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We consider the theory of algebraically closed fields of characteris-
tic zero with raising to powers operations. In an earlier paper we have
described complete first-order theories of such a structures, provided
that a diophantine conjecture CIT does hold. Here we get rid of this
assumption. The theory of complex numbers with raising to real pow-
ers satisfies the description if Schanuel’s conjecture holds. In partic-
ular, we have proved that a (weaker) version of Schanuel’s conjecture
implies that every well-defined system of exponential sums with real
exponents has a solution. Recent result by Bays, Kirby and Wilkie
states that the required version of Schanuel’s conjecture holds for al-
most every choice of exponents. It follows that for the corresponding
choice of real exponents we have an unconditional description of the
first order theory of the complex numbers with raising to these pow-
ers.
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1 Introduction

In this paper we return to the two-sorted structures studied in [6],
analogues of the field of complex numbers with the multivalued oper-
ations xk = exp(k ln(x)), for k ∈ K ⊆ C. This operation can be better
presented in the structure corresponding to the diagram

C exp−→ C,

where the complex numbers on the left and on the right are seen as
two distinct sorts. The right-hand sort is endowed with the usual field
structure, whereas the left-hand one is considered a vector space over
a subfield K ⊆ C of finite transcendence degree, with one function
symbol in the language for each transformation v 7→ k ·v, for each k ∈
K. Naturally, for x in the right-hand sort, lnx is defined as exp−1(x),
a subset of the left-hand sort. Now xk, k ∈ K, means exp(kv) for
some v ∈ ln(x), so ’raising to powers’ is definable in the two-sorted
structure.

The abstract structure of raising to powers consists of two sorts V
and F×, with F× given a structure of F\{0}, F a field of characteristic
zero and V a vector space over a field K of characteristic zero. There
is also a map exp which is assumed to be a homomorphism of the
additive group V into the multiplicative group of F×,

V
exp−→ F×.

In [6] we used a version of Hrushovski’s amalgamation process to
construct, for each K, a class of algebraically closed fields with raising
to powers K, denoted FK , satisfying (a corollary of) Schanuel’s conjec-
ture and showed, using CIT, the Conjecture on Intersecting varieties
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with Tori (see [7]), that any completion of the theory is near model
complete and superstable.

Here we refine this result by proving essentially the same state-
ment without any assumptions. The use of CIT is avoided by using
the solution of Mordell problem (Falting’s Theorem) about finitely
generated subgroups of semi-abelian varieties, in fact for (C×)n.

Our main theorem gives, for every FK , a set of axioms that deter-
mines a complete first order theory of FK , which we also prove to be
near model complete and superstable.

The present version of the theorem can be used to study the effect
of Schanuel’s conjecture. Let CK denote the field of complex numbers
with raising to powers K ⊆ C.

We prove (Theorem 6.2) that in case K ⊆ R, if CK satisfies the
corresponding version of Schanuel’s conjecture, it is exponentially-
algebraically closed, that is any well-defined system of exponential
sums equations with exponents in K has a solution in C. The conjec-
ture that Cexp, the field of complex numbers with exp, is exponentially-
algebraically closed was made in [8]. This has been studied by a num-
ber of researchers including attempts to refute the conjecture. Theo-
rem 6.2 brings hopes that in general exponential-algebraic closedness
follows from Schanuel’s conjecture implies . So far we don’t know if
this is true even for CK , when K is not a subfield of the reals.

Another important corollary of the main theorem (Theorem 4.16)
states that under Schanuel’s conjecture for CK solutions to an overde-
termined system of exponential sums equations lie in a finitely many,
modulo 2πi, cosets of proper Q-linear subspaces. Moreover, there is
a bound on the number of such cosets, uniform in coefficients of the
system (but possibly not on the exponents).

Finitely, we invoke a recent result by M.Bays, J.Kirby and A.Wilkie
that implies that for ”almost any” tuple λ in C, for K = Q(λ), the
structure CK satisfies the corresponding version of Schanuel’s conjec-
ture. Thus, the above theorems are applicable to such CK uncondi-
tionally. In particular, when also λ ⊆ R, we know the complete theory
of CK .

Of course, Faltings’ Theorem has been proven in much greater
generality and, as in [6], one can easily replace F× by any semiabelian
variety A and carry out the same construction and axiomatisation
since also a corresponding analogue of Ax’s Theorem and its corollaries
is available. More precisely, one needs the following (weak CIT) to
hold for A.
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1.1 Theorem (J.Kirby, [5]) Given W (e) ⊆ An, with W ⊆ An+l

algebraic subvariety defined over k and e ∈ Al there are finitely many
codimension 1 EndA-linear subspaces µ(W ) = {M1, . . . ,Mm} of Vn

such that for any EndA-linear subspace N ⊆ Vn, b ∈ Al, and any
positive dimensional atypical component S of the intersection W (e) ∩
exp(N) · b there is M ∈ µ(W ) and s ∈ S such that S ⊆ exp(M) · s.

Here, atypical for an irreducible component S of the intersection of
algebraic subvarieties W (e) and exp(N) ·b of An (observe that exp(N)
is an algebraic subgroup of An) means that

dimS > dimW (e) + dim exp(N)− dim An.

To prove our main result in full generality, for semi-abelian A, we
would need to consider V as an EndA-module which, for dim A =
g > 1, contains divisors of zero and makes the linear structure on
V more involved. This would complicate definitions and some ar-
gument, without visible advantages for applications. But the proof
below goes through practically without changes for any elliptic curve
without complex multiplication defined over Q.

2 Definitions and notation

2.1 This section along with definitions and notations discusses basic
ingredients of Hrushovski’s construction which is standard enough, so
the reader can guess the proofs if they seem too short or are absent.

We use here some of the terminology of [7], slightly improved,
where we discussed K-linear and affine spaces, tori and their intersec-
tions with algebraic varieties.

For technical reasons we find it more convenient to represent the
two-sorted structures (V,F×) in the equivalent way as one sorted
structures in the language LK which is the extension of the language
of vector spaces over Q by:

• an equivalence relation E,

• n-ary predicates L(x1, . . . , xn) for linear subspaces L ⊆ Vn given
by a set of K-linear equations in x1, . . . , xn,

• n-ary predicates EW for algebraic varieties W ⊆ (F×)n definable
and irreducible over Q.

The interpretation can be explained in the above mentioned terms
as follows:
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• E(x, y) ≡ [exp(x) = exp(y)],

• L(x1, . . . , xn) ≡ [〈x1, . . . , xn〉 ∈ L],

• EW (x1, . . . , xn) ≡ [〈exp(x1), . . . , exp(xn)〉 ∈W ].

2.2 Definition EK is the class of structures FK in language LK with
axioms saying that V is an infinite-dimensional vector space over K,
E is an equivalence relation on V which is congruent with respect
to the relations EW (x1, . . . , xn), F× = V/E can be identified with
the group of the multiplicative group F×, of a field of characteristic
zero, and the predicates EW define its algebraic varieties over Q. The
canonical mapping

exp : V→ F×

is a surjective homomorphism of the additive group of V onto the
group F×.
The underlying set of axioms we denote PK, (powered field with expo-
nents in K).

Notation For finite X,X ′ ⊆ V, Y, Y ′ ⊆ F×

lin.dimK(X) the dimension of the vector space spanK(X) gener-
ated by X over K;

lin.dimQ(X) the dimension of the vector space spanQ(X) generated
by X over Q;

tr.deg(Y ) the transcendence degree of Y ;
δK(X) the predimension of finite X ⊆ V :

δK(X) = lin.dimK(X) + tr.deg(exp(X))− lin.dimQ(X);

δK(X/X ′) = δK(X ∪X ′)− δK(X ′);

For infinite Z ⊆ V and k ∈ Z δK(X/Z) ≥ k by definition
means that for any Y ⊆fin Z there is Y ⊆fin Y ′ ⊆ Z such that
δK(X/Y ′) ≥ k, and δK(X/Z) = k means δK(X/Z) ≥ k and not
δK(X/Z) ≥ k + 1.

We recall that A ⊂ V is said to be self-sufficient in FK if
δK(X/A) ≥ 0 for all finite X ⊆ V. This is written as

A ≤ FK .
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2.3 We let also
lin.dimK(X/X ′) = lin.dimK(X ∪X ′)− lin.dimK(X ′);
tr.deg(Y/Y ′) = tr.deg(Y ∪ Y ′)− tr.deg(Y ′);
lin.dimQ(X/X ′) = lin.dimQ(X ∪X ′)− lin.dimQ(X ′);
ker is the name of a unary predicate of type EW : x ∈ ker ≡

exp(x) = 1. We write ker|A for the realisation of this predicate in A.

Given d ∈ Z, let EKd be the subclass of EK consisting of all FK
satisfying the condition:

δK(X/ ker) ≥ −d for all finite X ⊆ V,

where ker = ker|F .

2.4 Denote subEK the class of the substructures of the structures of
EK in the language LK .

Given an integer d, let subEKd be the subclass of subEK consisting
of A which satisfy δK(X) ≥ −d for any finite X ⊆ A.

Remark For any structure A in subEK and any X ⊆ ker|A in the
structure

δK(X) = 0

and thus EKd is empty for d < 0.

On the other hand, for any K we have by Lemmas 2.7 and 2.8 of
[6]

EK0 6= ∅.

2.5 Assuming F× = C×, the algebraic torus, and the Schanuel con-
jecture we can make a better estimates for the minimal d such that
CK , the complex numbers with raising to powers K ⊆ C, belongs to
EKd .

By Schanuel’s conjecture, for any finite X ⊆ C

tr.deg(X, exp(X)) ≥ lin.dimQ(X).

Recall that we assumed that tr.deg(K) is finite. Obviously,

lin.dimK(X) + tr.deg(expX) + tr.deg(K) ≥ tr.deg(X, exp(X)).

Hence,

δK(X) ≥ tr.deg(X, exp(X))−lin.dimQ(X)−tr.deg(K) ≥ −tr.deg(K).
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Since lin.dimK(ker) = lin.dimQ(ker) = 1 for ker = 2πiZ, we have

δK(X/ ker) ≥ −(tr.deg(K) + 1).

Thus, under the conjecture,

CK ∈ EKd , for d = tr.deg(K) + 1.

Remark. In case of an elliptic curve one can produce similarly
the estimate d = tr.deg(K) + 2 assuming the corresponding analogue
of Schanuel’s conjecture (see Be).

2.6 Given FK ∈ EKd \ EKd−1 one can find a finite A ⊆ FK with

δK(A/ ker) = −d. (1)

By minimality
A ∪ ker ≤ FK .

The equality (1) does not change if we extend A by elements of
ker . In case δK(X) is bounded from below by, say −d′, for all finite
X ⊂ ker, in particular, if ker is a finite rank group, then

δK(Y ) ≤ −(d+ d′) for all finite Y ⊆ F.

It follows that there is a finite A0 ⊆ ker such that if A0 ⊆ A and (1)
holds then the value of δK(A) reaches minimum and so

A ≤ FK (2)

that is

δK(X/A) = δK(X/A ∪ ker) ≥ 0 for every X ⊆ F.

2.7 We will assume throughout that A with the property (1) and (2)
does exist, as is the case for CK under Schanuel’s conjecture.

In fact, this is a form of Schanuel’s conjecture for CK for a given
K ⊆ C.

2.8 Definition A structure FK in EKd is said to be EKd -exponentially-
algebraically closed (e.a.c.) if for any FK1 ∈ EKd , such that FK ≤ FK1 ,
any finite quantifier-free type over FK which is realized in FK1 has a
realization in FK .
Denote ECKd the class of EKd -exponentially-algebraically closed struc-
tures, or, in the shorter form, ECK .
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Using the standard Fraisse construction in the class EKd relative to
the strong embedding ≤ one can prove:

2.9 Propositon [Proposition 1 of [6]] For any FK in EKd there exists
an EKd -e.a.c. structure containing FK .

More difficult is the following result, based on Theorem 1.1. Its
proof using Ax’s Theorem is given in [6].

2.10 Proposition [Corollaries 1 and 2, section 4 of [6]] There exists
a set EC of first order ∀∃ axioms such that, for any FK ∈ EKd ,

FK |= EC iff FK is exponentially-algebraically closed.

2.11 For W ⊆ (F×)n+l an algebraic variety, b = 〈b1, . . . , bl〉 denote

W (b) = {〈x1, . . . , xn〉 ∈ (F×)n : 〈x1, . . . , xn, b1, . . . , bl〉 ∈W}.

A subspace L ⊆ Vn is said to be K-linear if there are kij ∈ K
(i ≤ r, j ≤ n) such that

L = {〈x1, . . . , xn〉 ∈ Vn : ki1x1 + · · ·+ kinxn = 0}.

Define dimL = co-rank(kij), the co-rank of the matrix (kij).

Let L ⊆ Vn+l be a K-linear subspace, ā = 〈a1, . . . , al〉. Let

L(a) = {〈x1, . . . , xn〉 ∈ Vn : 〈x1, . . . , xn, a1, . . . , al〉 ∈ L}.

We call such an L(a) a K-affine subspace defined over a.
The same terminology is applied for Q instead of K.

2.12 Lemma A K-affine subspace L(a) ⊆ Vn can be represented
equivalently and uniformly on a as

L(a) = L(0) + r(a), r(a) ∈ Vn, r is a K-linear map, Vl → Vn

and L(0) is a K-linear subspace.
Moreover, if r′ is any K-linear map such that r′(a) ∈ L(a) for all

a ∈ prn+1...n+lL, then also

L(a) = L(0) + r′(a).
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Proof Let L be determined by the system of linear equations

n∑
j=1

qijvj +

l∑
s=1

kisws = 0, qij , kis ∈ K. (3)

Then the system
n∑
j=1

qijvj +

l∑
s=1

kisas = 0,

determines L(a). It follows that

n∑
j=1

qijvj = 0 (4)

determines L(0).
By linear algebra there is an n-tuple {rj(w1, . . . , wl) : j = 1, . . . , n}

of K-linear functions V l → V such that, if for a given (w1, . . . , wl) the
system (3) is consistent, then vj = rj(w1, . . . , wl) gives a solution to
the system. Hence, v − r(a) is a solution to the homogeneous system
(4) iff v is a solution of the system (3) with w = a.

The ’moreover’ statement follows immediately from the fact that
r′(a)− r(a) ∈ L(0). �

2.13 Lemma Given a K-linear L ⊆ V n+l and 0 the zero of V l

(i) there exists a unique maximal Q-linear subspace NL ⊆ L;

(ii) NL(0) = NL(0);

(iii) given a ∈ prn+1...n+lL and q(a) ∈ L(a) ∩ spanQ(a) there exists
a maximal Q-affine subspace NL,q(a)(a) ⊆ L(a) over spanQ(a)
containing q(a), and in this case NL,q(a)(a) = NL(0) + q(a).

Proof (i) NL(0) exists since the sum of two Q-linear subspaces of
L(0) is again a Q-linear subspace of L(0).

(ii) Obviously, NL(0) is a Q-linear subspace of L(0), so NL(0) ⊇
NL(0).

NL(0) is a Q-linear subspaces of L(0), so NL(0) × {0} is a Q-linear
subspaces of L, hence NL(0) × {0} ⊆ NL and NL(0) ⊆ NL(0).

(iii) NL(0) + q(a) is a Q-affine subspace of L(0) + q(a) = L(a). If
M + q(a) is another Q-affine subspace of L(a), containing q(a) then
M = (M + q(a)) − q(a) ⊆ L(0) and hence M ⊆ NL(0), M + q(a) ⊆
NL(0) + q(a). �
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3 Intersections in semi-abelian varieties

3.1 Lemma. In the statement of Theorem 1.1 we can assume that
s ∈ acl(b, e).

Proof S is an irreducible component of the set W (e) ∩ exp(N) · b
definable over (e, b) hence it is definable over acl(b, e). Thus it contains
points from the algebraically closed field acl(b, e).�

3.2 Proposition. Given W ⊆ (F×)n+l, with W algebraic subvari-
ety defined over Q there are finitely many proper Q-linear subspaces
π(W ) = {M1, . . . ,Mm} of V n such that for any e, b ∈ (F×)l and
a Q-linear subspaces N ⊆ V n, for any positive dimensional atypical
component S of the intersection W (e)∩exp(N)·b there is a M ∈ π(W )
and s ∈ S ∩ acl(e, b) such that S ⊆ exp(M) · s and S is a typical com-
ponent of exp(N) · b ∩ exp(M) · s ∩W (e) with respect to the group
variety exp(M) · s.

Proof Notice first that by obvious transformations of W we can
assume that the family {W (e) : e ∈ (F×)l} is invariant with respect
to shifts by elements of (F×)l, that is, for every b, e ∈ (F×)l there is
e′ ∈ (F×)l such that

W (e) · b = W (e′).

By induction on the dimension of a proper algebraic subgroup P
of (F×)n, for any algebraic subvariety WP of P ⊆ (F×)l over Q we
construct a collection of proper algebraic subgroups πP (WP ) of P such
that the statement of the lemma holds for exp(N) · b ∩WP (e) ⊆ P.

For dimP = 1 the statement is trivially true for there is no atypical
components in any intersection.

Consider the general case. Assume by induction that πP (WP ) has
been constructed for dimP < dim(F×)n. Notice that by invariance
πP (WP ) will be the same if we replace P by P · b, for b ∈ (F×)l a
parameter.

Assume that for all P ⊂ (F×)n proper, πP (WP ) exists.
Given W ⊆ (F×)n+l, we let

π(W ) =
⋃

Q=exp(M), M∈µ(W )

πQ(WQ) ∪ {M},

where WQ is W ∩ (Q× (F×)l).
Now, if S ⊆ exp(N) · b ∩W (e) is atypical, then by Theorem 1.1

S ⊆ exp(M) · s for some M ∈ µ(W ). Hence S ⊆ exp(N) · b ∩WQ(e),
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for Q = exp(M) · s, and is a component of the intersection. In other
words, S is a component of the intersection exp(N∩M) ·b′∩WQ(e) for
some b′ ∈ (F×)l. Either S is typical in this intersection with respect to
Q = exp(M), and hence the statement of the proposition holds for the
chosen M belonging to πQ(WQ) by definitions, or S is atypical but we
can find by induction M ′ ∈ πQ(WQ) ⊆ π(W ) such that S ⊆ exp(M ′)·s
and is a typical component in the intersection with respect to exp(M ′).
�

We want to show now that under certain conditions we can factor
out M in the previous proposition.

3.3 Let M ⊆ Vn be a Q-linear subspace. We see Vn as a subspace of
Vn+l, equivalently Vn+l = Vn+̇Vl, with a ∈ Vl, e = exp(a) ∈ (F×)l.

By definitions M is definable by c = codim M independent Q-
linear equations

mi1v1 + · · ·+minvn = 0, i = 1, . . . c,

where (v1, . . . , vn) ∈ Vn. The same in matrix notation

m̄v̄ = 0̄.

We now choose m̄⊥, a (n − c) × n-matrix consisting of vectors
(mj1, . . . ,mjn) ∈ Qn, j = c+ 1, . . . , n, which extend m̄ to the basis of
the Q-vector space Qn. We let M⊥ to be the set of solutions to the
system

m̄⊥v̄ = 0̄.

This determines the definable decomposition

Vn = M+̇M⊥ ∼= M×̇Vn/M.

Applying exp we correspondingly have the decomposition

(F×)n = Q ·Q⊥ ∼= Q× (F×)n/Q,

where Q = exp(M) and Q⊥ = exp(M⊥).
Note that the structure (M⊥, exp, Q⊥) is by construction isomor-

phic to (V c, exp, (F×)c) in language LK .
We denote the natural mappings

Vn →M⊥ and (F×)n → Q⊥
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associated with the above decomposition as

v 7→ v +M and x 7→ x ·Q,

correspondingly.
It is easy to see that x 7→ x ·Q is a proper mapping on (F×)n (and

(F×)n+l) hence the images W/ expM (that is W/Q) and W (e)/ expM
are algebraic subvarieties of expM⊥×(F×)l and expM⊥, correspond-
ingly.

The same algebraicity holds for S/ expM and b · exp(N)/ expM).

3.4 On the other hand, exp can be naturally extended to the quotient
spaces

exp : Vn/M → (F×)n/Q.

So, (Vn/M, exp, (F×)n/Q) and (Vn+l/M, exp, (F×)n+`/Q) are canon-
ically isomorphic to (Vc, exp, (F×)c) and (Vc+l, exp, (F×)c+l) corre-

spondingly and hence, for (V, exp,F×) ∈ EKd , u ∈ Vn and
−→
A ∈ Vl,

A ≤ FK ,

δK(u+M) = lin.dimK(u+M)+tr.deg(exp(u+M))−lin.dimQ(u+M) ≥ d,

and

δK(u+M/A) = lin.dimK(u+M/A)+tr.deg(exp(u+M)/ exp A)−lin.dimQ(u+M/A) ≥ 0.

3.5 We have also the decomposition

L(a) = L(0̄) ∩M+̇L/M(a) (5)

where

L/M = L/(L∩(M×{0̄})) ⊆ V n+`/(M×{0̄}), 0̄ ∈ V`, L/M(a) ⊆M⊥.

Thus we can naturally identify L(a)/M with L/M(a).

4 Axiomatizing EKd .

Fix A ⊆ V and consider pairs (L(a),W (exp a)), where L is a K-affine

subspace of Vn over a =
−→
A ∈ Vl and W an algebraic subvariety of

(F×)n over Q.
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Definition A pair (L(a),W (exp a) is said to be special if L is
not contained in any proper Q-linear subspace of V n+` and

dimL(a) + dimW (exp a) < n. (6)

(This corresponds to 0-special in the terminology of [6].)

4.1 Let, for a Q-subspace M of Vn

d(W (exp a), exp(M)) = min{dim(W̄ (exp a)∩w·exp M : w ∈W (exp a)},

where W̄ and exp M is the closure in the ambient projective space.
Let

W exp M (exp a) = {w ∈W (exp a) : dim(W (exp a)∩w·exp M) > d(W (exp a), exp M)}.

Since minimal dimension fibers are located over an open subset
W exp M (exp a) is a proper closed subset of W (exp a),
maybe empty, if d(W (exp a), exp M) = dim(W (exp a)∩exp(x) exp M).

4.2 Suppose that (L(a),W exp a)) is special. Suppose M ⊆ L(0).
Consider the quotients M⊥ = Vn/M, exp(M)⊥ = (F×)n/ exp(M)
and subsets L(a)/M and W (exp a)/ exp(M).

Then, dimW (exp a)/ exp(M) < n− dimM, that is

W (exp, a)/ exp(M) is a proper subvariety of (F×)n/ exp(M).

Indeed, by addition formula,

dimW (exp a)/ exp(M) = dimW (exp a)− d(W (exp a), exp M)

and

d(W (exp a), exp M) ≥ 0 > dimW (exp a) + dimM − n,

since W (exp a), L(a) is special.

4.3 Assume A ≤ FK is finite and let x ∈ Vn. We analyse first order
consequences of this assumption. We aim to show also that the anal-
ysis yields the same conclusions and formulas when we replace A by
B with qftp(A) = qftp(B).
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Suppose (L(a),W exp a)) is special, Suppose x ∈ L(a) and exp(x) ∈
W (exp a), in FK and A ≤ FK .

Since

lin.dimK(x/A)+tr.deg(exp(x)/ exp(A))−n ≤ dimL(a)+dimW (exp a)−n < 0

and, by A ≤ FK ,
δK(x/A) ≥ 0,

we have lin.dimQ(x/A) < n, so xaa ∈ N for some proper Q-linear
subspace of Vn+l, We assume N is minimal for xaa.

We have exp(x) ∈ Sx ⊆ exp(N(a)) ∩ W (exp a), where Sx is a
component of exp(N(a)) ∩W (exp a).

Case 1. The component Sx is of dimension 0.
Then tr.deg(exp(x)/ exp(A)) = 0, which implies lin.dimK(x/a) =

lin.dimQ(x/a), that is dimN(a) = dimN(a) ∩ L(a) and so N(a) ⊆
L(a) is a Q-affine subspace over a, thus N(a) = NL(0) + q(a), for
some q(a) ∈ L(a) ∩ spanQ(a) (Lemma 2.13).

So

x ∈ NL(0) + q(a) for some q(a) ∈ L(a) ∩ spanQ(a).

Subcase 1.1 d(W (exp a), exp(NL(0))) < dim(W (exp a)∩exp(x+
NL(0))).

Under this assumption W exp(NL(0))(exp a) is a proper closed sub-
set of W (exp a) containing exp(x), by 4.1.

Otherwise we have
Subcase 1.2. d(W (exp a), exp(NL(0))) = dim(W (exp a)∩exp(x+

NL(0))).
We have W exp(NL(0))(exp a) = ∅ in this case.
Consider the quotientsN⊥L (0) = Vn/NL(0), exp(NL(0))⊥ = (F×)n/ exp(NL(0))

and subsets L/NL(a) andW (exp, a)/ exp(NL(0)). By 4.2W (exp a)/ exp(NL(0)) (
(F×)n/ exp(NL(0)).

Obviously, for the x above, exp(x/NL(0)) is a singleton inW (exp a)/ exp(NL(0)
and is also equal to exp(q(a)/NL(0)).

Let
Γa = {exp(q(a)aa) : q(a) ∈ spanQ(a)}
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This is a coset Γ0 · s(exp a) of a finite rank subgroup Γ0 of (F×)n+l

(depending on the choice of exp a).
By Faltings’ Theorem there are finitely many, say ka, cosets Ti(exp a) ⊆

(F×)n+l of group subvarieties (tori) Ti ⊆ (F×)n+l, Ti(exp a) ⊆W (exp a)
(note the notation, Ti(exp a) as defined in 2.11) such that

Γa ∩W (exp a) = ∪i≤kaΓa ∩ Ti(exp a). (7)

Hence, in this case

exp(x/NL(0)) ∈
⋃
i≤ka

Ti(exp a) (8)

and Ti(exp a) ⊆W (exp a)/ expNL(0) ( (F×)n/ exp(NL(0).

Note that (7) and (8) continue to hold with the same Ti and ka
if we replace a by b with exp a

n ≡ exp b
n , all n, in the field language,

that is Galois conjugated.

Case 2. dimSx > 0. Then, by 3.2, Sx ⊆ c · exp(M), for some
Q-linear subspace M ∈ πW of Vn+`, c ∈ acl(exp a), and Sx is typical
in the intersection
W (exp a)∩ c · exp(M) with respect to c · exp(M). The latter gives us,
for a′ = ln c,

dimSx = dim(exp(N(a))∩exp(M+a′))+dim(W (exp a)∩exp(M+a′))−dim exp(M+a′).

It is easy to see that δK(x/Aa′) ≥ 0 and hence we obtain

dim(L(a) ∩N(a) ∩ (M + a′)) + dimSx − dim(N(a) ∩ (M + a′)) ≥ 0.

Combining with the above we get

dim(L(a)∩N(a)∩(M+a′))+dim(W (exp a)∩exp(M+a′))−dim exp(M+a′) ≥ 0.

And so

dim(L(0) ∩M) + dim(W (exp a) ∩ exp(M + a′))− dimM ≥ 0. (9)

Subcase 2.1 d(W (exp a), exp(M)) < dim(W (exp a)∩c·exp(M)).
Under this assumption W exp(M)(exp a) is a proper closed subset

of W (exp a) containing exp(x).
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Otherwise, we have
Subcase 2.2. d(W (exp a), exp(M)) = dim(W (exp a)∩c·exp(M)).
So,

W exp(M)(exp a) = ∅. (10)

We now apply the factorisation of 3.3-3.4.
Obviously, for our x,

exp(x/M) ∈ Sx/ exp(M) ∩ exp(L(a)/M)

and Sx/ exp(M) is a singleton in (F×)n−dimM defined over the same
parameters as Sx, that is over acl(exp(A)).

Now we notice that

dimL/M(a) + dimW (exp a)/ exp M =

= dimL(a)−dimL(0)∩M +dimW (exp a)−d(W (exp a), exp(M)) =

= [dimL(a)+dimW (exp a)]−[dimL(0)∩M+d(W (exp a), exp(M))].

The sum in the first bracket is less than n by assumptions, and the
sum in the second bracket is not less than dimM by (9). Hence

dimL/M(a) + dimW (exp a)/ exp M < n− dimM,

that is the pair is special.
This means that after factorisation by M we are in case 1 again.
Hence either, as in subcase 1.1,

4.4 W exp(NL/M (0))(exp a) is a proper closed subset ofW (exp a)/ exp M
containing exp(x+M).

or, as in subcase 1.2,

4.5
exp(x+NL/M (0) +M) ∈

⋃
i≤ka

Ti(exp a),

for group subvarieties Ti,

Ti(exp a) ⊆W (exp a)/ exp(NL/M (0)+M) ( (F×)n/ exp(NL/M (0)+M).

Note again as in subcase 1.2 that the latter continues to hold with
the same Ti if we replace a by b with exp a

n ≡ exp b
n , all n, in the field

language, that is Galois conjugate.
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4.6 For L and W as above let, for a of the length equal to the size
of A,

ΦL,W,A(a, x) := xaa ∈ L & exp(xaa) ∈W →
∨
M∈πW∨M=NL(0)∨M={0}[

exp(x) ∈W exp M (exp a) ∨ exp(x+M) ∈W exp NL/M (exp a) ∨ exp(x+M) ∈
⋃
i≤ka exp(Ni,a,M )

]
Ths is a quantifier-free formula and, by the analysis above

A ≤ FK ⇒ FK |= ∀xΦL,W,A(
−→
A, x).

4.7 Consequence of the analysis. Given A ≤ FK and a spe-
cial pair L,W, the ingredients of formula ΦL,W,A(a, x), except for
exp(Ni,a,M ), depend on A as parameters only. And exp(Ni,a,M ), as
noted in cases 1.2 and 2.2 where these have been introduced, are of the
form Ti(exp a

m), m ∈ N, Ti are group subvarieties (subtori) of (F×)n+`

and Ti depend on the Galois type of exp(spanQA) ⊆ F× only.
In particular, if

B ≤ FK and exp(spanQA) ≡fields exp(spanQB)

then
FK |= ∀xΦL,W,A(

−→
B, x).

4.8 We define a strong embedding type with variables Y, |Y | =
|A|,
−→
Y = y,

sttpA(y) := qftpA(y) ∪ {∀x ΦL,W,A(y, x) : (L(y),W (exp y)) special},

where qftpA(y) denotes the quantifier-free type of A in variables Y.
This is a type consisting of universal formulas.

Now we can reformulate 4.7

4.9 B ≤ FK and FK |= qftpA(B)⇒ FK |= sttpA(B).

We assume below that FK ∈ EKd and A has been chosen so
that A ≤ FK as well as A ∪ ker ≤ FK as discussed in 2.7.

4.10 Lemma.

FK |= sttpA(B)⇒ B ≤ FK .

17



Proof Assume w.l.o.g. that x ∈ V n is Q-linearly independent over

B, a =
−→
B, L(a) is the minimal K-affine subspace over A containing x,

and W (exp a) the minimal algebraic variety over exp(B) containing
exp(x). Notice that under this choice exp x is multiplicatively inde-
pendent over exp B.

We show that (L(a),W (exp a) can not be special, thus proving
δK(x/B) ≥ 0.

Indeed, if the pair were special, ∀xΦL,W,A(a, x) would imply that
x satisifes one of the conditions on the second or third line of the
definition of ΦL,W,A(a, x).

Any of the conditions on the second line contradicts the assump-
tions that W (exp a) is the algebraic locus of exp x over exp B, since
WQ(exp a), forQ a group subvariety, is a proper subvariety ofW (exp a)
by 4.1 and 4.4.

The condition on the third line can not hold because by 4.5 it
would contradict the fact that exp x is multiplicatively independent
over exp B. �

4.11 Proposition. The following two conditions are equivalent:

FK |= sttpA(B) (11)

and
B ≤ FK & FK |= qftpA(B) (12)

Proof Lemma 4.9 proves (12) ⇒ (11). The converse follows from
Lemma 4.10 and the definition of sttp.�

4.12 Let FK be a member of EKd and A ⊆ FK be a finite subset
containing generators of ker(exp) such that

δK(A) = −d.

It follows that A ≤ FK .
Let

SCHA = {∃X
∧
S(X) : S ⊂ sttpA(X), finite, |X| = n},

be the set of ∃∀-sentences stating the consistency of type sttpA.
Recall the notation PK for the axioms of powered fields with pow-

ers in K.
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4.13 Lemma. Let FK be a model of PK + SCHA which realises the
type sttpA. Then FK ∈ EKd \ EKd−1.

Proof By assumption we have a finite subset B ⊆ F such that
FK |= sttpA(B). By Proposition 4.11

B ≤ FK .

As a consequence of qftpA we have δK(B) = −d. It follows that FK /∈
EKd−1.

To see that FK ∈ EKd we need to prove that δK(Z) ≥ −d for any
finite Z ⊆ FK .

Let Y be a Q-linear basis of spanQ(Z) ∩ spanQ(B). We have then

lin.dimQ(Z/B) = lin.dimQ(Z/Y ) and thus δK(Z/Y ) ≥ δK(Z/B) ≥ 0.
But δK(Z) = δK(Z/Y ) + δK(Y ), so δK(Z) ≥ δK(Y ) ≥ −d.�

4.14 Theorem. Assume δK(A) = −d. The following two conditions
are equivalent for a structure FK :

(i) FK |= PK+SCHA;

(ii) FK ∈ EKd \ EKd−1 and qftpA is realised in some ∗FK � FK .

If in (i) FK also satisfies EC then in (ii) EKd should be replaced by
ECKd .

Proof Assume (i). By the definition of SCHA there is ∗FK � FK
which realises sttpA, say by B. By Lemma 4.13, ∗FK ∈ EKd \ EKd−1, so
∗FK ∈ EKd \ EKd−1.

It follows that FK ∈ EKd , since δK(X/ ker) ≥ −d for all X ⊆ ∗V.
It remains to see that FK /∈ EKd−1. Indeed, if it were in EKd−1, we

would have A′ ≤ FK with δK(A′) = −d′, d′ ≤ d − 1, and by the
analysis in 4.3 arrive at the fact that FK and ∗FK realise sttpA′ , hence
using again 4.13, ∗FK ∈ EKd′ , a contradiction. This proves (ii).

Now, conversely, assume (ii).
We claim that ∗FK ∈ EKd . Indeed, since FK ∈ EKd by 4.3 we find a B

with δK(B/ ker) = −d, so B ≤ FK and FK |= SCHB. So ∗FK |= SCHB

and as shown in the first part of the proof, it follows ∗FK ∈ EKd .
By assumptions, up to isomorphism, A ⊆ ∗FK . Since δK(A) = −d,

we have A ≤ ∗FK . It follows ∗FK |= SCHA, so FK |= SCHA and (i)
proved.

The last statement of the theorem follows from Proposition 2.10. �
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4.15 Let L ⊆ Vn be a K-linear subspace of dimension l and W ⊆
(F×)n+m be a variety over Q. Define the set of special parameters

Pl(W ) = {p ∈ Fm : dimW (p) < n− l}.

This set is constructible (quantifier-free definable in the field lan-
guage).

Theorem.Assume FK |= PK+SCHA. There are a number N and
codimension 1 Q-linear subspaces M1, . . . ,MN ( Vn depending on L
and W such that for every p ∈ Pl(W ) for some a1, . . . aN ∈ Vn

{z ∈ Vn : z ∈ L & exp(z) ∈W (p)} ⊆
⋃
i≤N

(Mi + ai + kern).

Proof First we consider the case of a single p ∈ Pl. Choose a
finite set B ⊂ V so that p ⊆ exp(B) and B ∪ ker ≤ FK . Let z =
〈z1, . . . , zn〉 ∈ L such that exp(z) ∈W (p). By the choice of B

δK(z/B ∪ ker) ≥ 0.

But lin.dimK(z/B ∪ ker) + tr.deg(exp(z)/ exp(B) < n. It follows,
lin.dimQ(z/B ∪ ker) < n. In other words,

m1z1 + . . .mnzn − b ∈ ker,

for some m1, . . . ,mn ∈ Z, not all zero, and b ∈ spanQ(B). Denote

M = {〈x1, . . . , xn〉 ∈ Vn : m1x1 + . . .mnxn = 0}.

We have proved that

z ∈ L& exp(z) ∈W (p) ⇒ z ∈M+a+kern for some a ∈ spanQ(B)n and M
(13)

Claim. For a given p there is finitely many M and a such that (13).
Indeed, if not then the type saying that z ∈ L & exp(z) ∈ W (p)

and z /∈M + a+ kern, for M running through all Q-linear subspaces
of codimension 1 and a ∈ spanQ(B)n is consistent. This type would
be realised in some ∗FK � FK contradicting (13).

The proved claim implies the existence of the bound Np on the
number of cosets M + a+ kern satisfying (13). We need to show that
there is an N that bounds all the Np. Assuming such a bound does
not exist we can find a p ∈ Pl(W ) in some ∗FK � FK for which no
finite bound Np does exist, contradicting the Claim.�
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4.16 Corollary. Suppose CK the structure on complex numbers, for
some K ⊆ C satifies the assumptions 2.7 for some A ⊆ C, that is

CK |= PK+SCHA.

Then there are codimension-1 Q-linear subspaces M1, . . . ,MN ( Cn
such that for every p ∈ Pl(W ) there are a1, . . . aN ∈ Cn with the
property that for every irreducible component S of the analytic set
{z ∈ Cn : z ∈ L & exp(z) ∈ W (p)} there is j ∈ {1, . . . , N} and
k ∈ Zn such that S ⊆Mj + aj + 2πik.

The corollary is immediate from the theorem once one takes into
account that irreducible components of the analytic set Mi+ai+kern

are of the form Mi + ai + 2πik.

5 Completeness, near model complete-

ness and superstability

5.1 Definition The extension of the initial language LK by existen-
tial predicates

EP (x̄) ≡ ∃ȳP (x̄, ȳ),

where P is a quantifier-free formula, is denoted LEK .
We assume throughout that A is a finite subset of subEKd , δK(A) =

−d

5.2 Lemma. Assuming FK1 ⊆ FK as LEK-structures and FK |=
PK+SCHA, we have FK1 |= PK+SCHA and FK1 ≤ FK .

Proof FK1 ∈ EKd for every LK-substructure of FK , since facts of
the form δK(X) = m are fixed by quantifier-free types.

To see that FK1 ≤ FK it is enough to show that for a finite B

B ≤ FK1 ⇒ B ≤ FK .

This follows from Proposition 4.11 if we take into account that sttpB
is LEK-quantifier-free.

It remains to see that an elementary extension ∗FK1 of FK1 con-
tains a copy of A. This is immediate by the fact that the condition on
consistency of qftpA is given by existential LK-formulas, so that is by
LEK-quantifier-free ones. �
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5.3 Lemma. Assume FK1 ,FK2 ∈ EKd and FK1 |= EC. Suppose FK2 ≤
FK1 . Then FK2 ⊆ FK1 in the language LEK .

Proof Recall that by Proposition 2.10 FK1 ∈ ECK . Let a ⊆ FK1 be
finite and suppose FK2 |= ∃y P (a, y), where P (x, y) is quantifier-free.
By the definition of ECK we get then FK1 |= ∃y P (a, y). �

5.4 Corollary. For FK1 ,FK2 ∈ ECKd

FK1 ⊆ FK2 as LEK-structures iff FK1 ≤ FK2 .

5.5 We can always extend FK to contain also an infinite cl-independent
over A subset I, so suppose A ∪ I ≤ FK ∈ EKd .

We will denote SCHA + ID the set of axioms stating that the type
sttpA∪I is consistent.

Notice that given a finite I0 ⊆ I we have an embedding A∪I0 ≤ FK
for every ω-saturated model FK of SCHA + ID.

We then have by Proposition 4.11.

5.6 Corollary. PK + SCHA+EC + ID axiomatises the subclass of
ECKA whose ω-saturated structures are infinite dimensional.

We say that a (partial) map ϕ : FK1 → FK2 is an LEK-monomorphism,
if it is injective and for any k-ary LEK-predicate S and any k-tuple a
from the domain of ϕ

FK1 |= S(a) iff FK2 |= S(ϕ(a)).

5.7 Lemma. Let FK1 and FK2 satisfy PK + SCHA + EC + ID, and
B1 ≤ FK1 , B2 ≤ FK2 such that there is an LK-monomorphism

ϕ : B1 → B2.

Let FKB1
and FKB2

be the expansions of FK1 , FK2 by constants naming
elements of B1 and B2 in correspondence with ϕ. Then

FKB1
≡ FKB2

.
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Proof We prove that given ω-saturated elementary extensions ∗FK1
of FK1 and ∗FK2 of FK2 , given finite C ⊆ ∗FK1 , c ∈ ∗FK1 and a LEK-
monomorphism ϕ of B1 ∪ C into ∗FK2 one can extend the monomor-
phism to c. By symmetry, this yields a winning strategy for the Ehrenfeucht-
Fraisse game, and we are done.

We may assume that ϕ is the identity and B1 ∪C = B = ϕ(B). It
is enough to show that under the assumption for any c ∈ ∗FK1 we can
extend ϕ to some B′ ⊇ Bc as an LK-monomorphism and B′ ≤ ∗FK1 ,
ϕ(B′) ≤ ∗FK2 .

If ∂(c/B) = 1 then define B′ = Bc and ϕ(c) to be any element
from ∗FK2 which is not in the ∂-closure of A in ∗FK2 (use ID). Then B′

and ϕ(B′) are as required.
If ∂(c/B) = 0 then extend c to a finite string c̄ from ∗FK1 so that

δK(c̄/B) = 0. The quantifier free type of c̄ over B is consistent with
FK1 , by 5.3, and so is realised in ∗FK1 , by b̄ say. Since δK(b̄/B) = 0,
we have Ab̄ ≤ ∗FK2 . So, we can define B′ = Bc̄ and ϕ(c̄) = b̄. �

5.8 Lemma. Let FK1 ,FK2 be ω-saturated models of PK+SCHA+ID,
B1, B2 finite subsets of FK1 , FK2 , correspondingly, and ϕ : B1 → B2 is
a LEK-monomorphism. Then, there exists a finite subset B̃1 such that
B̃1 ≤ FK1 and ϕ can be extended to B̃1 in such a way that

ϕ(B̃1) = B̃2 ≤ FK2 .

Proof Let b̄1 be the string of all elements of B1 and c̄ in FK1 such
that δK(b̄1c̄) = ∂(b̄1). It follows B1c̄ ≤ FK1 . Let m = ∂(b̄1).

Let q0(x̄ȳ) be the LK-quantifier-free type of b̄1c̄. Let b̄2 be a string
in FK2 which corresponds to b̄1. Then the LEK-monomorphism guar-
antees that q0(b̄2ȳ) is consistent and thus there is d̄ in FK2 realising
the type, in particular ∂(b̄2) ≤ δK(b̄1c̄) = m = ∂(b̄1). By symmetry
∂(b̄2) = m = ∂(b̄1). Since δK(b̄2d̄) = ∂(b̄2), we have b̄2d̄ ≤ FK2 . Now
Lemma 5.3 says that b̄2d̄ is of the same LEK-quantifier-free type as b̄1c̄.
�

5.9 Main Theorem. Given FK ∈ ECKd , let finite A ≤ FK . Then
the following hold:

(i) The axioms PK + SCHA + ID + EC determine the complete
theory Th(FK) of FK .

23



(ii) The theory Th(FK) has quantifier elimination in language LEK .
(iii) Further on, Th(FK) is superstable.
(iv) Moreover, the group structure on ker is embedded in FK con-

servatively, that is no new relations are induced (using parameters) on
ker from FK .

Proof (i) and (ii) It follows from Lemmas 5.7 (with B1
∼= A ∼= B2)

and 5.8 that the theory is complete and submodel complete. The
latter implies elimination of quantifiers (see e.g. Theorem 13.1 of S).

(iii) To prove superstability consider FK ∈ ECKA of cardinality
λ. We want to establish the cardinality of the set S(FK) of com-
plete 1-types over FK . Let ∗FK be an elementary extension of FK
which realises all n-types over FK for all n. Let S#(FK) the set of
all complete n-types over FK which are realised in ∗FK by n-tuples
b̄ = 〈b1, . . . , bn〉 such that δK(b̄/FK) = ∂(b1/FK). It follows that
card S(FK) ≤ card S#(FK).

From general properties of ≤ we get Fb̄ ≤ ∗FK , and by Lemma 5.3
the LEK-quantifier-free type of b̄ over FK is determined by the LK-
quantifier-free type of that. Thus card S(FK) is less or equal to the
cardinality of QFS(FK), the set of all LK-quantifier-free complete
types over FK .

We claim that QFS(FK) ≤ λ + 2ω. Indeed, each quantifier-free
LK-type of b̄ over FK is uniquely determined by the minimal K-affine
subspace L over FK containing b̄ and, for each l ∈ N, the minimal
algebraic variety W

1
l containing exp( b̄l ). Notice that, once W = W 1

is known, for each l there is at most ln choices of W
1
l (n = |b̄|), all

conjugated by torsion elements of (F×)n of order l. This branches into
at most 2ω types for each of λ-many varieties W.

(iv) Consider again a saturated model FK of the theory, let C ≤ FK
be an arbitrary finite self-sufficient set and let B = ker∪C. Clearly,
B ≤ FK . We claim first that for every finite tuple b̄ in B the complete
LK-type of C ∪ b̄ is determined by the quantifier-free LK-type of the
tuple. This is again a direct consequence of C∪b̄ ≤ FK , by Lemma 5.7.
Now, since any type of a tuple in the definable B is equivalent to a
LK-quantifier-free type, any definable subset of Bn is quantifier-free
definable, by compactness. We deduce that any C-definable subset
of kern is LK(C)-quantifier-free definable, hence any subset of kern

definable with parameters is LK-quantifier-free definable.
More specifically, let b̄ be Q-linearly independent over C. We claim

that then it is K-linearly independent over C, which follows from the
assumption that δK(b̄/C) ≥ 0.
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It follows that quantifier-free LK(C)-formulas without parameters
restricted to ker are Boolean combinations of formulas of the form
m1x1 + . . . + mnxn = k1c1 + . . . + kpcp, for some m1, . . . ,mn ∈ Z,
k1, . . . , kp ∈ K, and of the form x

m ∈ ker (equivalently, exp( xm) = 1).
The latter can be equivalently rewritten as ∃y ∈ ker x = my. This
is the standard form for core formulas in the theory of the Z-group
(ker,+, 0). Which proves that the subsets of kern definable in FK are
the same as ones definable in (ker,+, 0). �

6 Raising to powers in the complex

numbers

6.1 Consider the structure CK for K ⊆ C. Assume Schanuel’s con-
jecture or, more specifically, its form derived in 2.5:

CK ∈ EKd and A ≤ CK .

6.2 Theorem. Assume the corollary of Schanuel’s conjecture in the
form 6.1. Suppose K ⊆ R. Then

CK |= PK+SCHA+EC + ID.

In particular, the axioms define the complete theory of the structure
which also has the properties described in the Main Theorem 5.9 .

Proof PK and SCHA are immediate by assumptions. The axiom
ID is a corollary of the Countable Closure property that has been
proved for Cexp in [8] under Schanuel’s conjecture. The same proof
works for CK under the version 6.1 of Schanuel’s conjecture. It re-
mains to establish EC, the exponential-algebraic closedness.

This property was proved in [7], Theorem 3, under the extra as-
sumption that Schanuel’s conjecture holds uniformly. The latter is
used in the proof just ones, as a condition for the statement of The-
orem 2. But the statement of Theorem 2 is exactly Corollary 4.16,
proved here using only assumptions of the present theorem.�

Note that the theorem states in particular that the corresponding
form of Schanuel’s conjecture (for K ⊆ R) implies EC, exponential-
algebraic closedness.
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6.3 We recall the following result by A.Wilkie, J.Kirby and M.Bays.

Theorem. ([4] 1.3) Let Fexp be any exponential field, let ker be the
kernel of its exponential map, let C be an ecl-closed subfield of Fexp,
and let λ be an m-tuple which is exponentially algebraically indepen-
dent over C, K = Q(λ). Then for any tuple z from F :

tr.deg(exp(z)/C(λ)) + lin.dimK(z/ ker)− lin.dimQ(z/ ker) ≥ 0. (14)

In particular, this holds for the exponential field Cexp of complex num-
bers and C = ecl(∅).

Here, an exponential field Fexp is a (F,+, ·, exp) a field structure
with a homomorphism exp : F → F×. An ecl-closed subfield is an
exponential subfield C ⊆ F that is exponentially-algebraically closed
inside Fexp (see [4] for details). In the exponential field Cexp the ecl-
closure ecl(X) of a countable subset X is countable, by Lemma 5.12
of [8]. In particular, all but countably many complex numbers are
exponentially algebraically independent over ecl(∅).

6.4 Corollary of (14).
Since

tr.deg(exp(z)/C, λ) = tr.deg(exp(z), λ/C)−tr.deg(λ/C) ≤ tr.deg(exp z/C)

we have as a corollary

tr.deg(exp(z)/C) + lin.dimK(z/ ker)− lin.dimQ(z/ ker) ≥ 0,

and a weaker version, which is of interest to us here,

δK(z/ ker) = tr.deg(exp z) + lin.dimK(z/ ker)− lin.dimQ(z/ ker) ≥ 0,

which amounts to say that

FK ∈ E0.

6.5 Corollary. Let a finite subset λ ⊆ C be exponentially-algebraically
independent over ecl(∅) and let K = Q(λ). Then CK satisfies PK+SCH0+ID,
where SCH0 denotes SCHA with A = {2πi}.

In particular, the statement of Corollary 4.16 holds for CK .
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