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Rudin–Keisler preorders play a key role in the classification of countable
models of small theories as a tool for distributions of prime models over
tuples [1, 2]. In the paper, we consider variations and properties of Rudin–
Keisler preorders in small theories.

The author thanks Evgeniy A. Palyutin, Bektur S. Baizhanov, Aleksandr
G. Pinus, and Predrag Tanović for useful remarks.

We consider complete first-order theories T with infinite models. Additio-
nally we assume that T are small, i. e., they have countably many types
(|S(T )| = ω). So for any type q ∈ S(T ) and its realization ā, there exists a
model M(ā), being prime over ā. Since all prime models over realizations
of q are isomorphic, we often denote such by Mq.

Let p and q be types in S(T ). We say that the type p is dominated by
a type q, or p does not exceed q under the Rudin–Keisler preorder (written
p ≤RK q), if Mq |= p, that is, Mp is an elementary submodel of Mq (written
Mp ¹Mq). Besides, we say that a model Mp is dominated by a model Mq,
or Mp does not exceed Mq under the Rudin–Keisler preorder , and write
Mp ≤RK Mq.

Syntactically, the condition p ≤RK q (and hence also Mp ≤RK Mq)
is expressed thus: there exists a formula ϕ(x̄, ȳ) such that the set q(ȳ) ∪
{ϕ(x̄, ȳ)} is consistent and q(ȳ) ∪ {ϕ(x̄, ȳ)} ` p(x̄). Since we deal with a
small theory, ϕ(x̄, ȳ) can be chosen so that, for any formula ψ(x̄, ȳ), the
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set q(ȳ) ∪ {ϕ(x̄, ȳ), ψ(x̄, ȳ)} being consistent implies that q(ȳ) ∪ {ϕ(x̄, ȳ)} `
ψ(x̄, ȳ). In this event the formula ϕ(x̄, ȳ) is said to be (q, p)-principal .

Types p and q are said to be domination-equivalent , realization-equivalent ,
Rudin–Keisler equivalent , or RK-equivalent (written p ∼RK q) if p ≤RK q
and q ≤RK p. Besides, models Mp and Mq are said to be domination-
equivalent , Rudin–Keisler equivalent , or RK-equivalent (written Mp ∼RK

Mq).
As in [3], types p and q are said to be strongly domination-equivalent ,

strongly realization-equivalent , strongly Rudin–Keisler equivalent , or strongly
RK-equivalent (written p ≡RK q) if, for some realizations ā and b̄ of p and q
accordingly, both tp(b̄/ā) and tp(ā/b̄) are principal. ModelsMp andMq are
said to be strongly domination-equivalent , strongly Rudin–Keisler equivalent ,
or strongly RK-equivalent (written Mp ≡RK Mq).

Clearly, domination relations form preorders, and (strong) domination-
equivalence relations are equivalence relations. Here, Mp ≡RK Mq implies
Mp ∼RK Mq.

If Mp and Mq are not domination-equivalent then they are non-isomor-
phic. Moreover, non-isomorphic models may be found among domination-
equivalent ones.

For the illustration, we consider the following Ehrenfeucht examples [4]
of theories Tn, n ∈ ω, with I(Tn, ω) = n ≥ 3.

Example. Let Tn be the theory of a structure Mn, formed from the
structure 〈Q; <〉 by adding of constants ck, k ∈ ω, such that lim

k→∞
ck = ∞,

and by unary predicates P0, . . . , Pn−3 which form a partition of the set Q of
rationals, with

|= ∀x, y ((x < y) → ∃z ((x < z) ∧ (z < y) ∧ Pi(z))), i = 0, . . . , n− 3.

The theory Tn has exactly n pairwise non-isomorphic models:
(a) a prime model Mn ( lim

k→∞
ck = ∞);

(b) prime models Mn
i over realizations of types pi(x) ∈ S1(∅), isolated

by sets of formulas {ck < x | k ∈ ω}∪{Pi(x)}, i = 0, . . . , n−3 ( lim
k→∞

ck ∈ Pi);

(c) a saturated model Mn
(the limit lim

k→∞
ck is irrational).

The modelsMn
p0

, . . . ,Mn
pn−3

are domination-equivalent but pairwise non-
isomorphic. 2

A syntactic characterization for the model isomorphism between Mp

and Mq is given by the following proposition. It asserts that an existence of
isomorphism between Mp and Mq is equivalent to the strong domination-
equivalence of that models.
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Proposition 1 [1, 2, 3]. For any types p(x̄) and q(ȳ) of a small theory
T , the following conditions are equivalent:

(1) models Mp and Mq are isomorphic;
(2) models Mp and Mq are strongly domination-equivalent;
(3) there exist (p, q)- and (q, p)-principal formulas ϕp,q(ȳ, x̄) and ϕq,p(x̄, ȳ)

respectively, such that the set

p(x̄) ∪ q(ȳ) ∪ {ϕp,q(ȳ, x̄), ϕq,p(x̄, ȳ)}
is consistent;

(4) there exists a (p, q)- and (q, p)-principal formula ϕ(x̄, ȳ), such that
the set

p(x̄) ∪ q(ȳ) ∪ {ϕ(x̄, ȳ)}
is consistent.

Proof. (1) ⇒ (3). Let M(ā) and M(b̄) be prime models over realiza-
tions ā and b̄ of types p(x̄) and q(ȳ), respectively.

If there is an isomorphism between M(ā) and M(b̄), the existence of
(p, q)- and (q, p)-principal formulas ϕp,q(ȳ, x̄) and ϕq,p(x̄, ȳ), satisfying the
condition that

p(x̄) ∪ q(ȳ) ∪ {ϕp,q(ȳ, x̄), ϕq,p(x̄, ȳ)}
is consistent, follows from the facts that M(ā) and M(b̄) realize just prin-
cipal types over ā and b̄, respectively, and M(ā) = M(b̄′) for some tuple b̄′

realizing type q(ȳ).
(3) ⇒ (1). Assume that there exist (p, q)- and (q, p)-principal formulas

ϕp,q(ȳ, x̄) and ϕq,p(x̄, ȳ) such that the set

p(x̄) ∪ q(ȳ) ∪ {ϕp,q(ȳ, x̄), ϕq,p(x̄, ȳ)}
is consistent. We argue to show that Mp and Mq are isomorphic, where
Mp = M(ā),Mq = M(b̄), |= p(ā), |= q(b̄). Since ϕp,q(ȳ, x̄) is (p, q)-principal
and ϕq,p(x̄, ȳ) is (q, p)-principal, we have

p(x̄) ∪ {ϕp,q(ȳ, x̄)} ≡ r1(x̄, ȳ) ∈ S(∅),

q(ȳ) ∪ {ϕq,p(x̄, ȳ)} ≡ r2(ȳ, x̄) ∈ S(∅).

As p(x̄)∪{ϕp,q(ȳ, x̄)}∪q(ȳ)∪{ϕq,p(x̄, ȳ)} is consistent, so r1(x̄, ȳ) = r2(ȳ, x̄).
Let |= r1(āˆb̄′), |= r2(b̄ˆā

′), where b̄′ ∈ Mq, ā′ ∈ Mp, then

Mp = Mr1 = M(āˆb̄′) 'M(b̄ˆā′) = Mr2 = Mq.

It follows by that (Mp, ā) is a prime model of theory T ∪ p(c̄1), (Mp, ā, b̄′)
is a prime model of theory T ∪ r1(c̄1, c̄2), (Mq, b̄) is a prime model of theory
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T ∪ q(c̄2), (Mq, ā
′, b̄) is a prime model of theory T ∪ r1(c̄1, c̄2), and that any

constant expansion of prime model is a prime model of new theory.
(3) ⇒ (4). Having (p, q)- and (q, p)-principal formulas ϕp,q(ȳ, x̄) and

ϕq,p(x̄, ȳ), and consistent set

p(x̄) ∪ q(ȳ) ∪ {ϕp,q(ȳ, x̄), ϕq,p(x̄, ȳ)},

we get a required (p, q)- and (q, p)-principal formula ϕ(x̄, ȳ)  ϕp,q(ȳ, x̄) ∧
ϕq,p(x̄, ȳ).

The directions (4) ⇒ (3) and (4) ⇔ (2) are obvious. 2

Denote by RK(T ) the set PM of isomorphism types of models Mp,
p ∈ S(T ), on which the relation of domination is induced by ≤RK, a relation
deciding domination among Mp, that is, RK(T ) = 〈PM;≤RK〉. We say
that isomorphism types M1,M2 ∈ PM are domination-equivalent (written
M1 ∼RK M2) if so are their representatives.

Clearly, the preordered set RK(T ) has a least element, which is an iso-
morphism type of a prime model.

Proposition 2 [1, 2]. If I(T, ω) < ω then RK(T ) is a finite preordered
set whose factor set RK(T )/∼RK, with respect to domination-equivalence
∼RK, forms a partially ordered set with a greatest element.

Proof. That PM is a finite set is obvious, and the fact that RK(T )/∼RK

contains a greatest element follows from the existence of a powerful type
which dominates any type in S(T ). 2

Obviously, a small theory T is ω-categorical iff |RK(T )| = 1.

In the above-given Ehrenfeucht examples of theories Tn with I(Tn, ω) =
n, each preordered set RK(Tn) consists of the least element and (n − 2)
domination-equivalent elements corresponding to the models Mn

p0
, . . . ,

Mn
pn−3

. Thus all ordered sets RK(Tn)/∼RK are two-element and linearly
ordered.

The following theorem describes preordered sets RK(T ) for small the-
ories T .

Theorem 1 [2, 5]. (1) For any small theory T , the preordered set RK(T )
is at most countable, upward directed, and has a least element.

(2) For any finite or countable, preordered, upward directed set 〈X;≤〉
having a least element, there exists a small theory T , for which RK(T ) '
〈X;≤〉.

Proof. (1) That |RK(T )| ≤ ω follows from the property of T being
small. The property for the preordered set RK(T ) = 〈PM;≤RK〉 to be
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upward directed is implied by the following: if M1 and M2 are isomorphism
types of PM corresponding to models M(ā1) and M(ā2), then types tp(ā1)
and tp(ā2) are dominated by q = tp(ā1ˆā2); hence, M1 ≤RK M and M2 ≤RK

M, where M is the isomorphism type of Mq. The least element in RK(T )
is the isomorphism type of the prime model.

(2) In view of [2, Theorem 3.4.1], there is no loss of generality in assuming
that the set X is countable. A small theory T with RK(T ) ' 〈X;≤〉 is
constructed similarly to how were the theories constructed in proving [2,
Theorem 3.4.1], with the theory of unary predicates P1, . . . , P|X|−1 replaced
by a theory of pairwise disjoint unary predicates Pi, i ∈ ω, each containing
infinitely many elements. 2

Now we consider the relation ≤RK, being defined on the set S(T ) of
complete types of small theory T . Denote the structure 〈S(T );≤RK〉 by
RKT(T ).

Since for each type p ∈ S(T ) there is a model Mp, and countably many
types (for instance, tp(ā), tp(āˆā), . . . with |= p(ā)) forms isomorphic models,
being prime over realizations of these types, the structure RKT(T ) can be
obtained from RK(T ) by replacement of each element by countably many
pairwise∼RK-equivalent elements, where∼RK =≤RK ∩ ≥RK. Thus Theorem
1 implies

Corollary 1. (1) For any small theory T , the preordered set RKT(T )
is countable, upward directed, has the least ∼RK-class, and each ∼RK-class
consists of countably many elements.

(2) For any countable, preordered, upward directed set 〈X;≤〉 having the
least (≤∩≥)-class and such that each (≤∩≥)-class is countable, there exists
a small theory T , for which RKT(T ) ' 〈X;≤〉.

P. Tanović noticed that the factorization of RKT(T ) by the equivalence
relation ≡RK forms a structure which is isomorphic to RK(T ):

RKT(T )/ ≡RK ' RK(T ).

Indeed, in view of Proposition 1, for any type p ∈ S(T ), the set of types,
that are strongly RK-equivalent to p, corresponds to the model Mp. And
for types p and q in S(T ), being not strongly RK-equivalent, p ≤RK q iff
Mp ≤RK Mq.

In particular, RK(T ) is finite iff RKT(T )/ ≡RK is finite.
Since for any theory T , the inclusion ≡RK ⊆ ∼RK holds, the finiteness

of RK(T ) implies that RKT(T )/ ∼RK is finite (and |RK(T )| = 1 iff
|RKT(T )/ ∼RK | = 1, that means the ω-categoricity of theory). At the same
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time there are theories T with infinite RK(T ) and finite RKT(T )/ ∼RK, since
by Theorem 1 there are infinite preordered sets 〈X;≤〉 being isomorphic to
RK(T ) and having only finitely many ∼RK-classes.

Extend the relation ≤RK, being defined on the set S(T ) of complete types
of the small theory T , to the set ⊆S(T ) of all types (including incomplete
types) of T . For types p, q ∈ ⊆S(T ) we set p ≤RK q, if any model, realizing q,
realizes p.

Notice that the relation ≤RK on ⊆S(T ) is induced by the according
relation on S(T ):

Proposition 3. For types p, q ∈ ⊆S(T ), p ≤RK q holds iff, for any type
q′ ∈ S(T ), containing q, there exists a type p′ ∈ S(T ) such that p′ ⊇ p and
p′ ≤RK q′.

Proof. Assume that, for the types p, q ∈ ⊆S(T ), p ≤RK q holds and
q′ ∈ S(T ) is a completion of q. Since q is realized in the model Mq′ , the
conjecture of proposition implies that p is realized in that model by a tuple
ā. The type p′  tp(ā) is a required completion of p such that p′ ≤RK q′.

Now we assume that, for any completion q′ ∈ S(T ) of the type q, there
exists a completion p′ ∈ S(T ) of p such that p′ ≤RK q′. Consider an arbitrary
model M, realizing q by a tuple ā, and the completion q′ = tp(ā) of q. By
assumption, some completion p′ ∈ S(T ) of p is realized in M(ā) and so in
M. Hence, the model M realizes p and we have p ≤RK q. 2

Thus, the relation ≤RK on ⊆S(T ) is reduced to the relation ≤RK on
the set S(T ) and to possible combinations of complete types, forming type-
definable sets.

Since even equivalent formulas form continuum many incomplete types
(including or non-including to types the formulas of given set of equivalent
formulas), it is natural to factorize the set ⊆S(T ) by the equivalence relation
∼ of reciprocal deducibility of types:

p(x̄) ∼ q(x̄) ⇔ p(x̄) ` q(x̄) and q(x̄) ` p(x̄).

The relation ≤RK is naturally transformed, by representatives, to the factor-
set ⊆S(T )/∼, and further it will be also denoted by ≤RK.

Notice the following properties of the relation ≤RK on the set

⊆S(T )/∼ = {p̃ | p ∈ ⊆S(T )}.

Proposition 4. If p, p′, q, q′ ∈ ⊆S(T ), p′ ⊆ p, q ⊆ q′, and p̃ ≤RK q̃ then
p̃′ ≤RK q̃′.

Proof is obvious. 2
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By the definition, we also have

Proposition 5. The relation ≤RK on the set ⊆S(T )/∼ is preserved
under expansions of theory: if p, q ∈ ⊆S(T ), p̃ ≤RK q̃, and T ′ is an expansion
of T then, for p, q ∈ ⊆S(T ′), p̃ ≤RK q̃ holds.

Having |S(T )| = ω, we get | ⊆S(T )/∼ | ≤ 2ω. It is shown in [6], that any
countable Boolean algebra B is interval, i.e., B is isomorphic to a Boolean
algebra of subsets of linearly ordered set, being generated by intervals of form
(a, b]. Now, take a countable saturated structure M with a small theory
and, for some n ∈ ω \ {0}, countably many pairwise different principal
n-types pk(x̄) with isolating formulas ϕk(x̄), k ∈ ω. We get an interval
Boolean algebra for the set of definable sets, countably many ultrafilters
corresponding to types in S(∅), and continuum many filters corresponding
to types {¬ϕk(x̄) | k ∈ w}, w ⊆ ω.

If for each n ∈ ω \{0} there are finitely many pairwise different principal
n-types pk(x̄), the theory is ω-categorical and it implies finitely many n-types
p(x̄) in S(∅), n ∈ ω \ {0}, and so finitely many n-types p(x̄) in ⊆S(∅)/∼.

Thus we get the following proposition.

Proposition 6. Let T be a small theory. Then the following assertions
hold.

(1) If T is ω-categorical, then | ⊆S(T )/∼ | = ω.
(2) If T is not ω-categorical, then | ⊆S(T )/∼ | = 2ω.

Using Proposition 6 and combining the proof for Theorem 1 and Corol-
lary 1, we get

Proposition 7. The relation ≤RK forms either countable or continual
preordered set on ⊆S(T )/∼, having unique (≤RK ∩ ≥RK)-class (for countable
⊆S(T )/∼) or being upward directed, having a least ∼RK-class (consisting of
types that have isolated completions), where each ∼RK-class is countable.

Proposition 8. For any small theory T , the following conditions are
equivalent:

(1) the structure RKT(T ) has finitely many ∼RK-classes;
(2) the structure 〈 ⊆S(T )/∼;≤RK〉 has finitely many ∼RK-classes.

Proof. (1) ⇒ (2). Let RKT(T ) has n ∼RK-classes and p1, . . . , pn ∈ S(T )
be pairwise non-∼RK-equivalent, P  {p1, . . . , pn}. Take an arbitrary type
q in ⊆S(T ). Since any completion of q is ∼RK-equivalent to a type in P
and there are only finitely many subsets of P , we have only finitely many
possibilities for the ∼RK-equivalence of completions for q to types in P . Now
we get the implication (1) ⇒ (2), since ∼-classes q̃, for which completions
of q are ∼RK-equivalent to the same types in P , are ∼RK-equivalent.
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The implication (2) ⇒ (1) is followed by inclusion S(T ) ⊂ ⊆S(T ). 2

Further we assume that the small theory T is not ω-categorical and Isol
is the set of all types in ⊆S(T ) having isolated completions.

Notice that, starting with some n ∈ ω \ {0}, there exists (possibly in-
complete) n-type pni(x̄), such that its realizations are exactly all possible
realizations of non-principal n-types. That type is isolated by the set of for-
mulas ¬ϕ(x̄), where the formulas ϕ(x̄) are principal. By the definition, the
∼-class p̃ni is ≤RK-covering for the ∼-class, corresponding to isolated types,
in the structure, being a restriction of 〈 ⊆S(T )/∼;≤RK〉 to the set of n-types.
Thus, if there exists a natural number n such that, on the set ⊆S(T ) \ Isol,
each ∼-class is connected by ≥RK with a ∼-class, corresponding to some
n-type, then the structure 〈 ⊆S(T )/∼;≤RK〉 has the least ∼RK-class and
the least ∼RK-class among others. By the definition the reverse implication
holds too.

Thus the following criterion for existence of two-element initial segment
for the result of factorization of 〈 ⊆S(T )/∼;≤RK〉 by the relation ∼RK.

Proposition 9. The structure 〈(⊆S(T ) \ Isol)/∼;≤RK〉 has the least
∼RK-class iff there exists n ∈ ω \ {0} such that, for each ∼-class

p̃ ∈ (⊆S(T ) \ Isol)/∼,

there exists a ∼-class
q̃ ∈ (⊆S(T ) \ Isol)/∼,

where q is a n-type with q̃ ≤RK p̃.

For finite structures RK(T ) there exists a natural number n such that
each type of T dominates some n-type (for n we can take the length of tuple
realizing types p for models Mp that represent all isomorphism types in
RK(T )). Hence, Proposition 9 implies

Corollary 2. If the structure RK(T ) is finite then the structure

〈(⊆S(T ) \ Isol)/∼;≤RK〉
has the least ∼RK-class.
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