FUSION OVER A VECTOR SPACE

ANDREAS BAUDISCH, AMADOR MARTIN-PIZARRO, MARTIN ZIEGLER
Institut für Mathematik
Humboldt-Universität zu Berlin
D-10099 Berlin, Germany
Institut Camille Jordan
Université Claude Bernard Lyon 1 69622 Villeurbanne cedex, France
Mathematisches Institut
Albert-Ludwigs-Universität Freiburg
D-79104 Freiburg, Germany

Abstract

Let T_{1} and T_{2} be two countable strongly minimal theories with the DMP whose common theory is the theory of vector spaces over a fixed finite field. We show that $T_{1} \cup T_{2}$ has a strongly minimal completion.

Keywords: Model Theory, Strongly minimal set, Fusion Mathematics Subject Classification 2000: 03C45, 03C50

1. Introduction

In [1] E. Hrushovski answered negatively a question posed by G. Cherlin about the existence of maximal strongly minimal sets in a countable language by constructing the fusion of two strongly minimal theories:

Theorem . Let T_{1} and T_{2} be two countable strongly minimal theories, in disjoint languages, and with the DMP, the definable multiplicity property. Then $T_{1} \cup T_{2}$ has a strong minimal completion.

The above theorem was proved by extending Fraïssé's amalgamation procedure to a given class in which Hrushovski's " δ-function" will determine the pregeometry. In order to axiomatize the theory of the generic model, a set of representatives of rank 1 types or "codes" is chosen in a uniform way.

From now on, let F denote a fixed finite field and T_{0} the theory of infinite F vector spaces in the language $L_{0}=\{0,+,-, \lambda\}_{\lambda \in F}$. In this article, we will prove the following:

Theorem 1.1. Let T_{1} and T_{2} be two countable strongly minimal extensions of T_{0} with the DMP, and assume that their languages L_{1} and L_{2} intersect in L_{0}. Then $T_{1} \cup T_{2}$ has a strongly minimal completion T^{μ}.

This "fusion over a vector space" was proposed by Hrushovski in [1]. In the special case where both T_{1} and T_{2} are 1-based this fusion was already proved by A. Hasson and M. Hils [2]. These two articles also discuss fusions over more general T_{0}.

Our proof uses Hrushovski's machinery. Schematically, it follows [3], which is a streamlined account of Hrushovski's aforementioned paper.

In [4] and [5] it was explained how to apply Hrushovski's method to construct "fields with black points" (see also [6]). In a similar way, the techniques exhibited here were used in [7] to construct "fields with red points" (fields with a predicate for an additive subgroup, of Morley rank 2), whose existence was conjectured in [8].

The theories T^{μ}, which depend on the choice of codes and of a certain function μ, have the following properties:

Theorem 1.2. Let M be a model of T^{μ}.

1. Let tr_{i} denote the transcendence degree in the sense of T_{i} and dim the F-linear dimension. Then for every finite subset A of M we have

$$
\operatorname{dim}(A) \leq \operatorname{tr}_{1}(A)+\operatorname{tr}_{2}(A)
$$

2. Let N be a model of T^{μ} which extends M. Then $N \prec M$ if N is an elementary extension of M in the sense of T_{1} and in the sense of T_{2}.

It follows ${ }^{\text {a }}$ from 1. that for every p there is a strongly minimal structure $(K,+, \odot, \otimes)$ such that $(K,+, \odot)$ and $(K,+, \otimes)$ are algebraically closed fields of characteristic p and for every transcendental x the $\odot-$ powers

$$
1_{\odot}, x, x \odot x, x \odot x \odot x, \ldots
$$

are algebraically independent in the sense of $(K,+, \otimes)$, and vice versa.

2. Codes

Let us fix the following notation: T is a countable strongly minimal extension of T_{0} with the DMP, \mathbb{C} denotes the monster model of $T, \operatorname{tr}(a / A)$ the transcendence degree ${ }^{\mathrm{b}}$ of the tuple a over $A, \operatorname{MR}(p)$ the Morley rank of the type p. Thus we have

$$
\operatorname{tr}(a / A)=\operatorname{MR}(\operatorname{tp}(a / A))
$$

We use

$$
\phi(x) \sim^{k} \psi(x)
$$

or $\phi(x) \sim_{x}^{k} \psi(x)$ to express that the Morley rank of the symmetric difference of ϕ and ψ is smaller than k,
${ }^{a}$ We will explain this at the end of the paper (p. 23).
${ }^{\mathrm{b}}$ The maximal number of components of a which are algebraically independent over A.

We denote by $\langle a\rangle$ We denote by the F-vector space of $\operatorname{dimension} \operatorname{dim}(a)$ spanned by the components of the n-tuple a. Subspaces of $\langle a\rangle$ can be described in terms of subspaces U of F^{n} as

$$
U a=\left\{\sum_{i=1}^{n} u_{i} a_{i} \mid u \in U\right\} .
$$

We call a stationary type a group type (or coset type) if it is the generic type of a (coset of a) connected definable subgroup of $\left(\mathbb{C}^{n},+\right.$). These properties depend only on the parallel class. So we can call a formula of Morley degree 1 a group formula (or coset formula) if it belongs to a group type (or a coset type) of the same rank.

Given a group formula $\chi(x)$ of rank k, we denote by $\operatorname{Inv}(\chi)$ the group of all $H \in \mathrm{Gl}_{n}(F)$ which map the generic realizations of χ to generic realizations, or, equivalently, for which $H(\chi) \sim^{k} \chi$. If χ is a coset formula, $\operatorname{Inv}(\chi)$ is $\operatorname{Inv}\left(\chi^{g}\right)$ where χ^{g} is the associated group formula ${ }^{\mathrm{c}}$.

A definable set $X \subset \mathbb{C}^{n}$ of rank k is encoded by $\varphi(x, y)$ if $n=|x|$ and there is some tuple b such that $X \sim^{k} \varphi(x, b)$.

A code c is a parameter free formula $\phi_{c}(x, y)$ where the variable x ranges over n_{c}-tuples of the home sort and y over a sort of T^{eq}, with the following properties.
$\mathbf{C}(\mathrm{i})$ All non-empty ${ }^{\mathrm{d}} \phi_{c}(x, b)$ have (constant) Morley rank k_{c} and Morley degree 1.
\mathbf{C} (ii) For every $U \leq F^{n_{c}}$ there is a number $k_{c, U}$ such that for every realization a of $\phi_{c}(x, b)$ we have:

$$
\operatorname{tr}(a / b, U a) \leq k_{c, U}
$$

Moreover, equality holds for generic a. (So we have $k_{c}=k_{c, 0}$.)
\mathbf{C} (iii) $\operatorname{dim}(a)=n_{c}$ for all realizations a of $\phi_{c}(x, b)$. If a is generic, then $\operatorname{dim}(a / \operatorname{acl}(b))=n_{c}$ (this is equivalent to $k_{c, U}=k_{c}-1$ for all one-dimensional $U)$.
$\mathbf{C}($ iv $)$ If $\phi_{c}(x, b)$ and $\phi_{c}\left(x, b^{\prime}\right)$ are not empty and $\phi_{c}(x, b) \sim^{k_{c}} \phi_{c}\left(x, b^{\prime}\right)$, then $b=b^{\prime}$.
$\mathbf{C}(\mathrm{v})$ If some non-empty $\phi_{c}(x, b)$ is a coset formula, then all are. We call such a code c a coset code. In this case, the group $\operatorname{Inv}\left(\phi_{c}(x, b)\right)$ does not depend on b (whenever it is defined). Hence we denote it by $\operatorname{Inv}(c)$.
$\mathbf{C}(\mathrm{vi})$ For all b and m the set defined by $\phi_{c}(x+m, b)$ is encoded by ϕ_{c}.
\mathbf{C} (vii) There is a subgroup G_{c} of $\mathrm{Gl}_{n_{c}}(F)$ such that:
a) for all $H \in G_{c}$ and all non-empty $\phi_{c}(x, b)$ there exists a (unique) b^{H} such that

$$
\phi_{c}(H x, b) \equiv \phi_{c}\left(x, b^{H}\right) .
$$

[^0]b) if $H \in \mathrm{Gl}_{n_{c}}(F) \backslash G_{c}$, then no non-empty $\phi_{c}(H x, b)$ is encoded by ϕ_{c}.

Two codes c and c^{\prime} are equivalent if for every b there is some b^{\prime} such that $\phi_{c}(x, b) \equiv$ $\phi_{c^{\prime}}\left(x, b^{\prime}\right)$ and vice versa. If c is a code and $H \in \mathrm{Gl}_{n_{c}}(F)$, then

$$
\phi_{c^{H}}(x, y)=\phi_{c}(H x, y)
$$

is also a code. \mathbf{C} (viia) states that c^{H} and c are equivalent if H lies in G_{c}.
Corollary 2.1. Let $p \in \mathrm{~S}(b)$ be the generic type containing $\phi_{c}(x, b)$. Then b is the canonical base of p.

Proof. Immediate from $\mathbf{C}(\mathrm{iv})$.
A formula $\chi(x, d)$ is simple if it has Morley degree 1 and $\operatorname{dim}(a / \operatorname{acl}(d))=|x|$ for all generic realizations a of $\chi(x, d)$. The second half of $\mathbf{C}($ iii $)$ states that all non-empty $\phi_{c}(x, b)$ are simple.

Lemma 2.2. Every simple formula $\chi(x, d)$ can be encoded by some code c.
I.e.

$$
\chi(x, d) \sim^{k_{c}} \phi_{c}\left(x, b_{0}\right)
$$

for some parameter b_{0}. By \mathbf{C} (iv) it follows that b_{0} is uniquely determined, thus $b_{0} \in \operatorname{dcl}^{\mathrm{eq}}(d)$.

Proof. Set $n_{c}=|x|, k_{c}=\operatorname{MR} \chi(x, d)$ and $k_{c, U}=\operatorname{tr}(a / d, U a)$ for a generic realization a of $\chi(x, d)$. Let p be the global type of rank k_{c} containing $\chi(x, d)$ and b_{0} its canonical base and choose some $\phi\left(x, b_{0}\right) \in \mathrm{p}$ of rank k_{c} and degree 1 . Hence, $\phi\left(x, b_{0}\right)$ satisfies $\chi(x, d) \sim^{k_{c}} \phi_{c}\left(x, b_{0}\right)$ and has property $\mathbf{C}(i v)$ for all b and b^{\prime} realizing $\operatorname{tp}\left(b_{0}\right)$. We can choose $\phi\left(x, b_{0}\right)$ strong enough to ensure that $\mathbf{C}(\mathrm{iv})$ holds for all b and b^{\prime}.

Consider now the set X of all b of same length and sort as b_{0} for which $\phi(x, y)$ satisfies $\mathbf{C}(\mathrm{i}), \mathbf{C}(\mathrm{ii}), \mathbf{C}(\mathrm{iii})$ and $\mathbf{C}(\mathrm{v})$. The latter means that $\phi(x, b)$ is a coset formula iff $\phi\left(x, b_{0}\right)$ is, and in this case $\operatorname{Inv}(\phi(x, b))=\operatorname{Inv}\left(\phi\left(x, b_{0}\right)\right)$. Let us check that X is definable by a countable disjunction of formulae. This is clear for $\mathbf{C}(\mathrm{i})$ and $\mathbf{C}(\mathrm{iii})$. The second part in \mathbf{C} (iii) is a special case of $\mathbf{C}($ ii $)$, and the latter follows from the fact that $\operatorname{tr}(a / b, U a) \geq k_{c, U}$ is equivalent to $\operatorname{tr}(U a / b) \leq\left(k_{c}-k_{c, U}\right)$ for generic a in $\phi(x, b)$. We refer to [7] for $\mathbf{C}(\mathrm{v})$, where it is shown that the set of all b such that $\phi(x, b)$ is a group (coset) formula is definable.

All b realizing $\operatorname{tp}\left(b_{0}\right)$ belong to X. So a finite part $\theta(y)$ of this type implies X. Then the formula

$$
\phi_{c}^{\prime}(x, y)=\phi(x, y) \wedge \theta(y)
$$

has all properties, except possibly $\mathbf{C}($ vi) and $\mathbf{C}($ vii $)$.
Given any n_{c}-tuple m and parameter b, the formula $\phi_{c}^{\prime}(x+m, b)$, if non-empty, has again rank k_{c} and degree 1 . If a is a generic realization, then $a+m$ is a generic
realization of $\phi_{c}^{\prime}(x, b)$ and $a+m \downarrow_{b} m$. Let u be some vector in $F^{n_{c}}$ such that $\sum_{i} u_{i} a_{i} \in \operatorname{acl}(b, m)$. Then $\sum_{i} u_{i}\left(a_{i}+m_{i}\right) \in \operatorname{acl}(b, m)$. By independence $\sum_{i} u_{i}\left(a_{i}+\right.$ $\left.m_{i}\right) \in \operatorname{acl}(b)$, which implies $u=0$. Therefore $\operatorname{dim}(a / \operatorname{acl}(b, m))=n_{c}$ and $\phi_{c}^{\prime}(x+m, b)$ is simple. We note also that for every U

$$
\operatorname{tr}(U a / m, b)=\operatorname{tr}(U(a+m) / m, b)=\operatorname{tr}(U(a+m) / b)
$$

which implies $\operatorname{tr}(a / m, b, U a)=k_{c, U}$.
Whence, each $\phi_{c}^{\prime}(x+m, b)$ can be encoded by some formula $\phi^{\prime}(x, y)$ which has all properties of codes except possibly $\mathbf{C}(\mathrm{vi})$ and $\mathbf{C}($ vii). Since these properties can be expressed by a countable disjunction we conclude that there is a finite sequence of formulae $\phi_{1}, \ldots, \phi_{r}$ with all properties except possibly $\mathbf{C}($ vi) and \mathbf{C} (vii) which encode all formulas $\phi_{c}^{\prime}(x+m, b)$ with m and b varying. Moreover, we may assume that for all i

$$
\models \forall y \exists v, w \phi_{i}(x, y) \sim_{x}^{k_{c}} \phi_{c}^{\prime}(x+v, w),
$$

which implies that either all or none of the ϕ_{i} code coset formulas and if so, they have all the same invariant $\operatorname{group} \operatorname{Inv}\left(\phi\left(x, b_{0}\right)\right)$.

To prevent double-encoding, set

$$
\theta_{i}(y)=\bigwedge_{j<i} \forall z \phi_{j}(x, z) \chi_{x}^{k_{c}} \phi_{i}(x, y) .
$$

Fix a sequence of different constants ${ }^{\mathrm{e}} w_{1}, \ldots, w_{r}$ and define

$$
\phi_{c}^{\prime \prime}\left(x, y, y^{\prime}\right)=\bigvee_{i=1}^{r} \phi_{i}(x, y) \wedge \theta_{i}(y) \wedge y^{\prime} \doteq w_{i}
$$

$\phi_{c}^{\prime \prime}(x, y)$ has all properties except possibly $\mathbf{C}($ vii $)$. To prove \mathbf{C} (vi) fix m and b, w such that $\phi_{c}^{\prime \prime}(x+m, b, w)$ is not empty. Then w equals some w_{j} and $\phi_{c}^{\prime \prime}(x+m, b, w)$ is equivalent to $\phi_{j}(x+m, b)$. We know that $\phi_{j}(x, b) \sim \phi_{c}^{\prime}\left(x+m^{\prime}, b^{\prime}\right)$ for some m^{\prime} and b^{\prime}. It follows that: $\phi_{j}(x+m, b) \sim \phi_{c}^{\prime}\left(x+\left(m+m^{\prime}\right), b^{\prime}\right)$. Since $\phi_{c}^{\prime}\left(x+\left(m+m^{\prime}\right), b^{\prime}\right)$ can be encoded by one of the ϕ_{i}, property $\mathbf{C}(\mathrm{vi})$ holds.

Only property $\mathbf{C}($ vii) remains to be obtained. Change the notation slightly and assume $\chi(x, d) \sim^{k_{c}} \phi_{c}^{\prime \prime}\left(x, b_{0}\right)$. Define G_{c} to be the set of all $A \in \mathrm{Gl}_{n_{c}}(F)$ such that there is some m and some realization b of $p=\operatorname{tp}\left(b_{0}\right)$ such that $\phi_{c}^{\prime \prime}\left(A x, b_{0}\right) \sim^{k_{c}}$ $\phi_{c}^{\prime \prime}(x+m, b)$. To show that G_{c} is a group, consider another $A^{\prime} \in G_{c}$. Then there are m^{\prime} and $b^{\prime} \models p$ such that $\phi_{c}^{\prime \prime}\left(A^{\prime} x, b\right) \sim^{k_{c}} \phi_{c}^{\prime \prime}\left(x+m^{\prime}, b^{\prime}\right)$. This yields $\phi_{c}^{\prime \prime}\left(A A^{\prime} x, b_{0}\right) \sim^{k_{c}}$ $\phi_{c}^{\prime \prime}\left(A^{\prime} x+m, b\right) \equiv \phi_{c}^{\prime \prime}\left(A^{\prime}\left(x+A^{\prime-1} m\right), b\right) \sim^{k_{c}} \phi_{c}^{\prime \prime}\left(x+\left(A^{\prime-1} m+m^{\prime}\right), b^{\prime}\right)$, and so $A A^{\prime} \in$ G_{c}.

There is a $\rho(y) \in p$ such that for no $A \in \mathrm{Gl}_{n_{c}}(F) \backslash G_{c}$ there are some b which satisfies ρ and some tuple m with $\phi_{c}^{\prime \prime}\left(A x, b_{0}\right) \sim^{k_{c}} \phi_{c}^{\prime \prime}(x+m, b)$, i.e.

$$
\models \bigwedge_{A \in \mathrm{G1}_{n_{c}}(F) \backslash G_{c}} \neg \rho_{A}\left(b_{0}\right),
$$

${ }^{\mathrm{e}}$ If T has no constants, use definable elements in a sort of T^{eq}.
where

$$
\rho_{A}(y)=\exists z, y^{\prime} \rho\left(y^{\prime}\right) \wedge \phi_{c}^{\prime \prime}(A x, y) \sim_{x}^{k_{c}} \phi_{c}^{\prime \prime}\left(x+z, y^{\prime}\right) .
$$

Whence the formula

$$
\sigma(y)=\bigwedge_{A \in G_{c}} \rho_{A}(y) \wedge \bigwedge_{A \in \mathrm{Gl}_{n_{c}}(F) \backslash G_{c}} \neg \rho_{A}(y)
$$

is satisfied by b_{0}. An easy calculation shows

$$
\vDash \forall y\left(\sigma(y) \rightarrow\left(\bigwedge_{A \in G_{c}} \sigma^{A}(y) \wedge \bigwedge_{A \in \operatorname{G1}_{n_{c}}(F) \backslash G_{c}} \neg \sigma^{A}(y)\right)\right),
$$

where:

$$
\sigma^{A}(y)=\exists y^{\prime} \sigma\left(y^{\prime}\right) \wedge \phi_{c}^{\prime \prime}(A x, y) \sim_{x}^{k_{c}} \phi_{c}^{\prime \prime}\left(x, y^{\prime}\right)
$$

Write now

$$
\phi_{c}^{\prime \prime \prime}(x, y)=\phi_{c}^{\prime \prime}(x, y) \wedge \sigma(y) .
$$

It is clear that $\phi_{c}^{\prime \prime \prime}$ still encodes $\chi(x, d)$ and has all properties except possibly $\mathbf{C}($ vii). For $\mathbf{C}\left(\right.$ vi) assume $\phi_{c}^{\prime \prime}(x+m, b) \sim^{k_{c}} \phi_{c}^{\prime \prime}\left(x, b^{\prime}\right)$. b^{\prime} satisfies ρ_{A} iff , $\phi_{c}^{\prime \prime}\left(A x, b^{\prime}\right) \sim^{k_{c}} \phi_{c}^{\prime \prime}(x+$ $m^{\prime}, b^{\prime \prime}$) for some m^{\prime} and some realization $b^{\prime \prime}$ of ρ, or, equivalently, $\phi_{c}^{\prime \prime}(A x, b) \sim^{k_{c}}$ $\phi_{c}^{\prime \prime}\left(x+\left(m^{\prime}-A^{-1} m\right), b^{\prime \prime}\right)$. Therefore b satisfies ρ_{A} iff b^{\prime} satisfies ρ_{A}. This implies that b satisfies σ_{A} iff b^{\prime} satisfies σ_{A}. So $\mathbf{C}($ vi) holds.

Now, $\mathbf{C}\left(\right.$ vii) is satisfied by $\phi_{c}^{\prime \prime \prime}$ and G_{c} only in the weaker form that $\phi_{c}^{\prime \prime \prime}(H x, b)$ is encoded by $\phi_{c}^{\prime \prime \prime}$ iff $H \in G_{c}$. By $\mathbf{C}($ iv $)$ we can define for each $A \in G_{c}$ a function $b \mapsto b^{A}$ such that

$$
\phi_{c}^{\prime \prime \prime}(A x, b) \sim^{k_{c}} \phi_{c}^{\prime \prime \prime}\left(x, b^{A}\right)
$$

and set:

$$
\phi_{c}(x, y)=\bigwedge_{A \in G_{c}} \phi_{c}^{\prime \prime \prime}\left(A^{-1} x, y^{A}\right) .
$$

Since $\phi_{c}(x, b) \sim^{k_{c}} \phi_{c}^{\prime \prime \prime}(x, b)$ only $\mathbf{C}\left(\right.$ viia) needs to be check: Given $H \in G_{c}$,

$$
\phi_{c}(H x, b) \equiv \bigwedge_{A \in G_{c}} \phi_{c}^{\prime \prime \prime}\left(A^{-1} H x, b^{A}\right) \equiv \bigwedge_{A \in G_{c}} \phi_{c}^{\prime \prime \prime}\left(A^{-1} x, b^{H A}\right) \equiv \phi_{c}\left(x, b^{H}\right) .
$$

Lemma 2.3. There is a set C of codes with the following properties:
\boldsymbol{C} (viii) Every simple formula is encoded by a unique $c \in C$.
$\boldsymbol{C}(i x)$ For all $c \in C$ and all $H \in \mathrm{Gl}_{n_{c}}(F)$ the code c^{H} is equivalent to some code in C. ${ }^{\text {f }}$

[^1]Proof. Work inside an ω-saturated model M of T and enumerate all simple formulas $\chi_{i}, i=1,2, \ldots$ with parameters in M. We need only show that all χ_{i} can be encoded in C. We construct C as an increasing union of finite sets $\emptyset=C_{0} \subset C_{1} \subset \cdots$. Assume that C_{i-1} is defined and closed under the action of $\mathrm{Gl}(F)$ in the sense of $\mathbf{C}(\mathrm{ix})$. If χ_{i} can be encoded in C_{i-1}, we set $C_{i}=C_{i-1}$. Otherwise choose some code c^{\prime} which encodes χ_{i}. Let $\rho(b)$ express, that $\phi_{c^{\prime}}(x, b)$ cannot be encoded in C_{i-1} and define

$$
\phi_{c}(x, y)=\phi_{c^{\prime}}(x, y) \wedge \rho(y)
$$

Then ϕ_{c} still encodes χ_{i}. Moreover ϕ_{c} determines again a code: only $\mathbf{C}($ vii) needs to be considered. So assume that $\models \rho(b)$ and let H be in $G_{c^{\prime}}$. We need to show that $\vDash \rho\left(b^{H}\right)$. Otherwise $\phi_{c^{\prime}}(H x, b)$ can be encoded in C_{i-1}. Since C_{i-1} is closed under H^{-1}, also $\phi_{c^{\prime}}(x, b)$ can be encoded in C_{i-1}, which is a contradiction.

Choose now a system of right representatives A_{1}, \ldots, A_{r} of G_{c} in $\mathrm{Gl}_{n_{c}}(F)$ and set $C_{i}=C_{i-1} \cup\left\{c^{A_{1}}, \ldots, c^{A_{r}}\right\}$.

3. Difference sequences

As in the previous section, T denotes a countable strongly minimal extension of T_{0} with the DMP.

Let us recall the following lemma, which will be useful to distinguish whether or not a formula determines a coset of a group, according to the independence among generic realizations.

Lemma 3.1. Let $\phi(x)$ be a formula over B, of Morley degree 1, and e_{0} and e_{1} two generic B-independent realizations. If $H \in \mathrm{Gl}_{n}(F)$ and $e_{0} \downarrow_{B} e_{0}-H e_{1}$, then $\phi(x)$ is a coset formula and $H \in \operatorname{Inv}(\phi(x))$.

Proof. It follows from

$$
\operatorname{MR}\left(H e_{1} / B, H e_{1}-e_{0}\right)=\operatorname{MR}\left(e_{0} / B, H e_{1}-e_{0}\right)=\operatorname{MR}\left(e_{0} / B\right) \geq \operatorname{MR}\left(H e_{1} / B\right)
$$

that $e_{0}, H e_{1}$ and $H e_{1}-e_{0}$ are pairwise independent over B. By [9] $e_{0}, H e_{1}$ and $H e_{1}-e_{0}$ are generic elements of B-definable cosets of a B-definable group G. Whence $\phi(x)$ is a coset formula and $H G=G$.

We fix now for every code c a number $m_{c} \geq 0$ such that for no $\phi_{c}(x, b)$ there is a Morley sequence $\left(e_{i}\right)$ of length m_{c} and some b^{\prime} from the same sort as b with $e_{i} \mathbb{X}_{b} b^{\prime}$ for all i.

Theorem 3.2. For every code c and any number $\mu>m_{c}$ there exists a parameter free formula $\Psi_{c}\left(x_{0}, \ldots, x_{\mu}\right)$, whose realizations are called difference sequences (of length μ), with the following properties.
\boldsymbol{P} (i) If $e_{0}^{\prime}, \ldots, e_{\mu}^{\prime}, f$ is a Morley sequence of $\phi_{c}(x, b)$, then $e_{0}^{\prime}-f, \ldots, e_{\mu}^{\prime}-f$ is a difference sequence. ${ }^{\mathrm{g}}$
$\boldsymbol{P}($ ii $)$ For every difference sequence e_{0}, \ldots, e_{μ} there is a unique b with $\models \phi_{c}\left(e_{i}, b\right)$ for all i (we call the base of the sequence). Furthermore, b is uniquely determined if $\phi_{c}\left(e_{i}, b\right)$ holds for at least m_{c} many i 's. ${ }^{\text {h }}$
\boldsymbol{P} (iii) If e_{0}, \ldots, e_{μ} is a difference sequence then so is

$$
e_{0}-e_{i}, \ldots, e_{i-1}-e_{i},-e_{i}, e_{i+1}-e_{i}, \ldots, e_{\mu}-e_{i}
$$

$\boldsymbol{P}(i v) L e t e_{0}, \ldots, e_{\mu}$ be a difference sequence with base b. We distinguish two cases: Suppose c is not a coset code:
a) If e_{i} is generic in $\phi_{c}(x, b)$, then $e_{i} \mathbb{X}_{b} e_{i}-H e_{j}$ for all $H \in \mathrm{Gl}_{n_{c}}(F)$ and $i \neq j$.

Suppose c is a coset code:
b) $\phi_{c}(x, b)$ is a group formula.
c) $\Psi_{c}\left(e_{0}, \ldots, e_{i-1}, e_{i}-e_{j}, e_{i+1}, \ldots, e_{\mu}\right)$ for all $i \neq j$. ${ }^{\text {i }}$
d) $\Psi_{c}\left(e_{0}, \ldots, e_{i-1}, H e_{i}, e_{i+1}, \ldots, e_{\mu}\right)$ for all $H \in \operatorname{Inv}(c) .{ }^{\text {i }}$
e) If e_{i} is a generic realization of $\phi_{c}(x, b)$, then $e_{i} \not \mathbb{X}_{b} e_{i}-H e_{j}$ for all $i \neq j$ and $H \in \mathrm{Gl}_{n_{c}}(F) \backslash \operatorname{Inv}(c)$.
$\boldsymbol{P}(v)$ For all $H \in G_{c}$

$$
\Psi_{c}\left(x_{0}, \ldots, x_{\mu}\right) \equiv \Psi_{c}\left(H x_{0}, \ldots, H x_{\mu}\right)
$$

The derived sequences of of $\left(e_{i}\right)$ consist of all difference sequences obtained from $\left(e_{i}\right)$ by iteration of the transformations described in \mathbf{P} (iii). Note that all permutations can be derived and have the same base (by $\mathbf{P}(\mathrm{ii})$). We will later use a more refined notation: if in the derivation process only indices $\leq \lambda$ are involved, then we call the resulting derivation a λ-derivation.

Proof. Consider the following property $\mathrm{DS}\left(e_{0}, \ldots, e_{\mu}\right)$:
There is some b^{\prime} and a Morley sequence $e_{0}^{\prime}, \ldots, e_{\mu}^{\prime}, f^{\prime}$ of $\phi_{c}\left(x, b^{\prime}\right)$ such that $e_{i}=e_{i}^{\prime}-f^{\prime}$.
This is clearly a partial type.

Claim: DS has all properties of Ψ_{c}.
Proof: Assume $e_{i}=e_{i}^{\prime}-f^{\prime}$ for a Morley sequence $\left(e_{i}^{\prime}\right), f^{\prime}$ of $\phi_{c}\left(x, b^{\prime}\right)$. Then $\left(e_{i}\right)$ is a Morley sequence of $\phi_{c}\left(x+f^{\prime}, b^{\prime}\right)$ over b^{\prime}, f^{\prime}. If $\phi_{c}\left(x+f^{\prime}, b^{\prime}\right) \sim \phi_{c}(x, b)$, then $\left(e_{i}\right)$
${ }^{\text {g }}$ In general b will not be the base of $\left(e_{i}^{\prime}\right)$ in the sense of \mathbf{P} (ii).
${ }^{\mathrm{h}}$ It follows that $b \in \operatorname{dcl}\left(e_{i_{1}}, \ldots, e_{i_{m_{c}}}\right)$ for all $0 \leq i_{1}<\cdots i_{m_{c}} \leq \mu$.
${ }^{i}$ By $\mathbf{P}(\mathrm{ii})$ and $\mu>m_{c}$ this new sequence has also base b.
is a Morley sequence of $\phi_{c}(x, b) .{ }^{\mathrm{j}}$
\mathbf{P} (ii) Suppose $\models \phi_{c}\left(e_{i}, b^{\prime \prime}\right)$ for m_{c}-many i 's. Then there exists such an i with $e_{i} \downarrow_{b} b^{\prime \prime}$. Hence $\operatorname{MR}\left(\phi_{c}(x, b) \wedge \phi_{c}\left(x, b^{\prime \prime}\right)\right)=k_{c}$ and therefore $b=b^{\prime \prime}$.
\mathbf{P} (iii) Fix $i \in\{0, \ldots, \mu\}$ and note that $e_{0}^{\prime}, \ldots, e_{i-1}^{\prime}, f^{\prime}, e_{i+1}^{\prime}, \ldots, e_{\mu}^{\prime}, e_{i}^{\prime}$ is again a Morley sequence for $\phi_{c}\left(x, b^{\prime}\right)$. Hence, the sequence

$$
\begin{array}{r}
e_{0}^{\prime}-e_{i}^{\prime}, \ldots, e_{i-1}^{\prime}-e_{i}^{\prime}, f^{\prime}-e_{i}^{\prime}, e_{i+1}^{\prime}-e_{i}^{\prime}, \ldots, e_{\mu}^{\prime}-e_{i}^{\prime}= \\
e_{0}-e_{i}, \ldots, e_{i-1}-e_{i},-e_{i}, e_{i+1}-e_{i}, \ldots, e_{\mu}-e_{i}
\end{array}
$$

also satisfies DS.
\mathbf{P} (iva) If c is not a coset code, then $\phi_{c}(x, b)$ is not a coset formula and the claim follows from Lemma 3.1.
$\mathbf{P}(\mathrm{ivb})$ If c is a coset code, then $\phi_{c}\left(x, b^{\prime}\right)$ is a coset formula. Since f^{\prime} is a generic realization, $\phi_{c}(x, b) \sim \phi_{c}\left(x+f^{\prime}, b^{\prime}\right)$ is a group formula.
$\mathbf{P}(\mathrm{ivc})$ Extend the Morley sequence e_{0}, \ldots, e_{μ} of $\phi_{c}(x, b)$ by f. If $\phi_{c}(x, b)$ is a group formula, and $i \neq j$, then

$$
e_{0}+f, \ldots, e_{i-1}+f, e_{i}-e_{j}+f, e_{i+1}+f, \ldots, e_{\mu}+f, f
$$

is again a Morley sequence of $\phi_{c}(x, b)$. It follows that

$$
e_{0}, \ldots, e_{i-1}, e_{i}-e_{j}, e_{i+1}, \ldots, e_{\mu}
$$

realizes DS.
\mathbf{P} (ivd) Choose f as above. If $H \in \operatorname{Inv}(c)$, then

$$
e_{0}+f, \ldots, e_{i-1}+f, H e_{i}+f, e_{i+1}+f, \ldots, e_{\mu}+f, f
$$

is also a Morley sequence of $\phi_{c}(x, b)$. It follows that

$$
e_{0}, \ldots, e_{i-1}, H e_{i}, e_{i+1}, \ldots, e_{\mu}
$$

realizes DS.
\mathbf{P} (ive) Immediate from Lemma 3.1.
$\mathbf{P}(\mathrm{v})$ If $\phi_{c}\left(H x, b^{\prime}\right) \equiv \phi_{c}\left(x, b^{\prime \prime}\right)$, then $H e_{0}^{\prime}, \ldots, H e_{\mu}^{\prime}, H f$ is a Morley sequence of $\phi_{c}\left(x, b^{\prime \prime}\right)$ and $\left(H e_{i}\right)=\left(H e_{i}^{\prime}-H f\right)$ satisfies DS.

[^2]This proves the claim.

We will take for Ψ_{c} a finite part of DS. Property $\mathbf{P}(\mathrm{i})$ will hold automatically. The Properties \mathbf{P} (ii), \mathbf{P} (iva), \mathbf{P} (ivb), \mathbf{P} (ive) can be described by countable disjunctions, which follow from DS. Therefore these properties follow from a sufficiently strong part of DS, which we call Ψ_{c}^{\prime}.

Assume c to be a non-coset code. Write

$$
V_{i}\left(x_{0}, \ldots, x_{\mu}\right)=\left(x_{0}-x_{i}, \ldots, x_{i-1}-x_{i},-x_{i}, x_{i+1}-x_{i}, \ldots, x_{\mu}-x_{i}\right)
$$

and

$$
V_{H}\left(x_{0}, \ldots, x_{\mu}\right)=\left(H x_{0}, \ldots, H x_{\mu}\right) .
$$

Let \mathcal{V} be the finite group generated by V_{0}, \ldots, V_{μ} and V_{H} for $H \in G_{c}$. The formula

$$
\Psi(\bar{x})=\bigwedge_{V \in \mathcal{V}} \Psi_{c}^{\prime}(V(\bar{x}))
$$

has now properties \mathbf{P} (iii) and $\mathbf{P}(\mathrm{v})$, and it still belongs to DS, since DS satisfies $\mathbf{P}($ iii $)$ and $\mathbf{P}(\mathrm{v})$.

If c is a coset code, consider the group generated by $\left\{V_{H}\right\}_{H \in G_{c}}$ and the operations described in \mathbf{P} (ivc) and \mathbf{P} (ivd), and define. Ψ_{c} analogously. It satisfy then \mathbf{P} (ivc) and \mathbf{P} (ivd) and $\mathbf{P}(\mathrm{v})$, and therefore ${ }^{\mathrm{k}}$ also $\mathbf{P}(\mathrm{iii})$.

We choose an appropriate Ψ_{c} (depending on μ) for every code c in such a way that

$$
\Psi_{c^{H}}\left(x_{0}, \ldots\right)=\Psi_{c}\left(H x_{0}, \ldots\right) .
$$

For two codes c and c^{\prime} to be equivalent we also impose that

$$
\Psi_{c} \equiv \Psi_{c^{\prime}}
$$

Corollary 3.3. Lemma 2.3 remains true if Ψ_{c} is also taken into account.

Proof. This follows from $\mathbf{P}(\mathrm{v})$ and the proof of Lemma 2.3.

4. The δ-function

Consider now two strongly minimal theories ${ }^{1} T_{1}$ and T_{2} which intersect in T_{0}, the theory of infinite F-vector spaces.

By considering their morleyization, we may assume that :

[^3]QE-Assumption. Both theories T_{i} have quantifier elimination. Their languages L_{i} are relational, except for the function symbols in L_{0}.

We may also assume that codes ϕ_{c} and formulas Ψ_{c} for T_{1} and T_{2} are quantifier free, as well as T_{i}-types $\operatorname{tp}_{i}(a / B)$. This assumption will be dropped only in section 9.

Let \mathcal{K} be the class of all models A of $T_{1}^{\forall} \cup T_{2}^{\forall}$. So, A is an F-vector space, which occurs at the same time as a subspace of \mathbb{C}_{1} and as a subspace of \mathbb{C}_{2}, where \mathbb{C}_{i} the monster model of T_{i}.

For finite $A \in \mathcal{K}$, define

$$
\delta(A)=\operatorname{tr}_{1}(A)+\operatorname{tr}_{2}(A)-\operatorname{dim} A
$$

We have that:

$$
\begin{gather*}
\delta(0)=0 \tag{4.1}\\
\delta(\langle a\rangle) \leq 1 \tag{4.2}\\
\delta(A+B)+\delta(A \cap B) \leq \delta(A)+\delta(B) \tag{4.3}
\end{gather*}
$$

Moreover, if $\operatorname{dim}(A / B)$ is finite ${ }^{\mathrm{m}}$, then we also set

$$
\delta(A / B)=\operatorname{tr}_{1}(A / B)+\operatorname{tr}_{2}(A / B)-\operatorname{dim} A / B
$$

In case B is finite, we have that $\delta(A / B)=\delta(A+B)-\delta(B)$.

We say that B is strong in A, if $B \subset A$ and $\delta\left(A^{\prime} / B\right) \geq 0$ for all finite $A^{\prime} \subset A$ and denote this by

$$
B \leq A
$$

A proper strong extension $B \leq A$ is minimal, if there is no A^{\prime} properly contained between B and A such that $B \leq A^{\prime} \leq A .^{\mathrm{n}}$

Let $B \subset A$ and a be in A. We call a algebraic over B, if a is algebraic over B either in the sense of T_{1} or of T_{2}. We call A transcendental over B, if no $a \in A \backslash B$ is algebraic over B.

Lemma 4.1. $B \leq A$ is minimal iff $\delta\left(A / A^{\prime}\right)<0$ for all A^{\prime} which lie properly between B and A.

Proof. One direction is clear, since $A^{\prime} \leq A$ implies $\delta\left(A / A^{\prime}\right) \geq 0$. Conversely, if $\delta\left(A / A^{\prime}\right) \geq 0$ for some A^{\prime}, we may assume that $\delta\left(A / A^{\prime}\right)$ is maximal. Then $A^{\prime} \leq A$ and A is not minimal over B.
${ }^{\mathrm{m}}$ We do not assume $B \subset A$.
${ }^{\mathrm{n}}$ Note that B is strong in all $A^{\prime} \subset A$.

Lemma 4.2. Let $B \leq A$ be a minimal extension. One of the three following holds:

$$
\delta(A / B)=0 \text { and } A=\langle B, a\rangle \text { for some element } a \in A \backslash B \text { algebraic over } B
$$ (algebraic minimal extension)

(II) $\delta(A / B)=0$, with A transcendental over B. (prealgebraic minimal extension)
(III) $\delta(A / B)=1$ and $A=\langle B, a\rangle$, for some element a transcendental over B (transcendental minimal extension)

Note that in the prealgebraic case $\operatorname{dim} A / B \geq 2$.

Proof. Minimality implies that there is no C, properly contained between B and A with $\delta(C / B)=0$. We distinguish two cases.
$\delta(A / B)=0$. If there is an $a \in A \backslash B$ which is algebraic over B, then $\delta(\langle B, a\rangle / B)=0$. Therefore $\langle B, a\rangle=A$.
$\delta(A / B)>0$. For each $a \in A \backslash B$ it follows that $\delta(\langle B, a\rangle / B) \neq 0$. Hence $\delta(\langle B, a\rangle / B)=$ 1 and therefore $\langle B, a\rangle \leq A$. By minimality $\langle B, a\rangle=A$.

We define the class $\mathcal{K}^{0} \subset \mathcal{K}$ as

$$
\mathcal{K}^{0}=\{M \in \mathcal{K} \mid 0 \leq M\} .
$$

It is easy to see that \mathcal{K}^{0} can be axiomatized by a set of universal $L_{1} \cup L_{2}$-sentences. The following results are also easy.

Lemma 4.3. Fix M in K^{0} and define

$$
\mathrm{d}(A)=\min _{A \subset A^{\prime} \subset M} \delta\left(A^{\prime}\right)
$$

for all finite subspaces A of M. Then d is (on finite subspaces) the dimension function of a pregeometry i.e., d satisfies (4.1), (4.2), (4.3) and

$$
\begin{gather*}
\mathrm{d}(A) \geq 0 \tag{4.4}\\
A \subset B \Rightarrow \mathrm{~d}(A) \leq \mathrm{d}(B) . \tag{4.5}
\end{gather*}
$$

Lemma 4.4. Let M be in \mathcal{K}^{0} and A a finite subspace. Let A^{\prime} be an extension of A, minimal with $\delta\left(A^{\prime}\right)=\mathrm{d}(A)$. Then A^{\prime} is the smallest strong subspace of M which contains A. We denote it by $\operatorname{cl}(A)$.

We call $\operatorname{cl}(A)$ the closure of A.
For arbitrary subsets X of M we will use the notation $\delta(X)=\delta\langle X\rangle$ and $\mathrm{d}(X)=\mathrm{d}\langle X\rangle$.

Note that $\delta(A) \leq \operatorname{dim}(A)$.

5. Prealgebraic codes

From now on, T_{1} and T_{2} are two countable strongly minimal extensions of T_{0} with the DMP. We assume the QE-Assumption of section 4, as in the next three sections 6,7 and 8.

Choose for each T_{i} a set C_{i} of codes as in Corollary 3.3. A prealgebraic code $c=$ $\left(c_{1}, c_{2}\right)$ consists of two codes $c_{1} \in C_{1}$ and $c_{2} \in C_{2}$ with the following properties:

- $n_{c}:=n_{c_{1}}=n_{c_{2}}=k_{c_{1}}+k_{c_{2}}$
- For all proper, non-zero subspaces U of $F^{n_{c}}$

$$
\begin{equation*}
k_{c_{1}, U}+k_{c_{2}, U}+\operatorname{dim} U<n_{c} . \tag{5.1}
\end{equation*}
$$

Set $m_{c}=\max \left(m_{c_{1}}, m_{c_{2}}\right)$. Note that simplicity of the $\phi_{c_{i}}(x, b)$ implies that $n_{c} \geq 2$. Note also that for every $H \in \mathrm{Gl}_{n_{c}}(F)$

$$
c^{H}=\left(c_{1}^{H}, c_{2}^{H}\right)
$$

is a prealgebraic code.

Notation

Unless otherwise stated, independence ($a \downarrow_{b} c$) means independent both in the sense of T_{1} and T_{2}. If c is a prealgebraic code, a (generic) realization of $\phi_{c}(x, b)$ is a (generic) realization of both $\phi_{c_{1}}\left(x, b_{1}\right)$ and $\phi_{c_{2}}\left(x, b_{2}\right)$. A Morley sequence of $\phi_{c}(x, b)$ is a Morley sequence for both $\phi_{c_{1}}\left(x, b_{1}\right)$ and $\phi_{c_{2}}\left(x, b_{2}\right)$. Similarly, for a set X of real elements, one defines X-generic realization of $\phi_{c}(x, b)$ and Morley sequence of $\phi_{c}(x, b)$ over X. A difference sequence for c with basis $b=\left(b_{1}, b_{2}\right)$ is a difference sequence for c_{i} with basis b_{i} for each $i=1,2$.

We say c is a coset code if c_{1} and c_{2} are. We define then $\operatorname{Inv}(c)=\operatorname{Inv}\left(c_{1}\right) \cap \operatorname{Inv}\left(c_{2}\right)$.
T_{1}^{eq} and T_{2}^{eq} have only the home sort in common. So $b \in \operatorname{dcl}^{\mathrm{eq}}(A)\left(\operatorname{resp} . \operatorname{acl}^{\mathrm{eq}}(A)\right)$ means that b is a pair consisting of an element in $\operatorname{dcl}^{\mathrm{eq}}{ }_{1}(A)\left(\operatorname{resp} . \operatorname{acl}^{\mathrm{eq}}{ }_{1}(A)\right)$ and an element in $\mathrm{dcl}^{\mathrm{eq}}{ }_{2}(A)$ (resp. $\left.\mathrm{acl}^{\mathrm{eq}}{ }_{2}(A)\right)$. If M is a model of $T_{1} \cup T_{2}$, then M^{eq} consists of imaginary elements in the sense of T_{1} and in the sense of T_{2}.

Lemma 5.1. Let $B \leq A$ be a prealgebraic minimal extension and $a=\left(a_{1}, \ldots, a_{n}\right)$ a basis for A over B. Then there is a prealgebraic code c and $b \in \operatorname{acl}^{\mathrm{eq}}(B)$ such that a is a generic realization of $\phi_{c}(x, b)$.

Proof. Fix $i \in\{1,2\}$. Choose $d_{i} \in \operatorname{acl}^{\mathrm{eq}}{ }_{i}(B)$ such that $\operatorname{tp}_{i}\left(a / B d_{i}\right)$ is stationary. Since A / B is transcendental, we have $\operatorname{dim}\left(a / \operatorname{acl}_{i}(B)\right)=n$. So we can find an L_{i}-formula $\chi_{i}(x) \in \operatorname{tp}_{i}\left(a / B d_{i}\right)$ of Morley rank $k_{i}=\operatorname{MR}_{i}\left(a / B d_{i}\right)$. Since A / B is transcendental, $\chi(x)$ is simple. By 2.3 there is a T_{i}-code $c_{i} \in C_{i}$ and $b_{i} \in \operatorname{dcl}^{\mathrm{eq}}{ }_{i}\left(B d_{i}\right)$ with $\chi_{i}(x) \sim^{k_{i}} \phi_{c_{i}}\left(x, b_{i}\right)$.

Set $c=\left(c_{1}, c_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$. It follows from

$$
k_{1}+k_{2}-n=\operatorname{tr}_{1}(a / B)+\operatorname{tr}_{2}(a / B)-\operatorname{dim}(A / B)=\delta(A / B)=0
$$

that $n_{c}=k_{c_{1}}+k_{c_{2}}$. Inequality (5.1) follows from Lemma 4.1:

$$
\begin{aligned}
k_{c_{1}, U}+k_{c_{2}, U}-(n-\operatorname{dim} U) & =\operatorname{tr}_{1}(a / b, U a)+\operatorname{tr}_{2}(a / b, U a)-\operatorname{dim}\left(F^{n} / U\right) \\
& =\delta(A / B+U a)<0 .
\end{aligned}
$$

Lemma 5.2. Let $B \in \mathcal{K}, b \in \operatorname{acl}^{\mathrm{eq}}(B)$, c be a prealgebraic code, and a a B-generic realization of $\phi_{c}(x, b)$. Then $\langle B, a\rangle$ is a prealgebraic minimal extension of B.

Note that the isomorphism type of a over B is uniquely determined.

Proof. The proof follows from the above considerations. Note that subspaces of A containing B are of the form $B+U a$ for some subspace U of $F^{n_{c}}$.

Lemma 5.3. Let $B \subset A$ be in \mathcal{K}, c a prealgebraic code, b in $\operatorname{acl}^{\mathrm{eq}}(B)$ and $a \in A a$ realization of $\phi_{c}(x, b)$ in A not completely contained in B. Then

1. $\delta(a / B) \leq 0$.
2. If $\delta(a / B)=0$, then a is a B-generic realization of $\phi_{c}(x, b)$.

Proof. Let $U a=\langle a\rangle \cap B$. Let $U a=\langle a\rangle \cap B$. Since a is not contained in B, it follows that U is a proper subspace of $F^{n_{c}}$. Therefore

$$
\delta(a / B)=\operatorname{tr}_{1}(a / B)+\operatorname{tr}_{2}(a / B)-(n-\operatorname{dim} U) \leq k_{c_{1}, U}+k_{c_{2}, U}+\operatorname{dim} U-n .
$$

If $U \neq 0$ the right hand side is negative. If $U=0$, we have

$$
\delta(a / B)=\operatorname{tr}_{1}(a / B)+\operatorname{tr}_{2}(a / B)-n \leq k_{c_{1}}+k_{c_{2}}-n=0 .
$$

So $\delta(a / B)=0$ implies $\operatorname{tr}_{i}(a / B)=k_{c_{i}}$.
Lemma 5.4. Let $M \leq N$ be a strong extension of elements in \mathcal{K}. Given a prealgebraic code c, and natural numbers ε and r, there is some $\lambda=\lambda(\varepsilon, r, c) \geq 0$ such that for every difference sequence e_{0}, \ldots, e_{μ} in N, with basis b, and $\lambda \leq \mu$, either

- the basis of some λ-derived sequence of e_{0}, \ldots, e_{μ} lies in $\operatorname{dcl}^{\mathrm{eq}}(M)$, or
- for every subset A of M^{\prime} with $\operatorname{dim} A \leq \varepsilon$ the sequence e_{0}, \ldots, e_{μ} contains a Morley sequence of $\phi_{c}(x, b)$ over M, A of length r.

Proof. By adding $e_{0}, \ldots, e_{m_{c}-1}$ to A, we may assume that $b \in \operatorname{dcl}^{\mathrm{eq}}(M \cup A)$. If at least $\left(m_{c}+1\right)$ many of the e_{i} lie in the same class of $N^{n_{c}} / M^{n_{c}}$, we subtract one of these elements from the others and obtain a derived sequence with m_{c} many elements in M, which then has a base in $\operatorname{dcl}^{\mathrm{eq}}(M)$. Therefore, we may assume that each class of $N^{n_{c}} / M^{n_{c}}$ contains at most m_{c} many e_{i} 's.

Fix an A of dimension ε and set

$$
d=\operatorname{dim}\left(e_{0}, \ldots, e_{\mu} /\langle M, A\rangle\right)
$$

Then $\operatorname{dim}\left(e_{0}, \ldots, e_{\mu} / M\right) \leq d+\varepsilon$. Thus by our assumption

$$
\mu+1 \leq m_{c}|F|^{(d+\varepsilon) n_{c}} .
$$

Consider the following sets of indices.

$$
\begin{aligned}
& X_{1}=\left\{i \leq \mu \mid e_{i} \text { generic over } M, A, e_{0}, \ldots, e_{i-1}\right\} \\
& X_{2}=\left\{i \leq \mu \mid i \notin X_{1} \wedge \operatorname{dim}\left(e_{i} / M, A, e_{0}, \ldots, e_{i-1}\right)>0\right\}
\end{aligned}
$$

It is clear that

$$
d \leq\left(\left|X_{1}\right|+\left|X_{2}\right|\right) n_{c}
$$

With the notation $\delta(i)=\delta\left(e_{i} / M, A, e_{0}, \ldots, e_{i-1}\right)$, Lemma 5.3 implies that $\delta(i)<0$ if $x \in X_{2}$, and $\delta(i)=0$ otherwise. Since $M \leq N$ we have

$$
0 \leq \delta\left(A, e_{0}, \ldots, e_{\mu} / M\right)=\delta(A / M)+\sum_{i=1}^{\mu} \delta(i) \leq \varepsilon-\left|X_{2}\right|
$$

If we put the three inequalities together, we obtain

$$
\mu+1 \leq m_{c}|F|^{\left(\left|X_{1}\right| n_{c}+\varepsilon n_{c}+\varepsilon\right) n_{c}} .
$$

If μ is large enough, $\left|X_{1}\right| \geq r$ and $\left(e_{i}\right)_{i \in X_{1}}$ is our Morley sequence.

6. The class \mathcal{K}^{μ}

Choose now a function μ^{*} which assigns to every prealgebraic code c a natural number $\mu^{*}(c)$. We assume that
$\mathbf{M}(\mathrm{i})$ for every m and n there are only finitely many c with $\mu^{*}(c)=m$ and $n_{c}=n$.
The existence of such a function is ensured by the countability of C. Then we choose a function μ from prealgebraic codes to natural numbers such that
\mathbf{M} (ii) $\mu(c) \geq \lambda\left(n_{c}, 1, c\right)+1$
\mathbf{M} (iii) $\mu(c) \geq \lambda\left(0, \lambda\left(0, m_{c}+1, c\right)+1, c\right)$
$\mathbf{M}($ iv $) ~ \mu(c) \geq \lambda\left(0, \mu^{*}(c)+1, c\right)$
$\mathbf{M}(\mathrm{v}) \mu(c)=\mu(d)$, if c is equivalent to some $d^{H} .{ }^{\mathrm{o}}$

From now on, all difference sequences of c will have fixed length $\mu(c)+1$. Condition $\mathbf{M}(\mathrm{v})$ ensures that, if c is equivalent to d^{H}, and $\left(e_{i}\right)$ is a difference sequence for d, then $\left(H e_{i}\right)$ is a difference sequence for c.
${ }^{\circ}$ Note that every d^{H} can be equivalent to only one prealgebraic c.

The class \mathcal{K}^{μ} consists of all elements A of \mathcal{K}^{0} which do not contain a difference sequence for any prealgebraic code.

Lemma 6.1. Let $B \leq M \in \mathcal{K}^{\mu}$ and A / B prealgebraic minimal. Then there are only finitely many B-isomorphic copies of A strong in M.

Proof. Let a be a basis of A / B. Choose $d \in \operatorname{acl}^{\mathrm{eq}}(B)$ such that the types $\operatorname{tp}_{i}\left(a / B d_{i}\right)$ are stationary. It suffices to show that for all such d the partial type $\operatorname{tp}_{1}\left(a / B d_{1}\right) \cup \operatorname{tp}_{2}\left(a / B d_{2}\right)$ has only finitely many realizations in M. For this we choose a prealgebraic code c and $b \in \operatorname{acl}^{\mathrm{eq}}(B)$ with $\models \phi_{c}(a, b)$ by 5.1. We now show that $\phi_{c}(x, b)$ has only finitely many realizations in M. If not, there is an infinite sequence e_{0}, \ldots of realizations such that e_{i} is not contained in $\left\langle B, e_{0}, \ldots, e_{i-1}\right\rangle$ (since the latter set is finite). Strongness of B in M yields that e_{0} is a B-generic realization by 5.3 . From $\delta\left(e_{0} / B\right)=0$ we conclude that $\left\langle B, e_{0}\right\rangle \leq M$. If we proceed in this way, we see that e_{0}, \ldots is a Morley sequence of $\phi_{c}(x, b)$ over B. Now $\mathbf{P}(\mathrm{i})$ yields that $e_{1}-e_{0}, \ldots, e_{\mu(c)+1}-e_{0}$ is a difference sequence of c. Contradiction.

Corollary 6.2. Let $B \leq M \in \mathcal{K}^{\mu}$ and $B \subset A$ finite with $\delta(A / B)=0$. Then there are only finitely many $B \leq A^{\prime} \subset M$, which are isomorphic to A over B.

Note that automatically $A^{\prime} \leq M$.
Proof. Decompose the extension A / B into a sequence of minimal extensions.
Corollary 6.3. Let X be a finite subset of $M \in \mathcal{K}^{\mu}$. Then the d-closure of X :

$$
\operatorname{cl}_{\mathrm{d}}(X)=\{x \in M \mid \mathrm{d}(X x)=\mathrm{d}(X)\}
$$

is at most countable.
Proof. Note that $\operatorname{cl}_{\mathrm{d}}(X)$ is the union of all $A^{\prime} \subset M$ with $\operatorname{cl}(X) \subset A^{\prime}$ and $\delta\left(A^{\prime} / \mathrm{cl}(X)\right)=0$.

Lemma 6.4. Let $M \in \mathcal{K}^{\mu}, M \leq M^{\prime}$ a minimal extension and (e_{i}) a difference sequence for a prealgebraic code c with base $b \in \operatorname{acl}^{\mathrm{eq}}(M)$. Then c has a difference sequence (e_{i}^{\prime}) with the same base b such that M contains $e_{0}^{\prime}, \ldots, e_{\mu(c)-1}^{\prime}$.
In particular, $e_{\mu(c)}^{\prime}$ is an M-generic realization of $\phi_{c}(b)$, which generates M^{\prime} over M as a vector space. Also b must be in $\operatorname{dcl}^{\mathrm{eq}}(M)$.

Proof. Let e_{i} be any element which does not lie in M. By strongness of M in M^{\prime} and Lemma 5.3, it follows that e_{i} is an M-generic realization of $\phi_{c}(x, b)$. We have $\delta\left(\left\langle M, e_{i}\right\rangle / M\right)=0$ and whence $\left\langle M, e_{i}\right\rangle \leq M^{\prime}$. By minimality $\left\langle M, e_{i}\right\rangle=M^{\prime}$.

After permutation we may assume that $e_{0}, \ldots, e_{\nu-1}$ are in M and $e_{\nu}, \ldots, e_{\mu(c)}$ are not. Since $M \in \mathcal{K}^{\mu}$, it follows that $\nu \leq \mu(c)$. As above, for $i \geq \nu, e_{i}$ is an M-generic realization of $\phi_{c}(x, b)$ which generates M^{\prime} / M, so $e_{i}-H_{i} e_{\mu(c)} \in M$ for some $H_{i} \in \mathrm{Gl}_{n_{c}}(F)$. Therefore $e_{i} \downarrow_{b} e_{i}-H_{i} e_{\mu(c)}$.

If c is a not coset code, it follows from \mathbf{P} (iva) that $i=\mu(c)$. So we have $\nu=\mu(c)$.
Suppose that c is a coset code. If $\nu \leq i<\mu(c)$, then $H_{i} \in \operatorname{Inv}(c)$ by $\mathbf{P}($ ive $)$. By $\mathbf{P}(\mathrm{ivc})$ and \mathbf{P} (ivd) the difference sequence

$$
e_{0}, \ldots, e_{\nu-1}, e_{\nu}-H_{\nu} e_{\mu(c)}, \ldots, e_{\mu(c)-1}-H_{\mu(c)-1} e_{\mu(c)}, e_{\mu(c)}
$$

is as stated in the claim. Note that the above sequence has same base b.

7. Amalgamation

Theorem 7.1. \mathcal{K}^{μ} (and therefore also the class of all finite elements of \mathcal{K}^{μ}) has the amalgamation property with respect to strong embeddings.

Proof. Consider $B \leq M$ and $B \leq A$ in \mathcal{K}^{μ}. We want to find a strong extension $M^{\prime} \in \mathcal{K}^{\mu}$ of M and a $B \leq A^{\prime} \leq M^{\prime}$ isomorphic to A over B. We may assume that A / B and M / B are minimal. We will show that either some "free amalgam" M^{\prime} of M and A is in \mathcal{K}^{μ} or that M and A are isomorphic over B.

Case 1: A / B is algebraic. Then $A=\langle B, a\rangle$ for an element a which is (e.g.) algebraic over B in the sense of T_{1} and transcendental over B in the sense of T_{2}. There are two (non exclusive) subcases.

Subcase 1.1: $\operatorname{tp}_{1}(a / B)$ is realized in M. Choose some realization a^{\prime} in M. Hence, a^{\prime} / B is transcendental in the sense of T_{2} and $a^{\prime} \mapsto a$ defines an isomorphism between $M=\left\langle B, a^{\prime}\right\rangle$ and A over B.

Subcase 1.2: There is some $a^{\prime} \notin M$, which realizes $\operatorname{tp}_{1}(a / B)$ (in the sense of T_{1}). Define the structure $M^{\prime}=\langle M, a\rangle$ by setting a to have the same T_{1}-type over M as a^{\prime} and being transcendental over M in the sense of T_{2} i.e. M^{\prime} is a free amalgam of A and M over B in the sense that M are A are independent over B and linearly independent ${ }^{\mathrm{p}}$ over B. It is easy to see that, in free amalgams, $M \leq M^{\prime}$ and $A \leq M^{\prime}$. By Lemma 7.2 below, M^{\prime} belongs to \mathcal{K}^{μ}.

Case 2: A / B is transcendental. We may assume that $M \cap A=B$. Since A / B is transcendental, we find $M^{\prime}=M+A$ in \mathcal{K}, such that M and A are independent over B. So M^{\prime} is a free amalgam of M and A, and M^{\prime} is a minimal extension of M and of A. If $M^{\prime} \in \mathcal{K}^{\mu}$, we are done. Otherwise, 7.3 shows that, by symmetry, we may assume that M^{\prime} contains a difference sequence $\left(e_{i}\right)$ of a prealgebraic code c with base $b \in \operatorname{acl}^{\text {eq }}(M)$. Also by Lemma $7.2, \operatorname{dim}\left(M^{\prime} / M\right)>1$ and A / B is prealgebraic. By minimality and Lemma 6.4, we may also assume that $e_{0}, \ldots, e_{\mu(c)-1}$ are in M and $e_{\mu(c)}$ is an M-generic realization of $\phi_{c}(x, b)$, which generates M^{\prime} over M. Write $e_{\mu(c)}=m+a$ for $m \in M$ and $a \in A$. Therefore $\delta(a / B)=\delta(a / M)=\delta\left(e_{\mu(c)} / M\right)=0$.
${ }^{\mathrm{P}}$ I.e. $\operatorname{dim}(A / B)=\operatorname{dim}(A / M)$.

Whence a generates A over B. We apply now Lemma 5.4 and $\mathbf{M}(i i)$ to the extension $\left(M^{\prime} / A\right)$ and m and obtain two subcases:

Subcase 2.1: There is a $(\mu(c)-1)$-derived difference sequence $\left(e_{i}^{\prime}\right)$ with basis $b^{\prime} \in \operatorname{dcl}^{\mathrm{eq}}(A)$. Since $e_{i}^{\prime} \in M$ for $i \leq \mu(c)-1$, the base b^{\prime} is in $\operatorname{dcl}^{\mathrm{eq}}(M) \cap \operatorname{dcl}^{\mathrm{eq}}(A) \subset$ $\operatorname{acl}^{\mathrm{eq}}(B)$. Hence $e_{\mu(c)}^{\prime}$ is an M-generic realization of $\phi_{c}\left(x, b^{\prime}\right)$ which generates M^{\prime} over M. Again there are two cases.

Subsubcase 2.1.1: $e_{\mu(c)}^{\prime} \in A$. Since $A \in \mathcal{K}^{\mu}$, there is an $e_{i}^{\prime} \in M$ not in A. By minimality e_{i}^{\prime} generates M over B and $e_{\mu(c)}^{\prime} \mapsto e_{i}^{\prime}$ defines a B-isomorphism between A and M.

Subsubcase 2.1.2: $e_{\mu(c)}^{\prime} \notin A$. Then $e_{\mu(c)}^{\prime}$ is an A-generic realization of $\phi_{c}\left(x, b^{\prime}\right)$. Write $e_{\mu(c)}^{\prime}=m^{\prime}+a^{\prime}$ for $m^{\prime} \in M$ and $a^{\prime} \in A$. Since $e_{\mu(c)}^{\prime}, m^{\prime}$ and a^{\prime} are pairwise independent over b^{\prime}, then, for $i=1,2, \phi_{c_{i}}\left(x, b_{i}^{\prime}\right)$ is a coset formula by [9] and whence a group formula by $\mathbf{C}(\mathrm{v})$ and $\mathbf{P}(\mathrm{ivb})$. It follows that $-m^{\prime}$ and a^{\prime} are generics of the same $B b_{i}^{\prime}$-definable coset of a $B b_{i}^{\prime}$-definable connected group. Thus they have the same type over B. As above m^{\prime} generates M over B and a^{\prime} generates A over B. So the map $a^{\prime} \mapsto-m^{\prime}$ defines an isomorphism between A and M over B.

Subcase 2.2: $e_{0}, \ldots, e_{\mu(c)-1}$ contains a B, m-generic realization of $\phi_{c}(x, b)$, say e_{0}. For $i=1,2, e_{0}$ and $e_{\mu(c)}$ have the same T_{i}-type over B, m, b_{i}. Whence $e_{0}-m$ and a have the same T_{i}-type over B, m, b_{i}, a forteriori over B. Whence $a \mapsto e_{0}-m$ defines a B-isomorphism between A and M.

Lemma 7.2. Let $M \in \mathcal{K}^{\mu}, M \leq M^{\prime}$ and $\operatorname{dim}\left(M^{\prime} / M\right)=1$. Then, $M^{\prime} \in \mathcal{K}^{\mu}$.

Proof. Assume $M^{\prime} \notin \mathcal{K}^{\mu}$ and $\left(e_{i}\right)$ is a difference sequence in M^{\prime} for a prealgebraic code c with base b witnessing this fact. Since $\operatorname{dim}\left(M^{\prime} / M\right)=1$ and $n_{c} \geq 2$, no e_{i} is an M-generic realization. By the choice of $\mu(c)$ and Lemma 5.4 we may assume that $b \in \operatorname{dcl}^{\text {eq }}(M)$. By Lemma 5.3 we conclude that all e_{i} lie in M. Contradiction.

Lemma 7.3. Let M^{\prime} be a free amalgam of M and A over B and $\left(e_{i}\right)$ a difference sequence in M^{\prime}. Then there is a derived sequence with base in $\operatorname{acl}^{\mathrm{eq}}(M)$ or a derived sequence with base in $\operatorname{acl}^{\mathrm{eq}}(A)$.

Actually we find the base in $\operatorname{dcl}^{\mathrm{eq}}(M), \operatorname{dcl}^{\mathrm{eq}}(A)$ or $\operatorname{acl}^{\mathrm{eq}}(B)$.

Proof. Let b be the base of $s=\left(e_{i}\right)$. If no derivation has a base in $\operatorname{dcl}^{\mathrm{eq}}(M)$, Lemma 5.4 and $\mathbf{M}($ iii $)$ yield a subsequence s^{\prime} of length $\lambda\left(0, m_{c}+1, c\right)+1$ which is a Morley sequence of $\phi_{c}(x, b)$ over M. Again by 5.4 , applied to M^{\prime} / A, if there is no derivation with base in $\operatorname{dcl}^{\text {eq }}(A)$, there is a subsequence $s^{\prime \prime}$ of s^{\prime} of length
$m_{c}+1$, say $e_{0}, \ldots, e_{m_{c}}$, which is also a Morley sequence of $\phi_{c}(x, b)$ over A. Set $E=\left\{e_{0}, \ldots, e_{m_{c}-1}\right\}$. Hence, $b \in \operatorname{dcl}^{\mathrm{eq}}(E)$ and

$$
e_{m_{c}} \underset{b}{\downarrow} M, E, \quad e_{m_{c}} \underset{b}{\downarrow} A, E
$$

Write every $e \in E$ as the sum of an element of M and an element of A. Define E_{M} to be the set of all elements in M which occur as summands, and likewise E_{A}, and set $E^{\prime}=E_{M} \cup E_{A}$. Then also $b \in \operatorname{dcl}^{\text {eq }}\left(E^{\prime}\right)$ and, since E^{\prime} and E are interdefinable over M and as well as over A, we have

$$
e_{m_{c}} \underset{b}{\downarrow} M, E^{\prime}, \quad e_{m_{c}} \underset{b}{\downarrow} A, E^{\prime}
$$

which implies

$$
e_{m_{c}} \underset{B, E^{\prime}}{\downarrow} M, \quad e_{m_{c}} \underset{B, E^{\prime}}{\downarrow} A .
$$

Furthermore

$$
M \underset{B, E^{\prime}}{\perp} A .
$$

Write $e_{m_{c}}=m+a$ for $m \in M$ and $a \in A$. Then $e_{m_{c}}, m$, and a are pairwise independent over B, E^{\prime}. Fix $i=1,2$. Then $\phi_{c_{i}}\left(x, b_{i}\right)$ is a group formula for a definable group G_{i} and b_{i} is the canonical parameter of G_{i}. Moreover, a is a generic element of an $\operatorname{acl}^{\mathrm{eq}}{ }_{i}\left(B, E^{\prime}\right)$-definable coset of G_{i} and b_{i} is definable from the canonical base of $p=\operatorname{tp}_{i}\left(a / \operatorname{acl}^{\mathrm{eq}}{ }_{i}\left(B, E^{\prime}\right)\right)$. Note that $a \downarrow_{B, E_{A}} E^{\prime}$. So the canonical base of p is in $\operatorname{acl}^{\text {eq }}{ }_{i}(A)$, hence $b \in \operatorname{acl}^{\text {eq }}(A)$. By symmetry $b \in \operatorname{acl}^{\text {eq }}(M)$, and since M and A are independent over B, this yields $b \in \operatorname{acl}^{\text {eq }}(B)$.

We call $M \in \mathcal{K}^{\mu}$ rich, if for all finite $B \leq M$ and all finite $B \leq A \in \mathcal{K}^{\mu}$ there is an $B \leq A^{\prime} \leq M$, which is B-isomorphic to A. We will show in the next section (8.3) that rich structures are models of $T_{1} \cup T_{2}$.

Corollary 7.4. There is a unique countable rich structure K^{μ}. All rich structures are $\left(L_{1} \cup L_{2}\right)_{\infty, \omega}$-equivalent.

8. The theory T^{μ}

Lemma 8.1. Let $M \in \mathcal{K}^{\mu}, b \in \operatorname{dcl}^{\mathrm{eq}}(M)$, c a prealgebraic code and M^{\prime} a prealgebraic minimal extension of M, generated by an M-generic realization a of $\phi_{c}(x, b)$ as in 5.2. If M^{\prime} does not belong to \mathcal{K}^{μ}, one of the following is true.
(a) M^{\prime} contains a difference sequence $\left(e_{i}\right)$ for c whose elements but one lie in M.
(b) M^{\prime} contains a difference sequence for a prealgebraic code c^{\prime} with base b^{\prime} which contains a Morley sequence of $\phi_{c^{\prime}}\left(x, b^{\prime}\right)$ over M of length $\mu^{*}\left(c^{\prime}\right)+1$.

Proof. If $M^{\prime} \notin \mathcal{K}^{\mu}$ there is a difference sequence $\left(e_{i}^{\prime}\right)$ in M^{\prime} for a prealgebraic code c^{\prime} with base b^{\prime}. If case (b) does not occur, by $\mathbf{M}(\mathrm{iv})$ and Lemma 5.4 we may assume that $b^{\prime} \in \operatorname{dcl}^{\mathrm{eq}}(M)$ and furthermore that $\left(e_{i}^{\prime}\right)$ is as in Lemma 6.4. So $n_{c^{\prime}}=n_{c}=\operatorname{dim}\left(M^{\prime} / M\right)$ and we have $H e_{\mu\left(c^{\prime}\right)}^{\prime}+m=a$ for some $H \in \mathrm{Gl}_{n_{c}}(F)$ and $m \in M$. By $\mathbf{C}(\mathrm{vi})$ there is a $d \in \operatorname{dcl}^{\mathrm{eq}}(M)$ with $\phi_{c_{i}}\left(x+m, b_{i}\right) \sim^{k_{c_{i}}} \phi_{c_{i}}\left(x, d_{i}\right)$ $(i=1,2)$. Then $H e_{\mu\left(c^{\prime}\right)}^{\prime}$ is an M-generic realization of $\phi_{c}(x, d)$, i.e. $e_{\mu\left(c^{\prime}\right)}^{\prime}$ is an M-generic realization of $\phi_{c^{H}}(x, d)$. By $\mathbf{C}(\mathrm{ix})$ there is a prealgebraic code $c^{\prime \prime}$ which is equivalent to c^{H}. We have $\phi_{c^{H}}(x, d) \equiv \phi_{c^{\prime \prime}}\left(x, b^{\prime \prime}\right)$ for some $b^{\prime \prime} \in \operatorname{dcl}^{\mathrm{eq}}(M)$. By \mathbf{C} (viii) and $\mathbf{C}(i v)$ we conclude $c^{\prime \prime}=c^{\prime}$ and $b^{\prime \prime}=b^{\prime}$.

Finally note that $\left(e_{i}^{\prime}\right)$ is a difference sequence for c^{H}. So $\left(e_{i}\right)=\left(H e_{i}^{\prime}\right)$ is the desired difference sequence for c as in (a).

Corollary 8.2.

1. Let c be a prealgebraic code. That a structure $M \in \mathcal{K}$ contains no difference sequence for c can by expressed by a single sentence α_{c}.
2. Let c be a prealgebraic code, $M \in \mathcal{K}^{\mu}$ a model of $T_{1} \cup T_{2}$. That no extension of M in \mathcal{K}^{μ} is generated by a generic realization of some $\phi_{c}(x, b)$ with $b \in \operatorname{dcl}^{\mathrm{eq}}(M)$ can be expressed by an sentence β_{c}.
3. Let $M \in \mathcal{K}^{\mu}$ be a model of $T_{1} \cup T_{2}$. That M has no prealgebraic minimal extension in \mathcal{K}^{μ} can be expressed by a set of sentences.

Proof. 1. Let $\alpha_{c}=\neg \exists x_{0}, \ldots, x_{\mu(c)}\left(\Psi_{c_{1}}\left(x_{0}, \ldots, x_{\mu(c)}\right) \wedge \Psi_{c_{2}}\left(x_{0}, \ldots, x_{\mu(c)}\right)\right)$.
2. Fix $i=1,2$ and let M be a submodel of \mathbb{C}_{i}. Let $m \in M, \phi(x, m)$ an L_{i}-formula of Morley rank k and degree 1 , and $a \in \mathbb{C}_{i}$ be an M-generic realization of $\phi(x, m)$. There is a uniform way to translate a quantifier free property $\psi(a, m)$ of a, m into a quantifier free property $\psi^{*}(m)$ of m : Set

$$
\psi^{*}(y)=\operatorname{MR}_{x}(\phi(x, y) \wedge \psi(x, y)) \doteq k
$$

This shows that, if $M \in \mathcal{K}$ and a is an M-generic realization of $\phi_{c}(x, b)$, then any $L_{1} \cup L_{2}$-sentence α about $\langle M, a\rangle$ can be translated into an $L_{1} \cup L_{2}$-sentence $\alpha^{c}(b)$ about M.

Now there is only a finite set C_{c} of codes c^{\prime} which can occur in (b) of 8.1 since $\left(\mu^{*}\left(c^{\prime}\right)+1\right) n_{c^{\prime}} \leq \operatorname{dim}\left(M^{\prime} / M\right)=n_{c}$. So set

$$
\beta_{c}=\forall y_{c} \alpha_{c}^{c}\left(y_{c}\right) \wedge \bigwedge_{c^{\prime} \in C_{c}} \forall y_{c^{\prime}} \alpha_{c^{\prime}}^{c}\left(y_{c^{\prime}}\right)
$$

The variables $y_{c}, y_{c^{\prime}}$ are understood to range over appropriate sorts of M^{eq}.
3. This follows from 2. and Lemma 5.1.

We now introduce the theory T^{μ} described by the following axioms, which by the above are elementarily expressible.

Axioms of $T^{\mu} M$ is model of T^{μ} iff
(i) $M \in \mathcal{K}^{\mu}$
(ii) M is a model of $T_{1} \cup T_{2}$
(iii) No prealgebraic minimal extension of M belongs to \mathcal{K}^{μ}.

Theorem 8.3. Rich structures are exactly the ω-saturated models of T^{μ}.

Proof. Let M be an ω-saturated model of T^{μ}. In order to show that M is rich, we consider a finite strong subspace B of M and a minimal extension $A \in \mathcal{K}^{\mu}$ of B. We want to find a copy $B \leq A^{\prime} \leq M$ of A / B.
case (I): A / B is algebraic. Since M is a model of $T_{1} \cup T_{2}$, it has no proper algebraic extension in \mathcal{K}. So A^{\prime} exists by 7.1.
case (II): A / B is prealgebraic. Since M has no prealgebraic minimal extension, 7.1 forces to obtain a copy of A in M.
case (III): A / B is transcendental. Since A / B is generated by a transcendental element we have to find an $a^{\prime} \in M$ which is transcendental over B such that $\left\langle B, a^{\prime}\right\rangle \leq M$. Since this equivalent to realize a partial type, and since M is $\omega-$ saturated, it suffices to find a^{\prime} in an elementary extension M^{\prime} of M. Choose M^{\prime} uncountable. By $6.3 \operatorname{cl}_{\mathrm{d}}(B) \leq M^{\prime}$ is countable. For every $a^{\prime} \in M^{\prime} \backslash \mathrm{cl}_{\mathrm{d}}(B)$, we have $\delta\left(a^{\prime} / B\right)=1$ and $\left\langle B, a^{\prime}\right\rangle \leq M^{\prime}$.

Assume now that M is rich. We show first that M is a model of T^{μ}.

Axiom (ii): By Lemma 7.2 there are elements in \mathcal{K}^{μ} of arbitrary finite dimension. So M is infinite and we need only show that M is algebraically closed in the sense of T_{1} and of T_{2}.

Let a be an element in $\operatorname{acl}_{1}(M)$ and transcendental over M in the sense of T_{2}. Therefore, a is 1 -algebraic over a finite subset B of M. We may assume that $B \leq M$. Since (by Lemma 7.2) $B \leq\langle B, a\rangle \in \mathcal{K}^{\mu}$, there is a copy of a over B in M. This implies that M acl $_{1}$-closed. Likewise M is algebraically closed in the sense of T_{2}.

Axiom (iii): Let M^{\prime} be a prealgebraic minimal extension generated by an M-generic realization a of $\phi_{c}(x, b)$. Assume $M^{\prime} \in \mathcal{K}^{\mu}$. Choose a finite subspace $C_{0} \leq M$ with $b \in \operatorname{dcl}^{\text {eq }}\left(C_{0}\right)$. Then $C_{0} \leq\left\langle C_{0}, a\right\rangle$. Since M is rich, M contains a copy e_{0} of a over C_{0} with $C_{1}=\left\langle C_{0}, e_{0}\right\rangle \leq M$. Continuing this way we obtain an infinite Morley sequence
e_{0}, e_{1}, \ldots of $\phi_{c}(x, b)$. By $\mathbf{P}(\mathrm{i}), e_{1}-e_{0}, \ldots, e_{\mu(c)+1}-e_{0}$ is a difference sequence for c.

Choose an ω-saturated $M^{\prime} \equiv M$. By the above we know that M^{\prime} is rich. Since $M^{\prime} \equiv{ }_{\infty, \omega} M$, this implies that M is ω-saturated.

9. Proof of the Theorem

In this section quantifier elimination for T_{1} and T_{2} will no longer be required. Hence, replace in the class \mathcal{K} embeddings by elementary maps in the sense of T_{1} and in the sense of T_{2}, which we call bi-elementary maps.

Corollary 9.1. T^{μ} is complete. Two tuples a and a^{\prime} in two models M and M^{\prime} have the same type iff there is bi-elementary bijection

$$
f: \operatorname{cl}(a) \rightarrow \operatorname{cl}\left(a^{\prime}\right)
$$

which maps a to a^{\prime}.
Proof. K^{μ} is a model of T^{μ}. So is T^{μ} consistent. Let M be any model of T^{μ}. By theorem 8.3 there is a rich $M^{\prime} \equiv M$. So $M^{\prime} \equiv_{\infty, \omega} K^{\mu}$, which proves completeness.

To prove the second statement choose ω-saturated elementary extensions $M \prec$ N and $M^{\prime} \prec N^{\prime}$. It is easy to see ${ }^{\mathrm{q}}$ that $M \leq N$ and $M^{\prime} \leq N^{\prime}$, so "cl" does not increase.

Since M^{\prime} and N^{\prime} are rich, f is even ∞, ω-elementary.

For the converse suppose that a and a^{\prime} have the same type. There is a bi-elementary map $f: \operatorname{cl}(a) \rightarrow M^{\prime}$ which maps a onto a^{\prime}. We write A^{\prime} for $f(\operatorname{cl}(a))$. Then $\mathrm{d}(a)=$ $\delta(\operatorname{cl}(a))=\delta\left(A^{\prime}\right)$. It follows $\mathrm{d}\left(a^{\prime}\right) \leq \mathrm{d}(a)$ and $\mathrm{d}\left(a^{\prime}\right)=\mathrm{d}(a)$ by symmetry. A^{\prime} has, like $\operatorname{cl}(a)$, no proper subset $A^{\prime \prime}$ which contains a^{\prime} and with $\delta\left(A^{\prime \prime}\right)=\mathrm{d}\left(a^{\prime}\right)$. This implies $A^{\prime}=\operatorname{cl}\left(a^{\prime}\right)$.

Theorem 9.2. T^{μ} is strongly-minimal and d is the dimension function of the natural pregeometry on models of T^{μ}, i.e.

$$
\operatorname{MR}(a / B)=\mathrm{d}(a / B)
$$

Proof. Let a be a single element. Types $\operatorname{tp}(a / B)$ with $\mathrm{d}(a / B)=0$ are algebraic by Corollary 6.2. It follows from 9.1, that there is only one type with $\mathrm{d}(a / B)=1$. ${ }^{\mathrm{r}}$

[^4]This implies strong minimality. The rest of the claim follows from the fact that d describes the algebraic closure.

This completes the proof of 1.1.

Proof. [Proof of Theorem 1.2, 2.] Let M be an elementary submodel of N in the sense of T_{1} and T_{2}. By Corollary 9.1 we need only show that M is strong in N. Suppose not and pick a smallest extension $M \subset H \subset N$ with negative $\delta(H / M)$. We may decompose H / M into a sequence $M \leq K \subset H$, where $\delta(K / M)=0$ and $H=\langle K, a\rangle$ for some element a with $\delta(a / K)=-1$. Since M is a model of Axiom (iii), we have $M=K . a$ is algebraic over M in the sense of T_{1} (and T_{2}), whence by Axiom (ii) we have $a \in M$. Contradiction.

Corollary 9.3. If T_{1} and T_{2} are model-complete, then T^{μ} is also model-complete.
We now prove the last remark of the introduction. Let T_{1} and T_{2} be both the theory of algebraically closed fields of characteristic p formulated in $L_{1}=\{+, \odot\}$ and $L_{2}=\{+, \otimes\}$. Let T^{μ} be a fusion over
T_{0}, the theory of $\mathbb{F}_{p}-$ vector spaces. Let x be transcendental (in the sense of T^{μ}), x_{i} the i-th power in the sense of T_{1} and $X=\left\{x_{i} \mid i \in \mathbb{N}\right\}$. Let S be any subset of X. Then $\operatorname{dim}(S)=|S|$ and $\operatorname{tr}_{1}(S) \leq 1$. It follows from Theorem 1.2, 1. that $\operatorname{tr}_{2}(S) \geq|S|-1$. We claim that $\operatorname{tr}_{2}(S)=|S|$, which is clear for $S=\left\{x_{0}\right\}$. Assume the contrary. Then, for some $n>0$, we have $\operatorname{tr}_{2}\left(x_{1} \ldots, x_{n} / x_{0}\right)<n$. But x_{n+1} is also transcendental, therefore it has the same type as x. So $\operatorname{tr}_{2}\left(x_{n+1}, \ldots, x_{(n+1) n} / x_{0}\right)<$ n. It follows

$$
\operatorname{tr}_{2}\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{(n+1) n} / x_{0}\right)<2 n-1,
$$

which is impossible.
Remark 9.4. E. Hrushovski stated in [1] that the DMP survives the fusion. M. Hils explained a proof of this fact to us, which shows also that T^{μ} has the DMP. \square

References

[1] Ehud Hrushovski. Strongly minimal expansions of algebraically closed fields. Israel J. Math., 79:129-151, 1992.
[2] Assaf Hasson and Martin Hils. Fusion over sublanguages. J. Symbolic Logic, 2005. to appear.
[3] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. Hrushovski's Fusion. In F. Haug, B. Löwe, and T. Schatz, editors, Festschrift für Ulrich Felgner zum 65. Geburtstag, volume 4 of Studies in Logic, pages 15-31. College Publications, London, 2007.
[4] Bruno Poizat. Le carré de l'egalité. J. Symbolic Logic, 64(3):1338-1355, 1999.
[5] J. Baldwin and K. Holland. Constructing ω-stable structures: rank 2 fields. J. Symbolic Logic, 65(1):371-391, 2000.
[6] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. On fields and colors. Algebra i Logika, 45(2), 2006. (http://arxiv.org/math.LO/0605412).
[7] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. Red fields. J. Symbolic Logic, 2005. to appear.
[8] Bruno Poizat. L'égalité au cube. J. Symbolic Logic, 66:1647-1676, 2001.
[9] Martin Ziegler. A note on generic types. (http://arxiv.org/math.Lo/0608433), 2006.

[^0]: ${ }^{\mathrm{c}}$ This is $\chi(x-m)$ for a generic realization m of $\chi(x)$.
 ${ }^{\mathrm{d}}$ Codes where all $\phi(x, b)$ are empty will not be considered.

[^1]: ${ }^{\mathrm{f}} \mathrm{We}$ will construct C so that every c^{H} is equivalent to some $c^{H^{\prime}}$ which belongs to C. (We identify codes with equivalent formulas.)

[^2]: ${ }^{\mathrm{j}}$ Since b is canonical.

[^3]: ${ }^{\mathrm{k}}$ Note that $-1 \in \operatorname{Inv}(c)$.
 ${ }^{1}$ In this section neither countability nor the DMP will be required.

[^4]: ${ }^{\mathrm{q}}$ If $M \not 又 N$, there is a tuple $a \in N$ with $\delta(a / M)<0$. We find a finite $B \leq M$ with $\delta(a / B)<0$. This is witnessed by the truth of an $L_{1} \cup L_{2}$-formula $\phi(a, \bar{b})$. However, $\phi(x, \bar{b})$ is not satisfiable in M, whence $M \nprec N$.
 ${ }^{\mathrm{r}}$ This is the type of elements a which are transcendental over $\operatorname{cl}(B)$ and for which $\langle\operatorname{cl}(B), a\rangle$ is strong in the considered model.

