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Positive model theory and amalgamations

Mohammed Belkasmi

Abstract
We continue the analysis of foundations of positive model theory as introduced by Ben Yaacov
and Poizat. The objects of this analysis are h-inductive theories and their models, especially
the “positively” existentially closed ones. We analyze topological properties of spaces of types,
introduce forms of quantifier elimination and characterize minimal completions of arbitrary h-
inductive theories. The main technical tools consist of various forms of amalgamations in special
classes of structures.

1. Introduction

Positive model theory is the study of h-inductive theories through their models, especially
those that are existentially closed, and their type spaces using positive logic. It was initiated by
Ben Yaacov in [1], [2] following the line of research on universal theories carried out by Shelah
([11]), Hrushovski ([5]), Pillay ([8]). In its current form, positive model theory was introduced
by Ben Yaacov and Poizat in [3]. In [9] and [10], Poizat analyzed the topology of type spaces
and introduced the notion of positive elementary extension.

In this article, our ultimate goal is to refine the analysis of classes of structures following
the line of research of Ben Yaacov and Poizat. The principal subjects will be universal
extensions, topological properties of type spaces, quantifier elimination and connections of
these with classes of structures. A recurrent theme will be amalgamation in various classes of
structures. Frequently, these structures will be model companions of an h-inductive theory or
non elementary classes. The amalgamation analysis consists frequently in verifying that certain
classes of models form amalgamation bases (Definition 7), a notion borrowed from [4] and [8].

The models of an h-inductive theory that are amalgamation bases are those that represent
the best the theory in question. In our context, the positively existentially closed (pec in short)
models are typical examples of this property. The analysis of quantifier elimination will show
that under additional hypotheses, this representational power is shared by larger classes of
models of an h-inductive theory: the h-maximal and the positively existentially closed ones
(Section 5). In general, these particular models do not form elementary classes, a property
connected to the study abstract elementary classes in the sense of Shelah (section 6).

The article is organized as follows. In the second section, after revising the foundations of the
subject, we will introduce the notion of universal extension that will be used in verifying the
existence of “large” models, in particular models whose classes allow amalgamation. The third
section is devoted entirely to amalgamation in various classes of models. In particular, will
be proven a caracterization in terms of universal extensions (Theorem 1). The fourth section
contains a first application of the amalgamation techniques developed in the third section,
especially of those in subsection 3.2: we will analyze the preservation of topological properties
of type spaces in substructures and elementary extensions. In the fifth section, we will analyze
various aspects of quantifier elimination. In particular, we will use the notion of a positive
Robinson theory, an h-inductive theory that allows a certain kind of quantifier elimination.
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In section six, we will finish by studying completions of h-inductive theories. This will set the
foundations for the first steps of a work in preparation on positive stability and simplicity.

2. Positive model theory

2.1. Basics

Positive logic is a branch of first-order mathematical logic whose specific property is not using
negation. This restricts the available set of first-order formulas to the set of the positive ones
obtained from atomic formulas using ∨,∧,∃ as logical operators and quantifier respectively.
Eventually, a positive first-order formula is of the form ∃ȳf(x̄, ȳ), where f(x̄, ȳ) is quantifier-
free. The special symbol ⊥ denoting the antilogy needs to be added. The rest of this section is
devoted to recalling various definitions and notions of positive logic. For further details, [3] is
a sufficiently complete reference.

As in the first-order logic with negation, a sentence is a formula without free variables. A
sentence is said to be h-universal if it is the negation of a positive sentence, i.e. it is of the form
¬∃x̄f(x̄), or equivalently ∀x̄¬f(x̄) where f(x̄) is quantifier-free and positive. The conjonction
of two h-universal sentences is equivalent to an h-universal sentence. The same is true for their
disjunction.

A sentence is said to be simple h-inductive if it can be written in the form

∀x̄[∃ȳf(x̄, ȳ)← ∃zg(x̄, z̄)] ,

where f and g are quantifier-free and positive. In prenex normal form, such a sentence is of
the form

∀ū∃v̄(¬φ(ū) ∨ ψ(ū, v̄)) ,

where φ and ψ are quantifier free and positive. It follows that the disjunction of two simple h-
inductive sentences are still simple h-inductive. An h-inductive sentence is a finite conjunction
of simple h-inductive sentences. The conjunction and disjunction of two h-inductive sentences
is still h-inductive.

A first-order theory is said to be h-inductive if it is formed by h-inductive sentences. In the
particular case when they are all h-universal such a theory is called h-universal. The h-inductive
theories are the objects of analysis of positive model theory.

Let L be a first-order language and M and N be two L-structures. A mapping from M
to N is a homomorphism if for every tuple m̄ extracted from M (m̄ ∈M in short) and for
every atomic formula φ, M |= φ(m̄) implies N |= φ(h(m̄)). In such a case, N is said to be a
continuation of M . A homomorphism is an embedding whenever for every atomic formula φ
M |= φ(m̄) if and only if N |= φ(h(m̄)); it is an immersion whenever m̄ and h(m̄) satisfy the
same positive formulas.

A positive compactnes theorem was proven by Ben Yaacov and Poizat, and we will refer to
its following form as “positive compactness”:

Fact 1 [3, Corollaire 4]. An h-inductive theory is consistent if and only if every finite
subset of it is consistent.

A class of structures is said to be inductive if it is closed with respect to inductive limits
of homomorphisms. It is easy to verify that the class of models of an h-inductive theory is
inductive. Theorem 23 of [3] shows that this is indeed a caracterization:
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Fact 2 [3, Théorème 23]. The class of models of a first-order theory is inductive if and
only if it is axiomatized by h-inductive sentences.

2.2. Positively existentially closed models

The notion of positively existentially closed (pec from now on) model is fundamental in
positive model theory:

Definition 1. Let L be a first-order language. A memberM of a class C of L-structures is
said to be positively existentially closed in C if every homomorphism from M into an element
of C is an immersion.

The following fact will be used without mention together with Fact 2 to verify that every
model of an h-inductive theory has a pec continuation:

Fact 3 [3, Théorème 1]. Every member of an inductive class of models has an existentially
closed continuation in the same class.

Definition 2 [3]. Two h-inductive theories are said to be companions if they have the
same h-universal consequences.

Companionship of models is caracterized using the notion of a pec model.

Fact 4 [3, lemme 7]. Two h-inductive theories are companions if and only if they have the
same pec models.

The analysis of h-inductive theories in [3] as well as Fact 2 above show that an h-inductive
theory T has a maximal companion, denoted Tk and called the Kaiser enveloppe of T ; it is
the h-inductive theory of the pec models of T , equivalently Tk is the set of all h-inductive
sentences true in the pec models of T . At the opposite extreme, T has a minimal companion,
denoted Tu, formed by its h-universal consequences. When parameters from a certain set A
are allowed, the notation will be Tu(A) and Tk(A).

An h-inductive theory T is said to be model-complete if all its models are pec, in other
words, if the class of pec models is axiomatised by the Kaiser enveloppe Tk. An example of
a model-complete theory is that of algebraically closed fields of a fixed characteristic in the
language of fields.

Fact 5 [3, lemme 5]. Let T be an h-inductive theory and Tu its h-universal consequences.
Then a structure has a continuation that is a model of T if and only if it is a model of Tu.

It follows from this fact that every structure that has a pec continuation that is a model of
T is a model of Tu.

Examples.
- Let L = {R} where R is a relation symbol and T the h-inductive theory that states that R
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is an equivalence relation. Then T has a unique pec model which is the model with a unique
equivalence class consisting of a single element.

- Let L be the language with two relation symbols P and Q and T be the h-universal theory
{¬∃x, y P (x) ∧Q(y)}. Then T has exactly two pec models: {A} = {a} such that A |= P (a) and
B = {b} such that B |= Q(b).

- Let T be the h-inductive theory of algebraically closed fields of characteristic p in the
language L = {+,−, .,−1 , 0, 1}. A model A of T is pec if and only if it is algebraically closed.
Thus, the Kaiser envelope of T is the theory algebraically closed fields of the same characteristic.

Since, in general, every structure that has a continuation which is a model of T is a model of
Tu (fact 5), every ring that has a continuation which is a pec model of the theory of fields of
characteristic p is a model of the h-universal theory of fields of characteristic p. To illustrate,
the ring of integers has this property. Since two theories of fields of distinct characteristics
have distinct pec models, the repective h-universal theories determine the characteristics of
the fields.

The following conclusion will be useful in various constructions that make use of inductive
limits:

Fact 6 [3, Lemme 12]. The class of pec models of an h-inductive theory T is inductive.

A recent result on pec structures has been proven by Almaz Kungozhin:

Fact 7 [6]. Let L be a relational language and T be a finitely axiomatizable h-universal
theory. Then the class of pec models of T is elementary.

2.3. Type spaces

As in every model-theoretic analysis, the notion of type is fundamental in positive model
theory. The positive context forces the types under analysis to consist of positive formulas et
requires a subtler definition that is the following:

Definition 3 [3], [10]. Let T be an h-inductive theory in a language L. An n-type is
a maximal set of positive formulas in n variables that is consistent with T or with one of its
companions.

An n-type with parameters in M is a maximal set of positive formulas in n variables with
parameters in M , that is consistent with T (M), equivalently with Tk(M).

It is worth emphasizing that one can also define a positive type as the set of positive formulas
satisfied by an element of a pec model of an h-inductive theory. This allows to caracterize the
pec models by the maximality of the sets of positive formulas that tuples of their elements
satisfy:

Fact 8 [3]. A model A of T is pec if and only if for every ā ∈ A the set of positive formulas
satisfied by ā is a type.

From this fact, one deduces that if A is pec and ā ∈ A such that A |= ¬φ(ā), where φ is a
positive formula, then there exists ψ such that A |= ψ(ā) and T ` ¬∃x(φ(x̄) ∧ ψ(x̄)).
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Following the preceding line of thought, when A is a model of an h-inductive theory T and
ā ∈ A, we note FA(ā) the set of formulas satisfied by ā in A. Thus, if A is not a pec model,
FA(ā) is not necessarily a type (a maximal set).

The usual notation is adopted to denote types. We denote by Sn(T ) (resp. Sn(M)) the space
of n-types of a theory T (resp. of the theory T (M) with parameters inM). An n-type of Sn(T )
(resp. of Sn(M)) has a realization in a pec model of T (resp. in an elementary extension of
M).

One defines on Sn(A) a topology of which the basis of closed sets is the set of Ff , where f
ranges over the entire set of positive formulas, and

Ff = { p ∈ Sn(A) | p ` f } .

The space of positive types is compact (quasi-compact in some mathematical cultures) by Fact
1, but it is not necessarily Hausdorff. In [10] Poizat analyzed consequences of the lack of the
Hausdorff property. In section 4, we will concentrate on this problem in a systematic way.

2.4. Positive elementary extensions

The notion of elementary extension in positive model theory was introduced and analyzed
in [9]:

Definition 4 [9]. Let M and N be two L-structures such that N is a continuation of M .
The structure N is an elementary extension of M if N is a pec member of the class of models
of the h-universal theory Tu(M) in the language L(M).

In [9], Poizat proves the following caracterization of positive elementary extensions

Fact 9 [9, Lemme 1]. A continuation N of M is an elementary extension of the latter if
and only if the following two conditions are satisfied:

(i) M is immersed in N ;
(ii) for every b̄ ∈ N , and every positive existential L-formula f(x̄) not satisfied by b̄ in N ,

there exists a positive existential formula g(x̄, ā), with parameters ā ∈M that is satisfied
by b̄ et contradictory with f(x̄): the sentence ¬(∃x̄, ȳ, z̄)(f(x̄, ȳ) ∧ g(x̄, z̄, ā)) belongs to
Tu(M) where f(x̄, ȳ) and g(x̄, z̄, ā) quantifier-free.

2.5. Universal extensions

The notion of universal extension is reminiscent of universal objects in category theory. In
our context, inductive limits of universal extensions generalize the notion of saturation and are
also relevant for relationshisps with abstract elementary classes (see section 6).

In this section, we will analyze properties of this notion, and in the next one, we will obtain
a caracterization of structures that admit a universal extension. In an article in preparation,
we will use this notion to obtain “monster models” in connection with positive stability and
simplicity.

Definition 5. Let A and B models of an h-inductive theory T , h a homomorphism from
A to B. The pair (B, h) is said to be a universal extension of A if for every model C of T
of cardinality at most |A| such that there is a homomorphism from A to C, there exists a
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homomorphism g from C to B such that the following diagram commutes:

C

g

��
A

h
//

f
??~~~~~~~
B

Remark. Let (B, h) be a universal extension of A and g be a homomorphism from B to
a model C of T . Then (C, g ◦ h) is also a universal extension of A. In particular, A admits a
universal extension (Be, h

′), where Be is a pec model of T .

The following lemma is a positive form of the descending Löwenheim-Skolem theorem. It is
slightly modified version of lemma 11 in [3].

Lemma 1. Let T be an h-inductive theory, A a model of T and B a subset of A. Then
there exists a model B? of T of cardinality at most max(|B|, |L|) that contains B and that is
immersed in A.

Proof. The proof is the same as that of lemma 11 in [3]. It suffices to note that the structure
B? obtained at the end of the construction in [3] is a model of T . In this vein, suppose that

T ` ∀x̄[∃ȳϕ(x̄, ȳ)→ ∃z̄ψ(x̄, z̄)] .

If B? |= ∃ȳϕ(ā, ȳ) where ā ∈ B?, then A |= ∃ȳϕ(ā, ȳ), and A |= ∃z̄ψ(ā, z̄). One then deduces
from the construction of B? that B? |= ∃z̄ψ(ā, z̄). Hence, B? |= T . �

Definition 6. Let T be an h-inductive theory and α an ordinal. A universal chain of
length α of T is an inductive family of models {Ai : i < α} (resp. {Ai : i ≤ α} if α is a successor
ordinal) of T with a family of homomorphisms {fij : i ≤ j < α} (resp. {fij : i ≤ j < α} if α is
a sucessor ordinal) such that for every ordinal β < α, (Aβ+1, fβ,β+1) is a universal extension
of Aβ and that if β ≤ α is a limit ordinal then Aβ is the inductive limit of the Ai with i < β,
fiβ being defined as the canonical mapping from Ai into Aβ .

Lemma 2. Let {Ai, fij : i ≤ j < α} be a universal chain of an h-inductive theory T . Then
for every limit ordinal i ≤ α, Ai is a pec model of T . In this case, if j ≤ i then hji is the
canonical mapping Aj to Ai for inductive limits, and (Ai, hji) is a universal extension of Aj .

Proof. Let Ai be a member of the universal chain with i a limit ordinal. We will first show
that Ai is a pec model of T . As Ai is an inductive limit of models of T , Ai is itself a model
of T (Fact 2). Let now f be a homomorphism from Ai to a model B of T . Let us suppose
that B |= ϕ(f(ā)), where ϕ is positive formula and ā ∈ Ai. Then there exists β < i such that
ā ∈ Aβ and ā = fβ,i(ā).

By Lemma 1, there exists B′, a model of T generated by f ◦ fβ,i(Aβ) of cardinality at most
|Aβ | such that B′ |= ϕ(f ◦ fβ,i(ā)). As (Aβ+1, fβ,β+1) is a universal extension of Aβ , there



POSITIVE MODEL THEORY AND AMALGAMATIONS Page 7 of 25

exists an homomorphism h from B′ into Aβ+1 such that the following diagram commutes:

Aβ
fβ,i //

fβ,β+1 ((PPPPPPPPPPPPPP A
f // B′

h

��

id // B

Aβ+1

fβ+1,i

aaCCCCCCCC

As B′ |= ϕ(f(fβ,i(ā))) and h ◦ f ◦ fβ,i = fβ,β+1, we conclude that Aβ+1 |= ϕ(fβ,β+1(ā)). By
the definition of an inductive limit, fβ+1,i ◦ fβ,β+1 = fβ,i, and so A |= ϕ(ā), which implies that
f is an immersion. Hence, A is a pec model of T .

We will now show that for every β < i, (Ai, fβ,i) is a universal extension of Aβ . Let C be a
model of T , g a homomorphism from Aβ into C and assume that |C| ≤ |Aβ |. As (Aβ+1, fβ,β+1)
is a universal extension of Aβ , there exist f and H such that the following diagram commutes:

C
f // Aβ+1

h

��
Aβ

fβ,i

//

g

OO
fβ,β+1

<<zzzzzzzz
Ai

We deduce from the commutativity of the diagram fβ,i = h ◦ fβ,β+1 = h ◦ f ◦ g. The conclusion
follows. �

3. Amalgamations

The possibility of amalgamating the structures in a given class allows a finer study of it.
This section continues the analysis of amalgamation techniques initiated in [3]. In the first
subsection, we will introduce and caracterize the amalgamation bases following [4] et [8].

The ability to amalgamate, being a property of “maximal” structures, is strongly connected
to the analysis of “maximal” h-inductive theories. The second section is devoted to the analysis
of amalgamation of models of the Kaiser envelope of an h-inductive theory.

3.1. Amalgamation bases

Definition 7. Let T be an h-inductive theory. A model A of T is said to be an
amalgamation basis if for every pair of models B and C of T such that there exist
homomorphisms f and g from A to B and C respectively, there exist a model D of T , and f ′,
g′ homomorphisms such that the following diagram commutes:

A
f //

g

��

B

g′

��
C

f ′
// D

A theory is said to have the amalgamation property if each model of T is an amalgamation
basis.

We remind that for a structure A, FA(ā) is the set of positive formulas satisfied by ā in A.
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Lemma 3. Let T be an h-inductive theory and A a model of T . Then the following
properties are equivalent:

(i) A is an amalgamation basis;
(ii) for every ā ∈ A, there exists a unique type in S(T ) that contains FA(ā).

Proof. ((i)⇒ (ii)) Let ā ∈ A. We suppose that there exist two distinct types p 6= q in S(T )
that contain FA(ā).

We first show that since p ` FA(ā), there exist B a pec model of T and f a homomorphism
from A to B that maps ā to b̄ that realizes p. In this vein, it suffices to show that the family
Γ = T ∪Diag+(A) ∪ p(ā) is consistent. Let A′ be a model of T that realizes p with ā′ and
ϕ(ā, m̄) ∈ Diag+(A). Then ∃ȳϕ(x̄, ȳ) ∈ FA(ā), so p ` ∃ȳϕ(x̄, ȳ). Hence there exists c̄′ in A′

such that A′ |= ϕ(ā′, c̄′), from which follows that the family Γ is consistent. Let B′ be a model
of Γ and B a pec model of T that is a continuation of B′. Then there is a homomorphism from
A into B and b̄, which is the image of ā in B realizes p.

Similarly, there exists C a pec model of T and a homomorphism g from A to C which maps
ā to c̄, a realization of q. Since A has the amalgamation property, there exists D a model of T
such that the following diagramm commutes:

A
f //

g

��

B

f ′

��
C

g′
// D

Thus f ′(b̄) = g′(c̄), and hence p = q, a contradiction.
((ii)⇒ (i)) Let

A
f //

g

��

B

C

with A a model of T . Let B, C be pec models of T , f , g homomorphisms as in the diagram.
Suppose one cannot amalgamate f and g. This would mean that there exists ā ∈ A such that
FB(f(ā)) and FC(g(ā)) (which are types as B and C are pec models of T ) are contradictory.
This contradicts hypothesis (ii). �

Theorem 1. Let A be a model of an h-inductive theory T . Then A has a universal extension
if and only if A is an amalgamation basis.

Proof. Let us suppose that A has a universal extension (B, h) and show that A is an
amalgamation basis. Let Ai |= T , i = 1, 2, be two continuations of A by the homomorphisms
fi. In order to verify the amalgamation property, it suffices to show that the following family
is consistent:

Γ = T ∪Diag+(A1) ∪Diag+(A2) ,

by interpreting the parameters from A by the same symbols in A1 and A2.
We fix a subset T ∪ Γ1 ∪ Γ2 where the Γi are finite subsets of Diag+(Ai) for i = 1, 2. Let

āi be the parameters from Ai that are used in Γi. By Lemma 1, there exists a model Bi of
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T ∪ Γi that contains A ∪ {āi} and that has the same cardinality as A. We will denote by gi the
homomorphism from A into Bi defined by gi(a) = fi(a) for every a ∈ A. Then by definition of
universal extensions, one has the following diagram

B1

h1

��
A

h
//

g1
>>}}}}}}}

g2   A
AA

AA
AA

B

B2

h2

OO

This implies that B is a model of the set T ∪ Γ1 ∪ Γ2. By positive compactness, Γ is consistent.
This proves the existence of the amalgamation being sought for.

In order to prove the other implication, we assume that A is an amalgamation basis. We will
show that it has a universal extension. Let ∆ be the family of all pairs (M,f) with M a model
of T of cardinality at most |A| such that there exists a homomorphism f from A to M . By the
Axiom of Choice, we may suppose that ∆ is well-ordered. Its order type will be denoted by α.

We will construct an inductive family {Aβ : β ≤ α} of models of T with a coherent family of
homomorphisms {hi,j : i ≤ j ≤ α}. The homomorphisms will be indexed by pairs of ordinals
up to α. The last member of the sequence, Aα, will be the universal extension that is being
sought for.

To start the construction, we set A0 = A, and h0,0 is defined as the identity mapping. Since
A is an amalgamation basis, there exist A1, a model of T , and two homomorphisms h0,1 and
g0 from A0 to A1 and from M0 to A1 respectively such that the following diagram commutes:

A
h0,0 //

f0

��

A0

h0,1

��
M0 g0

// A1

For the inductive step, we assume that the family {Aβ : β < γ ≤ α} with the corresponding
homomorphisms has been constructed. If γ is a successor of the form β + 1, there exist a model
Aγ of T , homomorphisms hβ,β+1 and gβ such that the following diagram commutes:

A
h0,β //

fβ

��

Aβ

hβ,β+1

��
Mβ gβ

// Aβ+1

For every i ≤ β, we set hi,β+1 = hβ,β+1 ◦ hi,β . The coherence of the homomorphisms already
constructed inductively implies that the new family is still coherent. In other words, we continue
to have an inductive family of models of T .

If γ is a limit ordinal, then one defines Aγ as the inductive limit of the already constructed
inductive family. As for the new homomorphisms, for every i < γ, hi,γ is the natural mapping
from Ai to Aγ . The new family of models and homomorphisms is also inductive.

The construction ends when α is reached. By construction, either α is a successor and thus
Aα is constructed as in the inductive step for successors, or α is limit and Aα is the inductive
limit of the family {Ai : i < α}.

To finish the proof, we show that (Aα, h0,α) is a universal extension of A. Let M be a model
of T of cardinality at most |A| such that there exists a homomorphism f from A intoM . By the
definition of the family ∆, there exists β ≤ α such that (M,f) = (Mβ , fβ). If β = α, then the
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identity mapping on Aα suffices. Otherwise, β < α and by construction, the following diagram
is commutative:

A
h0,β //

fβ

��

Aβ

hβ,β+1

��
Mβ gβ

// Aβ+1
hβ+1,α

// Aα

The equalities h0,α = hβ+1,α ◦ hβ,β+1 ◦ h0,β = hβ+1,α ◦ gβ ◦ fβ that follow from this diagram
yield the desired conclusion. �

3.2. Amalgamations in models of Kaiser envelopes

In earlier works on positive model theory, the existence of amalgamations is frequently
analyzed in the context of h-universal theories. Here, it will be necessary to extend the
context to Kaiser envelopes. To start, we will prove a slightly modified version of the so-called
“asymmetric amalgamation” of Ben Yaacov and Poizat (Lemma 8 in [3]).

Lemma 4. Let A, B, C be L-structures, g an immersion from A into B, and h a
homomorphism from A to C. Then, there exist a model D of Tk(C), a homomorphism g′

from B to D and an immersion h′ from C into D, such that g′ ◦ g = h′ ◦ h.

Proof. We use the same symbols to name the elements of A in B and C. The proof consists
in showing that the set

Tk(C) ∪Diag+(B)

of sentences is consistent. In this vein, let f(ā, b̄) be in Diag+(B) with ā ∈ A and b̄ ∈ B. Then
A |= ∃ȳf(ā, ȳ) since A is immersed in B. Hence, one can interpret b̄ by an element of A. The
final formula belongs to Tk(C). �

This lemma has the following corollary mentioned in [3] in a different form.

Corollary 1. The pec models of an h-inductive theory are amalgamation bases.

We deduce the following connection with universal extensions.

Corollary 2. Let Ae be a pec model of an h-inductive theory. Then Ae has a universal
extension (Be, i), where Be is another pec model and i an immersion from Ae into Be.

Proof. Since every pec model is an amalgamation basis, the corollary follows from Theorem
1. �

The following lemma and its corollary, fundamental for section 4, are also of independant
interest.

Lemma 5. Let A be an L-structure, B a model of Tk(A) and C an L-structure in which
A is immersed. Then there exist a model D of Tk(C) and two immersions ϕ and ψ such that
the following diagram commutes
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A
im //

im

��

B

ϕ

��
C

ψ
// D

Proof. We name the elements of A in B and C by the same symbols and note L? the
enlarged language. The proof of the theorem consists in showing that the following set of
h-inductive sentences is consistent:

Γ = Tk(C) ∪ Tu(B) ∪Diag+(B) .

Let F = {χ, f(β̄, b̄),¬∃ȳg(ȳ, b̄)} be a finite subset of Γ where χ ∈ Tk(C), f(β̄, b̄) ∈ diag+(B)
and ¬∃ȳg(ȳ, b̄) ∈ Tu(B).

As B |= ¬∃ȳg(ȳ, b̄) and B |= ∃x̄f(x̄, b̄), we conclude that the h-inductive sentence

∀z̄[∃x̄f(x̄, z̄)→ ∃ȳg(ȳ, z̄)]

does not belong to Tk(B), and thus nor to Tk(A). This implies that one can find ā ∈ A such
that A |= ¬∃ȳg(ȳ, ā), and A |= ∃x̄f(x̄, ā). It follows that we can interpret the sentences in A
and thus in C, and hence conclude that Γ is consistent. �

Corollary 3. Let A be an L-structure and B a model of Tk(A). Then every model of
Tk(A) is immersed in a model of Tk(B), and every model of Tk(B) is immersed in a model of
Tk(A).

4. Hausdorff type spaces and elementary extensions

This section is devoted to the analysis of topological properties of spaces of positive types of
an h-inductive theory. The main theorem, that answers a question of Poizat, is concerned with
the Hausdorff property of type spaces. Its proof depends heavily on amalgamation techniques
developed in earlier sections.

Definition 8 [10]. An h-inductive theory T (resp. a structure M), is said to be Hausdorff
if and only if for every natural number n, the space Sn(T ) (resp. Sn(M)) is Hausdorff.

Such a definition would be useless if negation were in the language. But, the exclusion of
negation, which makes the topology of Sn closer to the Zariski topology in algebraic geometry,
yields rapidly examples of h-inductive theories whose type spaces are not Hausdorff (see the
example after Lemma 6).

A natural question is the connection between the Hausdorff property of an h-inductive theory
and those of its individual models. This necessitates the analysis of the preservation of the
Hausdorff property when one goes to elementary extensions or restrictions. An affirmative
answer concerning the passage to elementary extensions was proven by Poizat in [10]. The
main result of this section gives an affirmative answer for passage to elementary substructures.

We start with a technical notion introduced in [4], (Section 8.5).

Definition 9. Let T be an h-inductive theory and ϕ a positive formula. The resultant of
ϕ, denoted by ResT (ϕ), is the set of positive formulas ψ sucht that T ` ¬∃x(ϕ(x) ∧ ψ(x)).
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Lemma 6. Let T be an h-inductive theory and Sn(T ) be its space of n-types. Then Sn(T )
is Hausdorff if and only if for every pair of distinct types p, q ∈ Sn(T ), there exist two positive
formulas f and g such that p ` f , q ` g, and every formula in ResT (f) is contradictory to every
formula in ResT (g).

Proof. Let Of and Og be two basic open sets in Sn(T ), in other words, Of = {r ∈ Sn(T ) :
r 6` f}, and similarly Og = {r ∈ Sn(T ) : r 6` g}. Equivalently, Of = ∪h∈ResT (f)Fh where Fh is
nothing but the closed set defined by h, and similarly for Og. The topology on Sn(T ) is
Hausdorff if and only if there exist f , g such that p ` f , q ` g and Of ∩Og = ∅. This is
equivalent to the conclusion of the lemma. �

Before going any further, we will use this lemma to illustrate an example of a non-Hausdorff
theory. A slightly different version of this example was given at the end of [3]. Let L = {Ri :
i < ω} be relational language. The h-inductive theory T assures that for every i < ω, ResT (Ri)
contains all but finitely many of the Rj , j 6= i. Then, by Lemma 6, T is not Hausdorff.

In [3], the following caracterization of the Hausdorff property of type spaces was shown:

Fact 10 [3, Théorème 20]. The spaces of type of an h-inductive theory are Hausdorff if
and only if one can amalgamate the homomorphisms between models of the Kaiser envelope
Tk; i.e. for any three models M1, M2 and M3 of Tk, such that there is a homomorphism f
from M1 to M2 and a homomorphism g from M1 to M3, there exist M4 a model of Tk and s,
h homomorphisms such that the following diagram commutes:

M1
f //

g

��

M2

s

��
M3

h
// M3

The following corollaries offer example of Hausdorff h-inductive theories.

Corollary 4. Every model-complete h-inductive theory is Hausdorff.

Proof. As T is model-complete, by definition its class of pec models is elementary and
axiomatized by Tk. Consequently, every model of Tk is pec. The conclusion follows from
Corollary 1 and Fact 10. �

Corollary 5. An h-inductive theory that has the amalgamation property is Hausdorff.

Corollary 6. Let L be a relational language and T a finitely axiomatizable h-universal
theory. Then T is Hausdorff.

Proof. By Fact 7, Tk is model-complete. The conclusion follows from Corollary 4. �

We use this corollary to verify that an example in [6] is a Hausdorff theory. Let L be a
language that contains a single relational predicate R and let T be the h-universal theory
{¬∃xy R(x, y) ∧R(y, x)}. By Corollary 6, T is Hausdorff.
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We will now attack the question of preservation of Hausdorffness. In [10], Poizat makes the
following remark:

Fact 11 [10]. An elementary extension of a Hausdorff structure is also Hausdorff.

The reverse implication was left as an open problem in [10]. Theorem 2 below answers
affirmatively this question. Amalgamation in classes of models of Kaiser enveloppes will be a
major tool in the proof (Lemma 5 and Corollary 3).

Theorem 2. An elementary substructure of a Hausdorff structure is Hausdorff.

Proof. The main point of the proof will be to replace models of Tk(M) with models of
Tk(N) in order to be able to use the amalgamation property of the latter and Fact 10.

Let M1, M2, M3 three models of Tk(M), ϕ2 (resp. ϕ3) a homomorphism from M1 to M2

(resp. from M1 to M3). By Corollary 3, there exists N1, a model of Tk(N) such that M1 is
immersed in N1 and that the following diagram commutes:

M
im //

im

��

M1

i1

��
N

im
// N1

As M1 is immersed in N1, an application of the asymmetric amalgamation yields the following
commutative diagram:

M1
ϕ2 //

i1

��

M2

i2

��
N1

ϕ′
2

// M ′

with M ′ a model of Tk(M2), and thus a model of Tk(M). The following commutative diagram
illustrates this.

M
im //

im

��

M1

i1

��

ϕ2 // M2

i2

��
N

i
// N1

ϕ′
2

// M ′

On this diagram, one remarks that the mapping ϕ′2 ◦ i defined from N to M ′ is an immersion
because N is a pec model of Tk(M) and M ′ |= Tk(M), which implies that M ′ is a model of
Tu(N). This allows us to find a continuation N2 of M ′ that is a pec model of Tu(N) (Fact 3).
Since it is pec, it is also a model of Tk(N). We thus obtain the following commutative diagram:

M
im //

im

��

M1

i1

��

ϕ2 // M2

i2

��

f2◦i2

!!C
CC

CC
CC

C

N
i
// N1

ϕ′
2

// M ′
f2

// N2
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We repeat the same construction for M3 and obtain the following commutative diagram

M
im //

im

��

M1

i1

��

ϕ3 // M3

i3

��

f3◦i3

!!C
CC

CC
CC

C

N
i
// N1

ϕ′
3

// M ′′
f3

// N3

where M ′′ is a model of Tk(M), N3 a model of Tk(N) and f3 a homomorphism. We then have
the following diagram:

M2
f2◦i2 // N2

M1

ϕ2

=={{{{{{{{

ϕ3 !!C
CC

CC
CC

C
i1 // N1

f2◦ϕ′
2

=={{{{{{{{

f3◦ϕ′
3

!!C
CC

CC
CC

C

M3
f3◦i3

// N3

The amalgamation in models of Tk(N) (Fact 10) yields the following commutative diagram

N1

f2◦ϕ
′
2 //

f3◦ϕ
′
3

��

N2

ψ2

��
N3

ψ3

// N ′

where N ′ is a model of Tk(N), and thus of Tk(M) as well. It follows from this that

ψ2 ◦ f2 ◦ ϕ′2 ◦ i1 = ψ3 ◦ f3 ◦ ϕ′3 ◦ i1 .

This implies

ψ2 ◦ f2 ◦ i2 ◦ ϕ2 = ψ3 ◦ f3 ◦ i3 ◦ ϕ3 .

The following commutative diagram illustrates this construction:

M2
f2◦i2 // N2

ψ2

  B
BB

BB
BB

B

M1

ϕ2

=={{{{{{{{

ϕ3 !!C
CC

CC
CC

C
i1 // N1

f2◦ϕ′
2

=={{{{{{{{

f3◦ϕ′
3

!!C
CC

CC
CC

C N ′

M3
f3◦i3

// N3

ψ3

>>||||||||

Finally, we conclude the following commutative diagram in the class of models of Tk(M):

M1
ϕ2 //

ϕ3

��

M2

ψ2◦f2◦i2
��

M3
ψ3◦f3◦i3

// N ′

The theorem follows from Fact 10. �
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We end this section with an example that shows that the topology of a space of types is
too weak to determine all properties of an h-inductive theory. The theory in question will be
Hausdorff but the class of its pec models will not be elementary.

Example. Let L be the relational language {Pi, Ri : i < ω}, T be the h-universal theory
{¬∃xPi(x) ∧ Pj(x),∀xPi(x) ∨Ri(x),¬∃xPi(x) ∧Ri(x) | i 6= j, i, j < ω}. A pec model A of T
has the following properties:

1. For every i < ω the h-inductive sentences ∀x, y(Pi(x) ∧ Pi(y)→ x = y) belong to Tk,
because otherwise one can continue A into a model of T using a homomorphism that maps x
and y to the same image. Such a homomorphism would not be an immersion and this would
keep A from being pec.

2. For every i < ω, A |= ∃xPi(x). Indeed, one can continue A in a model that satisfies ∃xPi(x).
But, A is pec, and thus this sentence is also true in A. In particular, since the Pi are mutually
incompatible, A is necessarily infinite.

There exist exactly two pec models of T : either A = {ai, | i < ω} such that for every i < ω,
one has A |= Pi(ai), or B = A ∪ {x} where x satisfies Ri for every i < ω, and A is the first pec
model.

It follows from the classical Lø̈wenheim-Skolem theorem that the class of pec models is not
elementary. Equivalently, Tk is not model-complete. But T is Hausdorff by Fact 10. Indeed, as
an arbitrary model of Tk is a pec model of T augmented by a possibly empty set of points that
satisfy no Pi but all the Ri, the amalgamation in models of Tk is equivalent to compressing
these points.

5. Positive Robinson theories and quantifier elimination

In this section, we will discuss quantifier elimination in the positive context. The determina-
tion of positive types by their quantifier-free parts will play an important role. More generally,
the “density” of the quantifier-free positive formulas within the set of positive formulas satisfied
by an element in an arbitrary model of an h-inductive theory characterizes the general notion
of elimination (Definition 13).

The characterizations of quantifier elimination vary according to classes of models and
companion theories in question. In the case where the analysis is done within the class of
pec models, one deals with a positive Robinson theory, notion of which precursors are in [5]
and [1] (see in particular Lemmas 8 and 9 below). In the general case, a similar analysis is
carried out on all models of an h-inductive theory (Definition 13), and the final characterization
for the h-universal theories is obtained using Theorem 3.

By definition, an embedding is an equivalence of quantifier-free types. Hence, in the case of a
theory that assigns heavier weight to its quantifier-free formulas, it is natural that embeddings
are closer to immersions than in general. This aspect of elimination is described by the notions
of an h-maximal model (Definition 10) and of a weakly pec model (Definition 12).

Definition 10 [6]. Let T be an h-inductive theory. A model A of T is said to be h-maximal
if every homomorphism from A to another model of T is an embedding.

Lemma 7. The class of h-maximal models of an h-inductive theory is inductive.
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Proof. Let T be an h-inductive theory, α a limit ordinal and {Mi; fij | i ≥ j, i, j < α} an
inductive family of h-maximal models of T of which the inductive limit will be denoted M .

We will show that M is h-maximal. Since M is an inductive limit of models of T , M is
model of T (Fact 2). Let N |= T and f a homomorphism from M to N . For every m̄ ∈M ,
there exists i < α such that m̄ ∈Mi. Let hi be the canonical homomorphism from Mi into
M , suppose that N |= ϕ(f(m̄)), where ϕ is a free positive formula. As Mi is h-maximal, the
homomorphism f ◦ hi is an embedding. But ϕ is a quantifier-free formula, thus Mi |= ϕ(m̄)
and M |= ϕ(m̄). Hence, f is an embedding. �

We will denote by Tm the h-inductive theory of the h-maximal models of an h-inductive
theory T . Note that Tu ⊂ Tm ⊂ Tk.

Corollary 7. Let T be an h-inductive theory. The class of h-maximal models of T is
elementary if and only if it is axiomatized by Tm.

Proof. Let T ′ denote the theory axiomatizing the h-maximal models of T . Then M |= T ′ if
and only if M is h-maximal, and so M |= Tm. Hence, T ′ ` Tm. As for the reverse implication,
by Fact 2, T ′ is an h-inductive theory. Since Tm is the set of h-inductive sentences that are
true in all h-maximal models of T , one concludes that Tm ` T ′. �

Let A be a structure and ā ∈ A. We will denote by tpsq(ā) the set of positive quantifier-free
formulas satisfied by ā in A.

Definition 11. Let T be an h-inductive theory. The theory T is said to be positive
Robinson if it satisfies the following condition:
for any two pec models A and B of T , if ā ∈ A, b̄ ∈ B and tpsq(ā) ⊂ tpsq(b̄), then tp(ā) = tp(b̄).

Remarks. 1. This definition is equivalent to saying that in the pec models of a positive
Robinson theory, the types are entirely determined by their quantifier-free parts.

2. An h-inductive theory is positive Robinson if and only if it has a companion that has this
property.

Example. The theory of fields of a given characteristic is a positive Robinson theory
because its maximal h-inductive companions has as models the algebraically closed fields of
the same characteristic.

Lemma 8. An h-inductive theory T is positive Robinson if and only if it satisfies the
following condition:
for every pec model A of T , for every quantifier-free positive formula ϕ(x̄) and ā ∈ A, A |=
¬ϕ(ā) if and only if there exists a quantifier-free positive formula ψ(x̄) such that A |= ψ(ā)
and T ` ¬∃x̄ψ(x̄) ∧ ϕ(x̄).

Proof. Let A be a pec model of T and ā ∈ A. Let us suppose that A |= ¬ϕ(ā). This implies
ϕ(x̄) does not belong to the type of ā. We first show that T ∪ tpsq(ā) ∪ {ϕ(ā)} is inconsistent.
If not, then there exists a pec model B and b̄ ∈ B such that B |= ϕ(b̄) and tpsq(ā) ⊂ tp(b).
Since T is positive Robinson, tp(ā) = tp(b̄), a contradiction. It follows that there exists a finite
subset ψ(x̄) of tpsq(ā) such that T ` ¬∃x̄ψ(x̄) ∧ ϕ(x̄).
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For the reverse direction, we assume that for every positive formula ϕ, Resϕ is equivalent
modulo T to a set of quantifier-free positive formulas. Let A and B two pec models of T , ā ∈ A
and b̄ ∈ B such that tpsq(ā) ⊂ tpsq(b̄). Let ϕ be a positive formula such that A |= ¬ϕ(ā),
then by hypothesis, there exists a positive quantifier-free formula ψ(x̄) such that A |= ψ(ā)
and T ` ¬∃x̄ψ(x̄) ∧ ϕ(x̄). Since tpsq(ā) ⊂ tpsq(b̄), B |= ψ(b̄). This implies that B |= ¬ϕ(b̄). It
follows that tp(b̄) ⊂ tp(ā). By the maximality of positive types, we deduce that tp(ā) = tp(b̄).
�

Corollary 8. Let T be a positive Robinson theory and A a model of T . Then A is h-
maximal if and only if it satisfies the following condition:
for every quantifier-free positive formula ϕ(x̄) and ā ∈ A, A |= ¬ϕ(ā) if and only if there exists
a quantifier-free positive formula ψ(x̄) such that A |= ψ(ā) and T ` ¬∃x̄ψ(x̄) ∧ ϕ(x̄).

Proof. Let A be an h-maximal and B a pec model of T such that A embeds in B. We
assume that A |= ¬ϕ(ā). Thus, B |= ¬ϕ(ā). Since B is a pec model, by Lemma 8 there exists
ψ(x̄) a quantifier-free positive formula such that T ` ¬∃x̄ψ(x̄) ∧ ϕ(x̄) et B |= ψ(ā). This implies
that A |= ψ(ā). In the reverse direction, every model of T that satisfies the condition above is
h-maximal. �

Lemma 9. Let T be a positive Robinson theory. Then the following conditions are satisfied:
1. Every model of T that embeds in a pec model of T is h-maximal.
2. The h-maximal models of T have the amalgamation property.
Moreover, if T is h-universal then these two conditions are sufficient to conclude that T is a

positive Robinson theory.

It is worth noting that the second condition of Lemma 9 shows that the h-maximal models
of a positive Robinson theory are amalgamation bases.

Proof. Let A, B, C be three models of T such that there is an embedding i from A into
B and a homomorphism f from A into C, and B is a pec model. Let Ce be a pec model of T
such that there is a homomorphism j from C to Ce:

B

A

i

??~~~~~~~

f ��@
@@

@@
@@

C
j
// Ce

For any ā ∈ A, we have that tpsq(ā) = tpsq(i(ā)), and tpsq(ā) ⊂ tpsq(f(ā)) ⊂ tpsq(j ◦ f(ā)).
Since T is positive Robinson, B and Ce are pec models of T and tpsq(i(ā)) ⊂ tpsq(j ◦ f(ā)),
tpsq(i(ā)) = tpsq(j ◦ f(ā)). Hence, tpsq(ā) = tpsq(f(ā)), which implies that f is an embedding.

We will now show the amalgamation property for h-maximal models. Let A, B and C be
h-maximal models of T with i and j embeddings from A into B and C respectively. Let Be
and Ce be pec models of T that are continuations of B and C respectively. We then have the
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following diagram:

B
f // Be

A

i

??~~~~~~~

j ��@
@@

@@
@@

C g
// Ce

For every ā ∈ A, tpsq(ā) = tpsq(f ◦ i(ā)) = tpsq(g ◦ j(ā)). Thus, ā has the same type p in Be
and Ce.

In order to complete the amalgamation argument, we will show using positive compactness
that T ∪D+(Be) ∪D+(Ce) is consistent. Let ϕ(ā, b̄) ∈ D+(Be) and ψ(ā, c̄) ∈ D+(Ce), where
ā is the tuple of parameters that belong to A. Then, ∃yϕ(x, y) and ∃zψ(x, z) belong to p. As a
result, there exists c̄′ ∈ Ce such that ϕ(ā, c̄′) ∧ ψ(ā, c̄) ∈ D+(Ce), and the consistency follows.
It follows that T ∪D+(Be) ∪D+(Ce) has a model D that one can continue to an h-maximal
model of T (a pec model of T for example). The amalgamation property for the h-maximal
models follows.

Now, we assume that T is h-universal and the two conditions in the statement hold. We will
prove that T is positive Robinson. Let A be a pec model of T , ā, b̄ ∈ A such that tpsq(ā) ⊂
tpsq(b̄). Let 〈ā〉 be the substructure of A generated by ā. As T is h-universal, 〈ā〉 |= T . Since
the inclusion 〈ā〉 in A is an embedding, 〈ā〉 is an h-maximal model of T by condition 1. Hence,
the homomorphism f from 〈ā〉 into A that maps ā to b̄ is an embedding. The amalgamation
property of the h-maximal models (condition 2) shows that there exists B that may be chosen
to be a pec model such that the following diagram commutes:

〈ā〉 i //

f

��

A

h

��
A g

// B

Thus h(ā) = g(b̄). Note that, since A is a pec model, g, h are immersions. Hence, ā and b̄ have
the same type. �

Remark. If every model of T that embeds in a pec model is an h-maximal, then every
model of T that embeds in an h-maximal is an h-maximal.

Corollary 9. If T is a positive Robinson theory of which the class of h-maximal models
is elementary, then T is Hausdorff.

Proof. As T is positive Robinson, its h-maximal models have the amalgamation property,
i.e. they satisfy condition 2 of Lemma 9. Since the class of h-maximal models is elementary,
it is axiomatized by the h-inductive theory Tm (Corollary 7). Let M1, M2, M3 be models of
Tk with f and g homomorphisms from M1 to M2 and M3 respectively. Since Tm ⊂ Tk, these
three models are h-maximal. As a result, there exists a model N of Tm and a pec continuation
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M of N such that the following diagram commutes

M1
f //

g

��

M2

��
M3

// N // M

Since M |= Tk, the Hausdorff property of T follows from Fact 10. �

In the rest of this section, we will extend the preceding discussion to all models of an
h-inductive theory. The notion of a weakly pec model and the property EQ will be crucial.

Definition 12. Let T be an h-inductive theory. A model A of T is said to be weakly pec
if every embedding from A into a model of T is an immersion.

We first refine a notation already introduced. For an h-inductive theory T , a model M of T
and ā ∈M , we will denote by fM (ā) the set of quantifier-free positive formulas satisfied by ā
in M .

Definition 13. An h-inductive theory T is said to have the property EQ if it satisfies the
following hypothesis:
for every pair of models A and B of T , ā ∈ A and b̄ ∈ B, fA(ā) = fB(b̄) if and only if FA(ā) =
FB(b̄).

The property EQ will allow us to characterize the elimination of quantifiers in h-universal
theories. We start with a general lemma:

Lemma 10. If an h-inductive theory T has the property EQ, then every embedding between
models of T is an immersion. In particular, every model of T is weakly pec.

Proof. We assume that T has the property EQ. Let A and B be two models of T , i an
embedding of from A into B, and ā ∈ A. Then ā and i(ā) satisfy the same quantifier free
positive formulas. They satisfy the same positive formulas since T has the property EQ. It
follows that i is an immersion, and one concludes that every model of T is weakly pec. �

Corollary 10. If T is a theory having the property EQ, then every h-maximal model of
T is pec.

Corollary 11. If T is an h-universal theory having the property EQ, then T is a positive
Robinson theory.

Proof. Since T has the property EQ, Lemma 10 shows that every embedding between
models of T is an immersion. Subsequently, every model A of T that embeds in a pec model
of T is a pec model; it is in particular h-maximal.

By Corollary 10, every h-maximal model of T is pec. The amalgamation property for h-
maximal models follows from Corollary 1.

The conclusion of the corollary follows from Lemma 9. �
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Theorem 3. Let T be an h-universal theory. Then the following conditions are equivalent:

1. T has the property EQ;

2. every model of T is weakly pec;

3. every positive formula is equivalent modulo T to a quantifier-free positive formula.

Proof. (1⇒ 2) This is Lemma 10.
(2⇒ 1) Let ā ∈ A, b̄ ∈ B such that fA(ā) = fB(b̄) and 〈ā〉 the substructure of A generated

by ā. Since T is h-universal, 〈ā〉 is a model of T . It embeds in A through the inclusion mapping
that we will denote by i and in B through the embedding that maps ā onto b̄ and that we
will denote by j. By hypothesis 2, the embeddings i and j are immersions. By the asymmetric
amalgamation (Lemma 4), there exist a model D of T together with an immersion f and a
homomorphism g that make the following diagram commute:

〈ā〉 i //

j

��

A

f

��
B g

// D

If B |= ∃ȳϕ(b̄, ȳ), where b̄ = j(ā), then B |= ∃ȳϕ(j(ā), ȳ), and D |= ∃ȳϕ(g ◦ j(ā), ȳ). Since f is
an immersion, A |= ∃ȳϕ(a, ȳ), thus FB(b̄) ⊂ FA(ā).

In order to show that FA(ā) ⊂ FB(b̄) one redoes the same argument on the commutative
diagram

〈ā〉 i //

j

��

A

f

��
B g

// D

this time with g as an immersion.
(3⇒ 2) We assume 3. Then every embedding is an immersion, thus every model of T is

weakly pec.
The idea of the proof of (1⇒ 3) is from [4] (Lemma 8.4.8).
(1⇒ 3) Let ϕ be a positive formula, ∆ be the set of quantifier-free positive formulas ψ such

that T ` ϕ→ ψ. We will show that T ∪∆(x) ` ϕ(x) in the language L ∪ {x}. Let B be a model
of T ∪∆(x). Let Γ be the set of quantifier-free positive formulas χ such that B |= ¬χ(x) and
T ′ be the theory T ∪ {ϕ(x)} ∪ {¬χ(x) | χ ∈ Γ}.

Suppose towards a contradiction that T ′ is not consistent. Then there exists a quantifier-free
positive formula χ such that T ` ϕ(x)→ χ(x). By the definition of ∆, one concludes χ ∈ ∆.
Since B |= ¬χ(x), we reach a contradiction with the fact that B is a model of ∆. Hence, T ′ is
consistent.

Let A be a model of T ′, C the substructure of A generated by the constants in the language
L ∪ {x}. So C embeds in A, and as T is h-universal, C |= T . By Lemma 10, this embedding is
an immersion.

On the other hand, the mapping j from C to B that maps every constant of L onto itself
and x onto x is a homomorphism. Indeed, suppose C |= α(x, a) and B |= ¬α(x, a), with x, a
constants of the language L ∪ {x}, and α a quantifier-free positive formula. The fact that
B |= ¬α(x, a) implies that α(x, a) ∈ Γ. As a result, C |= ¬α(x, a), a contradiction. Hence j is
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a homomorphism. We obtain the following diagram:

A

C

im

??~~~~~~~

j ��@
@@

@@
@@

B

where im is an immersion and j a homomorphism. Since A ` ϕ(x), C ` ϕ(x), and thus B `
ϕ(x). Hence, T ∪∆(x) ` ϕ(x).

The conclusion of the preceding paragraph et positive compactness imply that there exists
ψ ∈ ∆ such that T ` ψ → ϕ. By the definition of ∆, we conclude that T ` ϕ↔ ψ. �

6. Complete theories, abstract elementary classes

In this final section, we will discuss general aspects of h-inductive theories and connections
with classes of models of such theories. In the first subsection, we will extend the analysis of
[3] on complete theories, and in the second one, we will investigate connections with abstract
elementary classes in the sense of Shelah.

6.1. Complete theories

In [3] Ben Yaacov and Poizat introduced the notion of a complete theory as the h-universal
theory of a structure and showed that in the case of an h-universal theory this notion is
equivalent to the joint continuation property defined below. In this section, we will pursue
their approach and analyze completions of an arbitrary h-inductive theory.

Definition 14. An h-inductive theory T is said to be complete if it has the joint
continuation property:
for any two models of T , there exists a third model C of T that is a continuation of both A
and B.

Fact 12 [3]. An h-inductive theory is complete if and only if it has a companion that is
complete.

Lemma 11. An h-inductive theory that has a unique pec model is complete.

Proof. Every model of T has a pec continuation. Since there is only one such, the joint
continuation condition is satisfied. �

Examples.
- Let L consist of the sole relational predicate R, and T be the h-universal theory

{¬∃x, yR(x, y) ∧R(y, x)}. Let A and B be models of T . We set C = A ∪B. Then C is a
continuation of A and B which is also a model of T . Hence, T is complete.
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- Let L be the relational language {Q,R} and T be the h-universal theory {¬∃x, yQ(x) ∧
R(y)}. The theory T is not complete since if A and B are models of T such that A |= R(a)
and B |= Q(b), then there does not exist a model of T that is a continuation of A and B.

We will introduce a method to obtain and caracterize minimal completions (Definition 15)
of an arbitrary h-inductive theory. The fundamental ingredient is an equivalence relation on
the pec models of the theory in question. In this vein, let T be an h-inductive theory, Ae and
Be pec models of T . Let < be the binary relation defined on the class of pec models of T by:
Ae<Be if and only if there exists a model C of T that is a common continuation of Ae and Be.
Note that Ae<Be is also equivalent to saying that there exists a pec model Ce that is common
continuation of Ae and Be.

Lemma 12. The relation < is an equivalence relation.

Proof. It is easy to see that < is reflexive and symmetric. It remains therefore to check the
transitivity property. Let Ae, Be, Ce be pec models of T such that Ae<Be and Be<Ce. Then
we have the following diagram

Ae

��

Be
f

}}||
||

||
|| g

!!B
BB

BB
BB

B Ce

��
D1 D2

where D1 and D2 are models of T . Since Be is pec, f and g are immersions. By asymmetric
amalgamation,

A

��

Be
f

}}||
||

||
|| g

!!B
BB

BB
BB

B C

��
D1

!!C
CC

CC
CC

C D2

}}{{
{{

{{
{{

D

with D |= T . Thus, Ae<Ce, and it follows that < is an equivalence relation. �

Let E denote an equivalence class of <. We define a subclass of models of T denoted ΓE:

ΓE = { A |= T : A has a continuation that is a member of E } .

Lemma 13. The members of E have the same h-universal theory.

Proof. Let Ae and Be in E. By definition, there exists a model C of T in which Ae and Be
are immersed (they are pec models of T ). Hence, if Be |= ¬∃x̄ϕ(x̄), then C |= ¬∃x̄ϕ(x̄), and
similarly for Ae. This implies that Ae and Be have the same h-universal theory. �

We will denote by Tu(E) the h-universal theory found in the preceding lemma.

Lemma 14. The class ΓE is axiomatized by the theory TE = T ∪ Tu(E).
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Proof. We will first show that all models of TE belong to ΓE. Let A be a model of TE
and Be in E. Then the h-inductive family T ′E = TE ∪Diag+(A) ∪Diag+(Be) is consistent. For
every formula ∃x̄φ(x̄, ā) ∈ Diag+(A), ¬∃xyφ(x, y) does not belong to Tu(E) because A |= TE.
Moreover, since Be belongs to E, Tu(E) is the h-universal theory of Be by Lemma 13. One can
thus find b̄ ∈ Be such that Be |= ∃xφ(x, b̄). Hence, T ′E is consistent, and one deduces from this
that A and Be have a joint continuation C that we may continue in a pec model Ce of T . It
then follows that Be<Ce, and thus Ce ∈ E. Hence, A ∈ ΓE.

As for the reverse implication, if A ∈ ΓE, then there exists Ae ∈ E, a continuation of A, which
forces that A |= TE. One concludes from this that ΓE is an elementary class axiomatized by
TE. �

Corollary 12. The theory TE of Lemma 14 is complete.

Proof. Let A and B two models of TE. By Lemma 14, A, B ∈ ΓE. By the definition of ΓE,
there exist two pec models Ae and Be of T in E that are continuations of A and B respectively.
By the definition of E, Ae and Be have a common continuation in E. The conclusion follows.
�

Corollary 13. The class ΓE is inductive.

Proof. The conclusion follows from Fact 2 and Lemma 14. �

Definition 15. Let T be an h-inductive theory. A theory T ′ is said to be a minimal
completion of T if T ′ is a complete theory that contains T and has as model a pec model of
T , and it is minimal with respect to these properties.

Corollary 14. The theory TE is a minimal completion of T . Moreover, there exists a
bijective correspondence between the equivalence classes of < and the minimal completions of
T .

Proof. We start by verifying the first assertion. By Corollary 12, TE is complete. Its pec
models include the members of E. Finally, TE is minimal since it is exactly T ∪ Tu(E).

Now, we prove the second assertion. We first define the correspondence. We associate to each
class E of < the theory TE. Clearly this is well-defined, and surjective by the very definition of
a minimal completion of an h-inductive theory (Definition 15).

We will next verify the injective property. The main step in the proof is to prove that the pec
members of ΓE are exactly the members of E. By definition, every element of E is a pec model
of T , thus it is a pec member of ΓE. As for the other inclusion, let A be a pec member of ΓE

that has as continuation a model B of T , and f be the witnessing homomorphism from A to
B. By definition of ΓE, A has a continuation Ae that belongs to E. As E is contained in ΓE, the
homomorphism from A into Ae, say g, is in fact an immersion. By asymmetric amalgamation,
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there is a model C of T such that the following diagram commutes:

A
f //

g

��

B

g′

��
Ae

f ′
// C

Since g and f ′ are immersions, it follows that f is an immersion. Thus A ∈ E. This finishes the
proof of the main step, from which the injectivity follows rapidly. Indeed, if TE1 = TE2 , then
ΓE1 = ΓE2 , and the main step shows that E1 = E2. �

6.2. Abstract elementary classes

When an h-inductive theory is unbounded, the class of its pec models is in fact an abstract
elementary class in the sense of Shelah. This is what we will verify in this section.

Definition 16 [11]. Let L be a first-order language and Γ a class of L-structures together
with a binary relation that will be denoted by ≺. The pair (Γ,≺) is said to be an abstract
elementary class if it verifies the following properties:

N1. The class Γ is closed under isomorphisms.
N2. The relation ≺ is a partial ordering, preserved under isomorphisms, A ≺ B implies

A ⊂ B.
N3. If α is an ordinal and {At : t < α} is a continuous ≺-chain then
1.

⋃
t<αAt ∈ Γ;

2. for every j < α, Aj ≺
⋃
t<αAt;

3. if for every t < α, one has At ≺ A ∈ Γ, then
⋃
t<αAt ≺ A.

N4. If A,B,C ∈ Γ, A ≺ C, B ≺ C and A ⊂ B, then A ≺ B.
N5. There exists a Löwenheim-Skolem number LS(Γ), such that if A ⊂ B ∈ Γ, then there

exists A′ ∈ Γ such that A ⊂ A′ ≺ B and |A′| ≤ |A|+ LS(Γ).

Definition 17. An h-inductive theory is said to be unbounded if the class of its pec models
contains members of arbitrarily large cardinality. An L-structure A is said to be unbounded if
Tk(A) is unbounded in the language L(A).

Remark. A structure is unbounded if and only if it has positive elementary extensions of
arbitrarily large cardinalities.

Examples. 1. Every model-complete theory is unbounded.
2. An h-inductive theory of which the h-maximal models form an elementary class is

unbounded.
3. If A is an L-structure such that Tk(A) defines uniformly positively the formula x 6= y,

then A is an unbounded structure.
4. We fix L = {≤}. The structure (Q,≤), where ≤ is the usual order relation of rational

numbers is bounded. Indeed, its maximal elementary extension is the set of real numbers
together with the usual order relation and with a point at each of the positive and negative
infinities.

5. Every theory with a countable number of pec models is a bounded theory.
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Lemma 15. Let T be an unbounded h-inductive theory. Then for every cardinality λ ≥ |L|,
there exists a pec model of T of cardinality λ.

Proof. As the theory T is unbounded, there exists a pec model B of size γ ≥ λ. Let A be a
subset of B of size λ. By Lemma 1, there exists A′, a substructure of cardinality ≤ max(λ, |L|),
which is immersed in B and which contains A. Since B is pec, A′ is also a pec of T . �

Let T be an h-inductive theory, Γ the class of its pec models and A, B ∈ Γ. We define the
binary relation by A ≺ B if and only if A is immersed in B. Now, it is easy to verify the
following statement.

Proposition 1. Let T be an unbounded h-inductive theory. Then the class of its pec
models together with the relation ≺ is an abstract elementary class.
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