REPRESENTATIVE DEFINABLE C^r FUNCTIONS ON DEFINABLE C^r GROUPS

TOMOHIRO KAWAKAMI

ABSTRACT. Let G be a compact affine definable C^r group and let r be ∞ or ω . We prove that the representative definable C^r functions on G is dense in the space of continuous functions on G.

1. Introduction.

Let $\mathcal{M}=(\mathbb{R},+,\cdot,<,\dots)$ be an o-minimal expansion of the standard structure $\mathcal{R}=(\mathbb{R},+,\cdot,<)$ of the field \mathbb{R} of real numbers. Everything is considered in \mathcal{M} , every definable map is assumed to be continuous and the term "definable" is used throughout in the sense of "definable with parameters in \mathcal{N} " unless otherwise stated. We assume that r denotes ∞ or ω .

General references on o-minimal structures are [1], [2], also see [13].

Definable C^rG manifolds and definable G sets in \mathcal{M} are studied in [8], [7], [6].

Let G be a definable C^r group and $Def^r(G)$ denote the space of definable C^r functions. Left translations in G induce an action of G defined by $f: G \to \mathbb{R} \mapsto L(g, f) = f(g^{-1}x): G \to \mathbb{R}$. A function f on G is representative if the functions $\{L(g, f)|g \in G\}$ generate a finite dimensional subspace of $Def^r(G)$.

Theorem 1.1. Let G be a compact affine definable C^r group. Then the representative definable C^r functions on G is dense in the strong topology in the space of continuous functions on G.

Let X be a definable C^rG manifold. We say that the action of G on X is definably C^r linearizable (resp. C^r linearizable) if there exist a definable C^r representation of G whose representation space Ω , a definable C^rG submanifold Y of Ω and a definable C^rG diffeomorphism (resp. C^r diffeomorphism) from X to Y.

Theorem 1.2. Let G be a compact affine definable C^r group and X a compact definable C^rG manifold. Then the action is C^r linearizable.

Remark that if $\mathcal{M} = \mathcal{R}$, then for any positive dimensional compact connected $C^{\infty}G$ manifold with non-transitive action, it admits uncountably many nonaffine definable $C^{\infty}G$ manifold structures ([10]). In Theorem 1.2, we cannot replace C^r linearizable by definably C^r linearizable.

Locally definable C^r manifolds are defined in [9].

²⁰¹⁰ Mathematics Subject Classification. 57S15, 03C64. Keywords and Phrases. O-minimal, definable C^r groups, definable C^rG manifolds. Partially supported by Kakenhi (23540101)

Theorem 1.3. Let G be a connected locally definable C^r group and (\tilde{G}, π) the universal cover of G. Then \tilde{G} can be equipped uniquely with the structure of a locally definable C^r group such that π is a locally definable C^r group homomorphism.

A locally Nash case of Theorem 1.3 is proved in [5].

2. Preliminaries and proof of results

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is definable if the graph of $f \subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m$ is a definable set.

We say that a group G is a definable group if G is a definable set and the group operations $G \times G \to G$ and $G \to G$ are definable.

A Hausdorff space X is an n-dimensional definable C^r manifold if there exist a finite open cover $\{U_i\}_{i=1}^k$ of X, finite open sets $\{V_i\}_{i=1}^k$ of \mathbb{R}^n , and a finite collection of homeomorphisms $\{\phi_i: U_i \to V_i\}_{i=1}^k$ such that for any i, j with $U_i \cap U_j \neq \emptyset$, $\phi_i(U_i \cap U_j)$ is definable and $\phi_j \circ \phi_i^{-1}: \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism. A definable C^r manifold X is affine if X is definably C^r diffeomorphic to a definable C^r submanifold of some \mathbb{R}^n .

A definable C^r manifold (resp. An affine definable C^r manifold) G is a definable C^r group (resp. an affine definable C^r group) if G is a group and the group operations $G \times G \to G$, $G \to G$ are definable C^r maps.

A subgroup of a definable C^r group is a definable subgroup of it if it is a definable C^r submanifold of it. Note that every definable C^r subgroup of a definable C^r group is closed ([12]) and a closed subgroup of a definable C^r group is not necessarily definable.

Let G be a definable C^r group. A group homomorphism from G to some $O_n(\mathbb{R})$ is a definable C^r representation if it is a definable C^r map. A definable C^r representation space of G is \mathbb{R}^n with the orthogonal action induced from a definable C^r representation of G. A definable C^r submanifold means a G invariant definable C^r submanifold of some definable C^r representation space of G.

Let G be a definable C^r group. A defin-able C^rG manifold is a pair (X, ϕ) consisting of a definable C^r manifold X and a definable C^r action $\phi: G \times X \to X$ on X of G. For abbreviation, we write X instead of (X, ϕ) . A definable C^rG manifold is affine if it is definably C^rG diffeomorphic to a definable C^rG submanifold of some definable C^r representation space of G.

Proof of Theorem 1.1. Since G is compact and affine, there exists a definable C^rG diffeomorphism f from G to a definable C^rG submanifold G' of some definable C^r representation space Ω of G.

Let $r: G \to \mathbb{R}$ be a continuous function. Applying Polynomial Approximation Theorem to $r \circ f^{-1}: G' \to \mathbb{R}$, we have a polynomial function $q: G' \to \mathbb{R}$ approximating $r \circ f^{-1}$. Since f is equivariant and G acts orthogonally on Ω and by P107 [11], $q \circ f: G \to \mathbb{R}$ is a representative on G which is a definable C^r function approximating r.

By a way similar to the proof of results of [10], we have the following result.

Theorem 2.1. Let G be a compact affine definable C^r group and X a compact $C^{\infty}G$ manifold. Then X is $C^{\infty}G$ diffeomorphic to a definable C^rG submanifold Y of some representation space of G.

Proof of Theorem 1.2. We only have to prove the case where $r = \omega$. By Theorem 2.1, there exist a representation space Ω of a definable C^r representation of G, a definable C^rG submanifold Y of Ω and a $C^{\infty}G$ diffeomorphism $f: X \to Y$. By [P 233 [4]], any Whitney neighborhood of a $C^{\infty}G$ map to a representation space contains a $C^{\omega}G$ map. Thus we can approximate f by a $C^{\omega}G$ map $h: X \to \Omega$. Therefore we have a required $C^{\omega}G$ imbedding.

A Hausdorff space X is an n-dimensional locally definable C^r manifold if there exist a countable open cover $\{U_i\}_{i=1}^{\infty}$ of X, countably many open sets $\{V_i\}_{i=1}^{\infty}$ of \mathbb{R}^n , and a countable collection of homeomorphisms $\{\phi_i: U_i \to V_i\}_{i=1}^{\infty}$ such that for any i, j with $U_i \cap U_j \neq \emptyset$, $\phi_i(U_i \cap U_j)$ is definable and $\phi_j \circ \phi_i^{-1}: \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism. We call the $(U_i, \phi_i)'s$ the definable charts of X.

Note that locally definable (C^0) manifolds are considered in [3].

Let X, Y be locally definable C^r manifolds with definable charts $(U_i, \phi_i)_{i \in I}, (W_j, \psi_j)_{j \in J}$ respectively. A continuous map $f: X \to Y$ is a locally definable C^r map if for every finite subset I' of I, there exists a finite subset J' of J such that $f(\bigcup_{i \in I'} U_i) \subset \bigcup_{j \in J'} V_j$ and that $f(\bigcup_{i \in I'} U_i) \subset \bigcup_{j \in J'} V_j$ is a definable C^r map.

A bijective locally definable C^r map f between locally definable C^r manifolds is a locally definable C^r diffeomorphism if f^{-1} is a locally definable C^r map.

A locally definable C^r manifold X is affine if X is locally definably C^r diffeomorphic to a locally definable C^r submanifold of some \mathbb{R}^n . Note that for any positive integer s, a locally definable C^r manifold is locally definably C^s imbeddable into some \mathbb{R}^l (1.3 [9]).

A locally definable C^r manifold (resp. An affine locally definable C^r manifold) G is a locally definable C^r group (resp. an affine locally definable C^r group) if G is a group and the group operations $G \times G \to G$, $G \to G$ are locally definable C^r maps.

Proof of Theorem 1.3. By the construction of the universal cover \tilde{G} of G, \tilde{G} is a C^r group whose charts are countable and π is a C^r map. Since G is a locally definable C^r group, every transition function is definable.

References

- [1] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series **248**, London Math. Soc. Cambridge Univ. Press (1998).
- [2] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [3] M.J. Edmundo, G.O. Jones and N.P. Peatfield, *Invariance results for definable extension of groups*, Arch. Math. Logic **50** (2011), 19–31.
- [4] P. Heinzner, A.T. Huckleberry, F. Kutzschebauch, A real analytic version of Abels' theorem and complexifications of proper Lie group actions. Complex analysis and geometry, Lecture Notes in Pure and Appl. Math., 173, Dekker, New York, (1996), 229–273.
- [5] E. Hrushovski and A. Pillay, *Groups definable in local fields and pseudo-finite fields*, Israel J. Math. **85** (1994), 203–262.
- [6] T. Kawakami, Definable C^r groups and proper definable actions, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 58 (2008), 9–18.
- [7] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. **54** (2004), 1–15.
- [8] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323–349.

- [9] T. Kawakami, Locally definable C^sG manifold structures of locally definable C^rG manifolds, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. **56** (2006), 1–12.
- [10] T. Kawakami, Nash G manifold structures of compact or compactifiable $C^{\infty}G$ manifolds, J. Math. Soc. Japan 48 (1996), 321–331.
- [11] A.L. Onishchik (Ed.), Lie groups and algebraic groups. Springer-Verlag, (1990).
- [12] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra 53 (1988), 239-255.
- [13] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser, Boston, (1997).

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail address: kawa@center.wakayama-u.ac.jp