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1. Introduction

In [1] E. Hrushovski answered negatively a question posed by G. Cherlin about the
existence of maximal strongly minimal sets in a countable language by constructing
the fusion of two strongly minimal theories:

Theorem . Let T1 and T2 be two countable strongly minimal theories, in disjoint
languages, and with the DMP, the definable multiplicity property. Then T1 ∪T2 has
a strong minimal completion.

The above theorem was proved by extending Fräıssé’s amalgamation procedure
to a given class in which Hrushovski’s “δ–function” will determine the pregeometry.
In order to axiomatize the theory of the generic model, a set of representatives of
rank 1 types or “codes” is chosen in a uniform way.

From now on, let F denote a fixed finite field and T0 the theory of infinite F–
vector spaces in the language L0 = {0,+,−, λ}λ∈F . In this article, we will prove
the following:

Theorem 1.1. Let T1 and T2 be two countable strongly minimal extensions of T0

with the DMP, and assume that their languages L1 and L2 intersect in L0. Then
T1 ∪ T2 has a strongly minimal completion Tµ.

1
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This “fusion over a vector space” was proposed by Hrushovski in [1]. In the
special case where both T1 and T2 are 1–based this fusion was already proved by
A. Hasson and M. Hils [2]. These two articles also discuss fusions over more general
T0.

Our proof uses Hrushovski’s machinery. Schematically, it follows [3], which is a
streamlined account of Hrushovski’s aforementioned paper.

In [4] and [5] it was explained how to apply Hrushovski’s method to construct
“fields with black points” (see also [6]). In a similar way, the techniques exhibited
here were used in [7] to construct “fields with red points” (fields with a predicate
for an additive subgroup, of Morley rank 2), whose existence was conjectured in [8].

The theories Tµ, which depend on the choice of codes and of a certain function
µ, have the following properties:

Theorem 1.2. Let M be a model of Tµ.

1. Let tri denote the transcendence degree in the sense of Ti and dim the F–linear
dimension. Then for every finite subset A of M we have

dim(A) ≤ tr1(A) + tr2(A).

2. Let N be a model of Tµ which extends M . Then N ≺ M if N is an elementary
extension of M in the sense of T1 and in the sense of T2.

It followsa from 1. that for every p there is a strongly minimal structure
(K,+,�,⊗) such that (K,+,�) and (K,+,⊗) are algebraically closed fields of
characteristic p and for every transcendental x the �–powers

1�, x, x� x, x� x� x, . . .

are algebraically independent in the sense of (K,+,⊗), and vice versa.

2. Codes

Let us fix the following notation: T is a countable strongly minimal extension of
T0 with the DMP, C denotes the monster model of T , tr(a/A) the transcendence
degreeb of the tuple a over A, MR(p) the Morley rank of the type p. Thus we have

tr(a/A) = MR(tp(a/A)).

We use

φ(x) ∼k ψ(x)

or φ(x) ∼k
x ψ(x) to express that the Morley rank of the symmetric difference of φ

and ψ is smaller than k,

aWe will explain this at the end of the paper (p. 23).
bThe maximal number of components of a which are algebraically independent over A.
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We denote by 〈a〉 We denote by the F–vector space of dimension dim(a) spanned
by the components of the n–tuple a. Subspaces of 〈a〉 can be described in terms of
subspaces U of Fn as

Ua =
{ n∑

i=1

uiai

∣∣∣ u ∈ U}
.

We call a stationary type a group type (or coset type) if it is the generic type of a
(coset of a) connected definable subgroup of (Cn,+). These properties depend only
on the parallel class. So we can call a formula of Morley degree 1 a group formula
(or coset formula) if it belongs to a group type (or a coset type) of the same rank.

Given a group formula χ(x) of rank k, we denote by Inv(χ) the group of all
H ∈ Gln(F ) which map the generic realizations of χ to generic realizations, or,
equivalently, for which H(χ) ∼k χ. If χ is a coset formula, Inv(χ) is Inv(χg) where
χg is the associated group formulac.

A definable set X ⊂ Cn of rank k is encoded by ϕ(x, y) if n = |x| and there is
some tuple b such that X ∼k ϕ(x, b).

A code c is a parameter free formula φc(x, y) where the variable x ranges over
nc–tuples of the home sort and y over a sort of T eq, with the following properties.

C(i) All non–emptyd φc(x, b) have (constant) Morley rank kc and Morley degree
1.

C(ii) For every U ≤ Fnc there is a number kc,U such that for every realization a

of φc(x, b) we have:

tr(a/b, Ua) ≤ kc,U .

Moreover, equality holds for generic a. (So we have kc = kc,0.)
C(iii) dim(a) = nc for all realizations a of φc(x, b). If a is generic, then

dim(a/ acl(b)) = nc (this is equivalent to kc,U = kc−1 for all one–dimensional
U).

C(iv) If φc(x, b) and φc(x, b′) are not empty and φc(x, b) ∼kc φc(x, b′), then b = b′.
C(v) If some non–empty φc(x, b) is a coset formula, then all are. We call such a

code c a coset code. In this case, the group Inv(φc(x, b)) does not depend on
b (whenever it is defined). Hence we denote it by Inv(c).

C(vi) For all b and m the set defined by φc(x+m, b) is encoded by φc.
C(vii) There is a subgroup Gc of Glnc

(F ) such that:

a) for all H ∈ Gc and all non–empty φc(x, b) there exists a (unique) bH such
that

φc(Hx, b) ≡ φc(x, bH).

cThis is χ(x−m) for a generic realization m of χ(x).
dCodes where all φ(x, b) are empty will not be considered.
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b) if H ∈ Glnc(F ) \Gc, then no non–empty φc(Hx, b) is encoded by φc.

Two codes c and c′ are equivalent if for every b there is some b′ such that φc(x, b) ≡
φc′(x, b′) and vice versa. If c is a code and H ∈ Glnc

(F ), then

φcH (x, y) = φc(Hx, y)

is also a code. C(viia) states that cH and c are equivalent if H lies in Gc.

Corollary 2.1. Let p ∈ S(b) be the generic type containing φc(x, b). Then b is the
canonical base of p.

Proof. Immediate from C(iv).

A formula χ(x, d) is simple if it has Morley degree 1 and dim(a/ acl(d)) = |x|
for all generic realizations a of χ(x, d). The second half of C(iii) states that all
non–empty φc(x, b) are simple.

Lemma 2.2. Every simple formula χ(x, d) can be encoded by some code c.

I.e.

χ(x, d) ∼kc φc(x, b0)

for some parameter b0. By C(iv) it follows that b0 is uniquely determined, thus
b0 ∈ dcleq(d).

Proof. Set nc = |x|, kc = MRχ(x, d) and kc,U = tr(a/d, Ua) for a generic realiza-
tion a of χ(x, d). Let p be the global type of rank kc containing χ(x, d) and b0 its
canonical base and choose some φ(x, b0) ∈ p of rank kc and degree 1. Hence, φ(x, b0)
satisfies χ(x, d) ∼kc φc(x, b0) and has property C(iv) for all b and b′ realizing tp(b0).
We can choose φ(x, b0) strong enough to ensure that C(iv) holds for all b and b′.

Consider now the set X of all b of same length and sort as b0 for which φ(x, y)
satisfies C(i), C(ii), C(iii) and C(v). The latter means that φ(x, b) is a coset formula
iff φ(x, b0) is, and in this case Inv(φ(x, b)) = Inv(φ(x, b0)). Let us check that X is
definable by a countable disjunction of formulae. This is clear for C(i) and C(iii).
The second part in C(iii) is a special case of C(ii), and the latter follows from the
fact that tr(a/b, Ua) ≥ kc,U is equivalent to tr(Ua/b) ≤ (kc − kc,U ) for generic a in
φ(x, b). We refer to [7] for C(v), where it is shown that the set of all b such that
φ(x, b) is a group (coset) formula is definable.

All b realizing tp(b0) belong to X. So a finite part θ(y) of this type implies X.
Then the formula

φ′c(x, y) = φ(x, y) ∧ θ(y)

has all properties, except possibly C(vi) and C(vii).
Given any nc–tuple m and parameter b, the formula φ′c(x+m, b), if non–empty,

has again rank kc and degree 1. If a is a generic realization, then a+m is a generic
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realization of φ′c(x, b) and a + m |̂
b
m. Let u be some vector in Fnc such that∑

i uiai ∈ acl(b,m). Then
∑

i ui(ai +mi) ∈ acl(b,m). By independence
∑

i ui(ai +
mi) ∈ acl(b), which implies u = 0. Therefore dim(a/ acl(b,m)) = nc and φ′c(x+m, b)
is simple. We note also that for every U

tr(Ua/m, b) = tr(U(a+m)/m, b) = tr(U(a+m)/b),

which implies tr(a/m, b, Ua) = kc,U .
Whence, each φ′c(x+m, b) can be encoded by some formula φ′(x, y) which has

all properties of codes except possibly C(vi) and C(vii). Since these properties can
be expressed by a countable disjunction we conclude that there is a finite sequence
of formulae φ1, . . . , φr with all properties except possibly C(vi) and C(vii) which
encode all formulas φ′c(x +m, b) with m and b varying. Moreover, we may assume
that for all i

|= ∀y ∃v, w φi(x, y) ∼kc
x φ′c(x+ v, w),

which implies that either all or none of the φi code coset formulas and if so, they
have all the same invariant group Inv(φ(x, b0)).

To prevent double-encoding, set

θi(y) =
∧
j<i

∀z φj(x, z) 6∼kc
x φi(x, y).

Fix a sequence of different constantse w1, . . . , wr and define

φ′′c (x, y, y′) =
r∨

i=1

φi(x, y) ∧ θi(y) ∧ y′
.= wi.

φ′′c (x, y) has all properties except possibly C(vii). To prove C(vi) fix m and b, w

such that φ′′c (x+m, b,w) is not empty. Then w equals some wj and φ′′c (x+m, b,w)
is equivalent to φj(x + m, b). We know that φj(x, b) ∼ φ′c(x + m′, b′) for some m′

and b′. It follows that: φj(x+m, b) ∼ φ′c(x+(m+m′), b′). Since φ′c(x+(m+m′), b′)
can be encoded by one of the φi, property C(vi) holds.

Only property C(vii) remains to be obtained. Change the notation slightly and
assume χ(x, d) ∼kc φ′′c (x, b0). Define Gc to be the set of all A ∈ Glnc

(F ) such that
there is some m and some realization b of p = tp(b0) such that φ′′c (Ax, b0) ∼kc

φ′′c (x+m, b). To show that Gc is a group, consider another A′ ∈ Gc. Then there are
m′ and b′ |= p such that φ′′c (A′x, b) ∼kc φ′′c (x+m′, b′). This yields φ′′c (AA′x, b0) ∼kc

φ′′c (A′x+m, b) ≡ φ′′c (A′(x+A′−1m), b) ∼kc φ′′c (x+(A′−1m+m′), b′), and so AA′ ∈
Gc.

There is a ρ(y) ∈ p such that for no A ∈ Glnc(F ) \ Gc there are some b which
satisfies ρ and some tuple m with φ′′c (Ax, b0) ∼kc φ′′c (x+m, b), i.e.

|=
∧

A∈Glnc (F )\Gc

¬ρA(b0),

eIf T has no constants, use definable elements in a sort of T eq.
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where

ρA(y) = ∃z, y′ ρ(y′) ∧ φ′′c (Ax, y) ∼kc
x φ′′c (x+ z, y′).

Whence the formula

σ(y) =
∧

A∈Gc

ρA(y) ∧
∧

A∈Glnc (F )\Gc

¬ρA(y)

is satisfied by b0. An easy calculation shows

|= ∀y
(
σ(y) →

( ∧
A∈Gc

σA(y) ∧
∧

A∈Glnc (F )\Gc

¬σA(y)
))

,

where:

σA(y) = ∃y′ σ(y′) ∧ φ′′c (Ax, y) ∼kc
x φ′′c (x, y′).

Write now

φ′′′c (x, y) = φ′′c (x, y) ∧ σ(y).

It is clear that φ′′′c still encodes χ(x, d) and has all properties except possibly C(vii).
For C(vi) assume φ′′c (x+m, b) ∼kc φ′′c (x, b′). b′ satisfies ρA iff , φ′′c (Ax, b′) ∼kc φ′′c (x+
m′, b′′) for some m′ and some realization b′′ of ρ, or, equivalently, φ′′c (Ax, b) ∼kc

φ′′c (x + (m′ − A−1m), b′′). Therefore b satisfies ρA iff b′ satisfies ρA. This implies
that b satisfies σA iff b′ satisfies σA. So C(vi) holds.

Now, C(vii) is satisfied by φ′′′c and Gc only in the weaker form that φ′′′c (Hx, b)
is encoded by φ′′′c iff H ∈ Gc. By C(iv) we can define for each A ∈ Gc a function
b 7→ bA such that

φ′′′c (Ax, b) ∼kc φ′′′c (x, bA)

and set:

φc(x, y) =
∧

A∈Gc

φ′′′c (A−1x, yA).

Since φc(x, b) ∼kc φ′′′c (x, b) only C(viia) needs to be check: Given H ∈ Gc,

φc(Hx, b) ≡
∧

A∈Gc

φ′′′c (A−1Hx, bA) ≡
∧

A∈Gc

φ′′′c (A−1x, bHA) ≡ φc(x, bH).

Lemma 2.3. There is a set C of codes with the following properties:

C(viii) Every simple formula is encoded by a unique c ∈ C.
C(ix) For all c ∈ C and all H ∈ Glnc

(F ) the code cH is equivalent to some code
in C.f

fWe will construct C so that every cH is equivalent to some cH′
which belongs to C. (We identify

codes with equivalent formulas.)
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Proof. Work inside an ω–saturated model M of T and enumerate all simple formu-
las χi, i = 1, 2, . . . with parameters in M . We need only show that all χi can be en-
coded in C. We construct C as an increasing union of finite sets ∅ = C0 ⊂ C1 ⊂ · · · .
Assume that Ci−1 is defined and closed under the action of Gl(F ) in the sense of
C(ix). If χi can be encoded in Ci−1, we set Ci = Ci−1. Otherwise choose some code
c′ which encodes χi. Let ρ(b) express, that φc′(x, b) cannot be encoded in Ci−1 and
define

φc(x, y) = φc′(x, y) ∧ ρ(y).

Then φc still encodes χi. Moreover φc determines again a code: only C(vii) needs
to be considered. So assume that |= ρ(b) and let H be in Gc′ . We need to show that
|= ρ(bH). Otherwise φc′(Hx, b) can be encoded in Ci−1. Since Ci−1 is closed under
H−1, also φc′(x, b) can be encoded in Ci−1, which is a contradiction.

Choose now a system of right representatives A1, . . . , Ar of Gc in Glnc(F ) and
set Ci = Ci−1 ∪ {cA1 , . . . , cAr}.

3. Difference sequences

As in the previous section, T denotes a countable strongly minimal extension of T0

with the DMP.
Let us recall the following lemma, which will be useful to distinguish whether or

not a formula determines a coset of a group, according to the independence among
generic realizations.

Lemma 3.1. Let φ(x) be a formula over B, of Morley degree 1, and e0 and e1 two
generic B–independent realizations. If H ∈ Gln(F ) and e0 |̂

B
e0−He1, then φ(x)

is a coset formula and H ∈ Inv(φ(x)).

Proof. It follows from

MR(He1/B,He1 − e0) = MR(e0/B,He1 − e0) = MR(e0/B) ≥ MR(He1/B)

that e0, He1 and He1 − e0 are pairwise independent over B. By [9] e0, He1 and
He1 − e0 are generic elements of B–definable cosets of a B–definable group G.
Whence φ(x) is a coset formula and HG = G.

We fix now for every code c a number mc ≥ 0 such that for no φc(x, b) there
is a Morley sequence (ei) of length mc and some b′ from the same sort as b with
ei 6 |̂ b

b′ for all i.

Theorem 3.2. For every code c and any number µ > mc there exists a parameter
free formula Ψc(x0, . . . , xµ), whose realizations are called difference sequences (of
length µ), with the following properties.
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P(i) If e′0, . . . , e
′
µ, f is a Morley sequence of φc(x, b), then e′0 − f, . . . , e′µ − f is a

difference sequence.g

P(ii) For every difference sequence e0, . . . , eµ there is a unique b with |= φc(ei, b)
for all i (we call the base of the sequence). Furthermore, b is uniquely de-
termined if φc(ei, b) holds for at least mc many i’s.h

P(iii) If e0, . . . , eµ is a difference sequence then so is

e0 − ei, . . . , ei−1 − ei,−ei, ei+1 − ei, . . . , eµ − ei.

P(iv) Let e0, . . . , eµ be a difference sequence with base b. We distinguish two cases:
Suppose c is not a coset code:

a) If ei is generic in φc(x, b), then ei 6 |̂ b
ei −Hej for all H ∈ Glnc

(F ) and
i 6= j.

Suppose c is a coset code:

b) φc(x, b) is a group formula.
c) Ψc(e0, . . . , ei−1, ei − ej , ei+1, . . . , eµ) for all i 6= j.i

d) Ψc(e0, . . . , ei−1,Hei, ei+1, . . . , eµ) for all H ∈ Inv(c).i

e) If ei is a generic realization of φc(x, b), then ei 6 |̂ b
ei −Hej for all i 6= j

and H ∈ Glnc
(F ) \ Inv(c).

P(v) For all H ∈ Gc

Ψc(x0, . . . , xµ) ≡ Ψc(Hx0, . . . ,Hxµ).

The derived sequences of of (ei) consist of all difference sequences obtained from
(ei) by iteration of the transformations described in P(iii). Note that all permuta-
tions can be derived and have the same base (by P(ii)). We will later use a more
refined notation: if in the derivation process only indices ≤ λ are involved, then we
call the resulting derivation a λ–derivation.

Proof. Consider the following property DS(e0, . . . , eµ):

There is some b′ and a Morley sequence e′0, . . . , e
′
µ, f

′ of φc(x, b′) such that
ei = e′i − f ′.
This is clearly a partial type.

Claim: DS has all properties of Ψc.

Proof: Assume ei = e′i − f ′ for a Morley sequence (e′i), f
′ of φc(x, b′). Then (ei) is

a Morley sequence of φc(x+ f ′, b′) over b′, f ′. If φc(x+ f ′, b′) ∼ φc(x, b), then (ei)

gIn general b will not be the base of (e′
i) in the sense of P(ii).

hIt follows that b ∈ dcl(ei1 , . . . , eimc
) for all 0 ≤ i1 < · · · imc ≤ µ.

iBy P(ii) and µ > mc this new sequence has also base b.
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is a Morley sequence of φc(x, b).j

P(ii) Suppose |= φc(ei, b
′′) for mc–many i’s. Then there exists such an i with

ei |̂
b
b′′. Hence MR(φc(x, b) ∧ φc(x, b′′)) = kc and therefore b = b′′.

P(iii) Fix i ∈ {0, . . . , µ} and note that e′0, . . . , e
′
i−1, f

′, e′i+1, . . . , e
′
µ, e

′
i is again a

Morley sequence for φc(x, b′). Hence, the sequence

e′0 − e′i, . . . , e
′
i−1 − e′i, f

′ − e′i, e
′
i+1 − e′i, . . . , e

′
µ − e′i =

e0 − ei, . . . , ei−1 − ei,−ei, ei+1 − ei, . . . , eµ − ei

also satisfies DS.

P(iva) If c is not a coset code, then φc(x, b) is not a coset formula and the claim
follows from Lemma 3.1.

P(ivb) If c is a coset code, then φc(x, b′) is a coset formula. Since f ′ is a generic
realization, φc(x, b) ∼ φc(x+ f ′, b′) is a group formula.

P(ivc) Extend the Morley sequence e0, . . . , eµ of φc(x, b) by f . If φc(x, b) is a group
formula, and i 6= j, then

e0 + f, . . . , ei−1 + f, ei − ej + f, ei+1 + f, . . . , eµ + f, f

is again a Morley sequence of φc(x, b). It follows that

e0, . . . , ei−1, ei − ej , ei+1, . . . , eµ

realizes DS.

P(ivd) Choose f as above. If H ∈ Inv(c), then

e0 + f, . . . , ei−1 + f,Hei + f, ei+1 + f, . . . , eµ + f, f

is also a Morley sequence of φc(x, b). It follows that

e0, . . . , ei−1,Hei, ei+1, . . . , eµ

realizes DS.

P(ive) Immediate from Lemma 3.1.

P(v) If φc(Hx, b′) ≡ φc(x, b′′), then He′0, . . . ,He
′
µ,Hf is a Morley sequence of

φc(x, b′′) and (Hei) = (He′i −Hf) satisfies DS.

jSince b is canonical.
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This proves the claim.

We will take for Ψc a finite part of DS. Property P(i) will hold automatically.
The Properties P(ii), P(iva), P(ivb), P(ive) can be described by countable disjunc-
tions, which follow from DS. Therefore these properties follow from a sufficiently
strong part of DS, which we call Ψ′

c.

Assume c to be a non–coset code. Write

Vi(x0, . . . , xµ) = (x0 − xi, . . . , xi−1 − xi,−xi, xi+1 − xi, . . . , xµ − xi)

and

VH(x0, . . . , xµ) = (Hx0, . . . ,Hxµ).

Let V be the finite group generated by V0, . . . , Vµ and VH for H ∈ Gc. The formula

Ψ(x̄) =
∧

V ∈V
Ψ′

c(V (x̄))

has now properties P(iii) and P(v), and it still belongs to DS, since DS satisfies
P(iii) and P(v).

If c is a coset code, consider the group generated by {VH}H∈Gc
and the oper-

ations described in P(ivc) and P(ivd), and define. Ψc analogously. It satisfy then
P(ivc) and P(ivd) and P(v), and thereforek also P(iii).

We choose an appropriate Ψc (depending on µ) for every code c in such a way
that

ΨcH (x0, . . . ) = Ψc(Hx0, . . . ).

For two codes c and c′ to be equivalent we also impose that

Ψc ≡ Ψc′ .

Corollary 3.3. Lemma 2.3 remains true if Ψc is also taken into account.

Proof. This follows from P(v) and the proof of Lemma 2.3.

4. The δ–function

Consider now two strongly minimal theoriesl T1 and T2 which intersect in T0, the
theory of infinite F–vector spaces.

By considering their morleyization, we may assume that :

kNote that −1 ∈ Inv(c).
lIn this section neither countability nor the DMP will be required.
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QE-Assumption . Both theories Ti have quantifier elimination. Their languages Li

are relational, except for the function symbols in L0.

We may also assume that codes φc and formulas Ψc for T1 and T2 are quantifier
free, as well as Ti–types tpi(a/B). This assumption will be dropped only in section
9.

Let K be the class of all models A of T ∀1 ∪T ∀2 . So, A is an F–vector space, which
occurs at the same time as a subspace of C1 and as a subspace of C2, where Ci the
monster model of Ti.

For finite A ∈ K, define

δ(A) = tr1(A) + tr2(A)− dimA.

We have that:

δ(0) = 0 (4.1)

δ(〈a〉) ≤ 1 (4.2)

δ(A+B) + δ(A ∩B) ≤ δ(A) + δ(B) (4.3)

Moreover, if dim(A/B) is finitem, then we also set

δ(A/B) = tr1(A/B) + tr2(A/B)− dimA/B.

In case B is finite, we have that δ(A/B) = δ(A+B)− δ(B).

We say that B is strong in A, if B ⊂ A and δ(A′/B) ≥ 0 for all finite A′ ⊂ A

and denote this by

B ≤ A.

A proper strong extension B ≤ A is minimal, if there is no A′ properly contained
between B and A such that B ≤ A′ ≤ A.n

Let B ⊂ A and a be in A. We call a algebraic over B, if a is algebraic over B
either in the sense of T1 or of T2. We call A transcendental over B, if no a ∈ A \B
is algebraic over B.

Lemma 4.1. B ≤ A is minimal iff δ(A/A′) < 0 for all A′ which lie properly
between B and A.

Proof. One direction is clear, since A′ ≤ A implies δ(A/A′) ≥ 0. Conversely, if
δ(A/A′) ≥ 0 for some A′, we may assume that δ(A/A′) is maximal. Then A′ ≤ A

and A is not minimal over B.

mWe do not assume B ⊂ A.
nNote that B is strong in all A′ ⊂ A.
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Lemma 4.2. Let B ≤ A be a minimal extension. One of the three following holds:

δ(A/B) = 0 and A = 〈B, a〉 for some element a ∈ A \B algebraic over B
( algebraic minimal extension)

(II) δ(A/B) = 0, with A transcendental over B. (prealgebraic minimal extension)
(III) δ(A/B) = 1 and A = 〈B, a〉, for some element a transcendental over B

( transcendental minimal extension)

Note that in the prealgebraic case dimA/B ≥ 2.

Proof. Minimality implies that there is no C, properly contained between B and
A with δ(C/B) = 0. We distinguish two cases.

δ(A/B) = 0. If there is an a ∈ A\B which is algebraic over B, then δ(〈B, a〉/B) = 0.
Therefore 〈B, a〉 = A.

δ(A/B) > 0. For each a ∈ A\B it follows that δ(〈B, a〉/B) 6= 0. Hence δ(〈B, a〉/B) =
1 and therefore 〈B, a〉 ≤ A. By minimality 〈B, a〉 = A.

We define the class K0 ⊂ K as

K0 = {M ∈ K | 0 ≤M}.

It is easy to see that K0 can be axiomatized by a set of universal L1∪L2–sentences.
The following results are also easy.

Lemma 4.3. Fix M in K0 and define

d(A) = min
A⊂A′⊂M

δ(A′)

for all finite subspaces A of M . Then d is (on finite subspaces) the dimension
function of a pregeometry i.e., d satisfies (4.1), (4.2), (4.3) and

d(A) ≥ 0 (4.4)

A ⊂ B ⇒ d(A) ≤ d(B). (4.5)�

Lemma 4.4. Let M be in K0 and A a finite subspace. Let A′ be an extension of
A, minimal with δ(A′) = d(A). Then A′ is the smallest strong subspace of M which
contains A. We denote it by cl(A). �

We call cl(A) the closure of A.
For arbitrary subsets X of M we will use the notation δ(X) = δ〈X〉 and

d(X) = d〈X〉.

Note that δ(A) ≤ dim(A).
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5. Prealgebraic codes

From now on, T1 and T2 are two countable strongly minimal extensions of T0 with
the DMP. We assume the QE-Assumption of section 4, as in the next three sec-
tions 6, 7 and 8.

Choose for each Ti a set Ci of codes as in Corollary 3.3. A prealgebraic code c =
(c1, c2) consists of two codes c1 ∈ C1 and c2 ∈ C2 with the following properties:

• nc := nc1 = nc2 = kc1 + kc2

• For all proper, non–zero subspaces U of Fnc

kc1,U + kc2,U + dimU < nc. (5.1)

Set mc = max(mc1 ,mc2). Note that simplicity of the φci
(x, b) implies that nc ≥ 2.

Note also that for every H ∈ Glnc
(F )

cH = (cH1 , c
H
2 )

is a prealgebraic code.

Notation
Unless otherwise stated, independence (a |̂

b
c) means independent both in the sense

of T1 and T2. If c is a prealgebraic code, a (generic) realization of φc(x, b) is a
(generic) realization of both φc1(x, b1) and φc2(x, b2). A Morley sequence of φc(x, b)
is a Morley sequence for both φc1(x, b1) and φc2(x, b2). Similarly, for a set X of real
elements, one defines X–generic realization of φc(x, b) and Morley sequence of
φc(x, b) over X. A difference sequence for c with basis b = (b1, b2) is a difference
sequence for ci with basis bi for each i = 1, 2.

We say c is a coset code if c1 and c2 are. We define then Inv(c) = Inv(c1)∩Inv(c2).
T eq

1 and T eq
2 have only the home sort in common. So b ∈ dcleq(A) (resp. acleq(A))

means that b is a pair consisting of an element in dcleq1(A) (resp. acleq1(A)) and
an element in dcleq2(A) (resp. acleq2(A)). If M is a model of T1 ∪ T2, then M eq

consists of imaginary elements in the sense of T1 and in the sense of T2.

Lemma 5.1. Let B ≤ A be a prealgebraic minimal extension and a = (a1, . . . , an)
a basis for A over B. Then there is a prealgebraic code c and b ∈ acleq(B) such that
a is a generic realization of φc(x, b).

Proof. Fix i ∈ {1, 2}. Choose di ∈ acleqi(B) such that tpi(a/Bdi) is stationary.
Since A/B is transcendental, we have dim(a/ acli(B)) = n. So we can find an
Li–formula χi(x) ∈ tpi(a/Bdi) of Morley rank ki = MRi(a/Bdi). Since A/B is
transcendental, χ(x) is simple. By 2.3 there is a Ti–code ci ∈ Ci and bi ∈ dcleqi(Bdi)
with χi(x) ∼ki φci

(x, bi).
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Set c = (c1, c2) and b = (b1, b2). It follows from

k1 + k2 − n = tr1(a/B) + tr2(a/B)− dim(A/B) = δ(A/B) = 0

that nc = kc1 + kc2 . Inequality (5.1) follows from Lemma 4.1:

kc1,U + kc2,U − (n− dimU) = tr1(a/b, Ua) + tr2(a/b, Ua)− dim(Fn/U)

=δ(A/B + Ua) < 0.

Lemma 5.2. Let B ∈ K, b ∈ acleq(B), c be a prealgebraic code, and a a B–generic
realization of φc(x, b). Then 〈B, a〉 is a prealgebraic minimal extension of B.

Note that the isomorphism type of a over B is uniquely determined.

Proof. The proof follows from the above considerations. Note that subspaces of A
containing B are of the form B + Ua for some subspace U of Fnc .

Lemma 5.3. Let B ⊂ A be in K, c a prealgebraic code, b in acleq(B) and a ∈ A a
realization of φc(x, b) in A not completely contained in B. Then

1. δ(a/B) ≤ 0.
2. If δ(a/B) = 0, then a is a B–generic realization of φc(x, b).

Proof. Let Ua = 〈a〉 ∩ B. Let Ua = 〈a〉 ∩ B. Since a is not contained in B, it
follows that U is a proper subspace of Fnc . Therefore

δ(a/B) = tr1(a/B) + tr2(a/B)− (n− dimU) ≤ kc1,U + kc2,U + dimU − n.

If U 6= 0 the right hand side is negative. If U = 0, we have

δ(a/B) = tr1(a/B) + tr2(a/B)− n ≤ kc1 + kc2 − n = 0.

So δ(a/B) = 0 implies tri(a/B) = kci
.

Lemma 5.4. Let M ≤ N be a strong extension of elements in K. Given a preal-
gebraic code c, and natural numbers ε and r, there is some λ = λ(ε, r, c) ≥ 0 such
that for every difference sequence e0, . . . , eµ in N , with basis b, and λ ≤ µ, either

• the basis of some λ–derived sequence of e0, . . . , eµ lies in dcleq(M),

or

• for every subset A of M ′ with dimA ≤ ε the sequence e0, . . . , eµ contains a
Morley sequence of φc(x, b) over M,A of length r.

Proof. By adding e0, . . . , emc−1 to A, we may assume that b ∈ dcleq(M ∪ A). If
at least (mc+1) many of the ei lie in the same class of Nnc/Mnc , we subtract one
of these elements from the others and obtain a derived sequence with mc many
elements in M , which then has a base in dcleq(M). Therefore, we may assume that
each class of Nnc/Mnc contains at most mc many ei’s.
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Fix an A of dimension ε and set

d = dim(e0, . . . , eµ/〈M,A〉).

Then dim(e0, . . . , eµ/M) ≤ d+ ε. Thus by our assumption

µ+ 1 ≤ mc |F |(d+ε)nc .

Consider the following sets of indices.

X1 = {i ≤ µ | ei generic over M,A, e0, . . . , ei−1}
X2 = {i ≤ µ | i 6∈ X1 ∧ dim(ei/M,A, e0, . . . , ei−1) > 0}

It is clear that

d ≤ (|X1|+ |X2|)nc.

With the notation δ(i) = δ(ei/M,A, e0, . . . , ei−1), Lemma 5.3 implies that δ(i) < 0
if x ∈ X2, and δ(i) = 0 otherwise. Since M ≤ N we have

0 ≤ δ(A, e0, . . . , eµ/M) = δ(A/M) +
µ∑

i=1

δ(i) ≤ ε− |X2|.

If we put the three inequalities together, we obtain

µ+ 1 ≤ mc |F |(|X1|nc+ε nc+ε)nc .

If µ is large enough, |X1| ≥ r and (ei)i∈X1 is our Morley sequence.

6. The class Kµ

Choose now a function µ∗ which assigns to every prealgebraic code c a natural
number µ∗(c). We assume that

M(i) for every m and n there are only finitely many c with µ∗(c) = m and nc = n.

The existence of such a function is ensured by the countability of C. Then we choose
a function µ from prealgebraic codes to natural numbers such that

M(ii) µ(c) ≥ λ(nc, 1, c) + 1
M(iii) µ(c) ≥ λ(0, λ(0,mc + 1, c) + 1, c)
M(iv) µ(c) ≥ λ(0, µ∗(c) + 1, c)
M(v) µ(c) = µ(d), if c is equivalent to some dH .o

From now on, all difference sequences of c will have fixed length µ(c) + 1. Con-
dition M(v) ensures that, if c is equivalent to dH , and (ei) is a difference sequence
for d, then (Hei) is a difference sequence for c.

oNote that every dH can be equivalent to only one prealgebraic c.
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The class Kµ consists of all elements A of K0 which do not contain a difference
sequence for any prealgebraic code.

Lemma 6.1. Let B ≤ M ∈ Kµ and A/B prealgebraic minimal. Then there are
only finitely many B–isomorphic copies of A strong in M .

Proof. Let a be a basis of A/B. Choose d ∈ acleq(B) such that the types
tpi(a/Bdi) are stationary. It suffices to show that for all such d the partial type
tp1(a/Bd1) ∪ tp2(a/Bd2) has only finitely many realizations in M . For this we
choose a prealgebraic code c and b ∈ acleq(B) with |= φc(a, b) by 5.1. We now show
that φc(x, b) has only finitely many realizations in M . If not, there is an infinite
sequence e0, . . . of realizations such that ei is not contained in 〈B, e0, . . . , ei−1〉
(since the latter set is finite). Strongness of B in M yields that e0 is a B–generic
realization by 5.3. From δ(e0/B) = 0 we conclude that 〈B, e0〉 ≤M . If we proceed
in this way, we see that e0, . . . is a Morley sequence of φc(x, b) over B. Now P(i)
yields that e1 − e0, . . . , eµ(c)+1 − e0 is a difference sequence of c. Contradiction.

Corollary 6.2. Let B ≤ M ∈ Kµ and B ⊂ A finite with δ(A/B) = 0. Then there
are only finitely many B ≤ A′ ⊂M , which are isomorphic to A over B.

Note that automatically A′ ≤M .

Proof. Decompose the extension A/B into a sequence of minimal extensions.

Corollary 6.3. Let X be a finite subset of M ∈ Kµ. Then the d–closure of X:

cld(X) = {x ∈M |d(Xx) = d(X)}

is at most countable.

Proof. Note that cld(X) is the union of all A′ ⊂ M with cl(X) ⊂ A′ and
δ(A′/ cl(X)) = 0.

Lemma 6.4. Let M ∈ Kµ, M ≤ M ′ a minimal extension and (ei) a difference
sequence for a prealgebraic code c with base b ∈ acleq(M). Then c has a difference
sequence (e′i) with the same base b such that M contains e′0, . . . , e

′
µ(c)−1.

In particular, e′µ(c) is an M–generic realization of φc(b), which generates M ′ over
M as a vector space. Also b must be in dcleq(M).

Proof. Let ei be any element which does not lie in M . By strongness of M in M ′

and Lemma 5.3, it follows that ei is an M–generic realization of φc(x, b). We have
δ(〈M, ei〉/M) = 0 and whence 〈M, ei〉 ≤M ′. By minimality 〈M, ei〉 = M ′.

After permutation we may assume that e0, . . . , eν−1 are in M and eν , . . . , eµ(c)

are not. Since M ∈ Kµ, it follows that ν ≤ µ(c). As above, for i ≥ ν, ei is an
M–generic realization of φc(x, b) which generates M ′/M , so ei − Hieµ(c) ∈ M for
some Hi ∈ Glnc(F ). Therefore ei |̂

b
ei −Hieµ(c).
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If c is a not coset code, it follows from P(iva) that i = µ(c). So we have ν = µ(c).
Suppose that c is a coset code. If ν ≤ i < µ(c), then Hi ∈ Inv(c) by P(ive). By

P(ivc) and P(ivd) the difference sequence

e0, . . . , eν−1, eν −Hνeµ(c), . . . , eµ(c)−1 −Hµ(c)−1eµ(c), eµ(c)

is as stated in the claim. Note that the above sequence has same base b.

7. Amalgamation

Theorem 7.1. Kµ (and therefore also the class of all finite elements of Kµ) has
the amalgamation property with respect to strong embeddings.

Proof. Consider B ≤ M and B ≤ A in Kµ. We want to find a strong extension
M ′ ∈ Kµ of M and a B ≤ A′ ≤ M ′ isomorphic to A over B. We may assume that
A/B and M/B are minimal. We will show that either some “free amalgam” M ′ of
M and A is in Kµ or that M and A are isomorphic over B.

Case 1: A/B is algebraic. Then A = 〈B, a〉 for an element a which is (e.g.) algebraic
over B in the sense of T1 and transcendental over B in the sense of T2. There are
two (non exclusive) subcases.

Subcase 1.1: tp1(a/B) is realized in M . Choose some realization a′ in M . Hence,
a′/B is transcendental in the sense of T2 and a′ 7→ a defines an isomorphism be-
tween M = 〈B, a′〉 and A over B.

Subcase 1.2: There is some a′ 6∈ M , which realizes tp1(a/B) (in the sense of T1).
Define the structure M ′ = 〈M,a〉 by setting a to have the same T1–type over M as
a′ and being transcendental over M in the sense of T2 i.e. M ′ is a free amalgam of
A and M over B in the sense that M are A are independent over B and linearly
independentp over B. It is easy to see that, in free amalgams, M ≤M ′ and A ≤M ′.
By Lemma 7.2 below, M ′ belongs to Kµ.

Case 2: A/B is transcendental. We may assume that M ∩ A = B. Since A/B is
transcendental, we find M ′ = M+A in K, such that M and A are independent over
B. So M ′ is a free amalgam of M and A, and M ′ is a minimal extension of M and
of A. If M ′ ∈ Kµ, we are done. Otherwise, 7.3 shows that, by symmetry, we may
assume that M ′ contains a difference sequence (ei) of a prealgebraic code c with
base b ∈ acleq(M). Also by Lemma 7.2 , dim(M ′/M) > 1 and A/B is prealgebraic.
By minimality and Lemma 6.4, we may also assume that e0, . . . , eµ(c)−1 are in M

and eµ(c) is an M–generic realization of φc(x, b), which generates M ′ over M . Write
eµ(c) = m+a for m ∈M and a ∈ A. Therefore δ(a/B) = δ(a/M) = δ(eµ(c)/M) = 0.

pI.e. dim(A/B) = dim(A/M).
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Whence a generates A over B. We apply now Lemma 5.4 and M(ii) to the extension
(M ′/A) and m and obtain two subcases:

Subcase 2.1: There is a (µ(c) − 1)–derived difference sequence (e′i) with basis
b′ ∈ dcleq(A). Since e′i ∈M for i ≤ µ(c)− 1, the base b′ is in dcleq(M)∩ dcleq(A) ⊂
acleq(B). Hence e′µ(c) is an M–generic realization of φc(x, b′) which generates M ′

over M . Again there are two cases.

Subsubcase 2.1.1: e′µ(c) ∈ A. Since A ∈ Kµ, there is an e′i ∈ M not in A. By mini-
mality e′i generates M over B and e′µ(c) 7→ e′i defines a B-isomorphism between A

and M .

Subsubcase 2.1.2: e′µ(c) 6∈ A. Then e′µ(c) is an A–generic realization of φc(x, b′).
Write e′µ(c) = m′ + a′ for m′ ∈ M and a′ ∈ A. Since e′µ(c), m

′ and a′ are pairwise
independent over b′, then, for i = 1, 2, φci(x, b

′
i) is a coset formula by [9] and whence

a group formula by C(v) and P(ivb). It follows that −m′ and a′ are generics of the
same Bb′i–definable coset of a Bb′i–definable connected group. Thus they have the
same type over B. As above m′ generates M over B and a′ generates A over B. So
the map a′ 7→ −m′ defines an isomorphism between A and M over B.

Subcase 2.2: e0, . . . , eµ(c)−1 contains a B,m–generic realization of φc(x, b), say e0.
For i = 1, 2, e0 and eµ(c) have the same Ti–type over B,m, bi. Whence e0 −m and
a have the same Ti–type over B,m, bi, a forteriori over B. Whence a 7→ e0 − m

defines a B–isomorphism between A and M .

Lemma 7.2. Let M ∈ Kµ, M ≤M ′ and dim(M ′/M) = 1. Then, M ′ ∈ Kµ.

Proof. Assume M ′ 6∈ Kµ and (ei) is a difference sequence in M ′ for a prealgebraic
code c with base b witnessing this fact. Since dim(M ′/M) = 1 and nc ≥ 2, no ei

is an M–generic realization. By the choice of µ(c) and Lemma 5.4 we may assume
that b ∈ dcleq(M). By Lemma 5.3 we conclude that all ei lie in M . Contradiction.

Lemma 7.3. Let M ′ be a free amalgam of M and A over B and (ei) a difference
sequence in M ′. Then there is a derived sequence with base in acleq(M) or a derived
sequence with base in acleq(A).

Actually we find the base in dcleq(M), dcleq(A) or acleq(B).

Proof. Let b be the base of s = (ei). If no derivation has a base in dcleq(M),
Lemma 5.4 and M(iii) yield a subsequence s′ of length λ(0,mc + 1, c) + 1 which
is a Morley sequence of φc(x, b) over M . Again by 5.4, applied to M ′/A, if there
is no derivation with base in dcleq(A), there is a subsequence s′′ of s′ of length
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mc + 1, say e0, . . . , emc , which is also a Morley sequence of φc(x, b) over A. Set
E = {e0, . . . , emc−1}. Hence, b ∈ dcleq(E) and

emc |̂
b

M,E , emc |̂
b

A,E .

Write every e ∈ E as the sum of an element of M and an element of A. Define EM

to be the set of all elements in M which occur as summands, and likewise EA, and
set E′ = EM ∪ EA. Then also b ∈ dcleq(E′) and, since E′ and E are interdefinable
over M and as well as over A, we have

emc
|̂
b

M,E′ , emc
|̂
b

A,E′ ,

which implies

emc
|̂

B,E′
M , emc

|̂
B,E′

A .

Furthermore

M |̂
B,E′

A .

Write emc
= m + a for m ∈ M and a ∈ A. Then emc

, m, and a are pairwise inde-
pendent over B,E′. Fix i = 1, 2. Then φci

(x, bi) is a group formula for a definable
group Gi and bi is the canonical parameter of Gi. Moreover, a is a generic element
of an acleqi(B,E′)–definable coset of Gi and bi is definable from the canonical base
of p = tpi(a/ acleqi(B,E′)). Note that a |̂

B,EA
E′. So the canonical base of p is in

acleqi(A), hence b ∈ acleq(A). By symmetry b ∈ acleq(M), and since M and A are
independent over B, this yields b ∈ acleq(B).

We call M ∈ Kµ rich, if for all finite B ≤ M and all finite B ≤ A ∈ Kµ there
is an B ≤ A′ ≤ M , which is B–isomorphic to A. We will show in the next section
(8.3) that rich structures are models of T1 ∪ T2.

Corollary 7.4. There is a unique countable rich structure Kµ. All rich structures
are (L1 ∪ L2)∞,ω–equivalent. �

8. The theory T µ

Lemma 8.1. Let M ∈ Kµ, b ∈ dcleq(M), c a prealgebraic code and M ′ a prealge-
braic minimal extension of M , generated by an M–generic realization a of φc(x, b)
as in 5.2. If M ′ does not belong to Kµ, one of the following is true.

(a) M ′ contains a difference sequence (ei) for c whose elements but one lie in M .
(b) M ′ contains a difference sequence for a prealgebraic code c′ with base b′ which

contains a Morley sequence of φc′(x, b′) over M of length µ∗(c′) + 1.
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Proof. If M ′ 6∈ Kµ there is a difference sequence (e′i) in M ′ for a prealgebraic
code c′ with base b′. If case (b) does not occur, by M(iv) and Lemma 5.4 we
may assume that b′ ∈ dcleq(M) and furthermore that (e′i) is as in Lemma 6.4. So
nc′ = nc = dim(M ′/M) and we have He′µ(c′) + m = a for some H ∈ Glnc

(F )
and m ∈ M . By C(vi) there is a d ∈ dcleq(M) with φci

(x + m, bi) ∼kci φci
(x, di)

(i = 1, 2). Then He′µ(c′) is an M–generic realization of φc(x, d), i.e. e′µ(c′) is an
M–generic realization of φcH (x, d). By C(ix) there is a prealgebraic code c′′ which
is equivalent to cH . We have φcH (x, d) ≡ φc′′(x, b′′) for some b′′ ∈ dcleq(M). By
C(viii) and C(iv) we conclude c′′ = c′ and b′′ = b′.

Finally note that (e′i) is a difference sequence for cH . So (ei) = (He′i) is the
desired difference sequence for c as in (a).

Corollary 8.2.

1. Let c be a prealgebraic code. That a structure M ∈ K contains no difference
sequence for c can by expressed by a single sentence αc.

2. Let c be a prealgebraic code, M ∈ Kµ a model of T1 ∪ T2. That no extension of
M in Kµ is generated by a generic realization of some φc(x, b) with b ∈ dcleq(M)
can be expressed by an sentence βc.

3. Let M ∈ Kµ be a model of T1∪T2. That M has no prealgebraic minimal extension
in Kµ can be expressed by a set of sentences.

Proof. 1. Let αc = ¬∃x0, . . . , xµ(c)

(
Ψc1(x0, . . . , xµ(c)) ∧Ψc2(x0, . . . , xµ(c))

)
.

2. Fix i = 1, 2 and let M be a submodel of Ci. Let m ∈M , φ(x,m) an Li–formula
of Morley rank k and degree 1, and a ∈ Ci be an M–generic realization of φ(x,m).
There is a uniform way to translate a quantifier free property ψ(a,m) of a,m into
a quantifier free property ψ∗(m) of m: Set

ψ∗(y) = MRx

(
φ(x, y) ∧ ψ(x, y)

) .= k

This shows that, if M ∈ K and a is an M–generic realization of φc(x, b), then
any L1 ∪ L2–sentence α about 〈M,a〉 can be translated into an L1 ∪ L2–sentence
αc(b) about M .

Now there is only a finite set Cc of codes c′ which can occur in (b) of 8.1 since
(µ∗(c′) + 1)nc′ ≤ dim(M ′/M) = nc. So set

βc = ∀yc α
c
c(yc) ∧

∧
c′∈Cc

∀yc′ αc
c′(yc′).

The variables yc, yc′ are understood to range over appropriate sorts of M eq.

3. This follows from 2. and Lemma 5.1.



December 20, 2006 18:32 WSPC/INSTRUCTION FILE redfusion3.pub

21

We now introduce the theory Tµ described by the following axioms, which by
the above are elementarily expressible.

Axioms of Tµ M is model of Tµ iff

(i) M ∈ Kµ

(ii) M is a model of T1 ∪ T2

(iii) No prealgebraic minimal extension of M belongs to Kµ.

Theorem 8.3. Rich structures are exactly the ω–saturated models of Tµ.

Proof. Let M be an ω–saturated model of Tµ. In order to show that M is rich,
we consider a finite strong subspace B of M and a minimal extension A ∈ Kµ of B.
We want to find a copy B ≤ A′ ≤M of A/B.

case (I): A/B is algebraic. Since M is a model of T1 ∪T2, it has no proper algebraic
extension in K. So A′ exists by 7.1.

case (II): A/B is prealgebraic. Since M has no prealgebraic minimal extension, 7.1
forces to obtain a copy of A in M .

case (III): A/B is transcendental. Since A/B is generated by a transcendental
element we have to find an a′ ∈ M which is transcendental over B such that
〈B, a′〉 ≤ M . Since this equivalent to realize a partial type, and since M is ω–
saturated, it suffices to find a′ in an elementary extension M ′ of M . Choose M ’
uncountable. By 6.3 cld(B) ≤M ′ is countable. For every a′ ∈M ′ \ cld(B), we have
δ(a′/B) = 1 and 〈B, a′〉 ≤M ′.

Assume now that M is rich. We show first that M is a model of Tµ.

Axiom (ii): By Lemma 7.2 there are elements in Kµ of arbitrary finite dimension.
So M is infinite and we need only show that M is algebraically closed in the sense
of T1 and of T2.

Let a be an element in acl1(M) and transcendental over M in the sense of T2.
Therefore, a is 1–algebraic over a finite subset B ofM . We may assume that B ≤M .
Since (by Lemma 7.2) B ≤ 〈B, a〉 ∈ Kµ, there is a copy of a over B in M . This
implies that M acl1–closed. Likewise M is algebraically closed in the sense of T2.

Axiom (iii): Let M ′ be a prealgebraic minimal extension generated by an M–generic
realization a of φc(x, b). Assume M ′ ∈ Kµ. Choose a finite subspace C0 ≤ M with
b ∈ dcleq(C0). Then C0 ≤ 〈C0, a〉. Since M is rich, M contains a copy e0 of a over C0

with C1 = 〈C0, e0〉 ≤M . Continuing this way we obtain an infinite Morley sequence
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e0, e1, . . . of φc(x, b). By P(i), e1− e0, . . . , eµ(c)+1− e0 is a difference sequence for c.

Choose an ω–saturated M ′ ≡ M . By the above we know that M ′ is rich. Since
M ′ ≡∞,ω M , this implies that M is ω–saturated.

9. Proof of the Theorem

In this section quantifier elimination for T1 and T2 will no longer be required. Hence,
replace in the class K embeddings by elementary maps in the sense of T1 and in the
sense of T2, which we call bi-elementary maps.

Corollary 9.1. Tµ is complete. Two tuples a and a′ in two models M and M ′ have
the same type iff there is bi-elementary bijection

f : cl(a) → cl(a′)

which maps a to a′.

Proof. Kµ is a model of Tµ. So is Tµ consistent. Let M be any model of Tµ. By
theorem 8.3 there is a rich M ′ ≡M . So M ′ ≡∞,ω K

µ, which proves completeness.

To prove the second statement choose ω–saturated elementary extensions M ≺
N and M ′ ≺ N ′. It is easy to seeq that M ≤ N and M ′ ≤ N ′, so “cl” does not
increase.

Since M ′ and N ′ are rich, f is even ∞, ω–elementary.

For the converse suppose that a and a′ have the same type. There is a bi-elementary
map f : cl(a) → M ′ which maps a onto a′. We write A′ for f(cl(a)). Then d(a) =
δ(cl(a)) = δ(A′). It follows d(a′) ≤ d(a) and d(a′) = d(a) by symmetry. A′ has, like
cl(a), no proper subset A′′ which contains a′ and with δ(A′′) = d(a′). This implies
A′ = cl(a′).

Theorem 9.2. Tµ is strongly–minimal and d is the dimension function of the
natural pregeometry on models of Tµ, i.e.

MR(a/B) = d(a/B).

Proof. Let a be a single element. Types tp(a/B) with d(a/B) = 0 are algebraic
by Corollary 6.2. It follows from 9.1, that there is only one type with d(a/B) = 1.r

qIf M 6≤ N , there is a tuple a ∈ N with δ(a/M) < 0. We find a finite B ≤ M with δ(a/B) < 0.

This is witnessed by the truth of an L1 ∪L2–formula φ(a, b̄). However, φ(x, b̄) is not satisfiable in
M , whence M 6≺ N .
rThis is the type of elements a which are transcendental over cl(B) and for which 〈cl(B), a〉 is
strong in the considered model.
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This implies strong minimality. The rest of the claim follows from the fact that d
describes the algebraic closure.

This completes the proof of 1.1.

Proof. [Proof of Theorem 1.2, 2.] Let M be an elementary submodel of N in the
sense of T1 and T2. By Corollary 9.1 we need only show that M is strong in N .
Suppose not and pick a smallest extension M ⊂ H ⊂ N with negative δ(H/M).
We may decompose H/M into a sequence M ≤ K ⊂ H, where δ(K/M) = 0 and
H = 〈K, a〉 for some element a with δ(a/K) = −1. Since M is a model of Axiom
(iii), we have M = K. a is algebraic over M in the sense of T1 (and T2), whence by
Axiom (ii) we have a ∈M . Contradiction.

Corollary 9.3. If T1 and T2 are model-complete, then Tµ is also model-complete.

We now prove the last remark of the introduction. Let T1 and T2 be both the
theory of algebraically closed fields of characteristic p formulated in L1 = {+,�}
and L2 = {+,⊗}. Let Tµ be a fusion over

T0, the theory of Fp–vector spaces. Let x be transcendental (in the sense of Tµ),
xi the i–th power in the sense of T1 and X = {xi | i ∈ N}. Let S be any subset
of X. Then dim(S) = |S| and tr1(S) ≤ 1. It follows from Theorem 1.2, 1. that
tr2(S) ≥ |S| − 1. We claim that tr2(S) = |S|, which is clear for S = {x0}. Assume
the contrary. Then, for some n > 0, we have tr2(x1 . . . , xn/x0) < n. But xn+1 is also
transcendental, therefore it has the same type as x. So tr2(xn+1, . . . , x(n+1)n/x0) <
n. It follows

tr2(x1, . . . , xn, xn+1, . . . , x(n+1)n/x0) < 2n− 1,

which is impossible.

Remark 9.4. E. Hrushovski stated in [1] that the DMP survives the fusion. M.
Hils explained a proof of this fact to us, which shows also that Tµ has the DMP.
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