitely many
m+ 1-dimensional equivalence classes and all of them are A-definable.

Corollary 4.6 Assume that m ∈ N+, n ∈ N, A ⊆ M and S ⊆ Mm is an n-dimensional A-
definable set. Every A-definable equivalence relation on S has only finitely many equivalence classes
of dimension n. Moreover, each n-dimensional E-class is definable over A.

Proof. Assume that S ⊆ Mm is an n-dimensional A-definable set and E is an A-definable
equivalence relation on S. As there is nothing to do for n = 0, suppose that n ≥ 1. Let C be an
A-definable strong cell decomposition of Mm partitioning S. Then for each C ∈ C with C ⊆ S,
E∩ (C×C) is an A-definable equivalence relation on C. For each n-dimensional strong cell C ∈ C,
denote by πC the projection from Mm onto Mn such that πC [C] is an open subset of Mn and
πC � C is a homeomorphism. Also, let EC be the equivalence relation on Mn defined by the
following condition:

aECb⇐⇒ [a, b ∈ πC [C] ∧ (∃c, d ∈ C)(πC(c) = a ∧ πC(d) = b ∧ cEd)] ∨ (a, b 6∈ πC [C]).

Clearly, EC is an A-definable equivalence relation on Mn, so by Theorem 4.5, EC has only finitely
many n-dimensional classes. Moreover, each EC-class of dimension n is definable over A. Hence
the number of n-dimensional E-classes is finite and each each of them is A-definable.

Theorem 4.7 Let m,n ∈ N+. If E(x, y, z) is an L(A)-formula such that |x| = |y| = n, |z| = m
and for every a ∈ Mm, E(x, y, a) defines an equivalence relation Ea on Mn, then there exists
k ∈ N+ such that for every a ∈Mm, the equivalence relation Ea has at most k equivalence classes
of dimension n.
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Proof. Suppose for a contradiction that the number of equivalence classes of Ea is unbounded as
a ranges over Mm. Let N be an ℵ1-saturated elementary extension of M. By Theorem 2.7, N is
weakly o-minimal and has the strong cell decomposition property. By ℵ1-saturation we can find a
tuple c ∈ Nm such that the formula E(x, y, c) defines an equivalence relation on Nn with infinitely
many n-dimensional equivalence classes. This contradicts Theorem 4.5.

Given m ∈ N+, a set A ⊆ M and an A-definable strong cell decomposition C of Mm, we can
easily see that there is an A-definable equivalence relation on Mm whose equivalence classes are
exactly the cells from C. On the other hand, it is a routine to check that whenever E(x, y, z) an
L-formula such that |x| = |y| = m and for every a ∈M |z|, E(x, y, a) defines an equivalence relation
Ea on Mm with finitely many classes, then the set of all tuples a ∈Mn for which {[x]Ea : x ∈Mm}
is a strong cell decomposition of Mm of a given type is definable over A. Hence, since the number
of equivalence classes of Ea is bounded by some k ∈ N+ as a ranges over Mm, the set of all tuples
a ∈ Mn such that Ea determines a strong cell decomposition of Mm is A-definable. Using these
observations we are in a position to prove that the strong cell decomposition property is preserved
under elementary equivalence.

5 Elimination of imaginaries

There are easy examples of o-minimal structures that do not admit elimination of imaginaries (see
[Pi, §3]). Nevertheless, assuming the modularity law or asserting that every definably closed set is
an elementary substructure of the given model, one can prove elimination of imaginaries. It turns
out that each of these assumptions implies elimination of imaginaries it the context of weakly
o-minimal structures with the strong cell decomposition property.

To obtain the following proposition one can rewrite word by word the proof of Proposition 2.2
from [Pi].

Proposition 5.1 Let A,B,C ⊆M be such that B and C are independent over A. If X ⊆Mn is
B-definable and C-definable, then X is A-definable.

The next proposition generalizes Proposition 2.3 from [Pi].

Proposition 5.2 Assume that B,C ⊆ M , M0 = (M0,≤, . . .) ≺ M and M0 ⊆ B ∩ C. Assume
also that every convex subset of M which is definable over B and definable over C is definable over
M0. If X ⊆Mn is B-definable and C-definable, then X is M0-definable.

Proof. Suppose that B,C and M0 the assumptions and let X ⊆ Mn be a set which is B-
definable and C-definable. There are L-formulas ϕ(x, y), ψ(x, z) and tuples b ⊆ B, c ⊆ C such
that X = ϕ(M, b) = ϕ(M, c). Let E(y1, y2) = ∀x(ϕ(x, y1) ←→ ϕ(x, y2)). The formula E(y1, y2)

defines an equivalence relation on M |b|. Denote by Z the class of E containing b. Note that

Z = E(M, b) = {d ∈M |b| : ϕ(M,d) = ψ(M, c)}. Hence Z is B-definable and C-definable.
Let b = b1 . . . bk. We will show that Z ∩Mk 6= ∅. Denote by Z1 the projection of Z onto

the first coordinate. Then Z is a finite union of convex sets, and each of these is B-definable
and C-definable. By assumption, Z1 is a union of M0-definable convex sets. Thus Z1 ∩M0 6= ∅.
Fix a1 ∈ Z1 ∩M0. Let Z2 be the projection of ({a1} ×Mn−1) ∩ Z onto the second coordinate.
Again, Z2 is a union of finitely many convex sets, and each of these is B-definable and C-definable.
Consequently, Z2 is M0-definable and there exists some a2 ∈ Z2 ∩M0. Continuing in this way, we
obtain a1 . . . ak ∈ Z ∩Mk

0 .
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As the equivalence class Z contains a tuple from Mk
0 , it is definable over M0. Hence also X is

definable over M0.

Theorem 5.3 Assume that the weakly o-minimal structure M with the strong cell decomposition
property satisfies least one of the following conditions.

(a) For any B,C ⊆M , B and C are independent over dcl(B) ∩ dcl(C).
(b) For any A ⊆M , dcl(A) is an elementary substructure of M.
Then M admits elimination of imaginaries.

Proof. The proof goes along the lines of the proof of Proposition 3.2 from [Pi]. One uses Proposi-
tions 5.1 and 5.2 to show that every set definable in a weakly o-minimal structure with the strong
cell decomposition has smallest definably (equivalently: algebraically) closed defining set together
with the following well known facts.

(a) If N is a first order structure such that every set definable in N has smallest algebraically
closed defining set, then N admits weak elimination of imaginaries.

(b) If a first order structure N expanding a linear order admits weak elimination of imaginaries,
then N admits elimination of imaginaries.
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