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ABSTRACT

Given an infinite Boolean algebra B, we find a natural class of ∅-definable equivalence relations EB such

that every imaginary element from Beq is interdefinable with an element from a sort determined by some

equivalence relation from EB . It follows that B together with the family of sorts determined by EB

admits elimination of imaginaries in a suitable multisorted language. The paper generalizes author’s

earlier results concerning definable equivalence relations and weak elimination of imaginaries for Boolean

algebras, obtained in [We3].

0 Introduction and preliminaries

Although no infinite Boolean algebra admits elimination of imaginaries, there exist infinite Boolean
algebras admitting weak elimination of imaginaries. As proved in [We3], an infinite Boolean algebra
B admits weak elimination of imaginaries iff the quotient Boolean algebra B/I(B) consists of at
most two elements (here I(B) denotes the ideal of B consisting of all elements of the form atb with
a atomless and b atomic). A special case of this result (namely: weak elimination of imaginaries
for infinite Boolean algebras with finitely many atoms) plays a crucial role in studying definable
sets of partially ordered o-minimal structures with ordering derived from a Boolean algebra.

C. Toffalori in [To] introduced two notions of o-minimality for partially ordered first-order
structures. A partially ordered structure M = (M,≤, . . .) is called quasi o-minimal if every
definable set X ⊆ M is a finite Boolean combination of sets defined by inequalities of the form
x ≤ a and x ≥ b, where a, b ∈ M . If additionally the parameters appearing in these inequalities
may be taken from the algebraic closure of the set of parameters needed to define X, then the
structure M = (M,≤, . . .) is called o-minimal. It is easy to see that in case the ordering ≤ is
linear, these two notions are equivalent to the usual o-minimality. C. Toffalori observed that if
M = (M,≤, . . .) is quasi o-minimal and the ordering ≤ comes from some Boolean algebra B, then
the number of atoms of B must be finite. By weak elimination of imaginaries for Boolean algebras
with finitely atoms, the Toffalori’s notions of o-minimality and quasi o-minimality coincide in case
of Boolean ordered structures.

A natural counterpart of o-minimality (called q-minimality) for expansions of arbitrary Boolean
algebras was introduced in author’s PhD thesis. An expansion (B, . . .) of a Boolean algebra B to
the language L ⊇ LBA is said to be q-minimal iff every L-definable subset of B is LBA-definable,
where LBA = {u,t,′ , 0, 1} denotes the usual language of Boolean algebras. By results of [NW], for
expansions of Boolean algebras with finitely many atoms, q-minimality coincides with Toffalori’s
notions of quasi o-minimality and o-minimality. As the model theoretic results obtained in [NW],
[We1] and [We2] for Boolean ordered structures heavily rest on weak elimination of imaginaries of
the underlying Boolean algebras, it is natural to expect that some form of elimination of imaginaries
will be needed to investigate sets definable in q-minimal expansions of arbitrary Boolean algebras.
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In this paper, for every infinite Boolean algebra B, we find a natural multisorted language
in which B admits elimination of imaginaries. The main theorem of the paper (i.e. Theorem
3.3) could be regarded as a preliminary step towards development of model theory of q-minimal
expansions of arbitrary infinite Boolean algebras. Nevertheless, it might be also of independent
interest. Research in this spirit has recently been conducted in the context of algebraically closed
valued fields [HHM] and real closed valued fields [Me].

The paper is organized as follows. In §1 we introduce the most important tool of the paper,
namely the notion of restricted elementary invariant of a Boolean algebra, and demonstrate its basic
properties. In §2 we investigate certain equivalence relations in Boolean algebras and generalize
Lemmas 2.2, 3.2 and 4.4 from [We3].
§3 contains the main result of the paper (Theorem 3.3). For a given infinite Boolean algebra

B and a definable set X ⊆ Bn, we find an LBA-formula ψ(x, z) such that Y := {d ∈ B|z| :
X = ψ(B, d)} is a non-empty set of partitions of 1B , and for any tuples d = d0 . . . dm and
e = e0 . . . em from Y , there is a unique permutation σ of the set {0, . . . ,m} such that the tuple
dσ(0) . . . dσ(m) is “roughly equal” to e0 . . . em. By “roughly equal” we mean here that for any i ≤ m
and d ∈ {di, ei : i ≤ m}, there is a number α < ω for which d u ((dσ(i) u e′i) t (d′σ(i) u ei)) belongs

to the α-th elementary ideal Iα(B), while d 6∈ Iα(B). The proof extends author’s methods from
[We3] used in case of Boolean algebras with |B/I(B)| ≤ 2.

The class of formulas of the form ψ(x, z) obtained in the proof of Theorem 3.3 and enjoying
the properties described above determines a class EB of ∅-definable equivalence relations on sets of
partitions of 1B . From Theorem 3.3 and the subsequent propositions we derive the fact that the
multisorted structure B(EB), obtained by adjoining to B all the sorts determined by equivalence
relations from EB , admits elimination of imaginaries in a suitable multisorted language.

For the basics of model theory we refer the reader to [ChK] and to the first chapter of [Pi]; for
elementary properties of Boolean algebras to the eighth chapter of [HBA].

Our notation concerning Boolean algebras is consistent with [We3]. We use the symbols u
(meet), t (join), ′ (complement), 0B and 1B to denote the Boolean operations and Boolean con-
stants in a Boolean algebra B. Moreover, a + b denotes the symmetric difference of elements
a, b ∈ B. The language of Boolean algebras is LBA = {u,t,′ , 0, 1}. For a ∈ B we consider the
Boolean algebra B|a := ([0, a]B ,u,t,′a , 0B , a), where b′a := b′ u a, and call it B restricted to a.
Symbols a+ and a− denote a and a′ respectively. If Aa := A ∪ {a} ⊆ B, by a u A we mean
{a u b : b ∈ A}. Similarly we define a+ A. In case b≤n := b0 . . . bn is a tuple of elements of B, by
a u b≤n we denote the tuple 〈a u bi : i ≤ n〉. For n < ω, η ∈ {+,−}n+1 and a≤n ⊆ B we define

aη≤n := a
η(0)
0 u . . . u aη(n)n . An element a ∈ B is called atomic, if for every b ∈ (0B , a] there is an

atom c such that c ≤ b; a is said to atomless if there are no atoms b ≤ a. For instance, 0B is always
atomic and atomless. A Boolean algebra B is called atomic [atomless] is 1B is atomic [atomless].
The set of all atoms of B is denoted by At(B).

For every n < ω, we define the Boolean algebra B(n) and an ideal In(B) ⊆ B by the following
conditions: I0(B) = {0B}, B(n) = B/In(B) and In+1(B) = π−1n (I(B(n))), where πn : B −→ B(n)

denotes the canonical projection. The elementary invariant of B (notation: Inv(B)) is a triple
〈α, β, γ〉 defined as follows:

α = min
(
{k < ω : B(k) is trivial} ∪ {ω}

)
,

β =

{
0 if α ∈ {0, ω} or (0 < α < ω and B(α−1) is atomic)
1 otherwise,
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γ =

{
0 if α ∈ {0, ω}
min(|At(B(α−1))|, ω) otherwise.

The set of all triples 〈α, β, γ〉 such that 〈α, β, γ〉 = Inv(B) for some Boolean algebra B is equal to

INV := {〈0, 0, 0〉, 〈ω, 0, 0〉} ∪ {〈α, β, γ〉 : 0 < α < ω, β ∈ {0, 1}, γ ≤ ω and β + γ > 0}.

If ab = a≤n ⊆ B, then tp(a/b) is completely determined by the elementary invariants of Boolean
algebras B|d, where d is an atom in the Boolean subalgebra generated by ab. Two Boolean algebras
B1 and B2 are elementarily equivalent iff Inv(B1) = Inv(B2).

Let B be a Boolean algebra. For every a ∈ B and n < ω we define the (possibly empty) set
Πn(a) of n+ 1-partitions as follows:

Πn(a) = {b≤n ⊆ (0B , a] : b0 t . . . t bn = a and bi u bj = 0B for i < j ≤ n} .

We say that b is a partition of a ∈ B iff b ∈ Πn(a) for some n < ω.
If j < ω and 1 ≤ s < ω, then there are LBA-formulas εj(x), ψj,s(x) and atj(x) such that for

every Boolean algebra B and every element a ∈ B, the following conditions hold (see [HBA], p.
292):

• B |= εj(a) iff a ∈ Ij(B) iff (B|a)(j) is trivial,

• B |= ψj,s(a) iff (B|a)(j) contains at least s atoms,

• B |= atj(a) iff (B|a)(j) is atomic.

Lemma 0.1 [HBA, Lemma 18.8] For every 〈α, β, γ〉 ∈ INV, there is a (possibly infinite) set of
LBA-formulas Σα,β,γ(x) such that

• every formula in Σα,β,γ(x) is of the form εj(x), ¬εj(x), ψj,s(x), ¬ψj,s(x), atj(x) or ¬atj(x),
where j < ω and 1 ≤ s < ω, and

• for every Boolean algebra B and an element a ∈ B,

B |= Σα,β,γ(a) if and only if Inv(B|a) = 〈α, β, γ〉.

Lemma 0.2 Assume that B is an infinite Boolean algebra, a = a≤r is a partition of 1B and
ϕ(x≤n, y≤r) ∈ LBA (x≤n and y≤r are abbreviations for x0 . . . xn and y0 . . . yr respectively). Then
ϕ(B, a) is a finite Boolean combination of sets defined by formulas of the form: εj(ai u xη≤n),

ψj,s(ai u xη≤n), atj(ai u xη≤n), where i ≤ r, η ∈ {+,−}n+1, j < ω and 1 ≤ s < ω.

Proof. Assume that B, a≤r and ϕ(x≤n, y≤r) satisfy assumptions of the lemma. For every b≤n ⊆
B, tp(b≤n/a≤r) is determined by the elementary invariants Inv(B|ai u bη≤n), where i ≤ r and

η ∈ {+,−}n+1. From this and Lemma 0.1 our assertion follows.

Acknowledgements. Part of the work on this paper was done while the author stayed at the
University of Leeds as a Marie Curie fellow. The author also expresses his gratitude towards the
referee, whose detailed comments helped to improve the presentation of results.
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1 Restricted elementary invariants

For every Boolean algebra B and a triple 〈α, β, γ〉 ∈ INV, the set Σα,β,γ(B) from Lemma 0.1 is
type-definable, but not necessarily definable. This means that in certain cases it is not possible to
express all elementary properties of an element of a Boolean algebra using a single formula. For
example, if B is the Boolean algebra of all subsets of ω, then the set

{a ∈ B : B|a,B|a′ are infinite} = {a ∈ B : Inv(B|a) = Inv(B|a′) = 〈1, 0, ω〉}

is not definable. In spite of this obstacle, in §3 of [We3] we were able to prove weak elimination of
imaginaries for infinite atomic Boolean algebras counting the number of atoms below elements up
to a certain level determined by the formula under consideration.

In the proof of Theorem 3.3, given an infinite Boolean algebra B and a set X ⊆ Bn definable
over a tuple a ⊆ B, we give a canonical construction of an a-definable family of partitions of 1B
such that over each of them the given set is definable. To ensure that such a class is definable over
a and not too large, a single formula expressing a sufficient amount of its elementary properties
could be useful. In order to realize this idea, in the following definition we introduce the concept
of a restricted elementary invariant of a Boolean algebra.

Definition 1.1 Assume that B is a Boolean algebra with Inv(B) = 〈α, β, γ〉 and α0, γ0 are positive
integers. We define the restricted 〈α0, γ0〉-elementary invariant of B as follows:

Invα0,γ0(B) :=

{
〈α, β,min(γ, γ0)〉 for α ≤ α0,
〈α0 + 1, 0, 0〉 for α > α0.

The set of all restricted 〈α0, γ0〉-elementary invariants of Boolean algebras will be denoted by
INVα0,γ0 . It is easy to see that

INVα0,γ0 = {〈0, 0, 0〉, 〈α0 + 1, 0, 0〉} ∪ {〈α, β, γ〉 : 1 ≤ α ≤ α0, β ∈ {0, 1}, γ ≤ γ0 and β + γ > 0}.

The crucial difference between elementary invariants and their restricted counterpart is that in
the latter case for every Boolean algebra B, the set of elements a ∈ B such that B|a has a given
restricted elementary invariant is definable (in fact, ∅-definable).

Lemma 1.2 If α0, γ0 ∈ N+ and 〈α, β, γ〉 ∈ INVα0,γ0 , then there is an LBA-formula σα0,γ0
〈α,β,γ〉(x)

such that

• σα0,γ0
〈α,β,γ〉(x) is a conjunction of formulas of the form εj(x

η
≤n), ¬εj(xη≤n), ψj,s(x

η
≤n), ¬ψj,s(xη≤n),

atj(x
η
≤n) and ¬atj(x

η
≤n), where j ≤ α0, s ≤ γ0 and η ∈ {+,−}n+1, and

• for every Boolean algebra B and every element a ∈ B,

B |= σα0,γ0
〈α,β,γ〉(a) iff Invα0,γ0(B|a) = 〈α, β, γ〉.

Proof. Assume that 1 ≤ α0, γ0 < ω. Below, for every 〈α, β, γ〉 ∈ INVα0,γ0 we define the formula
σα0,γ0
〈α,β,γ〉(x) satisfying our demands.

σα0,γ0
〈0,0,0〉(x) = ε0(x) = (x = 0),

σα0,γ0
〈α0+1,0,0〉(x) = ¬εα0(x).
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For 1 ≤ α ≤ α0 we define:

σα0,γ0
〈α,1,0〉(x) = εα(x) ∧ ¬εα−1(x) ∧ ¬atα−1(x) ∧ ¬ψα−1,1(x),

σα0,γ0
〈α,1,γ0〉(x) = εα(x) ∧ ¬εα−1(x) ∧ ¬atα−1(x) ∧ ψα−1,γ0(x), and

σα0,γ0
〈α,0,γ0〉(x) = εα(x) ∧ ¬εα−1(x) ∧ atα−1(x) ∧ ψα−1,γ0(x).

Finally, in case 1 ≤ α ≤ α0 and 1 ≤ γ < γ0 we define:

σα0,γ0
〈α,0,γ〉(x) = εα(x) ∧ ¬εα−1(x) ∧ atα−1(x) ∧ ψα−1,γ(x) ∧ ¬ψα−1,γ+1(x),

σα0,γ0
〈α,1,γ〉(x) = εα(x) ∧ ¬εα−1(x) ∧ ¬atα−1(x) ∧ ψα−1,γ(x) ∧ ¬ψα−1,γ+1(x).

Every tuple in a Boolean algebra B determines a partition of 1B . Sometimes we will consider
tuples of restricted elementary invariants of B restricted to elements of such a partition.

Definition 1.3 Assume that B is a Boolean algebra, a≤n ⊆ B and α0, γ0 ∈ N+. The restricted
〈α0, γ0〉-elementary invariant of a≤n is defined as follows:

Invα0,γ0(a≤n) = 〈Invα0,γ0(B|aη≤n) : η ∈ {+,−}n+1〉.

In particular, Invα0,γ0(a) = 〈Invα0,γ0(B|a), Invα0,γ0(B|a′)〉.

Lemma 1.4 Assume that α0, γ0 ∈ N+ and for every η ∈ {+,−}n+1, 〈αη, βη, γη〉 is a triple from
INVα0,γ0 . Then there is an LBA-formula ϕ(x≤n) such that

• ϕ(x≤n) is a conjunction of formulas of the form εj(x
η
≤n), ¬εj(xη≤n), ψj,s(x

η
≤n), ¬ψj,s(xη≤n),

atj(x
η
≤n) and ¬atj(x

η
≤n), where j ≤ α0, s ≤ γ0 and η ∈ {+,−}n+1, and

• for every Boolean algebra B and a≤n ⊆ B,

B |= ϕ(a≤n) iff Invα0,γ0(B|aη≤n) = 〈αη, βη, γη〉 for η ∈ {+,−}n+1.

Proof. The formula
ϕ(x≤n) =

∧
η∈{+,−}n+1

σα0,γ0
〈αη,βη,γη〉(x

η
≤n)

satisfies our demands.

In the following two lemmas we outline some of the basic properties of restricted elementary
invariants.

Lemma 1.5 Assume that α0, α1, γ0, γ1 are positive integers, B is a Boolean algebra and a, b ∈ B.
(a) If Inv(B|a) = Inv(B|b), then Invα0,γ0(B|a) = Invα0,γ0(B|b).
(b) If 〈α0, γ0〉 ≤ 〈α1, γ1〉, where ≤ denotes the lexicographic ordering of N+ × N+, then

Invα1,γ1(B|a) = Invα1,γ1(B|b) =⇒ Invα0,γ0(B|a) = Invα0,γ0(B|b).
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Lemma 1.6 Assume that α0, γ0 are positive integers, B is a Boolean algebra, a, b, c, d ∈ B, and
a≤n, b≤n ⊆ B.

(a) If a≤n is a partition of 1B, then Invα0,γ0(aua≤n) is completely determined by the sequence
〈Invα0,γ0(B|a u ai) : i ≤ n〉.

(b) If Invα0,γ0(B|a) = 〈α1, β1, γ1〉, Invα0,γ0(B|b) = 〈α2, β2, γ2〉 and a u b = 0B, then

Invα0,γ0(B|a t b) =

 〈α1, β1, γ1〉 if α1 > α2

〈α1,max(β1, β2),min(γ0, γ1 + γ2)〉 if α1 = α2

〈α2, β2, γ2〉 if α1 < α2.

(c) If aub = 0B, Invα0,γ0(B|auc) = Invα0,γ0(B|aud) and Invα0,γ0(B|buc) = Invα0,γ0(B|bud),
then Invα0,γ0(B|(a t b) u c) = Invα0,γ0(B|(a t b) u d).

(d) If aub = 0B, Invα0,γ0(aua≤n) = Invα0,γ0(aub≤n) and Invα0,γ0(bua≤n) = Invα0,γ0(bub≤n),
then Invα0,γ0((a t b) u a≤n) = Invα0,γ0((a t b) u b≤n).

2 Equivalence relations in Boolean algebras

Consider an infinite Boolean algebra B and elements a, b, c ∈ B such that auc, buc > 0B , c ≤ atb
and au b = 0B . In [We3] we were dealing with the problem of obtaining one partition of at b from
another by a finite series of modifications below a, b or c. Lemmas 2.2 and 3.2 from [We3] could
be expressed in the form of the following statement.

Fact 2.1 Assume that γ0 ∈ N+, Inv(B|a t b) ∈ {〈1, 1, 0〉, 〈1, 0, ω〉}, a≤n, b≤n ⊆ B, for every
η ∈ {+,−}n+1, Inv1,γ0((a t b) u aη≤n) = Inv1,γ0((a t b) u bη≤n), and (a t b)′ u a≤n = (a t b)′ u b≤n.

There there are tuples a0≤n = a≤n, a
1
≤n, . . . , a

k
≤n = b≤n ⊆ B such that

• (∀i < k)(∃d ∈ {a, b, c})(d′ u ai≤n = d′ u ai+1
≤n ) and

• (∀i < k)(∀d ∈ {a, b, c})(Inv1,γ0(d u ai≤n) = Inv1,γ0(d u ai+1
≤n )).

It turns out that an analogical result cannot be obtained in case c ∈ Iα(B) and a, b 6∈ Iα(B)
for some α < ω. Informally speaking, there is too little space below c to transform one tuple into
another by modifying it only below a, b or c. Lemma 4.4 from [We3] deals with modifications of
tuples below elements in Boolean algebras of elementary invariant equal to 〈2, 0, 1〉, in which case
one needs additional assumptions. In this section we isolate some reasonable conditions on a, b, c
under which analogues of Lemmas 2.2, 3.2 and 4.4 from [We3] can be proved in arbitrary Boolean
algebras and relevant methods generalized.

Definition 2.2 Assume that B is a Boolean algebra and a, b ∈ B. We say that a is large in b iff

(∀n < ω)(a u b ∈ In(B)⇐⇒ b ∈ In(B)).

Lemma 2.3 Assume that B is a Boolean algebra and a, b, c ∈ B.
(a) If a ≥ b, then a is large in b.
(b) 0B is large in a iff a = 0B.
(c) If a ≤ b ≤ c, a is large in b and b is large in c, then a is large in c.
(d) If b is large in 1B, then a is large in b iff b is large in a.
(e) If b is not large in a, then Inv(B|a) = Inv(B|a u b′), and consequently, B|a ≡ B|a u b′.
(f) If a > 0B and b≤n ∈ Πn(1B), then bi is large in a for some i ≤ n.
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Lemma 2.4 Assume that α0, γ0 ∈ N+ and a, b, d are elements of a Boolean algebra B such that
a is large in b, d is not large in b, and b > a, d. Then there is an element e < a such that e is not
large in a and Invα0,γ0(B|d) = Invα0,γ0(B|e).

Proof. Let Inv(B|a) = 〈α1, β1, γ1〉, Inv(B|b) = 〈α2, β2, γ2〉 and Inv(B|d) = 〈α3, β3, γ3〉. Our
assumptions guarantee that α1 = α2 > α3, so α := max(α0, α3) < ω. Define γ := max(γ0, γ3)
for γ3 < ω and γ := γ0 in case γ3 = ω. Let Invα,γ(B|d) = 〈α′, β′, γ′〉. Note that a′ u d is
not large in a t d. By Lemma 2.3(e), Inv(B|a t d) = Inv(B|a) and B|a t d ≡ B|a. Since
B|a t d |= σα,γ〈α′,β′,γ′〉(d) ∧ εα3(d), there is e < a such that B|a |= σα,γ〈α′,β′,γ′〉(e) ∧ εα3(e). Hence e is

not large in a, and Invα0,γ0(B|d) = Invα0,γ0(B|e).

For n < ω and 0 < α0, γ0 < ω we denote by En,α0,γ0(u≤n, v≤n, z) the following LBA-formula.

En,α0,γ0(u≤n, v≤n, z) =
∧

η∈{+,−}n+1

 ∧
j≤α0

(
εj(z u uη≤n)←→ εj(z u vη≤n)

)
∧

∧
j≤α0

∧
s≤γ0

(
ψj,s(z u uη≤n)←→ ψj,s(z u vη≤n)

)
∧

∧
j≤α0

(
atj(z u uη≤n)←→ atj(z u vη≤n)

) ∧ z′ u u≤n = z′ u v≤n.

It is clear that for every a ∈ B, En,α0,γ0(u≤n, v≤n, a) defines an equivalence relation Ean,α0,γ0 on
Bn+1. Note that E0B

n,α0,γ0 is the equality on Bn+1.

Definition 2.5 Assume that α0, γ0 ∈ N+, a is a non-zero element of a Boolean algebra B and
a≤nb≤n ⊆ B. A tuple b≤n ⊆ B is said to be an 〈α0, γ0〉-modification of a≤n below a iff

a′ u a≤n = a′ u b≤n and Invα0,γ0(a u a≤n) = Invα0,γ0(a u b≤n).

Note that in the setting of the above definition, b≤n is an 〈α0, γ0〉-modification of a≤n below a
iff B |= En,α0,γ0(a≤n, b≤n, a). If b≤n is an 〈α0, γ0〉-modification of a≤n below a and b ≥ a, then it
is also an 〈α0, γ0〉-modification of a≤n below b.

Definition 2.6 A non-zero element a of a Boolean algebra B is called simple iff one of the fol-
lowing conditions hold.

• (B|a)(m) is non-trivial and atomless for some m < ω,

• (B|a)(m) is non-trivial and atomic for some m < ω,

• Inv(B|a) = 〈ω, 0, 0〉.

Note that an element a of a Boolean algebra B is simple iff

Inv(B|a) ∈ {〈ω, 0, 0〉} ∪ {〈α, 1, 0〉 : 0 < α < ω} ∪ {〈α, 0, γ〉 : 0 < α < ω, 0 < γ ≤ ω}.

Lemma 2.7 Assume that a, b, c are non-zero elements of an infinite Boolean algebra B
(a) If a ≥ b, and b is large in a, then a is simple iff b is simple.
(b) If a, b, c are simple, au b = 0B, c is large both in a and b, and at b is large in c, then at b

is simple.
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Proof. Since (a) is easy, we only prove (b). Let a, b, c be simple elements of a Boolean algebra B
such that a u b = 0B , c is large both in a and b, and a t b is large in c. We consider three cases.

Case 1. Inv(B|c) = 〈ω, 0, 0〉. Since at b is large in c, also Inv(B|(at b)u c) = 〈ω, 0, 0〉. Hence
Inv(B|a t b) = 〈ω, 0, 0〉.

Case 2. Inv(B|c) = 〈α, 1, 0〉, where 0 < α < ω. The element a t b is large in c, so Inv(B|(a t
b) u c) = 〈α, 1, 0〉. But then Inv(B|a u c) = 〈α, 1, 0〉 or Inv(B|b u c) = 〈α, 1, 0〉. Suppose for
instance that the first possibility holds.

As c is large in a, we get Inv(B|a) = 〈α, 1, 0〉. Note that either Inv(B|b u c) = 〈α, 1, 0〉 or
b u c ∈ Iα(B). In the first case Inv(B|b) = 〈α, 1, 0〉. If b u c ∈ Iα(B), then (since c is large in b)
also b ∈ Iα(B). In both cases Inv(B|a t b) = 〈α, 1, 0〉.

Case 3. Inv(B|c) = 〈α, 0, γ〉, where 0 < α < ω and 0 < γ ≤ ω. An argument similar to that
used in Case 2 yields that Inv(B|a t b) = 〈α, 0, γ〉.

In all possible cases the element a t b is simple. This finishes the proof.

Theorem 2.8 Assume that n < ω, a, b, c are simple non-zero elements of a Boolean algebra B,
a u b = 0B, c ≤ a t b and c is large in each of the elements a, b. Denote by 〈α1, β1, γ1〉 and
〈α2, β2, γ2〉 the elementary invariants of B|a and B|b respectively and let α0, γ0 be positive integers
satisfying the following conditions.

• For i=1,2: if αi < ω, then α0 ≥ αi.

• For i=1,2: if αi < ω, βi = 0 and γi < ω, then γ0 ≥ γi.

• If α1 = α2 < ω, β1 = β2 = 0 and γ1, γ2 < ω, then γ0 ≥ γ1 + γ2.

Then the following conditions hold.
(a) If ∼ is an equivalence relation on Bn+1 containing Ean,α0,γ0 ∪E

b
n,α0,γ0 ∪E

c
n,α0,γ0 and a≤n ∈

Bn+1, then there is b≤n ∼ a≤n such that for every η ∈ {+,−}n+1, a u bη≤n = 0B or aη≤n is large
in a.

(b) Any equivalence relation on Bn+1 containing Ean,α0,γ0∪E
b
n,α0,γ0∪E

c
n,α0,γ0 contains Eatbn,α0,γ0 .

Proof. Note that by Lemma 2.7, the element a t b is simple. Throughout the proof, for the sake
of notational simplicity, 〈α0, γ0〉-modifications will be called shortly ”modifications”.

(a) Let ∼ be an equivalence relation on Bn+1 containing Ean,α0,γ0 ∪E
b
n,α0,γ0 ∪E

c
n,α0,γ0 . Define

E = {η ∈ {+,−}n+1 : aη≤n is not large in a}.

By Lemma 2.4, there are pairwise disjoint elements dη ∈ [0B , a u c), η ∈ E such that for every
η ∈ E, Invα0,γ0(B|dη) = Invα0,γ0(B|a u aη≤n) and dη is not large in a u c. Let d :=

⊔
η∈E

dη and let

η1 ∈ {+,−}n+1 be such that aη1≤n is large in a. We define the tuple a1≤n by the following conditions:

• a′ u a1≤n = a′ u a≤n,

• a u (a1≤n)η = dη for η ∈ E,

• a u (a1≤n)η1 = a u d′ u

(
aη1≤n t

⊔
η∈E

aη≤n

)
,

• a u (a1≤n)η = a u d′ u aη≤n for η 6∈ E ∪ {η1}.
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a1≤n is a modification of a≤n below a, and for every η ∈ {+,−}n+1, if (a1≤n)η is not large in a, then

au (a1≤n)η < au c. Repeating this argument with a and au c replaced by c and bu c (respectively),

we obtain b≤n, a modification of a1≤n below c satisfying our demands.

(b) Let ∼ be an equivalence relation on Bn+1 containing Ean,α0,γ0 ∪ E
b
n,α0,γ0 ∪ E

c
n,α0,γ0 .

Without loss of generality we can assume that b is large in a t b. Let a≤n, b≤n ⊆ B be tuples
such that (a t b)′ u a≤n = (a t b)′ u b≤n and Invα0,γ0((a t b) u a≤n) = Invα0,γ0((a t b) u b≤n). We
have to show that a≤n ∼ b≤n. We will obtain b≤n from a≤n in a series of modifications of a≤n
below a, b or c. We consider 5 cases.

Case 1. There is m < ω such that (B|a)(m) and (B|b)(m) are both non-trivial and atomless.

Note that the elementary invariant of each of the Boolean algebras B|a, B|b, B|c, B|a t b,
B|a u c and B|b u c is equal to 〈m + 1, 1, 0〉. Our assumptions guarantee that α0 ≥ m + 1, so
the restricted 〈α0, γ0〉-elementary invariant of each of the listed Boolean algebras is also equal to
〈m+ 1, 1, 0〉.

There is η0 ∈ {+,−}n+1 such that aη0≤n is large in at b. Then also bη0≤n is large in at b. By (a),

without loss of generality we can assume that for every η ∈ {+,−}n+1, either auaη≤n = 0B or aη≤n
is large in a. There is a1≤n, a modification of a≤n below a or below b such that (a1≤n)η0 is large

in c. If for example aη0≤n is large in a and not large in c, then there is an η1 ∈ {+,−}n+1 \ {η0}
such that aη1≤n is large in a u c, and the tuple a1≤n may be defined by the following conditions:

a′ u a1≤n = a′ u a≤n, a u (a1≤n)η0 = a u aη1≤n, a u (a1≤n)η1 = a u aη0≤n and a u (a1≤n)η = a u aη≤n for
η 6∈ {η0, η1}.

In this situation, using the fact that the Boolean algebras (B|a)(m) and (B|b)(m) are atomless,
we easily obtain tuples a2≤n, a

3
≤n, a

4
≤n ⊆ B such that

• a2≤n is a modification of a1≤n below c, (a2≤n)η0 is large both in a u c and b u c, and for every

η ∈ {+,−}n+1, either a u (a2≤n)η = 0B or (a2≤n)η is large in a.

• a3≤n is a modification of a2≤n below a, a u c′ < (a3≤n)η0 and (a3≤n)η0 is large in a u c.

• a4≤n is a modification of a3≤n below c, a < (a4≤n)η0 and (a4≤n)η0 is large in b u c (so in b).

The tuples a≤n and a4≤n are ∼-equivalent. Similarly we can find b1≤n ∼ b≤n such that (b1≤n)η0 is

large in b and (b1≤n)η0 > a. Now, b1≤n is clearly a modification of a4≤n below b, so a≤n ∼ b≤n.

Case 2. There is m < ω such that (B|a)(m), (B|b)(m) are both finite, non-trivial and atomic.

Note that Inv(B|a) = 〈m + 1, 0, k〉 and Inv(B|b) = 〈m + 1, 0, l〉 for some k, l ∈ N+. Our
assumptions guarantee that α0 ≥ m + 1 and γ0 ≥ k + l. There is a tuple c<k+l ⊆ (0B , a t b] of
pairwise disjoint elements such that

• Inv(B|ci) = 〈m+ 1, 0, 1〉 for every i < k + l,

• (∀i < k + l)(∃η0, η1 ∈ {+,−}n+1)(ci ≤ aη0≤n u b
η1
≤n), and

• (∀i < k + l − 1)(ci t ci+1 ≤ a or ci t ci+1 ≤ b or ci t ci+1 ≤ c).
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Then (c0 t . . . t ck+l−1)′ is not large in a t b and there is a unique permutation σ of the set
{0, . . . , k + l − 1} such that for any i < k + l and η ∈ {+,−}n+1,

ci ≤ aη≤n iff cσ(i) ≤ bη≤n.

σ = τ1◦. . .◦τs, where τ1, . . . , τs are transpositions of the form (i, i+1), i < k+l−1. Let a0≤n = a≤n
and let ar≤n for 1 ≤ r ≤ s be the tuple defined by the following conditions:

• (c0 t . . . t ck+l−1)′ u ar≤n = (c0 t . . . t ck+l−1)′ u a≤n and

• for any i < k + l and η ∈ {+,−}n+1, ci ≤ aη≤n iff c(τs−r+1◦...◦τs)(i) ≤ (ar≤n)η.

Our choice of c<k+l guarantees that for every r < s, ar+1
≤n is a modification of ar≤n below a, b or c.

Thus a≤n ∼ as≤n and for every η ∈ {+,−}n+1, (as≤n)η + bη≤n is not large in a t b. By (a) we can

find as+1
≤n ∼ as≤n and b1≤n ∼ b≤n such that for every η ∈ {+,−}n+1,

• a u (as+1
≤n )η = 0B or (as+1

≤n )η is large in a, and

• a u (bs+1
≤n )η = 0B or (b1≤n)η is large in a.

b1≤n is a modification of as+1
≤n below b. Therefore a≤n ∼ b≤n.

Case 3. There is m < ω such that (B|a)(m), (B|b)(m) are both non-trivial and atomic, and
(B|a t b)(m) is infinite.

Without loss of generality we can assume that (B|b)(m) is infinite. Note that

Inv(B|a) = 〈m+ 1, 0, k〉 and Inv(B|b) = 〈m+ 1, 0, ω〉,

where k is a positive integer or ω. Our assumptions guarantee that α0 ≥ m+ 1 and if k < ω, then
γ0 ≥ k. There is η0 ∈ {+,−}n+1 such that the Boolean algebra (B|b u bη0≤n)(m) is infinite. Then

Inv(B|b u bη0≤n) = Inv(B|(a t b) u bη0≤n) = 〈m+ 1, 0, ω〉 and

Invα0,γ0(B|b u bη0≤n) = Invα0,γ0(B|(a t b) u bη0≤n) = 〈m+ 1, 0, γ0〉.

If Invα0,γ0(B|buaη0≤n) = Invα0,γ0(B|bubη0≤n), then there is a5≤n, a modification of a≤n below b such

that the Boolean algebra B|b u (a5≤n)η0 is infinite. If Invα0,γ0(B|b u aη0≤n) 6= Invα0,γ0(B|b u bη0≤n),

then aη0≤n is large in a. There is a1≤n ⊆ B, a modification of a≤n below a such that (a1≤n)η0 is large

in a u c. Similarly, there are tuples a2≤n, a
3
≤n ⊆ B such that

• a2≤n is a modification of a1≤n below b,

• ((a2≤n)η0)′ is large in b u c

• a3≤n is a modification of a2≤n below c,

• |At((B|b u (a3≤n)η0)(m))| = |At((B|b u (a2≤n)η0)(m))|+ 1.
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Repeating this procedure, after ≤ γ0 steps we can obtain a4≤n ∼ a3≤n such that

Invα0,γ0(B|b u (a4≤n)η0) = Invα0,γ0(B|b u bη0≤n).

There is a5≤n, a modification of a4≤n below b such that the Boolean algebra (B|b u (a5≤n)η0)(m) is
infinite.

Now, we will show that there is a10≤n ∼ a5≤n such that the Boolean algebra (B|au ((a10≤n)η0)′)(m)

is finite. This is trivial in case At((B|a)(m)) is finite. If Invα0,γ0(B|a u (a5≤n)η0) = Invα0,γ0(B|(a t
b)u(a5≤n)η0), then a10≤n is a result of a single modification of a5≤n below a. If (B|a)(m) is infinite and

Invα0,γ0(B|a u (a5≤n)η0) 6= Invα0,γ0(B|(a t b) u (a5≤n)η0), then there are tuples a6≤n, a
7
≤n, a

8
≤n ⊆ B

such that

• a6≤n is a modification of a5≤n below a and ((a6≤n)η0)′ is large in a u c,

• a7≤n is a modification of a6≤n below b and (a7≤n)η0 is large in b u c,

• a8≤n is a modification of a7≤n below c,

• |At((B|a u (a8≤n)η0)(m))| = |At((B|a u (a7≤n)η0)(m))|+ 1, and

• At((B|b u (a8≤n)η0)(m)) is infinite

Repeating this procedure, after ≤ γ0 steps we can find a9≤n ∼ a8≤n such that Invα0,γ0(B|a u
(a9≤n)η0) = Invα0,γ0(B|(atb)u(a9≤n)η0) and the Boolean algebra (B|bu(a9≤n)η0)(m) is infinite. Then

there is a10≤n, a modification of a9≤n below a, such that the Boolean algebra (B|a u ((a10≤n)η0)′)(m)

is finite.
A similar argument yields a11≤n ∼ a10≤n such that ((a11≤n)η0)′ is not large in a. By (a) there is

a12≤n ∼ a11≤n such that (a12≤n)η0 > a and (B|b u a12≤n)(m) is infinite.

Similarly we can find b1≤n ∼ b≤n such that (b1≤n)η0 > a and (B|b u (b1≤n)η0)(m) is infinite. It is

easy to see that b≤n is a modification of a12≤n below b. Thus a≤n ∼ b≤n.

Case 4. Inv(B|a) = Inv(B|b) = 〈ω, 0, 0〉.

Note that

Inv(B|a t b) = Inv(B|a u c) = Inv(B|b u c) = Inv(B|c) = 〈ω, 0, 0〉.

There is η0 ∈ {+,−}n+1 such that bη0≤n is large in b. Then

Inv(B|b u bη0≤n) = 〈ω, 0, 0〉 and Invα0,γ0(B|b u bη0≤n) = 〈α0 + 1, 0, 0〉.

If Invα0,γ0(B|b u aη0≤n) = 〈α0 + 1, 0, 0〉, then there is a2≤n, a modification of a≤n below b such that

(a2≤n)η0 is large in b. So assume that Invα0,γ0(B|buaη0≤n) 6= 〈α0+1, 0, 0〉. Then Invα0,γ0(B|auaη0≤n) =

〈α0 + 1, 0, 0〉, and there is a1≤n, a modification of a≤n below a such that (a1≤n)η0 is large in a u c.
Similarly, there is a2≤n, a modification of a1≤n below c such that (a2≤n)η0 is large in a u c and large
in b u c.

Now, modifying a2≤n below a we obtain a3≤n such that (a3≤n)η0 is large in a u c and (a3≤n)η0 >

au c′. A modification of a3≤n below c gives a4≤n such that (a4≤n)η0 is large in bu c and (a4≤n)η0 > a.
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In a similar manner one can find b1≤n ∼ b≤n such that (b1≤n)η0 is large in b and (b1≤n)η0 > a. Note

that b1≤n is a modification of a4≤n below b. Therefore a≤n ∼ b≤n.

Case 5. There is m < ω such that a ∈ Im+1(B) \ Im(B) and b 6∈ Im+1(B).

Let Inv(B|b) = 〈α, β, γ〉. Our assumptions guarantee that

• α0 ≥ m+ 1, α ≥ m+ 2,

• exactly one of β, γ is equal 0,

• if α < ω, then α0 ≥ α,

• if (B|a)(m) is finite, then γ0 ≥ |At((B|a)(m))|,

• if α < ω and (B|b)(α−1) is finite, then γ0 ≥ |At((B|b)(α−1))|, and

• Inv(B|b) = Inv(B|a t b).

There is η0 ∈ {+,−}n+1 such that bη0≤n is large in b. Then au bη0≤n is not large in (at b)u bη0≤n and

Invα0,γ0(B|b u bη0≤n) = Invα0,γ0(B|(a t b) u bη0≤n).

Since Invα0,γ0(B|(atb)uaη0≤n) = Invα0,γ0(B|(atb)ubη0≤n), (atb)uaη0≤n 6∈ Im+1(B) and auaη0≤n is not

large in (atb)uaη0≤n. Hence Invα0,γ0(B|buaη0≤n) = Invα0,γ0(B|(atb)uaη0≤n) and Invα0,γ0(B|buaη0≤n) =

Invα0,γ0(B|bubη0≤n). There is a1≤n, a modification of a≤n below b, such that bucu(a1≤n)η0 6∈ Im+1(B).

Now, we are ready to show that there is c≤n ∼ a1≤n such that cη0≤n > a and Invα0,γ0(B|bucη0≤n) =

Invα0,γ0(B|b u (a1≤n)η0). Obviously, if (a1≤n)η0 > a, then we can take c≤n := a1≤n. If for every

η1 6= η0, (a1≤n)η1 is not large in a, then c≤n exists by (a). So assume that there is η1 6= η0 such

that (a1≤n)η1 is large in a. Let a2≤n be a modification of a1≤n below a such that (a2≤n)η1 is large in
a u c.

Case 5a: (B|a)(m) is atomless.

By (a) without loss of generality we can assume that

Inv(B|a u (a2≤n)η) = Inv(B|a) = Inv(B|a u c) = 〈m+ 1, 1, 0〉 for every η ∈ {+,−}n+1

with a u (a2≤n)η > 0B .

Let d = a u c u (a2≤n)η1 and let e ∈ (0B , b u c u (a2≤n)η0) be an element such that Inv(B|e) =

〈m+ 1, 1, 0〉. Define a3≤n, a modification of a2≤n below c by the following conditions:

• (d t e)′ u a3≤n = (d t e)′ u a2≤n,

• (d t e) u (a3≤n)η0 = d, and

• (d t e) u (a3≤n)η1 = e.
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There is a4≤n, a modification of a3≤n below a such that (a3≤n)η0 > a u c′ and (a3≤n)η0 is large in

a u c. Repeating our previous argument we find a5≤n, a modification of a4≤n below c such that

(a5≤n)η0 > a and Invα0,γ0(B|b u (a5≤n)η0) = Invα0,γ0(B|b u (a1≤n)η0). So c≤n := a5≤n satisfies our
demands.

Case 5b: (B|a)(m) is atomic.

Choose d ∈ (0B , au cu (a2≤n)η1 ] and e ∈ (0B , bu cu (a2≤n)η0) such that Inv(B|d) = Inv(B|e) =

〈m+ 1, 0, 1〉. Define a3≤n, a modification of a2≤n below c by the following conditions:

• (d t e)′ u a3≤n = (d t e)′ u a2≤n,

• (d t e) u (a3≤n)η0 = d, and

• (d t e) u (a3≤n)η1 = e.

If (B|a)(m) is finite, then, repeating this procedure, one can find a4≤n ∼ a3≤n such that ((a4≤n)η0)′

is not large in a. Then, by (a) there is c≤n satisfying our demands.
If (B|a)(m) is infinite, then again, repeating the procedure, one can find a4≤n ∼ a3≤n such that

(B|a u (a4≤n)η0)(m) has at least γ0 atoms. There is a5≤n, a modification of a4≤n below a such that

the Boolean algebra (B|au ((a4≤n)η0)′)(m) is finite. As previously, there are: a6≤n ∼ a5≤n such that

((a6≤n)η0)′ is not large in a, and (by (a)) there is c≤n ∼ a6≤n satisfying our demands.

By arguments similar to those applied above, we can find b1≤n ∼ b≤n such that (b1≤n)η0 is large

in b and (b1≤n)η0 > a. It is clear that b1≤n is a modification of a6≤n below b. So b≤n ∼ a≤n.

3 The main theorem

In [We3], given an infinite Boolean algebra B with |B/I(B)| ≤ 2 and a consistent formula ϕ(x, a) ∈
LBA(B), we demonstrated how to find a formula ψ(x, z≤m) ∈ LBA for which {d≤m : ϕ(B, a) =
ψ(B, d≤m)} is a non-empty and finite subset of Πm(1B). In the proofs of Lemmas 2.3, 3.3, 4.3 and
4.5 in [We3], we obtained the mentioned result for Boolean algebras with elementary invariants
〈1, 1, n〉 (n < ω), 〈1, 0, ω〉, 〈1, 1, ω〉 and 〈2, 0, 1〉 respectively. In this section we generalize our case-
by-case analysis to arbitrary Boolean algebras. The following lemmas will be used in the proof of
the main theorem.

Lemma 3.1 Assume that B is a non-trivial Boolean algebra and d≤m, e≤m are partitions of 1B.
Then the following conditions are equivalent.

(a) There is a unique permutation σ of the set {0, . . . ,m} such that

(∀i ≤ m)(∀d ∈ d≤me≤m)(dσ(i) + ei is not large in d).

(b) (a) without uniqueness of σ.
(c) For every i ≤ m, ei is large in at most one element from d≤m and di is large in at most

one element from e≤m.
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Proof. For m = 0 the lemma holds trivially, so assume that m ≥ 1 and suppose that the lemma
holds in all Boolean algebras for tuples of length m.

(b)=⇒(c). Suppose for a contradiction that there are i, j, l ≤ m, j 6= l such that ei is large
both in dj and in dl. Let σ be a permutation of the set {0, . . . ,m}. If σ(i) = j, then dσ(i) + ei =
dj + ei ≥ dl u ei, so dσ(i) + ei is large in dl. Similarly, if σ(i) = l, then dσ(i) + ei is large in dj . If
σ(i) 6∈ {j, l}, then dσ(i) + ei ≥ (dj t dl) u ei and dσ(i) + ei is large both in dj and dl.

(c)=⇒(a) Fix a Boolean algebra B and d≤m, e≤m ⊆ B, partitions of 1B for which (c) holds.
Choose i0 ≤ m such that ei0 is large in 1B . There is a unique j0 ≤ m such that dj0 is large in ei0 .
Then ei0 is the only element of the partition e≤m which is large in dj0 . Thus dj0 +ei0 is not large in
dj0 nor in ei0 . (c) guarantees that dj0 is not large in ei for i 6= i0. Note that (dj0 +ei0)uei = dj0uei
for i 6= i0. Consequently, dj0 + ei0 is not large in ei for i 6= i0. Similarly we prove that dj0 + ei0 is
not large in dj for j 6= j0. In this way have shown that if d ∈ d≤me≤m, then dj0 + ei0 is not large
in d.

Now, for i, j ≤ m, i 6= i0, j 6= j0 we define:

d1j = (dj0 t ei0)′ u dj and e1i = (dj0 t ei0)′ u ei.

The tuples d := 〈d1i : i ≤ m, i 6= i0〉 and e := 〈e1j : j ≤ m, j 6= j0〉 are partitions of (dj0 t ei0)′. If
i 6= i0 and j 6= j0, then

d1j u e1i = (dj0 t ei0)′ u dj u ei = dj u ei.

So for any i, j ≤ m, i 6= i0, j 6= j0,

d1j is large in e1i iff dj is large in ei,

and similarly
e1i is large in d1j iff ei is large in dj .

This implies that

• for every i ≤ m, i 6= i0, e1i is large in at most one element from 〈d1j : j ≤ m, j 6= j0〉, and

• for every j ≤ m, j 6= j0, d1j is large in at most one element from 〈e1i : i ≤ m, i 6= i0〉.

Therefore, by the inductive hypothesis applied to the Boolean algebra B|(dj0 t ei0)′, there is a
bijection

τ : {i ≤ m : i 6= i0} −→ {j ≤ m : j 6= j0}

such that d1τ(i) + e1i is not large in c whenever i ≤ m, i 6= i0 and c ∈ de.
We know that if i ≤ m and i 6= i0, then none of the elements dj0 , d1τ(i) + e1i is large in ei, in

which case
(dτ(i) + ei) u ei = ((d1τ(i) + e1i ) u ei) t (dj0 u ei).

So dτ(i) + ei is not large in ei.
We also know that d′j0 is not large in ei0 . Moreover, if i ≤ m and i 6= i0, then

(dτ(i) + ei) u ei0 = dτ(i) u ei0 ≤ d′j0 u ei0 .

Hence, dτ(i) + ei is not large in ei0 .
If i, l are distinct numbers from {0, . . . ,m} \ {i0}, then

(dτ(i) + ei) u el = (d1τ(i) + e1i ) u el.
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But d1τ(i) + e1i is not large in el, so dτ(i) + ei is not large in el.
In this way we have shown that dτ(i) + ei is not large in el whenever i, l ≤ m and i 6= i0.

Similarly one can prove that dτ(i) + ei is not large in dj for i, j ≤ m and j 6= j0. Let σ be a
permutation of the set {0, . . . ,m} defined by the conditions:

σ(i0) = j0 and σ(i) = τ(i) for i ∈ {0, . . . ,m} \ {i0}.

Our above arguments combined together show that dσ(i) + ei is not large in d whenever i ≤ m
and d ∈ d≤me≤m. For the uniqueness of σ, observe that if j 6= σ(i), then ei is not large in dj , and
dj + ei is large in dj . This finishes the proof.

Lemma 3.2 Assume that B is a Boolean algebra and d≤m, e≤m ⊆ B are partitions of 1B such
that at least one of the following conditions (a), (b) holds.

(a) There are i, j, l ≤ m, j 6= l such that ei is large both in dj and dl.
(b) There are i, j, l ≤ m, j 6= l such that di is large both in ej and el.
Then at least one of the following conditions (a’), (b’) holds.
(a’) There are i′, j′, l′ ≤ m, j′ 6= l′ such that ei′ is large both in dj′ and dl′ , and dj′ tdl′ is large

in ei′ .
(b’) There are i′, j′, l′ ≤ m, j′ 6= l′ such that di′ is large both in ej′ and el′ , and ej′ t el′ is large

in di′ .

Proof. Suppose for example that (a) holds and let i0 = i. If dj t dl is not large in ei0 , then there
is j0 ≤ m, j0 6= j, l such that dj0 is large in ei0 . If ei0 is large in dj0 , then (a’) holds for i′ := i0,
j′ := j and l′ := j0. Otherwise, there is i1 ≤ m, i1 6= i0 such that ei1 is large in dj0 . If dj0 is large
in ei1 , then (b’) holds for i′ := j0, j′ := i0 and i′ := i1. Continuing this construction, after finitely
many steps we obtain i′, j′, l′ ≤ m for which (a’) or (b’) holds.

Theorem 3.3 Assume that B is an infinite Boolean algebra, ϕ(x, y) ∈ LBA, x = x≤n, y = y≤r,
a = a≤r ⊆ B and ϕ(B, a) 6= ∅. There is an LBA-formula ψ(x, z≤m) such that

• {d≤m ∈ Bm+1 : ϕ(B, a) = ψ(B, d≤m)} is a non-empty subset of Πm(1B), and

• for any d≤m, e≤m ⊆ B, if ψ(B, d≤m) = ψ(B, e≤m) = ϕ(B, a), then d≤m, e≤m ∈ Πm(1B)
and there is a unique permutation σ of the set {0, . . . ,m} such that for any l ≤ m and
d ∈ d≤me≤m, the element dσ(l) + el is not large in d.

Proof. Suppose that B, ϕ(x, y) and a = a≤r satisfy our assumptions. Without loss of generality
we can assume that a≤r is a partition of 1B whose all elements are simple. By Lemma 0.2, we can
also assume that ϕ(x, a) is a finite Boolean combination of formulas of the form

εj(ai u xη≤n), ψj,s(ai u xη≤n) and atj(ai u xη≤n),

where i ≤ r, η ∈ {+,−}n+1, j < ω and 1 ≤ s < ω. For every i ≤ r, denote by 〈αi, βi, γi〉 the
elementary invariant of the Boolean algebra B|ai. Fix positive integers α0 and γ0 so that the
following conditions are satisfied.

• If j > α0, then the formulas εj , atj do not occur in ϕ(x, a).

• If j > α0 or s > γ0, then ψj,s does not occur in ϕ(x, a).

• For every i ≤ r, if αi < ω, then α0 ≥ αi and γ0 ≥
∑

{s:αs=αi,γs<ω}
γi.
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Define the following formula:

θ(z, y) = ∀u≤n∀v≤n [En,α0,γ0(u≤n, v≤n, z) −→ (ϕ(u≤n, y)←→ ϕ(v≤n, y))] .

Of course, by our choice of α0 and γ0, B |= θ(ai, a) for every i ≤ r. Fix c≤m, a partition of 1B ,
satisfying the following conditions:

• if i ≤ r, then ai ≤ cl for some l ≤ m,

• B |= θ(cl, a) for every l,

• for every l ≤ m, cl is simple,

• if l1 < l2 ≤ m and B |= θ(cl1 t cl2 , a), then cl1 t cl2 is not simple.

For every tuple d ∈ Bn+1 we define a function

fd : {+,−}n+1 × {0, . . . ,m} −→ INVα0,γ0

as follows:
fd(η, l) = Invα0,γ0(B|al u dη≤n),

where η ∈ {+,−}n+1 and l ≤ m. Let

{f0, . . . , ft} = {fd : d ∈ Bn+1 and B |= ϕ(d, a)},

and for every i ≤ t define the following LBA-formula:

%i(x≤n, z≤m) =
∧

η∈{+,−}n+1

∧
l≤m

σα0,γ0
fi(η,l)

(zl u xη≤n).

It is easy to see that
B |= %i(d, c≤m) iff fd = fi

for every i ≤ t and d ∈ Bn+1. Let

%(x≤n, z≤m) =
∨
i≤t

%i(x≤m, z≤m).

Claim 1. %(B, c≤m) = ϕ(B, a).

Proof of Claim 1. Fix a tuple d = d≤n ∈ Bn+1 and suppose that B |= ϕ(d, a). Then fd = fi
for some i ≤ t. For every η ∈ {+,−}n+1, l ≤ m and 〈α, β, γ〉 ∈ INVα0,γ0 we have that

fi(η, l) = fd(η, l) = 〈α, β, γ〉 ⇐⇒ B |= σα0,γ0
〈α,β,γ〉(cl u d

η
≤m).

This means that
B |= σα0,γ0

fi(η,l)
(cl u dη≤m)

for every η ∈ {+,−}n and l ≤ m. Hence B |= %i(d, c≤m) and B |= %(d, c≤m).
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In this way we have shown that ϕ(B, a) ⊆ %(B, c≤m). To prove the reverse inclusion, suppose
that B |= %(d, c≤m). Then B |= %i(d≤n, c≤m) for some i ≤ t, which means that fd = fi. Choose a
tuple e ∈ Bn+1 such that fi = fe and B |= ϕ(e, a). The equality fd = fe implies that

B |=
∧
l≤m

∧
η∈{+,−}n+1

∧
〈α,β,γ〉∈INVα0,γ0

(
σα0,γ0
〈α,β,γ〉(cl u d

η
)←→ σα0,γ0

〈α,β,γ〉(cl u e
η)
)
.

Define the tuples d0, . . . , dm+1 by the following conditions:

• d0 = d,

• cl u dl+1 = cl u e for every l ≤ m and

• c′l u dl+1 = c′l u dl for every l ≤ m.

It is clear that dm+1 = e and B |= En,α0,γ0(dl, dl+1, cl) for every l ≤ m. Hence B |= ϕ(dl, a) ←→
ϕ(dl+1, a) for l ≤ m. Since B |= ϕ(dm+1, a), we infer that B |= ϕ(d, a), which finishes the proof of
Claim 1.

Let

θ′(z, z≤m) = ∀u≤n∀v≤n [En,α0,γ0(u≤n, v≤n, z) −→ (%(u≤n, z≤m)←→ %(v≤n, z≤m))] .

It is evident from Claim 1 that θ′(B, c≤m) = θ(B, a). Put

ψ(x, z≤m) = %(x, z≤m) ∧ z≤m ∈ Πm(1) ∧
∧
l≤m

θ′(zl, z≤m) ∧

∧
{l1<l2≤m:cl1tcl2 is simple }

¬θ′(zl1 t zl2 , z≤m) ∧
∧
l≤m

σα0,γ0
Invα0,γ0

(B|cl)(zl).

Obviously, ψ(B, c≤m) = %(B, c≤m) = ϕ(B, a). The definition of ψ(x, z≤m) assures that for every
d≤m ∈ Bm+1, if ϕ(B, a) = ψ(B, d≤m), then d≤m ∈ Πm(1B).

Claim 2. If d≤m ∈ Bm+1 and ϕ(B, a) = ψ(B, d≤m), then each element of the tuple d≤m is
simple.

Proof of claim 2. The claim is obvious if Inv(B) 6= 〈ω, 0, 0〉, because then α0 ≥ max(α0, . . . , αm)
and Invα0,γ0(c≤m) = Invα0,γ0(d≤m). So assume that Inv(B) = 〈ω, 0, 0〉 and let

J = {i ≤ m : Inv(B|ci) = 〈ω, 0, 0〉},
J ′ = {i ≤ m : Inv(B|di) = 〈ω, 0, 0〉}.

Again, our assumptions guarantee that if j 6∈ J , then α0 ≥ αj and Invα0,γ0(B|cj) = Invα0,γ0(B|dj)
whenever j 6∈ J . This implies that if j 6∈ J , then dj is simple and Inv(B|dj) 6= 〈ω, 0, 0〉, so J ′ ⊆ J .
To finish the proof of the claim, we only have to show that J ′ = J . This is clear if |J | = 1. Suppose
that |J | ≥ 2 and J ′ ( J . Then there are i ∈ J ′ and j, l ∈ J , j 6= l such that di is large in cj and in
cl. The element cj t cl is simple and B |= ¬θ(cj t cl, a). Define an equivalence relation ∼ on Bn+1

as follows:
g≤n ∼ h≤n ⇐⇒ B |= ϕ(g≤n, a)←→ ϕ(h≤n, a).
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Since B |= θ(cj , a) ∧ θ(cl, a), ∼ contains E
cj
n,α0,γ0 ∪ Ecln,α0,γ0 . We know that ψ(B, d≤m) = ϕ(B, a),

so θ′(B, d≤m) = θ(B, a). Since B |= θ′(di, d≤m), we have that B |= θ(di, a), and ∼ contains

Edin,α0,γ0 . Hence ∼ contains E
diu(cjtcl)
n,α0,γ0 . By Lemma 2.8, ∼ contains E

cjtcl
α0,γ0 , which means that

B |= θ(cj t cl, a), a contradiction.

Now assume that d≤m, e≤m ∈ Bn+1 and ϕ(B, a) = ψ(B, d≤m) = ψ(B, e≤m). Then the tuples
d≤m, e≤m are partitions of 1B into simple elements. By Lemma 3.1, we will be done if we prove
the following claim.

Claim 3. There is a permutation σ of the set {0, . . . ,m} such that for any i ≤ m and d ∈
d≤me≤m, dσ(i) + ci is not large in d.

Proof of Claim 3. The claim is trivial for m = 0, so let m ≥ 1 and suppose for a contradiction
that the claim does not hold for m. Then, by Lemma 3.1, there are i, j, l ≤ m, j 6= l such that ei
is large in dj and in dl, or di is large in ej and in el. By Lemma 3.2, without loss of generality we
can assume that ei is large in dj and in dl, and dj t dl is large in ei. Since dj , dl, ei are all simple,
by Lemma 2.7, also dj t dl is simple. As in the proof of Claim 2 we have that

B |= θ(dj , a) ∧ θ(dl, a) ∧ θ(ei u (dj t dl), a) ∧ ¬θ(dj t dl, a).

Let ∼ be the equivalence relation on Bn+1 defined as in the proof of Claim 2. The relation ∼
contains E

dj
n,α0,γ0 ∪Edlα0,γ0 ∪E

(djtdl)uei
α0,γ0 . By Theorem 2.8 for a := dj , b := dl and c := (dj tdl)u ei,

∼ contains also E
djtdl
n,α0,γ0 , which means that B |= θ(dj t dl, a), a contradiction.

This finishes the proof of the theorem.

Proposition 3.4 Assume that B is an infinite Boolean algebra and n ∈ N+. Then the following
conditions are equivalent.

(a) |B/In(B)| ≤ 2.
(b) If r ∈ N+ and X ⊆ Br is a non-empty definable set, then there is an LBA-formula ψ(x, z≤m)

such that

• {d≤m ∈ Bm+1 : X = ψ(B, d≤m)} is a nonempty subset of Πm(1B), and

• for any d≤m, e≤m ∈ Bm+1, if X = ψ(B, d≤m) = ψ(B, e≤m), then there is a unique permu-
tation σ of the set {0, . . . ,m} such that dσ(i) + ei ∈ In−1(B) and dσ(i) + ei is not large in d
whenever i ≤ m and d ∈ d≤me≤m.

Proof. (a)=⇒(b). Let B be an infinite Boolean algebra with |B/In(B)| ≤ 2, r ∈ N+ and X ⊆ Br
a non-empty definable set. Fix an LBA-formula ψ(x, z≤m) satisfying the assertion of Theorem 3.3
and partitions d≤m, e≤m of 1B for which X = ψ(B, d≤m) = ψ(B, e≤m). Denote by σ the unique
permutation of the set {0, . . . ,m} such that for any i ≤ m and d ∈ d≤me≤m, the element dσ(i) + ei
is not large in d. Below we consider two cases.

Case 1. B = In(B). For any i, j ≤ m, (dσ(i) + ei) u dj ∈ In−1(B). So dσ(i) + ei ∈ In−1(B).
Case 2. |B/In(B)| = 2. In this case there are a unique i0 ≤ m such that ei0 6∈ In(B), and a

unique j0 ≤ m such that dj0 6∈ In(B). We claim that σ(i0) = j0. Suppose for a contradiction that
this is not true. Then (dσ(i0) + ei0) u dj0 6∈ In(B), which means that dσ(i0) + ei0 is large in dj0
contradicting Theorem 3.3. So σ(i0) = j0.
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The element dj0 + ei0 is not large in ei for i ≤ m. Thus, if i 6= i0, then (dj0 + ei0) u ei ∈
In−1(B). This implies that dj0 u e′i0 = (dj0 + ei0)u e′i0 ∈ In−1(B). A similar argument shows that
d′j0 u ei0 ∈ In−1(B). Hence dj0 + ei0 ∈ In−1(B).

Now, let l ≤ m and l 6= i0. As previously, (dσ(l) + el) u ei ∈ In−1(B) for i 6= i0. Also

(dσ(l) + el) u ei0 = d′j0 u dσ(l) u ei0 ≤ d
′
j0 u ei0 ∈ In−1(B).

Hence dσ(l) + el ∈ In−1(B).
(b)=⇒(a). Let B be a Boolean algebra with |B/In(B)| ≥ 4 and a ∈ B an element for which

a+ In(B) is not ∅-definable. We can assume that a satisfies the following additional conditions.

• In case B/In(B) is atomic, a+ In(B) is an atom of B/In(B).

• In case B/In(B) is not atomic, a+In(B) is atomless as an element of B/In(B) and a′+In(B)
is not atomic as an element of B/In(B).

Our choice of a guarantees that the elements 0B , a, a
′, 1B belong to distinct cosets of In(B). In

particular, a, a′ 6∈ In(B). Consider the following {a}-definable set:

X = {c ∈ B : a+ c ∈ In(B)} = {c ∈ B : B |= εn(a+ c)}.

Fix an LBA-formula ψ(x, z≤m) such that {e≤m ∈ Bm+1 : X = ψ(B, e≤m)} is a nonempty subset
of Πm(1B) and a partition d≤m ∈ Πm(1B) for which X = ψ(B, d≤m). Since X is not ∅-definable,
m ≥ 1. We will show how to find a partition e≤m ∈ Πm(1B) such that X = ψ(B, e≤m) and for
every permutation σ of the set {0, . . . ,m}, there are i ≤ m and d ∈ d≤me≤m such that dσ(i) + ei
is large in d or dσ(i) + ei 6∈ In−1(B). We consider three cases.

Case 1. There is i ≤ m such that di u a, d′i u a 6∈ In(B) or di u a′, d′i u a′ 6∈ In(B).

Assume for example that the first alternative holds. Fix i < j ≤ m such that di u a, dj u a 6∈
In(B). There is d ∈ (0B , a u di) such that d ∈ In(B) \ In−1(B). Then

Inv(B|a u di u d′) = Inv(B|a u di) and Inv(B|a u (dj t d)) = Inv(B|a u dj).

Define ei = d′i u d′, ej = dj t d and el = dl for l 6∈ {i, j}. The tuple e≤m is a partition of 1B
and tp(e≤m/a) = tp(d≤m/a). Consequently, X = ψ(B, e≤m). Let σ be a permutation of the set
{0, . . .m}. If σ(i) = i, then

dσ(i) + ei = di + (di u d′) = d 6∈ In−1(B).

If σ(i) = j, then
dσ(i) + ei = dj + (di u d′) > dj , so dσ(i) + ei 6∈ In−1(B).

Finally, if σ(i) 6∈ {i, j}, then

dσ(i) + ei = dl + ei > ei, so dσ(i) + ei 6∈ In−1(B).

Case 2. There is i ≤ m such that d′i ∈ In(B).

Fix j ≤ m, j 6= i. Let c = a t dj . Then a + c = dj u a′ ∈ In(B) and the formula εn(c + x)
defines X. There is d ∈ (0B , (au di)t dj) such that Inv(B|d) = Inv(B|dj) and the elements du d′j
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and d′ u dj are both large in d t dj . Define: ei = (di t dj) u d′, ej = d and el = dl for l 6∈ {i, j}.
The tuple e≤m is a partition of 1B and tp(cd≤m) = tp(ce≤m). Consequently, X = ψ(B, e≤m).
Let σ be a permutation of the set {0, . . . ,m}. If σ(j) = j, then dσ(j) + ej = dj + d > d′ u dj , so
dσ(j) + ej is large in dj . If σ(j) = i, then dσ(j) + ej = di + d > d′ u di, so dσ(j) + ej is large in di.
If σ(j) = l 6∈ {i, j}, then dσ(j) + ej = dl + d > dl, so dσ(j) + ej is large in dl.

Case 3. There are i < j ≤ m such that di + a ∈ In(B) and dj + a′ ∈ In(B).

There is d ∈ (0B , audi) such that d ∈ In(B)\In−1(B). Define c = aud′, ei = d′udi, ej = djtd
and el = dl for l 6∈ {i, j}. Then e≤m is a partition of 1B and tp(ad≤m) = tp(ce≤m). Consequently,
the set defined by the formula εn(c + x) is equal to ψ(B, e≤m). Since a + c ∈ In(B), the formula
εn(x + c) defines X and X = ψ(B, e≤m). Proceeding as in Case 1, one can show that if σ is a
permutation of the set {0, . . . ,m} and l ≤ n, then dσ(l) + el 6∈ In−1(B).

Corollary 3.5 [We3, Theorem 4.8] Assume that B is an infinite Boolean algebra. Then the
following conditions are equivalent.

(a) |B/I(B)| ≤ 2.
(b) If r ∈ N+ and X ⊆ Br is a non-empty definable set, then there is an LBA-formula ψ(x, z≤m)

such that

• {d≤m ∈ Bm+1 : X = ψ(B, d≤m)} is a nonempty subset of Πm(1B), and

• for any d≤m, e≤m ∈ Bm+1, if X = ψ(B, d≤m) = ψ(B, e≤m), d≤m is a permutation of e≤m.

Proposition 3.6 Assume that B is an infinite Boolean algebra with Inv(B) = 〈ω, 0, 0〉, r ∈ N+

and X ⊆ Br is a definable set. Then there are a positive integer α and an LBA-formula ψ(x, z≤m)
such that

• {d≤m ∈ Bm+1 : X = ψ(B, d≤m)} is a nonempty subset of Πm(1B), and

• for any d≤m, e≤m ∈ Bm+1, if X = ψ(B, d≤m) = ψ(B, e≤m), then there is a unique permuta-
tion σ of the set {0, . . . ,m} such that for any i ≤ m and d ∈ d≤me≤m, dσ(i) + ei is not large
in d and dσ(i) + ei ∈ Iα(B).

Proof. Fix a nonempty set X ⊆ Br defined by ϕ(x, a) ∈ LBA(B). Let ψ(x, z≤m) be the formula
obtained as in proof of Theorem 3.3. We claim that ψ(x, z≤m) satisfies the assertion of Proposition
3.6. Assume for a contradiction that for every positive integer α, there are partitions dα≤m, e

α
≤m ∈

Πm(1B) such that

• X = ψ(B, dα≤m) = ψ(B, eα≤m) and

• for every permutation σ of the set {0, . . . ,m}, there are i ≤ m and d ∈ dα≤meα≤m such that
dασ(i) + eαi 6∈ Iα(B).

Then there are B1 � B and partitions d≤m, e≤m ∈ Πm(1B1) such that ψ(B1, a) = ψ(B1, d≤m) =
ψ(B1, e≤m) and for every permutation σ of {0, . . .m}, there are i ≤ m and d ∈ d≤me≤m such that
Inv(B|d u (dσ(i) + ei)) = 〈ω, 0, 0〉. The latter means that dσ(i) + ei is large in d, which contradicts

Theorem 3.3.
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4 Elimination of imaginaries

Assume that M is a multisorted structure for a multisorted language L and let n ∈ N+. For
any finite collection M0, . . . ,Mn of sorts in M, any ∅-definable set X ⊆ M0 × . . . ×Mn and any
∅-definable equivalence relation E on X, denote by SE the set of all equivalence classes of E and
by fE the function from X onto SE sending a ∈ X to [a]E . In case E is the equality on a sort N
from M, we identify N with N/E. The structure M together with all sorts SE and functions fE
will be denoted byMeq. If E is a family of ∅-definable equivalence relations on ∅-definable subsets
of products of finite collections of sorts in M, then M(E) denotes the multisorted structure M
together with all sorts SE and functions fE , where E ∈ E . The multisorted language ofM(E) will
be denoted by L(E).

We say that a multisorted structure M admits elimination of imaginaries iff for any finite
collection M0, . . . ,Mn of sorts in M, any ∅-definable set X ⊆M0 × . . .×Mn and any ∅-definable
equivalence relation E on X, there is a ∅-definable function f from X into a product of some finite
collection of sorts in M such that for any a, b ∈ X, M |= E(a, b) iff f(a) = f(b). We say that a
complete theory for a multisorted language admits elimination of imaginaries iff every model of T
does. Clearly, for any multisorted structure M, if Th(M) admits elimination of imaginaries, then
also M does.

Proposition 4.1 Assume that M is a multisorted L-structure and E is a family of ∅-definable
equivalence relations on ∅-definable subsets of products of finite collections of sorts in M. Then
the following conditions are equivalent.

(a) M(E) admits elimination of imaginaries.
(b) If M0, . . . ,Mn is a collection of sorts in M, X ⊆ M0 × . . . ×Mn is a ∅-definable (in M)

set and E is a ∅-definable (in M) equivalence relation on X, then there exist a collection of sorts
N0, . . . , Nk in M(E) and a ∅-definable (in M(E)) function f : X −→ N0 × . . .×Nk such that for
any a, b ∈ X,

M |= E(a, b) iff f(a) = f(b).

Proof. The implication from (a) to (b) is trivial. To prove that (b) implies (a), assume that E is
a family of ∅-definable (in M) equivalence relations on ∅-definable (in M) subsets of products of
finite collections of sorts in M. Fix a finite collection M0, . . . ,Mn of sorts in M(E), a ∅-definable
(in M(E)) set X ⊆M0 × . . .×Mn and a parameter-free formula E(x0, . . . , xn, y0, . . . , yn) ∈ L(E)
defining an equivalence relation E on X. Then, for every i ≤ n, we can find a finite collection
Mi,0, . . . ,Mi,li of sorts in M, a ∅-definable (in M) set Xi ⊆ Mi,0 × . . . ×Mi,li and a ∅-definable
(in M) equivalence relation Ei on Xi such that Mi = Xi/Ei = fEi [Xi], where fEi(x) = [x]Ei
whenever x ∈ Xi. Let

Z = {a0 . . . an ∈ X0 × . . .×Xn : 〈fE0
(a0), . . . , fEn(an)〉 ∈ X}.

Clearly, the set Z is ∅-definable in M. There is an L-formula ψ(u0, . . . , un, v0, . . . , vn) such that
for every i ≤ n, |ui| = |vi| = li + 1 and for any a≤n, b≤n ∈ Z,

M |= ψ(a≤n, b≤n) iff M(E) |= E(fE0(a0), . . . , fEn(an), fE0(b0), . . . , fEn(bn)).

The formula ψ(u≤n, v≤n) defines an equivalence relation F on Z. By (b) there is a collection
N0, . . . , Nk of sorts in M(E) and a ∅-definable (in M(E)) function

g : Z −→ N0 × . . .×Nk
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such that for any a, b ∈ Z, M |= ψ(a, b) iff g(a) = g(b).
Now, define a function f : X −→ N0 × . . . ×Nk by the following condition: f(a) = b iff there

is u≤n ∈ X0 × . . . × Xn such that a = 〈fE0
(u0), . . . , fEn(un)〉 and g(u≤n) = b. Note that f is

∅-definable inM(E) and for any a1, a2 ∈ X, f(a1) = f(a2) iff M(E) |= E(a1, a2). This finishes the
proof.

Assume that B is an infinite Boolean algebra. The proof of Theorem 3.3 provides us with
an algorithm how, given an LBA-formula ϕ(x, y) ∈ LBA together with a tuple of parameters
a ∈ B|y|, to find a canonical LBA-formula ψϕ,a(x, z) and a tuple of parameters c ∈ B|z| such
that ϕ(B, a) = ψ(B, c) and c is a partition of 1B determined up to almost a permutation (see the
definition below).

Definition 4.2 Assume that B is an infinite Boolean algebra, m < ω and d≤m, e≤m are partitions
of 1B. We say that e≤m is almost a permutation of d≤m if there exists a unique permutation σ
of the set {0, . . . ,m} such that for any l ≤ m and any d ∈ d≤me≤m, the element dσ(l) + el is not
large in d.

For every LBA-formula ψϕ,a(x, z) obtained in the way described above, denote by Eψϕ,a the

∅-definable equivalence relation on B|z| defined by the following condition.

The tuples d≤m, e≤m ∈ Bm+1 are Fψϕ,a -equivalent iff either d≤m, e≤m 6∈ Πm(1B), or
d≤m, e≤m ∈ Πm(1B) and ψϕ,a(B, d≤m) = ψϕ,a(B, e≤m).

Let EB be the family of all equivalence relations Fψϕ,a on cartesian powers of B appearing as a

result of the above procedure for all possible LBA-formulas ϕ(x, y) and all tuples a ∈ B|y|.
After these introductory definitions and remarks, we are in a position to state and prove our

concluding result.

Theorem 4.3 Let B be an infinite Boolean algebra. The multisorted structure B(EB), where EB
denotes the family of ∅-definable equivalence relations on cartesian powers of B defined above,
admits elimination of imaginaries.

Proof. It is enough to show that B and B(EB) satisfy condition (b) of Proposition 4.1.
Suppose that n ∈ N+, X ⊆ Bn is a ∅-definable set and E(x, y) is an LBA-formula defining

an equivalence relation E on X. By Theorem 3.3, Proposition 3.4 and Proposition 3.6, for every
a ∈ X, we can find an LBA-formula ψE,a(x, z≤m(a)) and such that

• {d≤m(a) ∈ Bm(a)+1 : E(B, a) = ψE,a(B, d≤m(a))} is a non-empty subset of Πm(a)(1B), and

• for any d≤m(a), e≤m(a) ∈ Πm(a)(1B), if ϕ(B, a) = ψE,a(B, d≤m(a)) = ψE,a(B, e≤m(a)), then
e≤m(a) is almost a permutation of d≤m(a); moreover, if Inv(B) = 〈α, 0, 1〉, where 2 ≤ α < ω,
then dσ(l) + el ∈ Iα−2(B).

For every a ∈ X, denote by X(a) the set of all tuples b ∈ X for which the following conditions
hold.

• {d≤m(a) ∈ Bm(a)+1 : E(B, b) = ψE,a(B, d≤m(a))} is a non-empty subset of Πm(1B), and

• for any d≤m(a), e≤m(a) ∈ Πm(a)(1B), if E(B, b) = ψE,a(B, d≤m(a)) = ψE,a(B, e≤m(a)), then
e≤m(a) is almost a permutation of d≤m(a).
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For every a ∈ X, X(a) is a ∅-definable subset of X containing a. Moreover, X(a) is a union of
some equivalence classes of E. For a ∈ X, we consider the ∅-definable equivalence relation FψE,a
on Bm(a)+1 defined before Theorem 4.3. Let fa : X(a) −→ Bm(a)+1/FψE,a denote the function
defined as follows:

fa(b) = c/FψE,a iff E(B, b) = ψE,a(B, c).

Obviously, for any b1, b2 ∈ X(a),

fa(b1) = fa(b2) iff B |= E(b1, b2).

Since the formula ψE,a(x, z≤m(a)) constructed in the proof of Theorem 3.3 for the formula E
and a ∈ X depends only on E and Inv(a), by an elementary compactness argument there are
a0, . . . , ak ∈ X such that X = X(a0)∪ . . .∪X(ak). Define a partition X0, . . . , Xk of X as follows:
X0 = X(a0) and Xi = X(ai) \ (X(a0)∪ . . .∪X(ai−1)) for 1 ≤ i ≤ k (without loss of generality the
sets X0, . . . , Xk are non-empty). Define a map

f : X −→ Bm(a0)+1/FψE,a0 × . . .×B
m(ak)+1/EψE,ak

as follows: if b ∈ X, then f(b) = 〈f0(b), . . . , fk(b)〉, where

fi(b) =

{
fai(b) if b ∈ Xi

〈0, . . . , 0〉/FψE,ai otherwise

for any i ≤ k. It is clear that f is ∅-definable in B(EB) and for any b1, b2 ∈ X,

B |= E(b1, b2) iff f(b1) = f(b2).

In this way we have shown that B and EB satisfy condition (b) of Proposition 4.1. Hence the
multisorted L(EB)-structure B(EB) admits elimination of imaginaries.
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