ON HRUSHOVSKI FUSIONS FOR PREDICATES AND THEIR ENVELOPES

S.V. Sudoplatov^{*}

Sobolev Institute of Mathematics, 4, Acad. Koptyug avenue, Novosibirsk, 630090, Russia; Novosibirsk State Technical University, 20, K.Marx avenue, Novosibirsk, 630092, Russia

e-mail: sudoplat@math.nsc.ru

E.Hrushovski [1] showed that, for any predicate symbol R, taking a linear *prerank* function of form

$$y_R(\mathcal{A}) = |\mathcal{A}| - \alpha \cdot e_R(\mathcal{A}),$$

(where \mathcal{A} is a structure $\langle A; R \rangle$, $\alpha \in \mathbb{R}^+$, $e_R(\mathcal{A})$ is a number of tuples in R, being interpreted in \mathcal{A}) and a class K_R of finite structures \mathcal{A} with $y_R(\mathcal{A}) \geq 0$, one get a saturated countable K_R -generic (in the sense of [2, 3]) structure $\mathcal{M}_R = \langle M_R; R \rangle$ with a stable theory.

For predicate symbols R_1, \ldots, R_n, \ldots , taking a prerank function

$$y_{R_1,\dots,R_n,\dots}(\mathcal{A}) = |\mathcal{A}| - \sum_i \alpha_i \cdot e_{R_i}(\mathcal{A}),$$

and a class $K_{R_1,\ldots,R_n,\ldots}$ of finite structures \mathcal{A} of language $\{R_1,\ldots,R_n,\ldots\}$ with $y_{R_1,\ldots,R_n,\ldots}(\mathcal{A}) \geq 0$, one again get a saturated countable $K_{R_1,\ldots,R_n,\ldots}$ generic structure \mathcal{M} with a stable theory and such that $\mathcal{M} \upharpoonright R_i = \mathcal{M}_{R_i}$. That structure \mathcal{M} is called the *Hrushovski fusion* of structures \mathcal{M}_{R_i} (cf. [3, 4, 5]). Considering \mathcal{M} itself, \mathcal{M} and the restrictions $\mathcal{M} \upharpoonright \{R_{i_1},\ldots,R_{i_k},\ldots\}$ are called the *Hrushovski structures*. If for a Hrushovski structure \mathcal{M} , arities for all relations R_i are at most r, coefficients α_i are chosen in Herwig style [6] (cf. [3, Chapter 4]) and additionally with $\alpha_i \cdot (k_p)^r < \varepsilon_p$, as well as the special

^{*}The work is supported by RFFI (grant 09-01-00336-a), by the Council for Grants (under RF President) and State Aid of Fundamental Science Schools via project NSh-3669.2010.1, and by the grant of Novosibirsk State Technical University.

 b_n^p are lower bounds for *p*-approximations of $y_{R_1,\ldots,R_n,\ldots}$ (with $\sum_{i=1}^p$ instead of \sum), then \mathcal{M} is called a *Hrushovski–Herwig structure*.

Notice that each Hrushovski structure is countable. Notice also that, by construction, the Hrushovski structures in [3] are Hrushovski–Herwig structures.

The following definition generalizes the notion of (binary) envelope in [3], being used for constructions of generic Ehrenfeucht theories.

Definition. Let $R(x_1, \ldots, x_n)$ be an atomic formula, \bar{x} be a tuple with coordinates in $\{x_1, \ldots, x_n\}$. The formula $\exists \bar{x} R(x_1, \ldots, x_n)$ (as well as the correspondent relations in structures) is called the \bar{x} -projection or the \bar{x} -envelope of $R(x_1, \ldots, x_n)$. A tuple (Q_1, \ldots, Q_m) is an envelope of the relation R or R-envelope if, for each coordinate x_i in $R(x_1, \ldots, x_n)$, there is a tuple \bar{x} without x_i such that some Q_j is an \bar{x} -envelope of R. The envelope (Q_1, \ldots, Q_m) is k-ary if each Q_j is a k-ary relation. Any 2-ary envelope is called binary. If (Q_1, \ldots, Q_m) is an envelope of R, the relation R is called the bush in (Q_1, \ldots, Q_m) .

Since

$$R(x_1,\ldots,x_n) \vdash \exists \bar{x} R(x_1,\ldots,x_n),$$

any envelope (Q_1, \ldots, Q_m) forms a formula

$$\varphi(x_1,\ldots,x_n) \rightleftharpoons \bigwedge_{j=1}^m \exists \bar{x}^j R(x_1,\ldots,x_n),$$

where $\exists \bar{x}^j R(x_1, \ldots, x_n)$ corresponds to Q_j , such that

$$R(x_1,\ldots,x_n)\vdash\varphi(x_1,\ldots,x_n).$$

Now we consider an influence of bushes R and their envelopes (Q_1, \ldots, Q_m) with respect to Hrushovski construction, as well as Hrushovski fusions for R and (Q_1, \ldots, Q_m) .

A bush R (an envelope (Q_1, \ldots, Q_m)) is a Hrushovski(-Herwig) bush (a Hrushovski(-Herwig) envelope) if its structure \mathcal{M} is a generic Hrushovski(-Herwig) structure.

The following examples show that an existence of K_R -generic Hrushovski structure can not guarantee that envelopes of R are Hrushovski envelopes.

Example. Let $R(x, y_1, \ldots, y_n)$ be an infinite bush (with a K_R -generic Hrushovski structure) for a binary envelope (Q_1, \ldots, Q_n) , where

$$\exists y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_n R(x, y_1, \dots, y_n) \equiv Q_i(x, y_i),$$

 $i = 1, ..., n, Q_j = Q_k$ for some $j \neq k$, and Q_j satisfies the *pairwise intersection property* [3], i. e.,

$$\models \forall x, y \exists z (Q_j(z, x) \land Q_j(z, y)).$$

Then the binary *R*-envelope $(Q_1, \ldots, Q_n, Q_{n+1})$, where Q_{n+1} corresponds to the formula

$$\exists x, y_1, \dots, y_{j-1}, y_{j+1}, \dots, y_{k-1}, y_{k+1}, \dots, y_n R(x, y_1, \dots, y_n),$$

has the coordinate Q_{n+1} that forms a complete graph (having $\frac{n(n-1)}{2}$ edges for n-element subgraphs). Thus there is no Hrushovski structures with respect to the class $K_{Q_{n+1}}$, being generated by finite restrictions of a Q_{n+1} -structure. If n > 2 one can replace Q_j and Q_k by Q_{n+1} and again get an non-Hrushovski R-envelope. \Box

Modifying Example one can get a K_R -generic Hrushovski structure with a binary envelope (Q_1, \ldots, Q_n) , not having the pairwise intersection property but with $O(k^2)$ edges for k-element subgraphs with respect to some Q_i producing a non-Hrushovski generic structure.

Recall [1, 3] that a finite substructure \mathcal{A} in a Hrushovski structure \mathcal{M} is strong or self-sufficient if $y_{\cdot}(\mathcal{A}) \leq y_{\cdot}(\mathcal{B})$ for any finite \mathcal{B} with $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{M}$.

A Hrushovski relation R is *self-sufficient* any tuple (a_1, \ldots, a_n) in R forms a self-sufficient set $\{a_1, \ldots, a_n\}$.

Theorem. If (Q_1, \ldots, Q_m) be a Hrushovski-Herwig envelope for an nary bush and consisting of self-sufficient relations, then (Q_1, \ldots, Q_m) has a Hrushovski-Herwig bush R forming a Hrushovski fusion of generic structures \mathcal{M}_{Q_i} , $i = 1, \ldots, m$, and \mathcal{M}_R .

Proof. Let

$$y_{Q_1,\dots,Q_m}(\mathcal{A}) = |\mathcal{A}| - \sum_{i=1}^m \alpha_i \cdot e_{Q_i}(\mathcal{A}),$$

be the prerank function for a generic model $\mathcal{M}_{Q_1,\ldots,Q_m}$. Take α_{m+1} , being in Herwig construction [3, 6] and additionally with $\alpha_{m+1} \cdot (k_p)^n < \varepsilon_p$, allow to permutate coordinates of tuples in R, preserving R, and to put (a_1,\ldots,a_n) in R if that tuple belongs to a bush of (Q_1,\ldots,Q_m) .

Now we consider the prerank function

$$y_{Q_1,\dots,Q_m,R}(\mathcal{A}) = |\mathcal{A}| - \sum_{i=1}^m \alpha_i \cdot e_{Q_i}(\mathcal{A}) - \alpha_{m+1} \cdot e_R(\mathcal{A}).$$

By choice of α_{m+1} for any *n*-element restriction \mathcal{A}_0 of structure in K_{Q_1,\ldots,Q_m} there is a bush R of a copy of a restriction of (Q_1,\ldots,Q_m) such that papproximations of $y_{Q_1,\ldots,Q_m,R}(\mathcal{A})$ have lower bounds $b_{n'}^p$ for any non-empty restrictions \mathcal{A} of \mathcal{A}_0 .¹ Thus, a class $K_{Q_1,\ldots,Q_m,R}$ of finite (Q_1,\ldots,Q_m,R) structures \mathcal{A} with that lower bounds $b_{n'}^p$ for p-approximations is generic. Since each Q_i is self-sufficient, for each tuple $\bar{a}_i \in Q_i$, $i = 1,\ldots,m$, the structure \mathcal{A}_i with the universe A_i , consisting of all elements in \bar{a}_i , admits (using standard arguments of Amalgamation Lemmas in [3]) the free amalgamation $\mathcal{B} *_{\mathcal{A}_i} \mathcal{A}'$ inside the class $K_{Q_1,\ldots,Q_m,R}$, where \mathcal{A}' is a copy of \mathcal{A}_0 such that \mathcal{A}_i is a strong restriction of \mathcal{A}' to a tuple in Q_i , and \mathcal{A}_i is a strong substructure of \mathcal{B} . Thus, in that amalgams, \bar{a} belongs to the according projection of R. Taking a $K_{Q_1,\ldots,Q_m,R}$ -generic structure \mathcal{M} , we get the small stable theory Th(\mathcal{M}) and a required Hrushovski fusion with a bush R for the envelope (Q_1,\ldots,Q_m) . \Box

References

- Hrushovski E. A stable ℵ₀-categorical pseudoplane / E. Hrushovski. Jerusalem : Hebrew University, 1988. — (Preprint).
- [2] Sudoplatov S. V. Syntactic approach to constructions of generic models / S. V. Sudoplatov // Algebra and Logic. 2007. Vol. 46, No. 2. P. 134–146.
- [3] Sudoplatov S. V. The Lachlan problem / S. V. Sudoplatov. Novosibirsk : NSTU, 2009. — 336 p. [in Russian]
- [4] *Hrushovski E.* A new strongly minimal set / E. Hrushovski // Ann. Pure and Appl. Logic. — 1993. — Vol. 62, No. 2. — P. 147–166.
- [5] Sudoplatov S. V. On the finite closure property for fusions of generic classes / S. V. Sudoplatov // Algebra and Model Theory 7. Collection of papers / eds.: A. G. Pinus, K. N. Ponomaryov, S. V. Sudoplatov. — Novosibirsk : NSTU, 2009. — P. 131–140. [in Russian]
- [6] Herwig B. Weight ω in stable theories with few types / B. Herwig // J. Symbolic Logic. 1995. Vol. 60, No. 2. P. 353–373.

¹The coefficients $(k_p)^n$ allow to add to R some or all permutations of any tuple in the bush R, if it is necessary, staying in the class $K_{Q_1,\ldots,Q_m,R}$ with lower bounds $b_{n'}^p$.