DEFINABLE MORSE FUNCTIONS IN A REAL CLOSED FIELD

TOMOHIRO KAWAKAMI

ABSTRACT. Let X be a definably compact definable C^r manifold and $2 \le r < \infty$. We prove that the set of definable Morse functions is open and dense in the set of definable C^r functions on X with respect to the definable C^2 topology.

1. INTRODUCTION

In Morse theory the topological data of a given space can be described by Morse functions defined on the space. We refer the reader to the book by J. Milnor [10] for Morse theory on compact C^{∞} manifolds.

Let $\mathcal{N} = (R, +, \cdot, <, ...)$ be an o-minimal expansion of a real closed field R. Everything is considered in \mathcal{N} , the term "definable" is used throughout in the sense of "definable with parameters in \mathcal{N} ", each definable map is assumed to be continuous and $2 \leq r < \infty$.

General references on o-minimal structures are [2], [3], also see [13].

Definable C^r Morse functions in an o-minimal expansion of the standard structure of a real closed field are considered in [11].

In this paper we consider a definable C^r version of Morse theory in a real closed field R when $2 \leq r < \infty$.

Definable C^r manifolds are studied in [11], [1], and definable $C^r G$ manifolds are studied in [4]. If R is the field \mathbb{R} of real numbers, then definable $C^r G$ manifolds are considered in [8], [7], [6] [5].

Let $Def^r(\mathbb{R}^n)$ denote the set of definable C^r functions on \mathbb{R}^n . For each $f \in Def^r(\mathbb{R}^n)$ and for each positive definable function $\epsilon : \mathbb{R}^n \to \mathbb{R}$, the ϵ -neighborhood $N(f;\epsilon)$ of f in $Def^r(\mathbb{R}^n)$ is defined by $\{h \in Def^r(\mathbb{R}^n) || \partial^{\alpha}(h-f)| < \epsilon, \forall \alpha \in (\mathbb{N} \cup \{0\})^n, |\alpha| \leq r\}$, where $\alpha = (\alpha_1, \ldots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n, |\alpha| = \alpha_1 + \cdots + \alpha_n, \partial^{\alpha}F = \frac{\partial^{|\alpha|}F}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$. We call the topology defined by these ϵ -neighborhoods the *definable* C^r topology.

Theorem 1.1 (10.7 [1]). Every definably compact definable C^r manifold X is definably C^r diffeomorphic to a definable C^r submanifold of some \mathbb{R}^n .

By Theorem 1.1, we can consider the set $Def^r(X)$ of definable C^r functions on X as a subspace of $Def^r(\mathbb{R}^n)$.

Theorem 1.2. Let X be a definably compact definable C^r manifold. Then the set of definable Morse functions $Def_{Morse}^r(X)$ is open and dense in the set $Def^r(X)$ of definable C^r functions on X with respect to the definable C^2 topology.

Theorem 1.1 is a generalization of [9].

²⁰¹⁰ Mathematics Subject Classification. 14P10, 14P20, 57R35, 58A05, 03C64. Keywords and Phrases. O-minimal, real closed fields, Morse theory, definable C^r functions, critical points, critical values, definably compact.

2. Preliminaries.

Let $W_1 \subset \mathbb{R}^n, W_2 \subset \mathbb{R}^m$ be definable open sets and $f: W_1 \to W_2$ a definable map. We say that f is a *definable* C^r map if f is of class C^r . A definable C^r map is a *definable* C^r diffeomorphism if f is a C^r diffeomorphism.

Definition 2.1. A Hausdorff space X is an n-dimensional definable C^r manifold if there exist a finite open cover $\{U_i\}_{i=1}^k$ of X, finite open sets $\{V_i\}_{i=1}^k$ of \mathbb{R}^n , and a finite collection of homeomorphisms $\{\phi_i : U_i \to V_i\}_{i=1}^k$ such that for any i, j with $U_i \cap U_j \neq \emptyset$, $\phi_i(U_i \cap U_j)$ is definable and $\phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism. This pair $(\{U_i\}_{i=1}^k, \{\phi_i : U_i \to V_i\}_{i=1}^k)$ of sets and homeomorphisms is called a definable C^r coordinate system.

A definable C^r manifold X is definably compact if for every $a, b \in R \cup \{\infty\} \cup \{-\infty\}$ with a < b and for every definable map $f : (a, b) \to X$, $\lim_{x \to a+0} f(x)$ and $\lim_{x \to b-0} f(x)$ exist in X.

If $R = \mathbb{R}$, then for any definable C^r manifold X of \mathbb{R}^n , X is compact if and only if it is definably compact. In general a definably compact set is not necessarily compact. For example, if $R = \mathbb{R}_{alg}$, then $[0, 1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \le x \le 1\}$ is definably compact but not compact.

Let X be an m-dimensional definable C^r manifold and $f : X \to R$ a definable C^r function. A point $p \in X$ is a critical point of f if the differential of f at p is zero. If p is a critical point of f, then f(p) is called a critical value of f. Let p be a critical point of f and $(U, \phi : (U, p) \to (V, 0))$ a definable C^r neighborhood around p. The critical point p is nondegenerate if the Hessian of $f \circ \phi^{-1}$ at 0 is nonsingular. Direct computations show that the notion of nondegeniricity does not depend on the choice of a local coordinate neighborhood. We say that f is a definable Morse function if every critical point of f is nondegenerate.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we need the following results.

Lemma 3.1 (6.3.6 [2]). Let $A \subset \mathbb{R}^n$ be a definable set which is the union of definable open subsets U_1, \ldots, U_n of A. Then A is the union of definable open subsets W_1, \ldots, W_n of A with $cl_A(W_i) \subset U_i$ for $i = 1, \ldots, n$, where $cl_A(W_i)$ denotes the closure of W_i in A.

Theorem 3.2 ([12]). For a definable subset of \mathbb{R}^n , it is definably compact if and only if it is closed and bounded.

Theorem 3.3 (5.8 [1]). Let $X \subset R^l$ be a definable C^r manifold. Given two disjoint definable sets $F_0, F_1 \subset X$ closed in X, there exists a definable C^p function $\delta : X \to R$ which is 0 exactly on F_0 , 1 exactly on F_2 and $0 \leq \delta \leq 1$.

The following result is a definable version of Sard's Theorem.

Theorem 3.4 (3.5 [1]). Let $X_1 \subset R^s$ and $X_2 \subset R^t$ be definable C^r manifolds of dimension m and n, respectively. Let $f : X_1 \to X_2$ be a definable C^r map. Then the set of critical values of f has dimension less than n.

By Theorem 3.4, we have the following lemma.

Lemma 3.5. Let U be a definable open subset of \mathbb{R}^m and $f: U \to \mathbb{R}$ a definable \mathbb{C}^r function. There exist $a_1, \ldots, a_m \in \mathbb{R}$ such that $F(x_1, \ldots, x_m) = f(x_1, \ldots, x_m) - (a_1x_1 + \cdots + a_mx_m)$ is a definable Morse function on U and $|a_1|, \ldots, |a_m|$ are sufficiently small.

Let $\{\phi_i : U_i \to V_i\}_{i=1}^k$ be a definable C^r coordinate system of X. By Lemma 3.1, Theorem 3.2, Theorem 1.1 and X is definably compact, shrinking $\{U_i\}_{i=1}^k$, if necessary, there exists a finite collection $\{K_i\}_{i=i}^k$ of definably compact subsets with $K_i \subset U_i$ such that $X = \bigcup_{i=1}^k K_i$. From now on we fix $\{U_i\}_{i=1}^k$ and $\{K_i\}_{i=1}^k$.

Let $f, g: X \to R$ be definable C^r functions and $\epsilon > 0$. We say that g is a (C^2, ϵ) approximation of f on a definably compact subset K of X if the following three inequalities hold for any point $p \in K$.

$$\begin{cases} |f(p) - g(p)| < \epsilon, \\ |\frac{\partial f}{\partial x_i}(p) - \frac{\partial g}{\partial x_i}(p)| < \epsilon, 1 \le i \le n, \\ |\frac{\partial^2 f}{\partial x_i \partial x_j}(p) - \frac{\partial^2 g}{\partial x_i \partial x_j}(p)| < \epsilon, 1 \le i, j \le n. \end{cases}$$

Definition 3.6. Let $f : X \to R$ be a definable C^r function and $\epsilon > 0$. A definable C^r function $g : X \to R$ is a (C^2, ϵ) approximation of f if g is a (C^2, ϵ) approximation of f on any K_i .

Proposition 3.7. Let C be a definably compact subset of X, $h: X \to R$ a definable C^r function and $\epsilon > 0$ is sufficiently small. If there are no degenerate critical points of h in C, then for every definable C^r function $h': X \to R$ which is a (C^2, ϵ) approximation of h, C does not contain a degenerate critical point of h'. In particular $Def_{Morse}^r(X)$ is open in $Def^r(X)$ with respect to the definable C^2 topology.

Proof. We consider in a definable C^r coordinate neighborhood $(U_l, (x_1, \ldots, x_m))$. Let the Hessian of h with respect to $(U_l, (x_1, \ldots, x_m))$ be $(\frac{\partial^2 h}{\partial x_i \partial x_j})$. Then h has no degenerate critical points in $C \cap K_l$ if and only if $|\frac{\partial h}{\partial x_1}| + \cdots + |\frac{\partial h}{\partial x_n}| + |\det(\frac{\partial^2 h}{\partial x_i \partial x_j})| > 0$ holds in $C \cap K_l$. If $\epsilon > 0$ is sufficiently small, then for any h' which is a (C^2, ϵ) approximation of $h, |\frac{\partial h'}{\partial x_1}| + \cdots + |\frac{\partial h'}{\partial x_n}| + |\det(\frac{\partial^2 h'}{\partial x_i \partial x_j})| > 0$ holds in $C \cap K_l$. Thus h' has no degenerate critical points in $C \cap K_l$. By a similar argument, h' has no degenerate critical points in $C = \bigcup_{i=1}^k C \cap K_l$.

Proof of Theorem 1.2. Proposition 3.7 proves that $Def_{Morse}^{r}(X)$ is open in $Def^{r}(X)$.

To prove density of $Def_{Morse}^r(X)$, we proceed by induction on l. Let $g: X \to R$ be a definable C^r function and $\epsilon > 0$. Assume that we have a definable C^r function $f_{l-1}: X \to R$ such that f_{l-1} has no degenerate critical points in $C_{l-1} := \bigcup_{i=1}^{l-1} K_i$ and it is a (C^2, δ_{l-1}) approximation of g, where $\delta_{l-1} > 0$ is sufficiently smaller than ϵ .

We consider a definable C^r coordinate neighborhood $(U_l, (x_1, \ldots, x_m))$. By Lemma 3.5, there exist $a_1, \ldots, a_m \in R$ such that $f(x_1, \ldots, x_m) - (a_1x_1 + \cdots + a_mx_m)$ is a definable Morse function on U_l and $|a_1|, \ldots, |a_m|$ are sufficiently small. By Theorem 3.3, we have a definable C^r function $h_l : X \to R$ such that h_l is identically 1 on some definable open neighborhood V_l of K_l in U_l , h_l is identically 0 outside of some definably compact set L_l with $V_l \subset L_l \subset U_l$ and $0 \le h_l \le 1$. We define $f_l : X \to R, f_l = f_{l-1}(x_1, \ldots, x_m) - (a_1x_1 + \cdots + a_mx_m)h_l(x_1, \ldots, x_m)$ on U_l and $f_l = f_{l-1}(x_1, \ldots, x_m)$ outside of L_l . By the definition of f_l , f_l is a definable C^r function on X. Calculating on U_l , $|f_{l-1}(p) - f_l(p)| = |a_1x_1 + \dots + a_mx_m|h_l(p), |\frac{\partial f_{l-1}}{\partial x_i}(p) - \frac{\partial f_l}{\partial x_i}(p)| = |a_ih_l(p) + (a_1x_1 + \dots + a_mx_m)\frac{\partial h_l}{\partial x_i}(p)|, 1 \le i \le m, |\frac{\partial^2 f_{l-1}}{\partial x_i\partial x_j}(p) - \frac{\partial^2 f_l}{\partial x_i\partial x_j}(p)| = |a_i\frac{\partial h_l}{\partial x_j}(p) + a_j\frac{\partial h_l}{\partial x_i}(p) + (a_1x_1 + \dots + a_mx_m)\frac{\partial^2 h_l}{\partial x_i\partial x_j}(p)|, 1 \le i, j \le m, \text{ where } p = (x_1, \dots, x_m).$

By the construction of h_l and since X is definably compact, $|h_l|, |\frac{\partial h_l}{\partial x_i}|, |\frac{\partial^2 h_l}{\partial x_i \partial x_j}|$ are bounded. Thus f_l is a (C^2, δ'_l) approximation of f_{l-1} on K_l if $|a_1|, \ldots, |a_m| > 0$ are sufficiently small.

We now consider on K_j when $j \neq l$. Since $f_{l-1} = f_l$ outside of L_l , we only have to evaluate them on $K_j \cap L_l$. Since $K_j \cap L_l \subset U_j \cap U_l$, they are evaluated by the Jacobian of $(U_j, (y_1, \ldots, y_m))$ between $(U_l, (x_1, \ldots, x_m))$. It is bounded on $K_j \cap L_l$ because $K_j \cap L_l$ is definably compact. Thus they are sufficiently small if $|a_1|, \ldots, |a_m| > 0$ are sufficiently small. Hence f_l is a (C^2, δ_l) approximation of f_{l-1} . By Proposition 3.7, f_l has no degenerate critical points in C_{l-1} . By the construction of f_l , f_l has no degenerate critical points in K_l . Thus there are no degenerate critical points of f_l in $C_l := \bigcup_{i=1}^l K_i$. Therefore $f_k : X \to R$ is the required definable Morse function on X.

References

- A. Berarducci and M. Otero, Intersection theory for o-minimal manifolds, Ann. Pure Appl. Logic 107 (2001), 87–119.
- [2] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [4] T. Kawakami, A transverse condition of definable C^rG maps, Bull. Fac. Edu. Wakayama Univ. 61 (2011), 13–16.
- [5] T. Kawakami, Definable C^r fiber bundles and definable C^rG vector bundles, Commun. Korean Math. Soc. 23 (2008), 257–268.
- [6] T. Kawakami, Definable C^r groups and proper definable actions, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 58 (2008), 9–18.
- T. Kawakami, Equivariant definable Morse functions on definable C^rG manifolds, Far East J. Math. Sci. (FJMS) 28 (2008), 175–188.
- [8] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [9] T.L. Loi, Density of Morse functions on sets definable in o-minimal structures, Ann. Polon. Math. 89, (2006), 289–299.
- [10] J. Milnor, Morse theory, Princeton Univ. Press, (1963).
- Y. Peterzil and S. Starchenko, Computing o-minimal topological invariants using differential topology, Trans. Amer. Math. Soc. 359, (2006), 1375-1401.
- Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc. 59 (1999), 769–786.
- M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser, Boston, 1997.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, WAKAYAMA UNIVERSITY, SAKAEDANI WAKAYAMA 640-8510, JAPAN

E-mail address: kawa@center.wakayama-u.ac.jp