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1. introduction

This paper concentrates on understanding the first order theory of universal spe-
cializations of Zariski structures. Models of the theory are pairs, a Zariski structure
and an elementary extension with a map (specialization) from the extension to the
structure that preserves positive quantifier free formulas. The reader will find that
this context generalizes both the study of algebraically closed valued fields (see [2])
and sheds light on the theory of Zariski structures. It is also a natural setting for
studying compact complex manifolds with a standard part map.

We determine the first order theory of universal specializations and prove that
it is model complete. Also, we prove that the ground Zariski structure in its core
language is stably embedded in models of the theory, which has nice consequences
for the theory of Zariski structures.

The structure of the paper is as follows. In the rest of Section 1 we will give
the basic definitions of Zariski structures. In Section 2 we will define specializa-
tions and prove that anything that can be defined in a Zariski structure using a
universal specialization which projects onto it, can be defined within the original
language (Corollary 2.11). Section 3 studies the consequences of Corollary 2.11 and
is therefore a de-tour from the main goals of the paper, justified in the geometric
implications that we can prove for the ground Zariski structure. Section 4 includes
the main results of the paper: first order properties of universal specializations, in-
cluding an axiomatization and a relative quantifier elimination. Finally, Appendix
A will work a bit on realizations of types over universal specializations and their
projections.

1.1. Definitions and basic results. We will work in a mixture of the framework
of model theory and Zariski structures. As such, we will in general work with a first
order language L and L-theories T . A monster model of a theory T will be a large
universal domain which is a model of T and which will be κ-saturated (this means
that every consistent set of sentences of size less than κ will be realized in C) for
all κ which we will care about. We will take C as our universal domain and assume
that every set, model and tuple we mention is a subset, submodel or belongs to C;
we will also abbreviate C |= ϕ(ā) by |= ϕ(ā) for any tuple ā in C.

A theory T will be said to be stable if there is no L-formula ϕ(x, y) and no
infinite tuples 〈ai〉 and 〈bi〉 such that C |= ϕ(ai, bj) if and only if i < j.

We can now move into the basics of Zariski structures. We will work with a
language L and an L-structure M . We will define a topology on Mn as follows:
given any primitive (n + k)-ary relation R (for each n) and any k-tuple a we will
define the set of realizations in Mn defined by R after inserting the elements in a
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as parameters as a closed set. We will then define closed sets as a set of elements
defined in such way by a positive quantifier free boolean combinations of primitive
L-relations (we will define such a boolean combination to be a positive quantifier
free L-formula).

The axioms we require for the topology (some of which are consequences of the
definition) are the following:

(1) Intersections of any family of closed sets is a closed set.
(2) Finite unions of closed sets are closed.
(3) The domain M of the structure is closed.
(4) The graph of equality is closed.
(5) Any singleton of the domain is closed.
(6) Cartesian products of closed sets are closed.
(7) The image of a closed set under a permutation of coordinates is closed.
(8) For a ∈Mk and S, a closed subset of Mk+l defined by a predicate S(x, y)

the set S(a,M l) is closed.
We will define the constructible sets to be all possible boolean combination of

closed sets (so quantifier free L-definable sets).
We will say that S ⊂cl X if S is the intersection of a closed set with X. Similarly,

we will say that U ⊂op X if U is the intersection of an open set with X.
We will say that X is irreducible if given any closed S1, S2, if X ⊂ S1 ∪ S2 then

either X ⊂ S1 or X ⊂ S2.

Zariski structures will be structures with a given topology which satisfies items
(1)–(8) above, and such that there is a dimension function dim from definable sets
into the natural numbers satisfying the following:

• (DP) Dimension of a point: The dimension of a point is 0.
• (DU) Dimension of unions: dim(S1 ∪ S2) = max{dim(S1),dim(S2)}.
• (SI) Strong irreducibility: For any irreducible S ⊂cl U ⊂op Mn and any

closed S1 ( S we have dim(S1) < dim(S).
• (AF) Addition formula: For any irreducible closed S ⊂cl U ⊂op Mn and

a projection map Mn →Mm,

dim(S) = dim pr(S) + min
a∈pr(S)

dim
(
pr−1(a) ∩ S

)
.

• (FC) Fibre condition: S ⊂cl U ⊂op Mn and a projection mapMn →Mm

there exists V ⊆op pr(S) such that

min
a∈pr(S)

dim
(
pr−1(a) ∩ S

)
= dim

(
pr−1(v) ∩ S

)
for any v ∈ V ∩ pr(S).

• (SP) Semi-properness (of projection mappings): Given a closed irre-
ducible subset S ⊂cl Mn and a projection map pr : Mn → Mk, there
is a proper closed subset F ⊂ prS such that prS \ F ⊂ prS.

The following is Theorem 3.2.1 in [7] (it follows quite easily from (SP)).

Fact 1.1. A Zariski structure M admits elimination of quantifiers (so that any
definable subset Q ⊆ M is constructible). Equivalently, the projection of a con-
structible set is constructible.

We will define the dimension of a type as the infimum of the dimensions of all
closed subsets defined by formulas in the type. Given A ⊃ B and a tuple a we
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will say that a is independent from A over B (or tp(a/B) does not fork over A) if
dim(a/B) = dim(a/A).

We will say that given a closed set S a point a ∈ S is a generic point in S if for
any S′ closed such that a ∈ S′ we have S ⊆ S′.

2. Universal specializations

LetM0 be a (Noetherian) Zariski structure and letM be an elementary extension
of M0. A map π : M →M0 will be called a specialization if for every formula over
∅ S(x̄) defining an M -closed set and every ā ∈ M with ā in the domain of π, we
have

M |= S(ā)⇔M0 |= S (π (ā)) .

This article is about the theory of certain class of specializations. We will need
to work both with the original language of the Zariski structure (which we will
denote with L) and with the theory Lπ := L∪ {π} where π will represent the map
described above. During this section, all types will be assumed to be L-types.

A specialization π : M →M0 will be called a κ-universal specialization if |M0| <
κ, M is κ-saturated, and given any M ′ �M �M0, any A ⊂M ′ with |A| < κ and
a specialization πA : M ∪A→M0 extending π, there is an embedding α : A :→M
over A ∩M such that

πA := (π ◦ α)|A.
A universal specialization is defined to be a ω-universal specialization.
We will need some definitions and facts which can be found in either [4] or [7].

Definition 2.1. The locus of c over A is the smallest A-closed set containing c.
The rank of c over A is the dimension of the locus of c over A.

The following is an easy adaptation of Proposition 2.2.15 and Lemma 2.2.17 in
[7]. The extra condition of the first item is explicit in the proof of Proposition
2.2.15 in [7].

Fact 2.2. Let κ be any cardinal number. Then the following hold.
• Let M0 be any Zariski geometry with |M0| < κ. Then there exists a κ-
universal specialization π : N → M0. Even more, given any specialization
πM : M →M0 we can get N so that N �M and such that π extends πM .

• Let πM : M → Mπ be a specialization with |M | < κ. Then there exists N
and π : N → M such that both π : N → M and πM ◦ π : N → Mπ are
κ-universal specializations.

The following is once again, a very easy consequence of the results in [7].

Claim 2.3. Let π : M →M0 be a specialization on a Noetherian Zariski structure.
Then, for any positive quantifier free C(x, y) and any a ∈M

dim(C(x, a)) ≤ dim(C(x, aπ)).

Proof. This follows by induction on dim(C(x, y)) using condition (FC′) –see Lemma
3.2.4 in [7]. �

We will work in general with a geometric Zariski structure and a specialization
M → M0. For any A ⊂ M and any (L)-type p(x) ∈ S(A) we will denote by p|M
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the (unique) non forking extension from p(x) to M . If B ⊂M is any other subset
of M , p(x)|B is the restriction of p|M to B.

Given any type p(x) over M we denote by p+ the set of realizations of positive
formulas in p(x) and we let

p+,π := {C(x, dπ)|C(x, d) ∈ p+}.
Recall that dim(p(x)) := inf{dim(C(x, a))|C(x, a) ∈ p(x)}.
The following is a corollary of the definitions and Claim 2.3.

Lemma 2.4. Let M be a Noetherian Zariski structure. Then, for any p(x) we have

dim(p(x)) ≤ dim(p+,π).

For stating Theorem 2.6, which is the main result of this section, we will need
the following definition.

Definition 2.5. Given types p(x) and q(x) we will say that p(x) forces q(x) if
every instance of every positive formula in p(x) appears in q(x).

Theorem 2.6. Let M be a Noetherian Zariski structure and let π : M → M0

be a specialization and let p(x) be any type over M which does not fork over M0,
and let mπ ∈ M0 be an element such that p(x)|M0 forces tp(mπ/M0). Then for
any m realizing p(x) one can extend π to a specialization π′ of M ∪ {m} such that
tp(m/M) = p(x) and π′(m) = mπ.

Proof. Let m be any element realizing p(x) and suppose that the specialization
π′ : M ∪ {m} → Mπ defined as an extension of π which sends m to mπ is not a
specialization.

By definition there is a positive formula C(x, y) and some n ∈ M such that
C(x, n) ∈ p(x) and M0 |= ¬C(mπ, nπ). We will see that this contradicts the
dimensions of the types.

For notation purposes, let q(x) := p(x)|M0. By definition

dim (p (x)) = dim (q (x))

and tp (mπ/M0) contains all the positive formulas that q(x) does, so in particular,
C(x, nπ) 6∈ q+(x). Now, p(x) extends q(x) so q+,π(x) ⊂ p+,π(x). Since both p(x)
and q(x) are types over a models, q+,π(x) is irreducible and, since

C (x, nπ) ∈ p+,π (x) \ q+,π (x) ,

we must have, by Lemma 2.4,

dim (p (x)) = dim
(
p+,π (x)

)
� dim

(
q+,π (x)

)
= dim (q (x)) ,

a contradiction. �

Corollary 2.7. Let M0 be a Noetherian Zariski structure and let π : N →M0 be a
universal specialization. Let M be a model such that M0 ≺M ≺ N , let p(x) be any
type over M and let mπ ∈M0 be an element such that p(x)|M0 forces tp(mπ/M0).
Then there is some m ∈M such that tp(m/M0) = p(x) and π(m) = mπ.

Lemma 2.8. Let M0 be a Noetherian Zariski structure, let π : N → M0 be a
universal specialization, and letM ⊂ N be a submodel of N containingM0. Let b be
a tuple contained in some Mb �M such that there is a specialization πb : Mb →M0

such that π|M = πb|M . Then there is some b′ ∈ N and a specialization such that
tp(b′/M) = tp(b/M) and π(b′) = πb(b).
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Proof. Let D(x, c) be the locus of b over M and let b′ satisfy the (unique) non
forking extension of tp(b/M) to N . Let bπ = π(b). By definition of universal
specializations it is enough to show that π′ defined as the extension of π sending b′
to bπ is a specialization. Assuming otherwise, we get in particular that C(b′,m) and
¬C(bπ,mπ) for some m ∈ N . By construction we know that D(x, c)⇒ C(x,m).

Let (N2, π2) be a universal specialization of M0 such that N2 is an elementary
extension of Mb, and such that π2 extends πb.

Notice that the element m in N witnesses that tp(m/M)|M0 forces tp(mπ/M0),
so by Corollary 2.7 there is m′ ∈ N2 with tp(m′/M) = tp(m/M) and such that
π2(m′) = mπ. This implies in particular that D(x, c) ⇒ C(x,m′) which implies
N2 |= C(b,m′) contradicting the fact that π2 is a specialization. �

Theorem 2.9. Let M be a Noetherian Zariski structure, let π : M → Mπ be a
specialization with |M | < κ and let πN : N → Nπ be a κ-universal specialization
such that Mπ ≺ Nπ. Assume also that for some M0 ⊂ N ∩M and πN agrees with
π in the intersection. Then there is an embedding σ : M → N such that πN ◦σ = π
and σ is the identity in M0.

Proof. Let 〈M i〉i∈κ. Since we have prime models over any set (see Fact 4.1), we
can find a sequence of models 〈Mλ〉λ∈κ such that

• Mµ ≺Mλ for µ < λ,
• dim(Mλ+1/Mλ) = 1, and
•
⋃
i∈κMi = M .

It is clearly enough to show that, defining πλ := π|Mλ, if we have an embedding
σλ : Mλ → N such that πN ◦ σλ = πλ then we can find an extension σλ+1 of σλ
such that σλ+1 : Mλ+1 → N is an embedding such that πN ◦ σλ+1 = πλ+1. For
notation purposes we will assume that Mλ ⊂ N and σλ is the identity.

Let m̄ := 〈mi〉 be an enumeration of Mλ+1 \Mλ and let pλ(x̄) := tp(m̄/Mλ).
Given any ordinals i1, . . . , in, let pi1,...,in be the restriction of pλ to the variables
xi1 , . . . , xin . Let mπ

i := π(mi).
Notice that the following claim is a trivial application of Lemma 2.8.

Claim 2.10. For any i1, . . . , in, there is a tuple ᾱ ∈ N satisfying pi1,...,in which
specializes in mπ

i1
, . . . ,mπ

in
. In particular, p+,π

i1,...,in
|M0 forces tp(mπ

i1
, . . . ,mπ

in
/M0).

Let ThN (N) be the elementary theory of N . Notice that by Claim 2.10 and
compactness the theory

ThN (N)∪{“π′ is a specialization which extends π”}∪{pλ(β̄′)}∪{π′(β′i) = mi}i∈|β|
(in the language of Lπ ∪{n | n ∈ N}∪ {β′i | i ∈ |β′|}) is consistent and a model M ′
would be an elementary extension of N with a specialization π′ into a supermodel
of M0 such that the restriction of π′ into N ∪ {β̄} is a specialization into M0.
By κ-universality (all λ’s are less than κ), we can find some β̄ in N such that
πN (β̄) = m̄π. Defining σλ+1(Mλ+1 \Mλ) to be β̄, we have proved the induction
step. �

The reader might find the previous result quite close to the notion of model
completeness. We will in fact prove model completeness in Section 4, and Theorem
2.9 will be the main ingredient. We will, however, concentrate for a while on the
consequences that Theorem 2.6 has on the ground Zariski structure.
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Corollary 2.11. Let M be a Noetherian Zariski structure, let π : M → M0 be a
universal specialization, and letM be the Lπ-model of the specialization. Then M0

(which is defined by the formula ϕ(x) := ∃yπ(y) = x) is stably embedded inM.

Proof. Since the restriction of π toM0 is the identity, any L-automorphism ofM0 is
a Lπ-automorphism of M0. Thus, Theorem 2.9 implies that any Lπ-automorphism
ofM0 extends to an embedding fromM toM . By a simple back and forth method,
this is clearly enough to prove stable embeddedness. �

More generally, the following follows from Theorem 2.9.

Corollary 2.12. Let M be a Noetherian Zariski structure, let πM : M → π(M) be
a specialization, and πN : N → πN (N) be a |M |+-universal specialization. Assume
also that the L-theories of πN (N) and πM (M) coincide and has elimination of
quantifiers and that there is an L-homomorphism ϕ from πM (M) into πN (N).
Then there is an Lπ embedding from (M,πM ) into (N, πN ) which extends ϕ.

Proof. It is clear that we may assume that ϕ is the identity and πM (M) ⊆ πN (N).
By elimination of quantifiers we know that πM (M) ≺ πN (N). The corollary now
follows from Theorem 2.9. �

3. Consequences of stable embeddedness

This is a short section which follow from results in [7] using Corollaries 2.11 and
2.12. It is based on results proved in [4] for Noetherian Zariski geometries although,
since we are not assuming pre-smoothness, the results are much more limited and
also require modifying of some of the definitions.

Throughout this section, LetM be a Noetherian Zariski structure with language
L.

Definition 3.1. Recall the following definition from [7]:
• We will say that F is an irreducible covering of D if F (x, y) ⊆cl V ⊆op
Mn×Mk is an irreducible set and D be the projection of F into the x (first
n) coordinates.
• If F is a irreducible covering of D then we will define r to be the dimension

of a generic fiber of F if

r = mina∈D dim(F (a,M)).

• We will define a ∈ D to be regular for F if dim(F (a, y)) = r. We will call
reg(F/D) the set of all regular points in D over F .
• We will say that F is a finite covering of D if it is an irreducible covering
of D and for all a ∈ D the set F (a,M) := {y ∈M | F (a, y)} is finite.

Definition 3.2. Given a specialization π : M∗ →M and a point a ∈M we define
the set νa := {x | π(x) = a}.

In general, in a one dimensional Zariski geometry (this is, assuming pre-smoothness)
one has the following statement.

Statement 1. Let π : M∗ →M be a universal specialization and let F be a finite
covering of D with (a, b) ∈ F and a a regular point for F . Then, given any a′ ∈ νa
there is b′ ∈ νb such that F (a′, b′).
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This is in general not true without assuming pre-smoothness. This implies that
one needs to modify some of the definitions of [7] since one cannot hope to have a
uniform behavior of the generic points. In particular we will define multiplicity as
follows.

Definition 3.3. Let F be a finite covering of D in a and let |= F (a, b). We will
define multiplicity of (a, b) in F over D as

multb(a, F/D) := max {|F (a′,M∗) ∩ νb|}
where π : M∗ →M is a universal specialization of M , νb := π−1(b), and a′ ∈ νa :=
π−1(a) is any point of D over M .

If |= F (a, b) then we will say that F is unramified at point (a, b) if the multiplicity
of (a, b) in F over D in one.

The following follows from Corollary 2.12.

Theorem 3.4. Let F be a finite covering of D in a and let |= F (a, b) and a be a
regular point in F . Then for any k ∈ N the sets

{(a, b) | multb(a, F/D) = k}
and

{(a, b) | multb(a, F/D) ≤ k}
are L-definable in M . In particular, multb(a, F/D) is independent of the choice of
M∗ given in Definition 3.3.

Proof. Let M∗ and N∗ be two universal specializations of M , let multMb (a, F/D)

and multNb (a, F/D) the multiplicities “according” to M∗ and N∗, respectively, and
let N∗+ � N∗ be a |M∗|+-universal specialization of M . By Corollary 2.12 there is
an immersion from M∗ to N∗+ which commutes with the projections. In particular,
there are at least multMb (a, F/D) many points in F (a′, N∗+) ∩ νb so by definition
multMb (a, F/D) ≤ multNb (a, F/D). By symmetry the other inequality holds so that
multMb (a, F/D) = multNb (a, F/D) for any two universal specializations of M .

The theorem is now easy from Corollary 2.11. By (FC) we know that a ∈
reg(F/D) is definable, and clearly {a | multb(a, F/D) = k} and {a | multb(a, F/D) ≤
k} are subsets of M definable in the Lπ-model (M∗, π,M). Corollary 2.11 now
yields the theorem. �

The following results originally appear in [7] as an introduction to intersection
and numerical equivalence for pre-smooth families of curves in Zariski structures,
which seems impossible to achieve without assuming pre-smoothness (and State-
ment 1). However, we will include the definability results with the hope that they
might eventually be used for defining an adequate notion of tangency for curves in
contexts which do not assume pre-smoothness.

Definition 3.5. Let P and L be definable irreducible sets and I be a irreducible
closed subset of P × L such that the projection of I to the L-coordinates is L. We
will call such I a family of closed subsets of P , viewing each l ∈ L as an index for
the family {p ∈ P | I(l, p)}.

In general, given a family I of closed subsets of P we will identify l with {p ∈
P | I(p, l)} and say, for example, that p ∈ l if I(p, l) holds and that l ∈ I if l ∈ L.
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Definition 3.6. Let L1 and L2 be irreducible families of closed subsets of an ir-
reducible set P . We say that L1 and L2 generically have finite intersections if for
any generic pair (l1, l2) ∈ L1 × L2 the intersection l1 ∩ l2 is either empty or finite.

Let L1 and L2 be irreducible families of closed subsets which generically have
finite intersections, and let p ∈ P, l1 ∈ L1, l2 ∈ L2 be such that l1 ∩ l2 is finite. We
will define the index of intersection of l1 and l2 at point p with respect to L1 and
L2 to be

indp(l1, l2/L1, L2) := max {|l′1 ∩ l′2 ∩ νp|}
for (l′1, l

′
2) in νl1 × νl2 for some universal specialization π : M∗ →M .

Theorem 3.7. Let L1 and L2 be irreducible families of closed subsets which gener-
ically have finite intersections, and let p ∈ P, l1 ∈ L1, l2 ∈ L2 be such that l1 ∩ l2 is
finite. Then for any k ∈ N the sets

{(l1, l2, p) | indp(l1, l2/L1, L2) = k}
and

{(l1, l2, p) | indp(l1, l2/L1, L2) ≤ k}
are L-definable in M .

Even more, indp(l1, l2/L1, L2) in Definition 3.6 is independent of the choice of
M∗.

Proof. This follows once again from Corollaries 2.11 and 2.12; the proof is analogous
to the proof of Theorem 3.4. �

The following multiplicity based tangency notion on curves now becomes defin-
able in the original L-structure M (by Corollary 2.11).

Definition 3.8. Let L1 and L2 be families of curves. We will say that two curves
l1, l2 with 〈l1, l2〉 ∈ L1 × L2 are tangent at a point p if p ∈ l1 ∩ l2 and either
p belongs to an infinite irreducible component of l1 ∩ l2 or indp(l1, l2/L1, L2) ≥
2. Equivalently, if |l′1 ∩ l′2 ∩ νp| ≥ 2 in some 〈l′1, l′2〉 ∈ νl1 × νl2 in a universal
specialization M∗ of M .

The proof that the definition is independent of the choice of M∗ follows once
again using Corollary 2.12 as in the proof of Theorem 3.4.

Finally, we complete this section with the following theorem, which is a version
of the Implicit Function Theorem proved in [7] for one dimensional Noetherian
Zariski geometries. Once again we should point out the limitations. In the original
context, Statement 1 yields that any local function is in fact a bijection between
neighborhoods. This is not true in the general context of Zariski structures since
in many cases the local functions are neither injective nor surjective. In particular,
this implies for example that local functions cannot necessarily be (even locally)
inverted. The main problem, however, is that without Statement 1 one cannot show
that this sets are large enough, which limits the power of the results considerably.

Definition 3.9. Let F ⊆ D×Mk be a definable relation and let (a, b) ∈ F . We say
that F defines a local function from νa∩D to νb if for some universal specialization
π : M∗ → M , the function F | (νa × νb) is the graph of a function from νa ∩D to
νb.

We will say that F defines a local function on D if for every (a, b) ∈ F with
a ∈ D, F defines a local function from νa ∩D to νb.
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Theorem 3.10. Let D ⊂Mn be irreducible and let F ⊆ D×Mr be an irreducible
finite covering of D, dim(F ) = dim(D).

Then the following sets are L-definable.
• The set F0 ⊆ F of points (a, b) such that a is regular and F defines a local
function on (a, b).

• The set D1 ⊆ D such that F ∩ (D1 ∩Mr) defines a local function on D1 is
L-definable in M .

In particular, defining a local function does not depend on the specialization π cho-
sen in Definition 3.9.

Proof. By (FC) the set of regular points is definable in the structure (M∗,M).
Notice that the set

{(a, b) | ∀a′ ∈ νa ∩D∀b′ ∈ νb |{F (a′,M∗)} ∩ νb| = 1}

is definable in (M∗,M) for some (any) universal specialization π : M∗ → M , and
by Corollary 2.11 it is definable in the L-structure M .

By definition, for any such a, b there is exactly one choice of b′ ∈ νb for any
a′ ∈ νa. This is clearly the graph of a function. �

Notice that one can require in the definition for the local function to be one
to one, and therefore invertible when restricted to the infinitesimal neighborhoods.
However, since we cannot prove (as one could in theories for which Statement 1
holds) that any of these definable sets projects into a dense subset of D, it is not
even clear that the sets are non empty.

4. First order theory of universal specializations

In this section we will describe the Lπ-axiomatization of universal specializations.
Throughout this section we will need to constantly work with both languages (L
and Lπ) and we will be specific about which one we mean when we think that any
confusion may arise.

We will assume that the reader is familiar with the concepts of completeness and
model completeness in first order logic.

We will assume that L is a countable language and that T is the L- theory of
a ℵ1-saturated Zariski structure. Before we continue, we will need to recall some
of the basic facts about such a theory T . We will also assume that the reader
is familiar with the concepts of Morley rank, and prime and constructible models
which can be found in [7] and [5] respectively.

Fact 4.1. Let L be a countable language and let T be the L- theory of a ℵ1-saturated
Zariski structure. Let M be any model of T .

Then the following hold:
(1) M has Morley rank 1. Even more, given any closed Q in Mn we have that

MR(Q) ≤ dim(Q).
(2) Given any set A ⊂ M , there is a prime model M(A) ≺ M . This model is

constructible and unique up to isomorphism.

Proof. The first two items can be found in [7] (Theorems 3.2.1 and 3.2.8). In fact,
The existence of prime models is a well known fact for all theories of finite Morley
rank, and the precise statement of (3) is the content of [5]. �
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For the rest of this section, we will assume that we are working with a ℵ1-
saturated Zariski structure M . Given a set A in a Zariski geometry we will define
mcl(A) as the prime model of A.

Lemma 4.2. Let πM : M →M0 and πN : N → N0 be κ and λ-universal specializa-
tions (respectively) where κ and λ are greater than the cardinality of the language.
Then given any finite tuples ā ∈ M and b̄ ∈ N , if the Lπ-quantifier free types
qftpMLπ (mcl(ā)) = qftpNLπ (mcl(b̄)) then the Lπ-types tpMLπ (mcl(ā)) = tpNLπ (mcl(b̄)).

Proof. Notice that the second item follows immediately from the first one.
We will prove the first item first. By symmetry (followed by an easy back and

forth argument), it is enough to show that given any ā and b̄ as in the statement
of the theorem and given any c ∈M , there is some d ∈M such that

qftpM (mcl(cā)) = qftpN (mcl(db̄)).

so that we can define a L-embedding σ mapping M0 := mcl(ā) onto mcl(b̄).
If c ∈ mcl(ā) there is nothing to prove. Otherwise, notice that, because Mc :=

mcl(cā) is a model of the theory, then

(Mc, π(Mc), πM |Mc
)

is a specialization. SinceMc has the same cardinality as the language, Theorem 2.9
implies that we extend σ to an embedding from Mc into N . Taking d the image of
c completes the proof. �

Remark 4.3. Notice that Lemma 4.2 is quantifier elimination up to the prime
models. It is not possible to reduce this all the way to the original language: Con-
sider for example the case where our original theory T is an algebraically closed
field. The theory of specializations of fields is close to the two sorted theory of al-
gebraically closed valued fields (ACVF), where we have sorts for both fields and a
relation symbol for divisibility (see for example [6]). In this example it is not hard
to show that the type of an element x over a set A is implied by the type of the field
generated by xA over the type of the field generated by A. It is not hard to show
that going to the type of the field is necessary: If the specialization sends x to 0,
then we have a lot of freedom where to send 1/x ·a for all a ∈ A which specializes in
0. It is possible that one could change mcl in Lemma 4.2 for either acl or (unlikely)
dcl, but we have neither a proof nor a counterexample for this.

As may be deduced by the result in Lemma 4.2, in order to move towards axiom-
atization and other properties we will need to move from types over an arbitrary
set A to extensions over mcl(A). The following claim follows from the definitions
of saturation and constructibility.

Claim 4.4. Let M be any ω-saturated model of a theory L′. Then the following
hold:

• Let p(x) be a L′-type over some set A, and let q(x) ∈ SL′(B) be a type
extending p(x) such that B is constructible over A. Then, if p(x) is realized
in M , q(x) is too.

• Let p(x) be a L′-type over some set A and let q(x, x̄) be a type extending
p(x) such that for all xi ∈ x̄ the type q(x, x̄) implies that xi is constructible
over x. Then, if p(x) is realized in M , q(x) is too.
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Theorem 4.5. Let π : N → Nπ be a κ-saturated model of the theory of specializa-
tions. Then the following are equivalent:

(1) N is a κ-universal specialization.
(2) Given any finite set A ∈ N and any type p(x) in S1(A) which is realized in

some Lπ-structureM containing A satisfying the theory of specializations,
then p(x) is realized in N .

(3) Given any finite set A ∈ N and any quantifier free complete 1-type pqf (x)
over mcl(A) which is realized in some Lπ-structureM containing A satis-
fying the theory of specializations, then pqf (x) is realized in N .

Proof. The implication (2) implies (3) is clear. The converse follows from Claim
4.4 and the fact that mcl(A) is constructible over A, and Lemma 4.2.

The implication (1)⇒ (2) follows from the definition of universal specialization
and Theorem 2.9:

Let p(x) ∈ S(mcl(A)) be a quantifier free type with A finite. Let (M,πM ) with
M ⊃ A be a specialization where p(x) is realized by some element d and |M | < κ.
By saturation (and completeness of the L-theory of π(M)) there is an embedding
from πM (M) → π(N) which is the identity on π(A), so we may assume without
loss of generality that π(M) ⊂ π(N). By Theorem 2.9 there is a Lπ-embedding
from M into N preserving A, so p(x) must be realized in N .

The proof of (2) ⇒ (1) follows from a construction which is almost identical to
the one used in the proof of Theorem 2.9. Let M ′ � N be an elementary extension
and let A ⊂M ′ with |A| < κ and a specialization πA from A to π(N) which agrees
with π on A ∩N . Replacing A with mcl(A) we may assume that A is a model M
which specializes in π(N).

As in that proof of Theorem 2.9, we start by an “enumeration” of M . Let
〈Mλ〉λ∈|M | such that

• Mµ ≺Mλ for µ < λ,
• dim(Mλ+1/Mλ) = 1,
•
⋃
i∈κM

i = M , and
• M0 = M ∩N .

Once again, it is enough to show that if σλ : Mλ → N is such that π ◦ σλ = πλ,
then we can find an extension σλ+1 of σλ such that σλ+1 : Mλ+1 → N is an
embedding with π ◦ σλ+1 = πλ+1. Let σλ(Mλ) = Nλ.

Given such an embedding σλ, let c be an element inMλ+1 be such that dim(c/Mλ) =
1 (so that Mλ+1 := mcl(c,Mλ)). Notice that Claim 4.4 σ(tp(Mλ+1/Mλ)) is real-
ized in N if and only if σ(tp(c/Mλ) is.

Let p(x) := tp(c/Mλ). By hypothesis pσ(x) := σλ(p(x))|A is realized in N for
any finite A ⊂ σλ(Mλ) = Nλ, so by compactness pσ(x) is consistent with the
elementary theory of N (in L∗(Nλ)). Since |Nλ| < κ for all λ, by saturation pσ(x)
is realized in (N, π); by Claim 4.4 σ(tp(Mλ+1/λ)) is realized in N , which gives us
an L-embedding from Mλ+1 = mcl(c,Mλ) into N extending σλ. �

Notice that given A, the set of types which can be realized in a specialization
containing A, are precisely those which are consistent with the quantifier free type
of A. But the Lπ-quantifier free types over some set A are all of the form

{C(x, a) | C(x, y) ∈ L, a ∈ A} ∪ {π(x) = z} ∪ {C(x, aπ) | C(x, y) ∈ L, aπ ∈ π(A)}.



12 ALF ONSHUUS AND BORIS ZILBER

Let Σ′ be the set of all quadruples of quantifier free L-formulas

(ϕ (x̄, ȳ) , θ(ȳ), ψ (z̄, w̄) , µ (w̄))

such that for some specialization π : M →Mπ we have some b̄, ā ∈M with

M |= ϕ(b̄, ā) ∧ θ(ā)

and

Mπ |= ψ
(
π
(
b̄
)
, π (ā)

)
∧ µ (π (ā)) .

Claim 4.6. Let (ϕ, θ0, ψ, µ0) ∈ Σ′ and let a, b witness this. Then there exist finite
subtypes of tp(a) and tp(π(a)) respectively with θ ⊃ θ0 and µ ⊃ µ0 such that

(1) ∀y [θ (y) ∧ µ (π (y))⇒ ∃x (ϕ (x, y) ∧ ψ (π (x) , π (y)))]

is consistent in some (M,π(M)).

Proof. If not, we will have that the L-type of (a, π(a)) implies

∀xy[ψ(π(x), π(y))→ ¬ϕ(x, y)]

in every (M,π(M)). But this contradicts Theorem 4.5 and the assumptions on
a, b. �

Notice that if a, b witness that (ϕ, θ0, ψ, µ0) is in Σ′, then a, b will also witness
that (ϕ, θ, ψ, µ) given by Claim 4.6 belongs to Σ′ too.

Let Σ ⊂ Σ′ be the set of quadruples

(ϕ (x̄, ȳ) , θ(ȳ), ψ (z̄, w̄)µ (w̄))

satisfying the assumptions of Claim 4.6.
We define

TU := T ∪ {∀y [θ (y) ∧ µ (π (y))⇒ ∃x (ϕ (x, y) ∧ ψ (π (x) , π (y)))]}(ϕ,θ,ψ,µ)∈Σ .

By definition of Σ we know that every formula of the form

∀y [θ (y) ∧ µ (π (y))⇒ ∃x (ϕ (x, y) ∧ ψ (π (x) , π (y)))]

with (ϕ, θ, ψ, µ) ∈ Σ must be satisfied in some specialization (M,π(M)) and by
Theorem 4.5 they must all be satisfied in any universal specialization. It follows
that TU is consistent and contained in the theory of universal specializations.

Moreover, the following is immediate from Theorem 4.5 and compactness.

Theorem 4.7. LetM be a Lπ-structure. Then the following hold.
(1) IfM is a κ-saturated model of TU thenM is κ-universal.
(2) TU is the model companion of the theory of specializations. Even more, a

specialization (M,πM ) can be embedded into any |M |+ saturated model of
TU .

(3) TU is model complete.
(4) Any two models of TU can be embedded into a single model of TU (this is,

TU has the joint embedding property).
(5) TU is a complete Lπ-theory.
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Proof. The first item follows from Theorem 4.5 and the definition of TU .

For (ii), assume that (M,πM ) is a specialization. By elimination of quantifiers
and completeness of ThL(π(M)) (Fact 1.1) given any |M |+ saturated model (N, πN )
of TU there is an elementary embedding from πM (M) into πN (N) and by Corollary
2.12 this can be extended to a Lπ-embedding from (M,πM ) into (N, πN ).

(iii) also follows from Theorem 2.9 and (i): Let (M,πM ) be any model of TU
(so it is in particular a specialization) and let (N, πN ) and (K,πK) be universal
specializations containing (M,πM ) and such that (K,πK) is |N |+-saturated. By
Theorem 2.9 we know that there is a submersion from (N, πN ) into (K,πK) which
is the identity in (M,πM ), which is enough to proof model completeness, so (iii)
holds.

Let (M,πM ) and (N, πN ) be two universal specializations and let (K,πK) be a
|M ∪N |+-saturated specialization of TU . Since Th(πM (M)) = Th(πN (N)) is com-
plete, there are elementary immersions from πM (M) and πN (N) into πK(K). By
Corollary 2.12 this extends to immersions from (M,πM ) and (N, πN ) into (K,πK)
completing the proof of (iv).

Finally, it is known that (v) follows from (iii) and (iv) (see for example Propo-
sition 3.5.11 in [1]). �

Appendix A. Types over universal specializations

Finally, we will show that the dimension of tuples over models and their projec-
tions work as expected when one starts with a universal specialization.

In this section we work inside a monster model (C, π, Cπ) of the theory of universal
specializations.

We will start by the following slight generalization of Corollary 2.7.

Lemma A.1. LetM →Mπ be a universal specialization such thatMπ is saturated.
Let C(x, a) be a closed set, let p(x) be the (complete over M) type generated by
C(x, a), let p+(x), p+,π be defined as in Section 2. Let E(x, bπ) be the smallest
closed set in p+,π. Let Mπ

0 be a small submodel of Mπ over which E is based. Let
mπ ∈Mπ be any element in Mπ such that |= E(mπ, bπ) and mπ |̂

bπ
Mπ

0 (so that
in particular tp(mπ/Mπ

0 ) ⊃ p+,π|Mπ
0 ).

Then there is some m ∈M satisfying C(x, a) which specializes in mπ.

Proof. Let m′ be a realization of p(x). By construction if |= D(m′, d) for some d ∈
M then |= D(x, dπ) ∈ p+,π and E(x, bπ)⇒ D(x, dπ) so in particular |= D(mπ, dπ).
This means that p(x) forces tp(mπ/Mπ). Thus, the extension of π to M∗ ∪ {m′}
sendingm′ to π is a specialization. By universality we can find anm inM satisfying
the hypothesis of the lemma. �

Lemma A.2. Let π|MM →Mπ be a specialization of Mπ (for some M � C), and
let a, b be elements such that dim(ab/M) < dim(aπbπ/Mπ). Let 〈aibi〉 be a Morley
sequence of ab over M . Then the projection 〈aπi bπi 〉 is not a Morley sequence over
Mπ.

Proof. Suppose otherwise, so that for every n the n-Morley sequence 〈aibi〉i≤n over
M projects into the Morley sequence 〈aπi bπi 〉i≤n.
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Let C(x, y, m̄) be the locus of ab over M and assume dim(C(x, y, m̄) = k so that
by hypothesis C(x, y, m̄π) has dimension k + l for some positive l. Notice that by
hypothesis ⊗

i≤n

C(xi, yi, m̄) = nk

and ⊗
i≤n

C(xiyi, m̄
π) = n(k + l).

Let D and D′ be the locus of m̄ and m̄π (over ∅) respectively.
Notice that dim(C) = n + dim(D) and aπ0 , b

π
0 , . . . , a

π
n, b

π
n, m̄

π is an exceptional
point of C so

nk + dim(D) ≥ n(k + l) + dim(D′) + 1.

It follows that dim(D) − dim(D′) ≥ nl + 1. But D and D′ are fixed and l is a
fixed positive number, so for some n this will give a contradiction. �

Lemma A.3. Let M be a universal specialization of Mπ. Let c be any tuple which
specializes in cπ. Then there are c1, c2 and cπ1 , c

π
2 independent over M and Mπ,

respectively, such that c1c2 → cπ1 c
π
2 is a specialization compatible with M →Mπ.

Proof. By stability, if p(x) and pπ(x) denote, respectively, tp(c/M) and tp(cπ/Mπ)
then there are unique types p(x) ⊗ p(y) and pπ(x) ⊗ pπ(y) and the statement of
the lemma amounts to say that there is some D(x, y, b) ∈ p(x) ⊗ p(y) such that
D(x, y, b) 6∈ pπ(x)⊗ pπ(y).

Let C(x, a) be the locus of p(x) and we choose it so that dim(C(x, aπ)) = n is
as small as possible. So by construction we know, in particular, that

C(x, a) ∧ C(y, a)⇒ D(x, y, b)

but

C(x, aπ) ∧ C(y, aπ) 6⇒ D(x, y, bπ)

which by irreducibility implies that dim(D(x, y, bπ)) < 2dim(C(x, aπ)) = 2n.
Consider the set ∃yD(x, y, b). This must be implied by C(x, a) and by minimality

of n we know that ∃yD(x, y, bπ) must have the same dimension as C(x, a). Now,
since dim(D(x, y, b)) < 2n we know that given any generic pointmπ in ∃yD(x, y, bπ)
we have

dim(D(mπ, y, bπ)) = dim(D(x, y, bπ))− n < n.

By Lemma A.1, there is some m ∈M such that:
• m specializes in mπ.
• |= C(m, a).

Since C(x, a)⊗ C(y, a) ⇒ D(x, y, b) we know that p(y) |= D(m, y, b) so that by
construction and definition of specializations we have |= D(mπ, cπ, bπ). But since
dim(D(mπ, x, bπ)) < n, this contradicts minimality of n. �

Proposition A.4. We are working within a monster model C∗. Let M be a uni-
versal specialization of Mπ. Then given any a, b in M we have that dim(ab/M) ≥
dim(aπbπ/Mπ).
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Proof. Let M,Mπ and a, b be as in the statement of the proposition and assume
that dim(ab/M) < dim(aπbπ/Mπ). Applying Lemma A.3 repeatedly, we can define
Morley sequences 〈aibi〉 of ab over M and 〈aπi bπi 〉 of aπbπ over Mπ such that aπi , bπi
are the projection of ai, bi. This contradicts Lemma A.2. �
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