FUSION OVER A VECTOR SPACE

ANDREAS BAUDISCH, AMADOR MARTIN-PIZARRO, MARTIN ZIEGLER

Institut für Mathematik Humboldt-Universität zu Berlin D-10099 Berlin, Germany

Institut Camille Jordan Université Claude Bernard Lyon 1 69622 Villeurbanne cedex, France

Mathematisches Institut Albert-Ludwigs-Universität Freiburg D-79104 Freiburg, Germany

Let T_1 and T_2 be two countable strongly minimal theories with the DMP whose common theory is the theory of vector spaces over a fixed finite field. We show that $T_1 \cup T_2$ has a strongly minimal completion.

Keywords: Model Theory, Strongly minimal set, Fusion

Mathematics Subject Classification 2000: 03C45, 03C50

1. Introduction

In [1] E. Hrushovski answered negatively a question posed by G. Cherlin about the existence of maximal strongly minimal sets in a countable language by constructing the *fusion* of two strongly minimal theories:

Theorem. Let T_1 and T_2 be two countable strongly minimal theories, in disjoint languages, and with the DMP, the definable multiplicity property. Then $T_1 \cup T_2$ has a strong minimal completion.

The above theorem was proved by extending Fraïssé's amalgamation procedure to a given class in which Hrushovski's " δ -function" will determine the pregeometry. In order to axiomatize the theory of the generic model, a set of representatives of rank 1 types or "codes" is chosen in a uniform way.

From now on, let F denote a fixed finite field and T_0 the theory of infinite F-vector spaces in the language $L_0 = \{0, +, -, \lambda\}_{\lambda \in F}$. In this article, we will prove the following:

Theorem 1.1. Let T_1 and T_2 be two countable strongly minimal extensions of T_0 with the DMP, and assume that their languages L_1 and L_2 intersect in L_0 . Then $T_1 \cup T_2$ has a strongly minimal completion T^{μ} .

 $\mathbf{2}$

This "fusion over a vector space" was proposed by Hrushovski in [1]. In the special case where both T_1 and T_2 are 1-based this fusion was already proved by A. Hasson and M. Hils [2]. These two articles also discuss fusions over more general T_0 .

Our proof uses Hrushovski's machinery. Schematically, it follows [3], which is a streamlined account of Hrushovski's aforementioned paper.

In [4] and [5] it was explained how to apply Hrushovski's method to construct "fields with black points" (see also [6]). In a similar way, the techniques exhibited here were used in [7] to construct "fields with red points" (fields with a predicate for an additive subgroup, of Morley rank 2), whose existence was conjectured in [8].

The theories T^{μ} , which depend on the choice of codes and of a certain function μ , have the following properties:

Theorem 1.2. Let M be a model of T^{μ} .

1. Let tr_i denote the transcendence degree in the sense of T_i and dim the F-linear dimension. Then for every finite subset A of M we have

$$\dim(A) \le \operatorname{tr}_1(A) + \operatorname{tr}_2(A).$$

2. Let N be a model of T^{μ} which extends M. Then $N \prec M$ if N is an elementary extension of M in the sense of T_1 and in the sense of T_2 .

It follows^a from 1. that for every p there is a strongly minimal structure $(K, +, \odot, \otimes)$ such that $(K, +, \odot)$ and $(K, +, \otimes)$ are algebraically closed fields of characteristic p and for every transcendental x the \odot -powers

$$1_{\odot}, x, x \odot x, x \odot x \odot x, \ldots$$

are algebraically independent in the sense of $(K, +, \otimes)$, and vice versa.

2. Codes

Let us fix the following notation: T is a countable strongly minimal extension of T_0 with the DMP, \mathbb{C} denotes the monster model of T, $\operatorname{tr}(a/A)$ the transcendence degree^b of the tuple a over A, $\operatorname{MR}(p)$ the Morley rank of the type p. Thus we have

$$\operatorname{tr}(a/A) = \operatorname{MR}(\operatorname{tp}(a/A))$$

We use

$$\phi(x) \sim^k \psi(x)$$

or $\phi(x) \sim_x^k \psi(x)$ to express that the Morley rank of the symmetric difference of ϕ and ψ is smaller than k,

^aWe will explain this at the end of the paper (p. 23).

^bThe maximal number of components of a which are algebraically independent over A.

We denote by $\langle a \rangle$ We denote by the *F*-vector space of dimension dim(*a*) spanned by the components of the *n*-tuple *a*. Subspaces of $\langle a \rangle$ can be described in terms of subspaces *U* of F^n as

$$Ua = \Big\{ \sum_{i=1}^n u_i a_i \ \Big| \ u \in U \Big\}.$$

We call a stationary type a group type (or coset type) if it is the generic type of a (coset of a) connected definable subgroup of $(\mathbb{C}^n, +)$. These properties depend only on the parallel class. So we can call a formula of Morley degree 1 a group formula (or coset formula) if it belongs to a group type (or a coset type) of the same rank.

Given a group formula $\chi(x)$ of rank k, we denote by $\operatorname{Inv}(\chi)$ the group of all $H \in \operatorname{Gl}_n(F)$ which map the generic realizations of χ to generic realizations, or, equivalently, for which $H(\chi) \sim^k \chi$. If χ is a coset formula, $\operatorname{Inv}(\chi)$ is $\operatorname{Inv}(\chi^g)$ where χ^g is the associated group formula^c.

A definable set $X \subset \mathbb{C}^n$ of rank k is *encoded* by $\varphi(x, y)$ if n = |x| and there is some tuple b such that $X \sim^k \varphi(x, b)$.

A code c is a parameter free formula $\phi_c(x, y)$ where the variable x ranges over n_c -tuples of the home sort and y over a sort of T^{eq} , with the following properties.

- $\mathbf{C}(\mathbf{i})$ All non–empty^d $\phi_c(x, b)$ have (constant) Morley rank k_c and Morley degree 1.
- **C**(ii) For every $U \leq F^{n_c}$ there is a number $k_{c,U}$ such that for every realization a of $\phi_c(x, b)$ we have:

$$\operatorname{tr}(a/b, Ua) \le k_{c,U}.$$

Moreover, equality holds for generic a. (So we have $k_c = k_{c,0}$.)

- $\mathbf{C}(\text{iii}) \dim(a) = n_c \text{ for all realizations } a \text{ of } \phi_c(x, b).$ If a is generic, then $\dim(a/\operatorname{acl}(b)) = n_c$ (this is equivalent to $k_{c,U} = k_c 1$ for all one-dimensional U).
- **C**(iv) If $\phi_c(x, b)$ and $\phi_c(x, b')$ are not empty and $\phi_c(x, b) \sim^{k_c} \phi_c(x, b')$, then b = b'.
- $\mathbf{C}(\mathbf{v})$ If some non-empty $\phi_c(x, b)$ is a coset formula, then all are. We call such a code *c* a *coset code*. In this case, the group $\operatorname{Inv}(\phi_c(x, b))$ does not depend on *b* (whenever it is defined). Hence we denote it by $\operatorname{Inv}(c)$.
- $\mathbf{C}(vi)$ For all b and m the set defined by $\phi_c(x+m,b)$ is encoded by ϕ_c .
- $\mathbf{C}(\text{vii})$ There is a subgroup G_c of $\operatorname{Gl}_{n_c}(F)$ such that:
 - a) for all $H \in G_c$ and all non–empty $\phi_c(x, b)$ there exists a (unique) b^H such that

$$\phi_c(Hx,b) \equiv \phi_c(x,b^H).$$

^cThis is $\chi(x-m)$ for a generic realization m of $\chi(x)$.

^dCodes where all $\phi(x, b)$ are empty will not be considered.

b) if
$$H \in \operatorname{Gl}_{n_c}(F) \setminus G_c$$
, then no non–empty $\phi_c(Hx, b)$ is encoded by ϕ_c

Two codes c and c' are equivalent if for every b there is some b' such that $\phi_c(x, b) \equiv \phi_{c'}(x, b')$ and vice versa. If c is a code and $H \in \operatorname{Gl}_{n_c}(F)$, then

$$\phi_{c^H}(x,y) = \phi_c(Hx,y)$$

is also a code. $\mathbf{C}(\text{viia})$ states that c^H and c are equivalent if H lies in G_c .

Corollary 2.1. Let $p \in S(b)$ be the generic type containing $\phi_c(x, b)$. Then b is the canonical base of p.

Proof. Immediate from C(iv).

A formula $\chi(x, d)$ is simple if it has Morley degree 1 and dim $(a/\operatorname{acl}(d)) = |x|$ for all generic realizations a of $\chi(x, d)$. The second half of $\mathbf{C}(\text{iii})$ states that all non-empty $\phi_c(x, b)$ are simple.

Lemma 2.2. Every simple formula $\chi(x, d)$ can be encoded by some code c.

I.e.

$$\chi(x,d) \sim^{k_c} \phi_c(x,b_0)$$

for some parameter b_0 . By $\mathbf{C}(iv)$ it follows that b_0 is uniquely determined, thus $b_0 \in dcl^{eq}(d)$.

Proof. Set $n_c = |x|$, $k_c = \operatorname{MR} \chi(x, d)$ and $k_{c,U} = \operatorname{tr}(a/d, Ua)$ for a generic realization a of $\chi(x, d)$. Let \mathbf{p} be the global type of rank k_c containing $\chi(x, d)$ and b_0 its canonical base and choose some $\phi(x, b_0) \in \mathbf{p}$ of rank k_c and degree 1. Hence, $\phi(x, b_0)$ satisfies $\chi(x, d) \sim^{k_c} \phi_c(x, b_0)$ and has property $\mathbf{C}(\operatorname{iv})$ for all b and b' realizing $\operatorname{tp}(b_0)$. We can choose $\phi(x, b_0)$ strong enough to ensure that $\mathbf{C}(\operatorname{iv})$ holds for all b and b'.

Consider now the set X of all b of same length and sort as b_0 for which $\phi(x, y)$ satisfies $\mathbf{C}(\mathbf{i})$, $\mathbf{C}(\mathbf{ii})$, $\mathbf{C}(\mathbf{iii})$ and $\mathbf{C}(\mathbf{v})$. The latter means that $\phi(x, b)$ is a coset formula iff $\phi(x, b_0)$ is, and in this case $\operatorname{Inv}(\phi(x, b)) = \operatorname{Inv}(\phi(x, b_0))$. Let us check that X is definable by a countable disjunction of formulae. This is clear for $\mathbf{C}(\mathbf{i})$ and $\mathbf{C}(\mathbf{iii})$. The second part in $\mathbf{C}(\mathbf{iii})$ is a special case of $\mathbf{C}(\mathbf{ii})$, and the latter follows from the fact that $\operatorname{tr}(a/b, Ua) \geq k_{c,U}$ is equivalent to $\operatorname{tr}(Ua/b) \leq (k_c - k_{c,U})$ for generic a in $\phi(x, b)$. We refer to [7] for $\mathbf{C}(\mathbf{v})$, where it is shown that the set of all b such that $\phi(x, b)$ is a group (coset) formula is definable.

All b realizing $tp(b_0)$ belong to X. So a finite part $\theta(y)$ of this type implies X. Then the formula

$$\phi_c'(x,y) = \phi(x,y) \land \theta(y)$$

has all properties, except possibly C(vi) and C(vii).

Given any n_c -tuple m and parameter b, the formula $\phi'_c(x+m, b)$, if non-empty, has again rank k_c and degree 1. If a is a generic realization, then a + m is a generic

realization of $\phi'_c(x, b)$ and $a + m extstyle _b m$. Let u be some vector in F^{n_c} such that $\sum_i u_i a_i \in \operatorname{acl}(b, m)$. Then $\sum_i u_i (a_i + m_i) \in \operatorname{acl}(b, m)$. By independence $\sum_i u_i (a_i + m_i) \in \operatorname{acl}(b)$, which implies u = 0. Therefore $\dim(a/\operatorname{acl}(b, m)) = n_c$ and $\phi'_c(x+m, b)$ is simple. We note also that for every U

$$\operatorname{tr}(Ua/m, b) = \operatorname{tr}(U(a+m)/m, b) = \operatorname{tr}(U(a+m)/b),$$

which implies $\operatorname{tr}(a/m, b, Ua) = k_{c,U}$.

Whence, each $\phi'_c(x+m,b)$ can be encoded by some formula $\phi'(x,y)$ which has all properties of codes except possibly $\mathbf{C}(vi)$ and $\mathbf{C}(vii)$. Since these properties can be expressed by a countable disjunction we conclude that there is a finite sequence of formulae ϕ_1, \ldots, ϕ_r with all properties except possibly $\mathbf{C}(vi)$ and $\mathbf{C}(vii)$ which encode all formulas $\phi'_c(x+m,b)$ with m and b varying. Moreover, we may assume that for all i

$$\models \forall y \exists v, w \phi_i(x, y) \sim_x^{k_c} \phi'_c(x + v, w),$$

which implies that either all or none of the ϕ_i code coset formulas and if so, they have all the same invariant group $\text{Inv}(\phi(x, b_0))$.

To prevent double-encoding, set

$$\theta_i(y) = \bigwedge_{j < i} \forall z \ \phi_j(x, z) \not\sim_x^{k_c} \phi_i(x, y).$$

Fix a sequence of different constants^e w_1, \ldots, w_r and define

$$\phi_c''(x,y,y') = \bigvee_{i=1}' \phi_i(x,y) \wedge \theta_i(y) \wedge y' \doteq w_i.$$

 $\phi_c''(x,y)$ has all properties except possibly $\mathbf{C}(\text{vii})$. To prove $\mathbf{C}(\text{vi})$ fix m and b, w such that $\phi_c''(x+m,b,w)$ is not empty. Then w equals some w_j and $\phi_c''(x+m,b,w)$ is equivalent to $\phi_j(x+m,b)$. We know that $\phi_j(x,b) \sim \phi_c'(x+m',b')$ for some m' and b'. It follows that: $\phi_j(x+m,b) \sim \phi_c'(x+(m+m'),b')$. Since $\phi_c'(x+(m+m'),b')$ can be encoded by one of the ϕ_i , property $\mathbf{C}(\text{vi})$ holds.

Only property $\mathbf{C}(\text{vii})$ remains to be obtained. Change the notation slightly and assume $\chi(x,d) \sim^{k_c} \phi_c''(x,b_0)$. Define G_c to be the set of all $A \in \text{Gl}_{n_c}(F)$ such that there is some m and some realization b of $p = \text{tp}(b_0)$ such that $\phi_c''(Ax,b_0) \sim^{k_c} \phi_c''(x+m,b)$. To show that G_c is a group, consider another $A' \in G_c$. Then there are m' and $b' \models p$ such that $\phi_c''(A'x,b) \sim^{k_c} \phi_c''(x+m',b')$. This yields $\phi_c''(AA'x,b_0) \sim^{k_c} \phi_c''(A'x+m,b) \equiv \phi_c''(A'(x+A'^{-1}m),b) \sim^{k_c} \phi_c''(x+(A'^{-1}m+m'),b')$, and so $AA' \in G_c$.

There is a $\rho(y) \in p$ such that for no $A \in \operatorname{Gl}_{n_c}(F) \setminus G_c$ there are some b which satisfies ρ and some tuple m with $\phi_c''(Ax, b_0) \sim^{k_c} \phi_c''(x+m, b)$, i.e.

$$\models \bigwedge_{A \in \operatorname{Gl}_{n_c}(F) \setminus G_c} \neg \rho_A(b_0),$$

^eIf T has no constants, use definable elements in a sort of T^{eq} .

where

$$\rho_A(y) = \exists z, y' \; \rho(y') \; \land \; \phi_c''(Ax, y) \sim_x^{k_c} \phi_c''(x+z, y').$$

Whence the formula

$$\sigma(y) = \bigwedge_{A \in G_c} \rho_A(y) \wedge \bigwedge_{A \in \operatorname{Gl}_{n_c}(F) \backslash G_c} \neg \rho_A(y)$$

is satisfied by b_0 . An easy calculation shows

$$\models \forall y \ \left(\sigma(y) \to \Bigl(\bigwedge_{A \in G_c} \sigma^A(y) \land \bigwedge_{A \in \operatorname{Gl}_{n_c}(F) \backslash G_c} \neg \sigma^A(y) \Bigr) \right),$$

where:

$$\sigma^{A}(y) = \exists y' \ \sigma(y') \ \land \ \phi_{c}''(Ax, y) \sim_{x}^{k_{c}} \phi_{c}''(x, y').$$

Write now

$$\phi_c^{\prime\prime\prime}(x,y) = \phi_c^{\prime\prime}(x,y) \wedge \sigma(y).$$

It is clear that ϕ_c''' still encodes $\chi(x, d)$ and has all properties except possibly $\mathbf{C}(\text{vii})$. For $\mathbf{C}(\text{vi})$ assume $\phi_c''(x+m,b) \sim^{k_c} \phi_c''(x,b')$. b' satisfies ρ_A iff, $\phi_c''(Ax,b') \sim^{k_c} \phi_c''(x+m',b'')$ for some m' and some realization b'' of ρ , or, equivalently, $\phi_c''(Ax,b) \sim^{k_c} \phi_c''(x+m',b'')$. Therefore b satisfies ρ_A iff b' satisfies ρ_A . This implies that b satisfies σ_A iff b' satisfies σ_A . So $\mathbf{C}(\text{vi})$ holds.

Now, $\mathbf{C}(\text{vii})$ is satisfied by ϕ_c'' and G_c only in the weaker form that $\phi_c'''(Hx, b)$ is encoded by ϕ_c''' iff $H \in G_c$. By $\mathbf{C}(\text{iv})$ we can define for each $A \in G_c$ a function $b \mapsto b^A$ such that

$$\phi_c^{\prime\prime\prime}(Ax,b) \sim^{k_c} \phi_c^{\prime\prime\prime}(x,b^A)$$

and set:

$$\phi_c(x,y) = \bigwedge_{A \in G_c} \phi_c^{\prime\prime\prime}(A^{-1}x, y^A).$$

Since $\phi_c(x,b) \sim^{k_c} \phi_c'''(x,b)$ only $\mathbf{C}(\text{viia})$ needs to be check: Given $H \in G_c$,

$$\phi_c(Hx,b) \equiv \bigwedge_{A \in G_c} \phi_c^{\prime\prime\prime}(A^{-1}Hx,b^A) \equiv \bigwedge_{A \in G_c} \phi_c^{\prime\prime\prime}(A^{-1}x,b^{HA}) \equiv \phi_c(x,b^H).$$

Lemma 2.3. There is a set C of codes with the following properties:

- C(viii) Every simple formula is encoded by a unique $c \in C$.
- C(ix) For all $c \in C$ and all $H \in \operatorname{Gl}_{n_c}(F)$ the code c^H is equivalent to some code in C.^f

^fWe will construct C so that every c^H is equivalent to some $c^{H'}$ which belongs to C. (We identify codes with equivalent formulas.)

Proof. Work inside an ω -saturated model M of T and enumerate all simple formulas χ_i , $i = 1, 2, \ldots$ with parameters in M. We need only show that all χ_i can be encoded in C. We construct C as an increasing union of finite sets $\emptyset = C_0 \subset C_1 \subset \cdots$. Assume that C_{i-1} is defined and closed under the action of Gl(F) in the sense of $\mathbf{C}(ix)$. If χ_i can be encoded in C_{i-1} , we set $C_i = C_{i-1}$. Otherwise choose some code c' which encodes χ_i . Let $\rho(b)$ express, that $\phi_{c'}(x, b)$ cannot be encoded in C_{i-1} and define

$$\phi_c(x,y) = \phi_{c'}(x,y) \land \rho(y).$$

Then ϕ_c still encodes χ_i . Moreover ϕ_c determines again a code: only $\mathbf{C}(\text{vii})$ needs to be considered. So assume that $\models \rho(b)$ and let H be in $G_{c'}$. We need to show that $\models \rho(b^H)$. Otherwise $\phi_{c'}(Hx, b)$ can be encoded in C_{i-1} . Since C_{i-1} is closed under H^{-1} , also $\phi_{c'}(x, b)$ can be encoded in C_{i-1} , which is a contradiction.

Choose now a system of right representatives A_1, \ldots, A_r of G_c in $\operatorname{Gl}_{n_c}(F)$ and set $C_i = C_{i-1} \cup \{c^{A_1}, \ldots, c^{A_r}\}$.

3. Difference sequences

As in the previous section, T denotes a countable strongly minimal extension of T_0 with the DMP.

Let us recall the following lemma, which will be useful to distinguish whether or not a formula determines a coset of a group, according to the independence among generic realizations.

Lemma 3.1. Let $\phi(x)$ be a formula over B, of Morley degree 1, and e_0 and e_1 two generic B-independent realizations. If $H \in \operatorname{Gl}_n(F)$ and $e_0 \, \bigcup_B e_0 - He_1$, then $\phi(x)$ is a coset formula and $H \in \operatorname{Inv}(\phi(x))$.

Proof. It follows from

 $MR(He_1/B, He_1 - e_0) = MR(e_0/B, He_1 - e_0) = MR(e_0/B) \ge MR(He_1/B)$

that e_0 , He_1 and $He_1 - e_0$ are pairwise independent over B. By [9] e_0 , He_1 and $He_1 - e_0$ are generic elements of B-definable cosets of a B-definable group G. Whence $\phi(x)$ is a coset formula and HG = G.

We fix now for every code c a number $m_c \ge 0$ such that for no $\phi_c(x, b)$ there is a Morley sequence (e_i) of length m_c and some b' from the same sort as b with $e_i \not\perp_b b'$ for all i.

Theorem 3.2. For every code c and any number $\mu > m_c$ there exists a parameter free formula $\Psi_c(x_0, \ldots, x_{\mu})$, whose realizations are called difference sequences (of length μ), with the following properties.

- P(i) If e'_0, \ldots, e'_{μ} , f is a Morley sequence of $\phi_c(x, b)$, then $e'_0 f, \ldots, e'_{\mu} f$ is a difference sequence.^g
- P(ii) For every difference sequence e_0, \ldots, e_{μ} there is a unique b with $\models \phi_c(e_i, b)$ for all i (we call the base of the sequence). Furthermore, b is uniquely determined if $\phi_c(e_i, b)$ holds for at least m_c many i's.^h
- P(iii) If e_0, \ldots, e_{μ} is a difference sequence then so is

$$e_0 - e_i, \ldots, e_{i-1} - e_i, -e_i, e_{i+1} - e_i, \ldots, e_{\mu} - e_i.$$

- P(iv) Let e_0, \ldots, e_{μ} be a difference sequence with base b. We distinguish two cases: Suppose c is not a coset code:
 - a) If e_i is generic in $\phi_c(x, b)$, then $e_i \not \perp_b e_i He_j$ for all $H \in \operatorname{Gl}_{n_c}(F)$ and $i \neq j$.

Suppose c is a coset code:

- b) $\phi_c(x,b)$ is a group formula.
- c) $\Psi_c(e_0, \ldots, e_{i-1}, e_i e_j, e_{i+1}, \ldots, e_{\mu})$ for all $i \neq j$.ⁱ
- d) $\Psi_c(e_0,\ldots,e_{i-1},He_i,e_{i+1},\ldots,e_{\mu})$ for all $H \in \operatorname{Inv}(c)$.ⁱ
- e) If e_i is a generic realization of $\phi_c(x, b)$, then $e_i \not \perp_b e_i He_j$ for all $i \neq j$ and $H \in \operatorname{Gl}_{n_c}(F) \setminus \operatorname{Inv}(c)$.

P(v) For all $H \in G_c$

$$\Psi_c(x_0,\ldots,x_\mu) \equiv \Psi_c(Hx_0,\ldots,Hx_\mu)$$

The *derived* sequences of of (e_i) consist of all difference sequences obtained from (e_i) by iteration of the transformations described in $\mathbf{P}(\text{iii})$. Note that all permutations can be derived and have the same base (by $\mathbf{P}(\text{ii})$). We will later use a more refined notation: if in the derivation process only indices $\leq \lambda$ are involved, then we call the resulting derivation a λ -derivation.

Proof. Consider the following property $\mathsf{DS}(e_0, \ldots, e_\mu)$:

There is some b' and a Morley sequence $e'_0, \ldots, e'_{\mu}, f'$ of $\phi_c(x, b')$ such that $e_i = e'_i - f'$.

This is clearly a partial type.

Claim: DS has all properties of Ψ_c .

Proof: Assume $e_i = e'_i - f'$ for a Morley sequence $(e'_i), f'$ of $\phi_c(x, b')$. Then (e_i) is a Morley sequence of $\phi_c(x + f', b')$ over b', f'. If $\phi_c(x + f', b') \sim \phi_c(x, b)$, then (e_i)

^gIn general b will not be the base of (e'_i) in the sense of $\mathbf{P}(ii)$.

^hIt follows that $b \in dcl(e_{i_1}, \ldots, e_{i_{m_c}})$ for all $0 \le i_1 < \cdots < i_{m_c} \le \mu$.

ⁱBy $\mathbf{P}(ii)$ and $\mu > m_c$ this new sequence has also base b.

is a Morley sequence of $\phi_c(x, b)$.^j

P(ii) Suppose $\models \phi_c(e_i, b'')$ for m_c -many *i*'s. Then there exists such an *i* with $e_i \downarrow_b b''$. Hence $MR(\phi_c(x, b) \land \phi_c(x, b'')) = k_c$ and therefore b = b''.

P(iii) Fix $i \in \{0, ..., \mu\}$ and note that $e'_0, ..., e'_{i-1}, f', e'_{i+1}, ..., e'_{\mu}, e'_i$ is again a Morley sequence for $\phi_c(x, b')$. Hence, the sequence

$$e'_{0} - e'_{i}, \dots, e'_{i-1} - e'_{i}, f' - e'_{i}, e'_{i+1} - e'_{i}, \dots, e'_{\mu} - e'_{i} = e_{0} - e_{i}, \dots, e_{i-1} - e_{i}, -e_{i}, e_{i+1} - e_{i}, \dots, e_{\mu} - e_{i}$$

also satisfies DS.

 $\mathbf{P}(\text{iva})$ If c is not a coset code, then $\phi_c(x, b)$ is not a coset formula and the claim follows from Lemma 3.1.

 $\mathbf{P}(\text{ivb})$ If c is a coset code, then $\phi_c(x, b')$ is a coset formula. Since f' is a generic realization, $\phi_c(x, b) \sim \phi_c(x + f', b')$ is a group formula.

P(ivc) Extend the Morley sequence e_0, \ldots, e_{μ} of $\phi_c(x, b)$ by f. If $\phi_c(x, b)$ is a group formula, and $i \neq j$, then

 $e_0 + f, \dots, e_{i-1} + f, e_i - e_j + f, e_{i+1} + f, \dots, e_{\mu} + f, f$

is again a Morley sequence of $\phi_c(x, b)$. It follows that

$$e_0, \ldots, e_{i-1}, e_i - e_j, e_{i+1}, \ldots, e_\mu$$

realizes DS.

 $\mathbf{P}(ivd)$ Choose f as above. If $H \in Inv(c)$, then

 $e_0 + f, \dots, e_{i-1} + f, He_i + f, e_{i+1} + f, \dots, e_{\mu} + f, f$

is also a Morley sequence of $\phi_c(x, b)$. It follows that

$$e_0, \ldots, e_{i-1}, He_i, e_{i+1}, \ldots, e_{\mu}$$

realizes DS.

 $\mathbf{P}(ive)$ Immediate from Lemma 3.1.

 $\mathbf{P}(\mathbf{v})$ If $\phi_c(Hx, b') \equiv \phi_c(x, b'')$, then $He'_0, \ldots, He'_{\mu}, Hf$ is a Morley sequence of $\phi_c(x, b'')$ and $(He_i) = (He'_i - Hf)$ satisfies DS.

^jSince b is canonical.

This proves the claim.

We will take for Ψ_c a finite part of DS. Property $\mathbf{P}(i)$ will hold automatically. The Properties $\mathbf{P}(ii)$, $\mathbf{P}(iva)$, $\mathbf{P}(ivb)$, $\mathbf{P}(ive)$ can be described by countable disjunctions, which follow from DS. Therefore these properties follow from a sufficiently strong part of DS, which we call Ψ'_c .

Assume c to be a non-coset code. Write

$$V_i(x_0, \dots, x_{\mu}) = (x_0 - x_i, \dots, x_{i-1} - x_i, -x_i, x_{i+1} - x_i, \dots, x_{\mu} - x_i)$$

and

$$V_H(x_0,\ldots,x_\mu) = (Hx_0,\ldots,Hx_\mu).$$

Let \mathcal{V} be the finite group generated by V_0, \ldots, V_μ and V_H for $H \in G_c$. The formula

$$\Psi(\bar{x}) = \bigwedge_{V \in \mathcal{V}} \Psi_c'(V(\bar{x}))$$

has now properties $\mathbf{P}(iii)$ and $\mathbf{P}(v)$, and it still belongs to DS, since DS satisfies $\mathbf{P}(iii)$ and $\mathbf{P}(v)$.

If c is a coset code, consider the group generated by $\{V_H\}_{H \in G_c}$ and the operations described in $\mathbf{P}(\text{ivc})$ and $\mathbf{P}(\text{ivd})$, and define. Ψ_c analogously. It satisfy then $\mathbf{P}(\text{ivc})$ and $\mathbf{P}(\text{ivd})$ and $\mathbf{P}(\text{v})$, and therefore^k also $\mathbf{P}(\text{iii})$.

We choose an appropriate Ψ_c (depending on $\mu)$ for every code c in such a way that

$$\Psi_{c^H}(x_0,\dots) = \Psi_c(Hx_0,\dots).$$

For two codes c and c' to be *equivalent* we also impose that

$$\Psi_c \equiv \Psi_{c'}.$$

Corollary 3.3. Lemma 2.3 remains true if Ψ_c is also taken into account.

Proof. This follows from $\mathbf{P}(v)$ and the proof of Lemma 2.3.

4. The δ -function

Consider now two strongly minimal theories T_1 and T_2 which intersect in T_0 , the theory of infinite *F*-vector spaces.

By considering their morleyization, we may assume that :

^kNote that $-1 \in Inv(c)$.

¹In this section neither countability nor the DMP will be required.

QE-Assumption . Both theories T_i have quantifier elimination. Their languages L_i are relational, except for the function symbols in L_0 .

We may also assume that codes ϕ_c and formulas Ψ_c for T_1 and T_2 are quantifier free, as well as T_i -types $\operatorname{tp}_i(a/B)$. This assumption will be dropped only in section 9.

Let \mathcal{K} be the class of all models A of $T_1^{\forall} \cup T_2^{\forall}$. So, A is an F-vector space, which occurs at the same time as a subspace of \mathbb{C}_1 and as a subspace of \mathbb{C}_2 , where \mathbb{C}_i the monster model of T_i .

For finite $A \in \mathcal{K}$, define

$$\delta(A) = \operatorname{tr}_1(A) + \operatorname{tr}_2(A) - \dim A.$$

We have that:

$$\delta(0) = 0 \tag{4.1}$$

$$\delta(\langle a \rangle) \le 1 \tag{4.2}$$

$$\delta(A+B) + \delta(A \cap B) \le \delta(A) + \delta(B) \tag{4.3}$$

Moreover, if $\dim(A/B)$ is finite^m, then we also set

$$\delta(A/B) = \operatorname{tr}_1(A/B) + \operatorname{tr}_2(A/B) - \dim A/B.$$

In case B is finite, we have that $\delta(A/B) = \delta(A+B) - \delta(B)$.

We say that B is strong in A, if $B \subset A$ and $\delta(A'/B) \ge 0$ for all finite $A' \subset A$ and denote this by

 $B \leq A$.

A proper strong extension $B \leq A$ is *minimal*, if there is no A' properly contained between B and A such that $B \leq A' \leq A$.ⁿ

Let $B \subset A$ and a be in A. We call a algebraic over B, if a is algebraic over B either in the sense of T_1 or of T_2 . We call A transcendental over B, if no $a \in A \setminus B$ is algebraic over B.

Lemma 4.1. $B \leq A$ is minimal iff $\delta(A/A') < 0$ for all A' which lie properly between B and A.

Proof. One direction is clear, since $A' \leq A$ implies $\delta(A/A') \geq 0$. Conversely, if $\delta(A/A') \geq 0$ for some A', we may assume that $\delta(A/A')$ is maximal. Then $A' \leq A$ and A is not minimal over B.

^mWe do not assume $B \subset A$.

ⁿNote that B is strong in all $A' \subset A$.

Lemma 4.2. Let $B \leq A$ be a minimal extension. One of the three following holds:

 $\delta(A/B) = 0$ and $A = \langle B, a \rangle$ for some element $a \in A \setminus B$ algebraic over B (algebraic minimal extension)

(II) $\delta(A/B) = 0$, with A transcendental over B. (prealgebraic minimal extension) (III) $\delta(A/B) = 1$ and $A = \langle B, a \rangle$, for some element a transcendental over B (transcendental minimal extension)

Note that in the prealgebraic case dim $A/B \ge 2$.

Proof. Minimality implies that there is no C, properly contained between B and A with $\delta(C/B) = 0$. We distinguish two cases.

 $\delta(A/B) = 0$. If there is an $a \in A \setminus B$ which is algebraic over B, then $\delta(\langle B, a \rangle / B) = 0$. Therefore $\langle B, a \rangle = A$.

 $\delta(A/B) > 0$. For each $a \in A \setminus B$ it follows that $\delta(\langle B, a \rangle / B) \neq 0$. Hence $\delta(\langle B, a \rangle / B) = 1$ and therefore $\langle B, a \rangle \leq A$. By minimality $\langle B, a \rangle = A$.

We define the class $\mathcal{K}^0 \subset \mathcal{K}$ as

$$\mathcal{K}^0 = \{ M \in \mathcal{K} \mid 0 \le M \}.$$

It is easy to see that \mathcal{K}^0 can be axiomatized by a set of universal $L_1 \cup L_2$ -sentences. The following results are also easy.

Lemma 4.3. Fix M in K^0 and define

$$d(A) = \min_{A \subset A' \subset M} \delta(A')$$

for all finite subspaces A of M. Then d is (on finite subspaces) the dimension function of a pregeometry i.e., d satisfies (4.1), (4.2), (4.3) and

$$d(A) \ge 0 \tag{4.4}$$

$$A \subset B \Rightarrow d(A) \le d(B). \tag{4.5}$$

Lemma 4.4. Let M be in \mathcal{K}^0 and A a finite subspace. Let A' be an extension of A, minimal with $\delta(A') = d(A)$. Then A' is the smallest strong subspace of M which contains A. We denote it by cl(A).

We call cl(A) the *closure* of A.

For arbitrary subsets X of M we will use the notation $\delta(X) = \delta\langle X \rangle$ and $d(X) = d\langle X \rangle$.

Note that $\delta(A) \leq \dim(A)$.

5. Prealgebraic codes

From now on, T_1 and T_2 are two countable strongly minimal extensions of T_0 with the DMP. We assume the **QE-Assumption** of section 4, as in the next three sections 6, 7 and 8.

Choose for each T_i a set C_i of codes as in Corollary 3.3. A prealgebraic code $c = (c_1, c_2)$ consists of two codes $c_1 \in C_1$ and $c_2 \in C_2$ with the following properties:

- $n_c := n_{c_1} = n_{c_2} = k_{c_1} + k_{c_2}$
- For all proper, non-zero subspaces U of F^{n_c}

$$k_{c_1,U} + k_{c_2,U} + \dim U < n_c. \tag{5.1}$$

Set $m_c = \max(m_{c_1}, m_{c_2})$. Note that simplicity of the $\phi_{c_i}(x, b)$ implies that $n_c \ge 2$. Note also that for every $H \in \operatorname{Gl}_{n_c}(F)$

$$c^{H} = (c_{1}^{H}, c_{2}^{H})$$

is a prealgebraic code.

Notation

Unless otherwise stated, independence $(a boxsim_b c)$ means independent both in the sense of T_1 and T_2 . If c is a prealgebraic code, a (generic) realization of $\phi_c(x,b)$ is a (generic) realization of both $\phi_{c_1}(x,b_1)$ and $\phi_{c_2}(x,b_2)$. A Morley sequence of $\phi_c(x,b)$ is a Morley sequence for both $\phi_{c_1}(x,b_1)$ and $\phi_{c_2}(x,b_2)$. Similarly, for a set X of real elements, one defines X-generic realization of $\phi_c(x,b)$ and Morley sequence of $\phi_c(x,b)$ over X. A difference sequence for c with basis $b = (b_1,b_2)$ is a difference sequence for c_i with basis b_i for each i = 1, 2.

We say c is a coset code if c_1 and c_2 are. We define then $Inv(c) = Inv(c_1) \cap Inv(c_2)$.

 T_1^{eq} and T_2^{eq} have only the home sort in common. So $b \in \text{dcl}^{\text{eq}}(A)$ (resp. $\text{acl}^{\text{eq}}(A)$) means that b is a pair consisting of an element in $\text{dcl}^{\text{eq}}_1(A)$ (resp. $\text{acl}^{\text{eq}}_1(A)$) and an element in $\text{dcl}^{\text{eq}}_2(A)$ (resp. $\text{acl}^{\text{eq}}_2(A)$). If M is a model of $T_1 \cup T_2$, then M^{eq} consists of imaginary elements in the sense of T_1 and in the sense of T_2 .

Lemma 5.1. Let $B \leq A$ be a prealgebraic minimal extension and $a = (a_1, \ldots, a_n)$ a basis for A over B. Then there is a prealgebraic code c and $b \in \operatorname{acl}^{eq}(B)$ such that a is a generic realization of $\phi_c(x, b)$.

Proof. Fix $i \in \{1, 2\}$. Choose $d_i \in \operatorname{acl}^{\operatorname{eq}}(B)$ such that $\operatorname{tp}_i(a/Bd_i)$ is stationary. Since A/B is transcendental, we have $\dim(a/\operatorname{acl}_i(B)) = n$. So we can find an L_i -formula $\chi_i(x) \in \operatorname{tp}_i(a/Bd_i)$ of Morley rank $k_i = \operatorname{MR}_i(a/Bd_i)$. Since A/B is transcendental, $\chi(x)$ is simple. By 2.3 there is a T_i -code $c_i \in C_i$ and $b_i \in \operatorname{dcl}^{\operatorname{eq}}(Bd_i)$ with $\chi_i(x) \sim^{k_i} \phi_{c_i}(x, b_i)$.

Set $c = (c_1, c_2)$ and $b = (b_1, b_2)$. It follows from

$$k_1 + k_2 - n = \operatorname{tr}_1(a/B) + \operatorname{tr}_2(a/B) - \dim(A/B) = \delta(A/B) = 0$$

that $n_c = k_{c_1} + k_{c_2}$. Inequality (5.1) follows from Lemma 4.1:

$$k_{c_1,U} + k_{c_2,U} - (n - \dim U) = \operatorname{tr}_1(a/b, Ua) + \operatorname{tr}_2(a/b, Ua) - \dim(F^n/U)$$

= $\delta(A/B + Ua) < 0.$

Lemma 5.2. Let $B \in \mathcal{K}$, $b \in \operatorname{acl}^{\operatorname{eq}}(B)$, c be a prealgebraic code, and a a B-generic realization of $\phi_c(x, b)$. Then $\langle B, a \rangle$ is a prealgebraic minimal extension of B.

Note that the isomorphism type of a over B is uniquely determined.

Proof. The proof follows from the above considerations. Note that subspaces of A containing B are of the form B + Ua for some subspace U of F^{n_c} .

Lemma 5.3. Let $B \subset A$ be in \mathcal{K} , c a prealgebraic code, b in $\operatorname{acl}^{\operatorname{eq}}(B)$ and $a \in A$ a realization of $\phi_c(x, b)$ in A not completely contained in B. Then

δ(a/B) ≤ 0.
If δ(a/B) = 0, then a is a B-generic realization of φ_c(x, b).

Proof. Let $Ua = \langle a \rangle \cap B$. Let $Ua = \langle a \rangle \cap B$. Since a is not contained in B, it follows that U is a proper subspace of F^{n_c} . Therefore

$$\delta(a/B) = \operatorname{tr}_1(a/B) + \operatorname{tr}_2(a/B) - (n - \dim U) \le k_{c_1,U} + k_{c_2,U} + \dim U - n.$$

If $U \neq 0$ the right hand side is negative. If U = 0, we have

$$\delta(a/B) = \operatorname{tr}_1(a/B) + \operatorname{tr}_2(a/B) - n \le k_{c_1} + k_{c_2} - n = 0.$$

So $\delta(a/B) = 0$ implies $\operatorname{tr}_i(a/B) = k_{c_i}$.

Lemma 5.4. Let $M \leq N$ be a strong extension of elements in \mathcal{K} . Given a prealgebraic code c, and natural numbers ε and r, there is some $\lambda = \lambda(\varepsilon, r, c) \geq 0$ such that for every difference sequence e_0, \ldots, e_{μ} in N, with basis b, and $\lambda \leq \mu$, either

• the basis of some λ -derived sequence of e_0, \ldots, e_{μ} lies in dcl^{eq}(M),

or

 for every subset A of M' with dim A ≤ ε the sequence e₀,..., e_μ contains a Morley sequence of φ_c(x, b) over M, A of length r.

Proof. By adding e_0, \ldots, e_{m_c-1} to A, we may assume that $b \in dcl^{eq}(M \cup A)$. If at least (m_c+1) many of the e_i lie in the same class of N^{n_c}/M^{n_c} , we subtract one of these elements from the others and obtain a derived sequence with m_c many elements in M, which then has a base in $dcl^{eq}(M)$. Therefore, we may assume that each class of N^{n_c}/M^{n_c} contains at most m_c many e_i 's.

Fix an A of dimension ε and set

$$d = \dim(e_0, \dots, e_{\mu} / \langle M, A \rangle).$$

Then $\dim(e_0, \ldots, e_{\mu}/M) \leq d + \varepsilon$. Thus by our assumption

$$\mu + 1 \le m_c \, |F|^{(d+\varepsilon)n_c}$$

Consider the following sets of indices.

$$X_{1} = \{ i \leq \mu \mid e_{i} \text{ generic over } M, A, e_{0}, \dots, e_{i-1} \}$$
$$X_{2} = \{ i \leq \mu \mid i \notin X_{1} \land \dim(e_{i}/M, A, e_{0}, \dots, e_{i-1}) > 0 \}$$

It is clear that

$$d \le (|X_1| + |X_2|) n_c.$$

With the notation $\delta(i) = \delta(e_i/M, A, e_0, \dots, e_{i-1})$, Lemma 5.3 implies that $\delta(i) < 0$ if $x \in X_2$, and $\delta(i) = 0$ otherwise. Since $M \leq N$ we have

$$0 \le \delta(A, e_0, \dots, e_\mu/M) = \delta(A/M) + \sum_{i=1}^\mu \delta(i) \le \varepsilon - |X_2|.$$

If we put the three inequalities together, we obtain

$$\iota + 1 < m_c |F|^{(|X_1|n_c + \varepsilon n_c + \varepsilon)n_c}.$$

If μ is large enough, $|X_1| \ge r$ and $(e_i)_{i \in X_1}$ is our Morley sequence.

6. The class \mathcal{K}^{μ}

Choose now a function μ^* which assigns to every prealgebraic code c a natural number $\mu^*(c)$. We assume that

 $\mathbf{M}(i)$ for every m and n there are only finitely many c with $\mu^*(c) = m$ and $n_c = n$.

The existence of such a function is ensured by the countability of C. Then we choose a function μ from prealgebraic codes to natural numbers such that

$$\begin{split} \mathbf{M}(\mathrm{ii}) \quad \mu(c) &\geq \lambda(n_c, 1, c) + 1\\ \mathbf{M}(\mathrm{iii}) \quad \mu(c) &\geq \lambda(0, \lambda(0, m_c + 1, c) + 1, c)\\ \mathbf{M}(\mathrm{iv}) \quad \mu(c) &\geq \lambda(0, \mu^*(c) + 1, c)\\ \mathbf{M}(\mathrm{v}) \quad \mu(c) &= \mu(d), \text{ if } c \text{ is equivalent to some } d^H.^{\mathrm{o}} \end{split}$$

From now on, all difference sequences of c will have fixed length $\mu(c) + 1$. Condition $\mathbf{M}(\mathbf{v})$ ensures that, if c is equivalent to d^H , and (e_i) is a difference sequence for d, then (He_i) is a difference sequence for c.

^oNote that every d^H can be equivalent to only one prealgebraic c.

15

The class \mathcal{K}^{μ} consists of all elements A of \mathcal{K}^{0} which do not contain a difference sequence for any prealgebraic code.

Lemma 6.1. Let $B \leq M \in \mathcal{K}^{\mu}$ and A/B prealgebraic minimal. Then there are only finitely many *B*-isomorphic copies of *A* strong in *M*.

Proof. Let *a* be a basis of A/B. Choose $d \in \operatorname{acl}^{\operatorname{eq}}(B)$ such that the types $\operatorname{tp}_i(a/Bd_i)$ are stationary. It suffices to show that for all such *d* the partial type $\operatorname{tp}_1(a/Bd_1) \cup \operatorname{tp}_2(a/Bd_2)$ has only finitely many realizations in *M*. For this we choose a prealgebraic code *c* and $b \in \operatorname{acl}^{\operatorname{eq}}(B)$ with $\models \phi_c(a, b)$ by 5.1. We now show that $\phi_c(x, b)$ has only finitely many realizations in *M*. If not, there is an infinite sequence e_0, \ldots of realizations such that e_i is not contained in $\langle B, e_0, \ldots, e_{i-1} \rangle$ (since the latter set is finite). Strongness of *B* in *M* yields that e_0 is a *B*-generic realization by 5.3. From $\delta(e_0/B) = 0$ we conclude that $\langle B, e_0 \rangle \leq M$. If we proceed in this way, we see that e_0, \ldots is a Morley sequence of $\phi_c(x, b)$ over *B*. Now **P**(i) yields that $e_1 - e_0, \ldots, e_{\mu(c)+1} - e_0$ is a difference sequence of *c*. Contradiction. \Box

Corollary 6.2. Let $B \leq M \in \mathcal{K}^{\mu}$ and $B \subset A$ finite with $\delta(A/B) = 0$. Then there are only finitely many $B \leq A' \subset M$, which are isomorphic to A over B.

Note that automatically $A' \leq M$.

Proof. Decompose the extension A/B into a sequence of minimal extensions. \Box

Corollary 6.3. Let X be a finite subset of $M \in \mathcal{K}^{\mu}$. Then the d-closure of X:

$$\operatorname{cl}_{\operatorname{d}}(X) = \{ x \in M | \operatorname{d}(Xx) = \operatorname{d}(X) \}$$

is at most countable.

Proof. Note that $cl_d(X)$ is the union of all $A' \subset M$ with $cl(X) \subset A'$ and $\delta(A'/cl(X)) = 0$.

Lemma 6.4. Let $M \in \mathcal{K}^{\mu}$, $M \leq M'$ a minimal extension and (e_i) a difference sequence for a prealgebraic code c with base $b \in \operatorname{acl}^{\operatorname{eq}}(M)$. Then c has a difference sequence (e'_i) with the same base b such that M contains $e'_0, \ldots, e'_{\mu(c)-1}$.

In particular, $e'_{\mu(c)}$ is an *M*-generic realization of $\phi_c(b)$, which generates *M'* over *M* as a vector space. Also b must be in dcl^{eq}(*M*).

Proof. Let e_i be any element which does not lie in M. By strongness of M in M' and Lemma 5.3, it follows that e_i is an M-generic realization of $\phi_c(x, b)$. We have $\delta(\langle M, e_i \rangle / M) = 0$ and whence $\langle M, e_i \rangle \leq M'$. By minimality $\langle M, e_i \rangle = M'$.

After permutation we may assume that $e_0, \ldots, e_{\nu-1}$ are in M and $e_{\nu}, \ldots, e_{\mu(c)}$ are not. Since $M \in \mathcal{K}^{\mu}$, it follows that $\nu \leq \mu(c)$. As above, for $i \geq \nu$, e_i is an M-generic realization of $\phi_c(x, b)$ which generates M'/M, so $e_i - H_i e_{\mu(c)} \in M$ for some $H_i \in \operatorname{Gl}_{n_c}(F)$. Therefore $e_i \, \bigcup_b e_i - H_i e_{\mu(c)}$. If c is a not coset code, it follows from $\mathbf{P}(iva)$ that $i = \mu(c)$. So we have $\nu = \mu(c)$. Suppose that c is a coset code. If $\nu \leq i < \mu(c)$, then $H_i \in \text{Inv}(c)$ by $\mathbf{P}(ive)$. By $\mathbf{P}(ivc)$ and $\mathbf{P}(ivd)$ the difference sequence

 $e_0, \ldots, e_{\nu-1}, e_{\nu} - H_{\nu} e_{\mu(c)}, \ldots, e_{\mu(c)-1} - H_{\mu(c)-1} e_{\mu(c)}, e_{\mu(c)}$

is as stated in the claim. Note that the above sequence has same base b.

17

7. Amalgamation

Theorem 7.1. \mathcal{K}^{μ} (and therefore also the class of all finite elements of \mathcal{K}^{μ}) has the amalgamation property with respect to strong embeddings.

Proof. Consider $B \leq M$ and $B \leq A$ in \mathcal{K}^{μ} . We want to find a strong extension $M' \in \mathcal{K}^{\mu}$ of M and a $B \leq A' \leq M'$ isomorphic to A over B. We may assume that A/B and M/B are minimal. We will show that either some "free amalgam" M' of M and A is in \mathcal{K}^{μ} or that M and A are isomorphic over B.

Case 1: A/B is algebraic. Then $A = \langle B, a \rangle$ for an element *a* which is (e.g.) algebraic over *B* in the sense of T_1 and transcendental over *B* in the sense of T_2 . There are two (non exclusive) subcases.

Subcase 1.1: $\operatorname{tp}_1(a/B)$ is realized in M. Choose some realization a' in M. Hence, a'/B is transcendental in the sense of T_2 and $a' \mapsto a$ defines an isomorphism between $M = \langle B, a' \rangle$ and A over B.

Subcase 1.2: There is some $a' \notin M$, which realizes $\operatorname{tp}_1(a/B)$ (in the sense of T_1). Define the structure $M' = \langle M, a \rangle$ by setting a to have the same T_1 -type over M as a' and being transcendental over M in the sense of T_2 i.e. M' is a *free amalgam* of A and M over B in the sense that M are A are independent over B and linearly independent^p over B. It is easy to see that, in free amalgams, $M \leq M'$ and $A \leq M'$. By Lemma 7.2 below, M' belongs to \mathcal{K}^{μ} .

Case 2: A/B is transcendental. We may assume that $M \cap A = B$. Since A/B is transcendental, we find M' = M + A in \mathcal{K} , such that M and A are independent over B. So M' is a free amalgam of M and A, and M' is a minimal extension of M and of A. If $M' \in \mathcal{K}^{\mu}$, we are done. Otherwise, 7.3 shows that, by symmetry, we may assume that M' contains a difference sequence (e_i) of a prealgebraic code c with base $b \in \operatorname{acl}^{\operatorname{eq}}(M)$. Also by Lemma 7.2, $\dim(M'/M) > 1$ and A/B is prealgebraic. By minimality and Lemma 6.4, we may also assume that $e_0, \ldots, e_{\mu(c)-1}$ are in Mand $e_{\mu(c)}$ is an M-generic realization of $\phi_c(x, b)$, which generates M' over M. Write $e_{\mu(c)} = m + a$ for $m \in M$ and $a \in A$. Therefore $\delta(a/B) = \delta(a/M) = \delta(e_{\mu(c)}/M) = 0$.

^pI.e. dim $(A/B) = \dim(A/M)$.

Whence a generates A over B. We apply now Lemma 5.4 and $\mathbf{M}(ii)$ to the extension (M'/A) and m and obtain two subcases:

Subcase 2.1: There is a $(\mu(c) - 1)$ -derived difference sequence (e'_i) with basis $b' \in \operatorname{dcl^{eq}}(A)$. Since $e'_i \in M$ for $i \leq \mu(c) - 1$, the base b' is in $\operatorname{dcl^{eq}}(M) \cap \operatorname{dcl^{eq}}(A) \subset \operatorname{acl^{eq}}(B)$. Hence $e'_{\mu(c)}$ is an M-generic realization of $\phi_c(x, b')$ which generates M' over M. Again there are two cases.

Subsubcase 2.1.1: $e'_{\mu(c)} \in A$. Since $A \in \mathcal{K}^{\mu}$, there is an $e'_i \in M$ not in A. By minimality e'_i generates M over B and $e'_{\mu(c)} \mapsto e'_i$ defines a B-isomorphism between A and M.

Subsubcase 2.1.2: $e'_{\mu(c)} \notin A$. Then $e'_{\mu(c)}$ is an *A*-generic realization of $\phi_c(x, b')$. Write $e'_{\mu(c)} = m' + a'$ for $m' \in M$ and $a' \in A$. Since $e'_{\mu(c)}$, m' and a' are pairwise independent over b', then, for $i = 1, 2, \phi_{c_i}(x, b'_i)$ is a coset formula by [9] and whence a group formula by $\mathbf{C}(v)$ and $\mathbf{P}(ivb)$. It follows that -m' and a' are generics of the same Bb'_i -definable coset of a Bb'_i -definable connected group. Thus they have the same type over *B*. As above m' generates *M* over *B* and a' generates *A* over *B*. So the map $a' \mapsto -m'$ defines an isomorphism between *A* and *M* over *B*.

Subcase 2.2: $e_0, \ldots, e_{\mu(c)-1}$ contains a B, m-generic realization of $\phi_c(x, b)$, say e_0 . For $i = 1, 2, e_0$ and $e_{\mu(c)}$ have the same T_i -type over B, m, b_i . Whence $e_0 - m$ and a have the same T_i -type over B, m, b_i , a forteriori over B. Whence $a \mapsto e_0 - m$ defines a B-isomorphism between A and M.

Lemma 7.2. Let $M \in \mathcal{K}^{\mu}$, $M \leq M'$ and $\dim(M'/M) = 1$. Then, $M' \in \mathcal{K}^{\mu}$.

Proof. Assume $M' \notin \mathcal{K}^{\mu}$ and (e_i) is a difference sequence in M' for a prealgebraic code c with base b witnessing this fact. Since $\dim(M'/M) = 1$ and $n_c \geq 2$, no e_i is an M-generic realization. By the choice of $\mu(c)$ and Lemma 5.4 we may assume that $b \in \operatorname{dcl}^{\operatorname{eq}}(M)$. By Lemma 5.3 we conclude that all e_i lie in M. Contradiction

Lemma 7.3. Let M' be a free amalgam of M and A over B and (e_i) a difference sequence in M'. Then there is a derived sequence with base in $\operatorname{acl}^{\operatorname{eq}}(M)$ or a derived sequence with base in $\operatorname{acl}^{\operatorname{eq}}(A)$.

Actually we find the base in $dcl^{eq}(M)$, $dcl^{eq}(A)$ or $acl^{eq}(B)$.

Proof. Let b be the base of $s = (e_i)$. If no derivation has a base in dcl^{eq}(M), Lemma 5.4 and **M**(iii) yield a subsequence s' of length $\lambda(0, m_c + 1, c) + 1$ which is a Morley sequence of $\phi_c(x, b)$ over M. Again by 5.4, applied to M'/A, if there is no derivation with base in dcl^{eq}(A), there is a subsequence s'' of s' of length

 $m_c + 1$, say e_0, \ldots, e_{m_c} , which is also a Morley sequence of $\phi_c(x, b)$ over A. Set $E = \{e_0, \ldots, e_{m_c-1}\}$. Hence, $b \in dcl^{eq}(E)$ and

$$e_{m_c} \underset{b}{\cup} M, E$$
, $e_{m_c} \underset{b}{\cup} A, E$

Write every $e \in E$ as the sum of an element of M and an element of A. Define E_M to be the set of all elements in M which occur as summands, and likewise E_A , and set $E' = E_M \cup E_A$. Then also $b \in \operatorname{dcl}^{\operatorname{eq}}(E')$ and, since E' and E are interdefinable over M and as well as over A, we have

$$e_{m_c} \underset{b}{\cup} M, E'$$
, $e_{m_c} \underset{b}{\cup} A, E'$,

which implies

$$e_{m_c} \underset{B,E'}{\bigcup} M$$
 , $e_{m_c} \underset{B,E'}{\bigcup} A$.

Furthermore

$$M \bigcup_{B,E'} A$$

Write $e_{m_c} = m + a$ for $m \in M$ and $a \in A$. Then e_{m_c} , m, and a are pairwise independent over B, E'. Fix i = 1, 2. Then $\phi_{c_i}(x, b_i)$ is a group formula for a definable group G_i and b_i is the canonical parameter of G_i . Moreover, a is a generic element of an $\operatorname{acl}^{\operatorname{eq}}_i(B, E')$ -definable coset of G_i and b_i is definable from the canonical base of $p = \operatorname{tp}_i(a/\operatorname{acl}^{\operatorname{eq}}_i(B, E'))$. Note that $a \, {\color{blacklength}}_{B,E_A} E'$. So the canonical base of p is in $\operatorname{acl}^{\operatorname{eq}}_i(A)$, hence $b \in \operatorname{acl}^{\operatorname{eq}}(A)$. By symmetry $b \in \operatorname{acl}^{\operatorname{eq}}(M)$, and since M and A are independent over B, this yields $b \in \operatorname{acl}^{\operatorname{eq}}(B)$.

We call $M \in \mathcal{K}^{\mu}$ rich, if for all finite $B \leq M$ and all finite $B \leq A \in \mathcal{K}^{\mu}$ there is an $B \leq A' \leq M$, which is *B*-isomorphic to *A*. We will show in the next section (8.3) that rich structures are models of $T_1 \cup T_2$.

Corollary 7.4. There is a unique countable rich structure K^{μ} . All rich structures are $(L_1 \cup L_2)_{\infty,\omega}$ -equivalent.

8. The theory T^{μ}

Lemma 8.1. Let $M \in \mathcal{K}^{\mu}$, $b \in dcl^{eq}(M)$, c a prealgebraic code and M' a prealgebraic minimal extension of M, generated by an M-generic realization a of $\phi_c(x, b)$ as in 5.2. If M' does not belong to \mathcal{K}^{μ} , one of the following is true.

- (a) M' contains a difference sequence (e_i) for c whose elements but one lie in M.
- (b) M' contains a difference sequence for a prealgebraic code c' with base b' which contains a Morley sequence of $\phi_{c'}(x, b')$ over M of length $\mu^*(c') + 1$.

Proof. If $M' \notin \mathcal{K}^{\mu}$ there is a difference sequence (e'_i) in M' for a prealgebraic code c' with base b'. If case (b) does not occur, by $\mathbf{M}(\mathrm{iv})$ and Lemma 5.4 we may assume that $b' \in \mathrm{dcl}^{\mathrm{eq}}(M)$ and furthermore that (e'_i) is as in Lemma 6.4. So $n_{c'} = n_c = \dim(M'/M)$ and we have $He'_{\mu(c')} + m = a$ for some $H \in \mathrm{Gl}_{n_c}(F)$ and $m \in M$. By $\mathbf{C}(\mathrm{vi})$ there is a $d \in \mathrm{dcl}^{\mathrm{eq}}(M)$ with $\phi_{c_i}(x+m,b_i) \sim^{k_{c_i}} \phi_{c_i}(x,d_i)$ (i = 1, 2). Then $He'_{\mu(c')}$ is an M-generic realization of $\phi_c(x,d)$, i.e. $e'_{\mu(c')}$ is an M-generic realization of $\phi_{c^H}(x,d)$. By $\mathbf{C}(\mathrm{ix})$ there is a prealgebraic code c'' which is equivalent to c^H . We have $\phi_{c^H}(x,d) \equiv \phi_{c''}(x,b'')$ for some $b'' \in \mathrm{dcl}^{\mathrm{eq}}(M)$. By $\mathbf{C}(\mathrm{viii})$ and $\mathbf{C}(\mathrm{iv})$ we conclude c'' = c' and b'' = b'.

Finally note that (e'_i) is a difference sequence for c^H . So $(e_i) = (He'_i)$ is the desired difference sequence for c as in (a).

Corollary 8.2.

- 1. Let c be a prealgebraic code. That a structure $M \in \mathcal{K}$ contains no difference sequence for c can by expressed by a single sentence α_c .
- 2. Let c be a prealgebraic code, $M \in \mathcal{K}^{\mu}$ a model of $T_1 \cup T_2$. That no extension of M in \mathcal{K}^{μ} is generated by a generic realization of some $\phi_c(x, b)$ with $b \in dcl^{eq}(M)$ can be expressed by an sentence β_c .
- 3. Let $M \in \mathcal{K}^{\mu}$ be a model of $T_1 \cup T_2$. That M has no prealgebraic minimal extension in \mathcal{K}^{μ} can be expressed by a set of sentences.

Proof. 1. Let
$$\alpha_c = \neg \exists x_0, \ldots, x_{\mu(c)} (\Psi_{c_1}(x_0, \ldots, x_{\mu(c)}) \land \Psi_{c_2}(x_0, \ldots, x_{\mu(c)})).$$

2. Fix i = 1, 2 and let M be a submodel of \mathbb{C}_i . Let $m \in M$, $\phi(x, m)$ an L_i -formula of Morley rank k and degree 1, and $a \in \mathbb{C}_i$ be an M-generic realization of $\phi(x, m)$. There is a uniform way to translate a quantifier free property $\psi(a, m)$ of a, m into a quantifier free property $\psi^*(m)$ of m: Set

$$\psi^*(y) = \mathrm{MR}_x(\phi(x, y) \land \psi(x, y)) \doteq k$$

This shows that, if $M \in \mathcal{K}$ and a is an M-generic realization of $\phi_c(x, b)$, then any $L_1 \cup L_2$ -sentence α about $\langle M, a \rangle$ can be translated into an $L_1 \cup L_2$ -sentence $\alpha^c(b)$ about M.

Now there is only a finite set C_c of codes c' which can occur in (b) of 8.1 since $(\mu^*(c') + 1)n_{c'} \leq \dim(M'/M) = n_c$. So set

$$\beta_c = \forall y_c \; \alpha_c^c(y_c) \land \bigwedge_{c' \in C_c} \forall y_{c'} \; \alpha_{c'}^c(y_{c'}).$$

The variables $y_c, y_{c'}$ are understood to range over appropriate sorts of M^{eq} .

3. This follows from 2. and Lemma 5.1.

We now introduce the theory T^{μ} described by the following axioms, which by the above are elementarily expressible.

Axioms of T^{μ} *M* is model of T^{μ} iff

- (i) $M \in \mathcal{K}^{\mu}$
- (ii) M is a model of $T_1 \cup T_2$
- (iii) No prealgebraic minimal extension of M belongs to \mathcal{K}^{μ} .

Theorem 8.3. Rich structures are exactly the ω -saturated models of T^{μ} .

Proof. Let M be an ω -saturated model of T^{μ} . In order to show that M is rich, we consider a finite strong subspace B of M and a minimal extension $A \in \mathcal{K}^{\mu}$ of B. We want to find a copy $B \leq A' \leq M$ of A/B.

case (I): A/B is algebraic. Since M is a model of $T_1 \cup T_2$, it has no proper algebraic extension in \mathcal{K} . So A' exists by 7.1.

case (II): A/B is prealgebraic. Since M has no prealgebraic minimal extension, 7.1 forces to obtain a copy of A in M.

case (III): A/B is transcendental. Since A/B is generated by a transcendental element we have to find an $a' \in M$ which is transcendental over B such that $\langle B, a' \rangle \leq M$. Since this equivalent to realize a partial type, and since M is ω -saturated, it suffices to find a' in an elementary extension M' of M. Choose M' uncountable. By 6.3 $\operatorname{cl}_{d}(B) \leq M'$ is countable. For every $a' \in M' \setminus \operatorname{cl}_{d}(B)$, we have $\delta(a'/B) = 1$ and $\langle B, a' \rangle \leq M'$.

Assume now that M is rich. We show first that M is a model of T^{μ} .

Axiom (ii): By Lemma 7.2 there are elements in \mathcal{K}^{μ} of arbitrary finite dimension. So M is infinite and we need only show that M is algebraically closed in the sense of T_1 and of T_2 .

Let a be an element in $\operatorname{acl}_1(M)$ and transcendental over M in the sense of T_2 . Therefore, a is 1-algebraic over a finite subset B of M. We may assume that $B \leq M$. Since (by Lemma 7.2) $B \leq \langle B, a \rangle \in \mathcal{K}^{\mu}$, there is a copy of a over B in M. This implies that M acl₁-closed. Likewise M is algebraically closed in the sense of T_2 .

Axiom (iii): Let M' be a prealgebraic minimal extension generated by an M-generic realization a of $\phi_c(x, b)$. Assume $M' \in \mathcal{K}^{\mu}$. Choose a finite subspace $C_0 \leq M$ with $b \in \operatorname{dcl}^{\operatorname{eq}}(C_0)$. Then $C_0 \leq \langle C_0, a \rangle$. Since M is rich, M contains a copy e_0 of a over C_0 with $C_1 = \langle C_0, e_0 \rangle \leq M$. Continuing this way we obtain an infinite Morley sequence

 e_0, e_1, \ldots of $\phi_c(x, b)$. By $\mathbf{P}(i), e_1 - e_0, \ldots, e_{\mu(c)+1} - e_0$ is a difference sequence for c.

Choose an ω -saturated $M' \equiv M$. By the above we know that M' is rich. Since $M' \equiv_{\infty,\omega} M$, this implies that M is ω -saturated.

9. Proof of the Theorem

In this section quantifier elimination for T_1 and T_2 will no longer be required. Hence, replace in the class \mathcal{K} embeddings by elementary maps in the sense of T_1 and in the sense of T_2 , which we call *bi-elementary* maps.

Corollary 9.1. T^{μ} is complete. Two tuples a and a' in two models M and M' have the same type iff there is bi-elementary bijection

 $f: \operatorname{cl}(a) \to \operatorname{cl}(a')$

which maps a to a'.

Proof. K^{μ} is a model of T^{μ} . So is T^{μ} consistent. Let M be any model of T^{μ} . By theorem 8.3 there is a rich $M' \equiv M$. So $M' \equiv_{\infty,\omega} K^{\mu}$, which proves completeness.

To prove the second statement choose ω -saturated elementary extensions $M \prec N$ and $M' \prec N'$. It is easy to see^q that $M \leq N$ and $M' \leq N'$, so "cl" does not increase.

Since M' and N' are rich, f is even ∞, ω -elementary.

For the converse suppose that a and a' have the same type. There is a bi-elementary map $f : cl(a) \to M'$ which maps a onto a'. We write A' for f(cl(a)). Then $d(a) = \delta(cl(a)) = \delta(A')$. It follows $d(a') \leq d(a)$ and d(a') = d(a) by symmetry. A' has, like cl(a), no proper subset A'' which contains a' and with $\delta(A'') = d(a')$. This implies A' = cl(a').

Theorem 9.2. T^{μ} is strongly-minimal and d is the dimension function of the natural pregeometry on models of T^{μ} , *i.e.*

 $\mathrm{MR}(a/B) = \mathrm{d}(a/B).$

Proof. Let *a* be a single element. Types tp(a/B) with d(a/B) = 0 are algebraic by Corollary 6.2. It follows from 9.1, that there is only one type with d(a/B) = 1.^r

^qIf $M \leq N$, there is a tuple $a \in N$ with $\delta(a/M) < 0$. We find a finite $B \leq M$ with $\delta(a/B) < 0$. This is witnessed by the truth of an $L_1 \cup L_2$ -formula $\phi(a, \bar{b})$. However, $\phi(x, \bar{b})$ is not satisfiable in M, whence $M \neq N$.

^rThis is the type of elements a which are transcendental over cl(B) and for which (cl(B), a) is strong in the considered model.

This implies strong minimality. The rest of the claim follows from the fact that d describes the algebraic closure. $\hfill \Box$

This completes the proof of 1.1.

Proof. [Proof of Theorem 1.2, 2.] Let M be an elementary submodel of N in the sense of T_1 and T_2 . By Corollary 9.1 we need only show that M is strong in N. Suppose not and pick a smallest extension $M \subset H \subset N$ with negative $\delta(H/M)$. We may decompose H/M into a sequence $M \leq K \subset H$, where $\delta(K/M) = 0$ and $H = \langle K, a \rangle$ for some element a with $\delta(a/K) = -1$. Since M is a model of Axiom (iii), we have M = K. a is algebraic over M in the sense of T_1 (and T_2), whence by Axiom (ii) we have $a \in M$. Contradiction.

Corollary 9.3. If T_1 and T_2 are model-complete, then T^{μ} is also model-complete.

We now prove the last remark of the introduction. Let T_1 and T_2 be both the theory of algebraically closed fields of characteristic p formulated in $L_1 = \{+, \odot\}$ and $L_2 = \{+, \otimes\}$. Let T^{μ} be a fusion over

 T_0 , the theory of \mathbb{F}_p -vector spaces. Let x be transcendental (in the sense of T^{μ}), x_i the *i*-th power in the sense of T_1 and $X = \{x_i \mid i \in \mathbb{N}\}$. Let S be any subset of X. Then dim(S) = |S| and tr₁ $(S) \leq 1$. It follows from Theorem 1.2, 1. that tr₂ $(S) \geq |S| - 1$. We claim that tr₂(S) = |S|, which is clear for $S = \{x_0\}$. Assume the contrary. Then, for some n > 0, we have tr₂ $(x_1 \dots, x_n/x_0) < n$. But x_{n+1} is also transcendental, therefore it has the same type as x. So tr₂ $(x_{n+1}, \dots, x_{(n+1)n}/x_0) < n$. It follows

$$\operatorname{tr}_2(x_1,\ldots,x_n,x_{n+1},\ldots,x_{(n+1)n}/x_0) < 2n-1,$$

which is impossible.

Remark 9.4. E. Hrushovski stated in [1] that the DMP survives the fusion. M. Hils explained a proof of this fact to us, which shows also that T^{μ} has the DMP.

References

- Ehud Hrushovski. Strongly minimal expansions of algebraically closed fields. Israel J. Math., 79:129–151, 1992.
- [2] Assaf Hasson and Martin Hils. Fusion over sublanguages. J. Symbolic Logic, 2005. to appear.
- [3] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. Hrushovski's Fusion. In F. Haug, B. Löwe, and T. Schatz, editors, *Festschrift für Ulrich Felgner zum 65. Geburtstag*, volume 4 of *Studies in Logic*, pages 15–31. College Publications, London, 2007.
- [4] Bruno Poizat. Le carré de l'egalité. J. Symbolic Logic, 64(3):1338–1355, 1999.
- [5] J. Baldwin and K. Holland. Constructing ω -stable structures: rank 2 fields. J. Symbolic Logic, 65(1):371–391, 2000.
- [6] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. On fields and colors. Algebra i Logika, 45(2), 2006. (http://arxiv.org/math.L0/0605412).

- [7] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. Red fields. J. Symbolic Logic, 2005. to appear.
- [8] Bruno Poizat. L'égalité au cube. J. Symbolic Logic, 66:1647–1676, 2001.
- [9] Martin Ziegler. A note on generic types. (http://arxiv.org/math.LO/0608433), 2006.