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Abstract: Let M be a countably infinite first order relational structure which
is homogeneous in the sense of Fräıssé. We show, under the assumption that
the class of finite substructures of M has the free amalgamation property, along
with the assumption that Aut(M) is transitive on M but not equal to Sym(M),
that Aut(M) is a simple group. This generalises results of Truss, Rubin and
others. The proof uses the Polish group structure of the automorphism group
and generalises to certain other homogeneous structures, with prospects for
further application.

1 Introduction

In this paper, by a homogeneous structure we mean a countably infinite rela-
tional structure such that every isomorphism between finite substructures of M
extends to an automorphism of M . Such structures are typically constructed by
Fräıssé amalgamation, and their automorphism groups provide a rich supply of
groups interesting both as permutation groups and as topological groups. Un-
der small extra assumptions (for example that the language has finitely many
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relation symbols), the automorphism group will be oligomorphic, or, equiva-
lently, M will be ω-categorical, that is, any countably infinite L-structure which
satisfies the same first order sentences as M will be isomorphic to M .

There are many results on normal subgroup structure of such automorphism
groups. For example, the automorphism group of a pure countably infinite set
(an indiscernible set), that is the symmetric group Sym(N), has as its proper
non-trivial normal subgroups just the group FSym(N) of all permutations of fi-
nite support, and its subgroup of index two consisting of the even permutations;
and the group Aut(Q, <) has as its proper non-trivial normal subgroups just the
group L(Q) consisting of automorphisms g which ‘live on the left’ (they fix point-
wise some interval (a,∞) for some a ∈ Q), a corresponding group R(Q) of per-
mutations which ‘live on the right’, and the intersection B(Q) := L(Q)∩R(Q).
Likewise Truss [22] showed that the automorphism group of the random graph
is simple, as is that of the random graph with edges coloured randomly from
a countable set C. (The random graph is the unique countable homogeneous
graph which embeds all finite graphs.) The corresponding result was proved for
the universal homogeneous partial order in [9], and for the generic k-uniform
hypergraphs and some other structures by Lovell [17]. Earlier, Rubin [19], in an
unpublished manuscript, gave a proof of simplicity for some binary homogeneous
structures including the Kn-free graphs and the universal homogeneous tourna-
ment, and the result for the tournament was also proved in unpublished work
by Jaligot. For a survey of some of this work, including the unpublished work
of Rubin, see [23]. At the other extreme, the 2-homogeneous countably infinite
trees considered by Droste [5], which may be viewed as homogeneous structures
in an appropriate finite relational language, have automorphism groups with
22ℵ0 distinct normal subgroups [6]. The examples suggest that in general, if
Aut(M) is not simple, then it has some obvious proper non-trivial normal sub-
groups, explicable in terms of its action, but the proofs involved are often very
intricate.

In this paper, we give a uniform proof of the simplicity of the automorphism
groups in cases (other than a pure set) where the underlying amalgamation is
very canonical. Our methods do not work for structures involving orderings,
such as the universal homogeneous partial order, but they work for the random
graph, the random Kn-free graphs and the ‘Henson digraphs’ and higher arity
analogues, and also (after a small tweak) for the random tournament. Our main
theorem is the following.

Theorem 1.1 Let M be a homogeneous structure which is free in the sense of
Definition 2.1, and such that Aut(M) is transitive on M but is not equal to
Sym(M). Then Aut(M) is a simple group.

Transitivity is required, since the structure consisting of a countably infinite
set with an infinite coinfinite subset defined by a unary predicate is free homo-
geneous, but its automorphism group is not simple. In fact, it is isomorphic to
a direct product of Sym(N) × Sym(N) and hence even has proper non-trivial
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closed normal subgroups. The conclusion of Lemma 2.11 below does not hold
in this example.

Our proof exploits the Polish group structure of the automorphism group.
The proof reduces to two technical steps, namely Lemma 2.11, which eliminates
the possibility of a normal subgroup consisting of ‘bounded’ automorphisms, and
Proposition 3.1. It is based on a method of Lascar, from [16] – see in particular
Lemma 3.3 below. Lascar used his approach to show that a certain quotient of
the group of ‘strong’ automorphisms of a countable saturated strongly minimal
set must be simple. The same method was later exploited by Gardener [8] to
describe the normal subgroup structure of certain infinite dimensional classical
groups. Note though that in the above work of Truss, Rubin, Lovell, and Jaligot,
an explicit small number n is computed such that if g, h are automorphisms of
the structure under consideration with n 6= 1, then g is a product of at most n
conjugates of h and h−1. Our methods appear not to provide such a bound.

We believe our method to have considerable potential for further generali-
sation, but have not yet achieved this. Possible further examples to consider
include the following.

(i) The automorphism groups of the generalised polygons constructed by
Tent in [21]. This would be particularly striking, since these groups have a
BN-pair, so would provide new examples of non-algebraic simple groups with a
(non-split) BN-pair.

(ii) Urysohn space (see [24] or for example [3]), and the countable universal
homogeneous metric space with rational distances. Here one should not expect
simplicity as there is a normal subgroup consisting of isometries of ‘bounded
displacement’, but the corresponding quotient groups may be simple.

(iii) Certain ‘Hrushovski constructions’, such as the ω-categorical pseudo-
plane (not published by Hrushovski, but see [25]), and ‘ab initio’ structures
obtained before ‘collapse’ in Hrushovski’s construction in [14] of a strongly min-
imal set.

In each case, the amalgamation can be done canonically, and in (i) and
(iii) it may be viewed as ‘free amalgamation’. In (i) and (iii) we still need an
analogue of Lemma 2.11, eliminating any possibility of a normal subgroup of
‘bounded’ automorphisms. Also, in (i) and (iii) the model-theoretic algebraic
closure operator is non-trivial, which causes problems when extending partial
automorphisms in the proof of Proposition 3.1. A further problem is that in our
proof of 3.1, we appear to need that if A and B are freely amalgamated over C,
and C0 ⊂ C, then A \ C and B \ C are freely amalgamated over C0, and this
does not hold for the canonical form of amalgamation used in (ii).

Notation 1.2 If G is a group of automorphisms of a structure M , then group
elements act on the left, i.e. we write g(x) for the image of x ∈M under g. Let
gh := g−1hg, and [g, h] = g−1h−1gh. If the group G acts on M and D ⊂ M ,
then G(D) denotes the pointwise stabiliser of D; if d̄ enumerates D this may
also be denoted by Gd̄.
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If M is a homogeneous structure and ā, ā′, b̄ are tuples from M , we write
ā ≡b̄ ā

′ if ā and ā′ lie in the same orbit of Aut(M)b̄, that is, in model-theoretic
language, if they have the same type over b̄. If M is a first-order structure and
n ∈ N>0, we say that a subset D of Mn is definable if it is the solution set of a
first-order formula, possibly with parameters; D is A-definable, where A ⊂ M ,
if the parameters can be chosen from M . Also, D is A-invariant if it is a union
of Aut(M)(A)-orbits on Mn, and D is invariant if it is A-invariant for some
finite A. If M is ω-categorical, for example if M is homogeneous over a finite
relational language, and A ⊂M is finite, then, by the Ryll-Nardzewski Theorem
(see [13] or [1]), D ⊂Mn is A-definable if and only if it is A-invariant.

If A,B are first order structures, we write A ≤ B if A is a substructure of B
in the sense of model theory (which corresponds to the graph-theorist’s notion
of ‘induced substructure’).

Finally, by a digraph we mean a structure in a language with a single binary
irreflexive relation R satisfying ∀x∀y(Rxy → ¬Ryx); it is a tournament if in
addition it satsfies ∀x∀y(x = y ∨Rxy ∨Ryx).

We shall freely use that if M is a countably infinite structure, then G :=
Aut(M) has naturally the structure of a Polish group, that is, a topological
group such that the topology comes from a Polish space structure (that is,
a complete separable metric space). For example, let M = {an : n ∈ ω},
and define a metric d on G, putting d(g, h) = 1

n+1 where n is least such that
g(an) 6= h(an) or g−1(an) 6= h−1(an). If f is a finite partial isomorphism of M
(that is, an isomorphism between finite substructures of M), let Of := {g ∈
G : g extends f}. Then the set of such Of form a basis of neighbourhoods for
this topology; in particular, there is a basis of neighbourhoods of the identity
consisting of subgroups G(F ) (F a finite subset of M).

Recall that a subset A of a Polish space X has the Baire Property if there is
an open set U such that the symmetric difference A∆U is meagre. The following
result of Pettis is well-known – see [15, Theorem 9.9].

Proposition 1.3 Let G be a Polish group and let H be a subgroup of G with
the Baire property. Then H is meagre or clopen.

For general background on homogeneous structures, see [1] or [18]. Another
possible source is [4], in particular, the introduction – this monograph gives the
classification of countable homogeneous digraphs.

2 Free amalgamation

Let L be a first order language containing no function or constant symbols. As
a general assumption for the paper, we assume that for each relation symbol
R of L, if Ra1 . . . ak holds in a structure, then a1, . . . , ak are distinct. This
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assumption is harmless, since the relations in the language can be adjusted to
ensure this, without affecting automorphism groups, homogeneity, or the notion
of free amalgamation below.

Recall that an age over L is a collection of finite L-structures, containing just
countably many non-isomorphic structures, which is closed under isomorphism
and (induced) substructure, and has the Joint Embedding Property (JEP). If
M is a countably infinite L-structure, then its age Age(M) is the collection of
all finite L-structures which embed in M .

Definition 2.1 (i) An age C is an amalgamation class or has the amalgamation
property, if, whenever A,B1, B2 ∈ C and fi : A→ Bi are embeddings (i = 1, 2)
there is D ∈ C and embeddings gi : Bi → D such that g1 ◦ f1|A = g2 ◦ f2|A.

(ii) We say the amalgamation class C has the disjoint amalgamation property
(DAP) if in (i), the gi and D can be chosen so that g1(B1) ∩ g2(B2) = f1(A).

(ii) The amalgamation class C has the free amalgamation property (FAP) if,
whenever B1, B2 ∈ C, A ∈ C, and fi : A → Bi are embeddings (i = 1, 2) there
are D ∈ C and embeddings gi : Bi → D such that g1 ◦ f1|A = g2 ◦ f2|A and
g1(B1) ∩ g2(B2) = f1(A), and in addition, for each relation symbol R of L, no
tuple of D which satisfies R meets both of g1(B1)\g1f1(A) and g2(B2)\g2f2(A).

By Fräıssé’s Theorem [7, 1], if C is an amalgamation class, then there is a
(unique up to isomorphism) countably infinite homogeneous L-structure M such
that Age(M) = C. We shall refer to M as the Fräıssé limit of C. Furthermore,
the age of any homogeneous L-structure is an amalgamation class. We shall say
that M is a free homogeneous L-structure if AgeM is a free amalgamation class.
If M is a homogeneous L-structure and A,B1, B2 are finite substructures of M
such that B1 ∩ B2 ⊆ A and no tuple of B1 ∪ B2 ∪ A satisfying an L-relation
meets both B1 \ A and B2 \ A, we denote the structure on B1 ∪ B2 ∪ A as
B1 ⊕A B2, and write B1 ↓A B2. As a slight abuse of notation, we allow here
that A = ∅, and then write B1 ↓ B2. This notation is motivated by non-forking
in model-theoretic stability theory.

Remark 2.2 1. If M is free homogeneous then for any finite sets A,B,C ⊂M
there is g ∈ Aut(M)(A) such that g(B) ↓A C. For non-empty A, this holds by
amalgamating B ∪ A and C ∪ A freely over A (as structures in Age(M)), and
then using homogeneity. The statement holds even if A is empty. Indeed, if
A = ∅, choose a ∈ M \ (B ∪ C) and g ∈ Aut(M)a such that g(B) ↓a C; then
g(B) ↓ C.

2. If B1 ↓A∪A′ B2 and A′ ∩ (B1 ∪ B2) = ∅, then B1 ↓A B2. This is not a
standard property of model-theoretic independence relations, but is important
in the proof of Proposition 3.1 below.

3. The relation ↓ also satisfies a model-theoretic ‘stationarity’ property:
A,C ⊂M are finite, b̄ and b̄′ lie in the same Aut(M)(C)-orbit, and b̄ ↓C A and
b̄′ ↓C A, then b̄ and b̄′ lie in the same Aut(M)(C∪A)-orbit. This is an immediate
consequence of homogeneity.
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4. If A is finite and b̄ ≡A b̄′ with b̄ ↓A b̄′, then there is g ∈ Aut(M)(A) with
g(b̄b̄′) = b̄′b̄.

Example 2.3 We give some examples of free homogeneous relational struc-
tures.

(i) The random graph and random digraph, and the generic Kn-free homo-
geneous graph. The last example is the Fräıssé limit of the class of finite graphs
which do not have Kn as an induced subgraph; this class is a free amalgamation
class since the free amalgam B1 ⊕A B2 is Kn-free provided B1 and B2 are.

(ii) The ‘Henson digraphs’ [10]. Such a digraph is determined by a collection
T of finite tournaments, and consists of all digraphs not embedding any member
of T .

(iii) For any k > 2, the generic k-hypergraph, and, for each ` > k, the
homogeneous k-hypergraph which is universal subject to not embedding an `-
pyramid, that is, an `-set all of whose k-subsets are hyper-edges.

Some examples of homogeneous structures which are not free, for various
different reasons, include: the universal homogeneous tournament; any homo-
geneous structure (M,E) where E is an equivalence relation on M ; (Q, <) (and
the countable universal homogeneous poset); the universal homogeneous two-
graph [2, Section 7]; and the countable universal homogeneous metric space with
rational distances (since amalgamation is constrained by the triangle inequality,
and since in a metric space any two points have to have a specified distance).

Remark 2.4 If A is a structure over a relational language L, then an L-
structure B is a weak substructure of A if its domain is a subset of that of
A, and for any n ∈ N, relation symbol R in L of arity n, and b1, . . . , bn ∈ B,
B |= Rb1 . . . bn ⇒ A |= Rb1 . . . bn. We shall say that the homogeneous struc-
ture M is monotone if Age(M) is closed under weak substructure. Then by
the main theorem of [11], if M is a monotone free homogeneous structure over
a finite relational language and C := Age(M), then C has Herwig’s extension
property: for any A ∈ C there is B ∈ C such that A ≤ B and every partial
isomorphism between substructures of A extends to an automorphism of B. As
a consequence, M has the small index property: every subgroup of Aut(M) of
index less than the continuum is open.

Many other properties of free, and of monotone free, homogeneous structures
are summarised in [18, 6.5.6 and 6.5.7]. For example, if M is free homogeneous
over a finite relational language, then if G acts without inversions on a combina-
torial tree T then every element of G fixes a vertex of T , so G is not a non-trivial
free product with amalgamation. If in addition M is monotone, then G is not
the union of a countable chain of proper subgroups, so as G also does not have
(Z,+) as a homomorphic image, G has Serre’s property (FA).

We begin with some easy remarks on free homogeneous L-structures. Ob-
serve first that if G is any closed permutation group on a countably infinite
set X, then there is a homogeneous structure M with domain X such that
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Aut(M) = G (as permutation groups): introduce a relation symbol for each G-
orbit on k-tuples, for all k ∈ N. However, our first lemma ensures, for example,
that a free homogeneous structure cannot have locally compact automorphism
group (with respect to the topology defined above).

Lemma 2.5 Let M be a free homogeneous L-structure. Then for any finite
A ⊂M , Aut(M)(A) has no finite orbits on M \A.

Proof. This follows from (2.15) of [1], as (FAP) implies (DAP). �

Lemma 2.6 Let M be a transitive free homogeneous L-structure. Then G :=
Aut(M) acts primitively on M .

Proof. We shall apply the criterion of D.G. Higman [12]: a transitive per-
mutation group H on X is primitive if and only if, for every orbit Ω of H on
unordered pairs from X, the ‘orbital graph’ ΓΩ with vertex set X and edge set
Ω is connected.

Choose distinct a, b ∈ M , and by (FAP) find a′ such that a ↓b a′. Let Ω be
the orbit {{g(a), g(a′)} : g ∈ G} of G on 2-subsets of M .

Given any distinct a, b ∈M , there is c ∈M such that {a, c} and {b, c} both
lie in Ω. Indeed, choose c ∈M so that {a, c} ∈ Ω. We may in addition choose c
so that b ↓a c, so also {b, c} ∈ Ω. It follows that the orbital graph ΓΩ with edge
set Ω is connected.

It remains to check that any other orbital graph with edge set ∆ is connected.
By the last paragraph, it suffices to show that if {a1, a2} ∈ Ω then a1, a2 are
at distance two in the orbital graph Γ∆. To see this, let {a, b} ∈ ∆. Choose
g ∈ Ga so that if b′ := g(b) then b ↓a b′. Then {b, b′} ∈ Ω and there is a path of
length two in Γ∆ from b to b′, as required. �

The next lemma yields that ω-categorical free homogeneous L-structures
satisfy the model-theoretic condition ‘weak elimination of imaginaries’. See [13,
p.161] for details on this.

Lemma 2.7 Let M be a free homogeneous L-structure, and G := Aut(M).
(i) If A,B ⊂M are finite, then G(A∩B) = 〈G(A), G(B)〉
(ii) If X ⊆Mn is invariant, there is a unique smallest set D ⊂M such that

X is D-invariant.

Proof. (i) The containment ⊇ is clear. For ⊆, suppose g ∈ G(A∩B). Using
Remark 2.2(1) choose h1 ∈ G(A) with h1g(A) ↓A B. Then h1g(A)∩B = A∩B.
There is h2 ∈ G(B) with h2h1g(A) ↓B A. Then as h2h1g(A) ∩ B = A ∩ B,
Remark 2.2(2) yields h2h1g(A) ↓A∩B A. Likewise choose h3 ∈ G(B) so that
h3(A) ↓B A, so h3(A) ↓A∩B A. Now if ā enumerates A, then by Remark 2.2(3),
h3(ā) ≡A h2h1g(ā). Hence there is h4 ∈ G(A) so that h4h2h1g|A = h3|A. Thus,
h−1

3 h4h2h1g ∈ G(A), so g ∈ 〈G(A), G(B)〉.
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(ii) This is a standard consequence of (i). Suppose that X is invariant
over the finite sets D1 and D2. Put D = D1 ∩ D2. Then if g ∈ G(D) then
g ∈ 〈G(D1), G(D2)〉 by (i), so g fixes X setwise. Hence X is D-invariant. �

Lemma 2.8 Assume M is a free homogeneous L-structure and G = Aut(M).
Then G has no proper non-trivial open normal subgroups.

Proof. Suppose for a contradiction that K is a proper non-trivial open
normal subgroup of G. Then there is finite F ⊂ M such that G(F ) ≤ K. Also,
G \K is open, as it is a union of (open) cosets of K. Thus, there is an open set
U = Of ⊆ G\K. Here, f is a finite partial automorphism of M so U consists of
all extensions of f in G. Let A := dom(f) and B := ran(f). By (FAP) there is
F ′ ≡ F with F ′ ↓ A∪B. Let g ∈ G with g(F ) = F ′. Then as K is normal in G,
G(F ′) = G(F g) ≤ K. Now idF ′ ∪f is a partial isomorphism, so by homogeneity
extends to some h ∈ G. However h ∈ K (as h fixes F ′), and h ∈ G \ K, as
h ∈ Uf . This is a contradiction. �

We aim next to show that if M is a free homogeneous structure which is
not a ‘pure set’, then any non-trivial normal subgroup of Aut(M) contains
fixed-point-free elements. This (slightly strengthened) is then combined with
Proposition 3.1 to prove Theorem 1.1.

Lemma 2.9 Let M be a transitive free homogeneous L-structure, G = Aut(M),
and d̄ be a finite tuple from M . Let g ∈ Gd̄ \ {1}. Suppose that {Ωi : i ∈ I} is
the set of infinite orbits of Gd̄ on M , and that I1 := {i ∈ I : supp(g)∩Ωi 6= ∅}.
Then I1 = I.

Proof. Suppose this is false, so I1 6= I, and let I2 = I \ I1. For j = 1, 2, let
Gj be the group induced by Gd̄ on

⋃
i∈Ij

Ωi, and let Mj be the substructure of
M induced on

⋃
i∈Ij

Ωi.
First, we suppose that Gd̄ induces G1×G2. By free amalgamation, it follows

that M1 ↓d̄ M2. In particular,
(*) for each i ∈ I1 there is h ∈ Gd̄ fixing M2 pointwise with supp(h) ∩ Ωi 6= ∅
(put h = g) and for each i ∈ I2 there is h ∈ Gd̄ fixing M1 pointwise with
supp(h) ∩ Ωi 6= ∅.
By free amalgamation, there is some (unique) r ∈ I such that for x ∈ Ωr, x ↓ d̄.
By symmetry (since this part of the argument uses (*), not the definition of I1),
we may suppose that r ∈ I2. It follows easily, by free amalgamation over d̄, that
any finite substructure of M embeds in Ωr.

For each i ∈ I, we may write Ωi as Ωi(d̄), so Ωi(d̄′) is the image of Ωi under
any automorphism f such that f(d̄) = d̄′. Pick s ∈ I1. If x ∈ Ωs then by
free amalgamation there is d̄′ ≡x d̄ with d̄ ↓x d̄′ (so d̄ ↓ d̄′). Clearly such d̄′

lies in Ωr, so for any y ∈ Ωs, there is f ∈ Gd̄,d̄′ with f(x) = y (we use here
that Gd̄ = G1 × G2). That is, Ωs(d̄) ⊆ Ωs(d̄′) for any d̄′ ≡ d̄ with d̄ ↓ d̄′. For
such d̄′, by Remark 2.2(4) there is h ∈ G interchanging d̄ and d̄′. Hence in fact
Ωs(d̄) = Ωs(d̄′). However, for x ∈ Ωs, we may choose d̄′ ≡ d̄ with d̄′ ↓ d̄x. Then
x ∈ Ωs(d̄) ∩ Ωr(d̄′), with d̄ ↓x d̄′, contradicting that Ωs(d̄) = Ωi(d̄′).
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Suppose now that Gd̄ does not induce G1 ×G2. Then there is an L-relation
R, a subtuple d̄′ of d̄, and ā, ā′ in M1 and b̄, b̄′ in M2 such that ā ≡d̄ ā

′, b̄ ≡d̄ b̄
′,

and Rāb̄d̄′ ∧ ¬Rā′b̄′d̄′ (after reordering variables in R if necessary). Using an
automorphism, we may suppose b̄ = b̄′. By free amalgamation, we may suppose
ā′ ↓d̄ b̄. Let ā enumerate the set A.

Claim. We may suppose g(A) 6= A.
Proof. By definition of I1, and replacing g by a Gd̄-conjugate if necessary,

we may suppose g|A 6= idA, but that g(A) = A. Hence, we may also suppose
|A| > 1. Let ā = (a1, ..., an) and assume g(a1) 6= a1. There is ā∗ ≡d̄a1

ā with
ā∗ ↓d̄a1

ā. Choose h ∈ Gd̄ with h(ā) = ā∗. Then h−1gh(A) 6= A, so we may
replace g by h−1gh to obtain the claim.

Put A∗ := A ∩ g(A). By free amalgamation, there is ā′′ ≡d̄ā g(ā) with
ā′′ ↓d̄ā b̄. Then ā′′ ↓d̄A∗ b̄ by Remark 2.2(2), so in particular, ¬Rā′′b̄d̄′. Now
find h ∈ Gd̄ā with h−1(g(ā)) = ā′′. Then gh maps ā to ā′′ and fixes d̄b̄ (as g
fixes b̄). This is impossible, as Rāb̄d̄′ ∧ ¬Rā′′b̄d̄′. �

Corollary 2.10 Let M be a transitive free homogeneous L-structure, let G =
Aut(M) and assume G 6= Sym(M). Let g ∈ G \ {1}, let D ⊂ M be finite, and
let U be an infinite G(D)-orbit on M . Then

(i) g does not fix U pointwise, and in fact
(ii) supp(g) ∩ U is infinite.

Proof. (i) Suppose for a contradiction that g fixes U pointwise. We may
suppose that D is minimal such that U is D-invariant. Let d̄ be an enumeration
of D. By Lemma 2.9, g(d̄) 6= d̄. Put d̄′ := g(d̄).

We first claim that g(D) = D. Indeed, by the minimality of |D| and
Lemma 2.7(ii), D is the unique smallest set over which U is invariant. Hence,
as g(U) = U , g(D) = D.

Next, by a theorem of Wielandt (Exercise 3 on p. 38 of [1]), as G is primitive
(Lemma 2.6), supp(g) is infinite.

It follows easily that there is h ∈ Gd̄ \ CG(g). Indeed, find distinct a1, a2 ∈
supp(g)\D with g(a1) = a2, and use (DAP) to find a′1 6= a1 with a′1a2d̄ ≡ a1a2d̄.
There is h ∈ G with h(a1a2d̄) = a′1a2d̄, and it follows that gh(a1) 6= g(a1). Now
[g, h] is a non-identity element of G which fixes d̄ and satisfies supp([g, h])∩U =
∅. This is impossible, by Lemma 2.9.

(ii) This follows immediately from (i). For if F := supp(g)∩U is finite, then
there is an infinite G(D∪F )-orbit contained in U which is fixed pointwise by g.
�

Lemma 2.11 Assume M is a homogeneous L-structure whose age has (DAP),
and assume g ∈ G := Aut(M) that for each finite D ⊂ M , g does not fix
pointwise any infinite G(D)-orbit. Then there is h ∈ G such that [g, h] is fixed-
point-free and has no 2-cycles.

9



Proof. We build h by a ‘back-and-forth’ construction as the union of a chain
of finite partial automorphisms, so we must show how to add elements to its
domain and range. Suppose that hn has been defined, a 6∈ dom(hn), and our
task is to extend hn to hn+1 so that hn+1(a) is defined. Since the age of M has
(DAP), there is an infinite set of points b ∈M such that hn∪{(a, b)} is a partial
automorphism, and this is an orbit of G(ran(hn)); hence by our assumption we
may choose such b also to lie in supp(g). In particular, we may choose b so that
in addition h−1

n (g(b)) is undefined. Then define hn+1(a) = b and build in, for
further extensions hm of hn+1, the requirement that h−1

m (g(b)) 6= g(a). This
ensures that [g, h](a) 6= a, and we may arrange also that g−1h−1

n+1ghn+1 does
not fix any other point by choosing b outside the finite set ran(ghn). We also
ensure, when choosing b, that there is no point c such that [g, hn+1]2(c) = c.
This again eliminates only finitely many possibilities for b. Thus, at any given
stage there will be finitely many ‘commitments’, i.e. finitely many points to
avoid when making a one-point extension.

The other case is when hn has been defined, with b 6∈ ran(hn), and we must
find a such that hn+1 := hn ∪ {(a, b)} is a partial isomorphism. If b 6∈ supp(g),
then we may choose a to be any point in supp(g) such that hn+1 := hn∪{(a, b)}
is a partial isomorphism; then g−1h−1

n+1ghn+1(a) = g−1(a) 6= a. Such a exists
by our assumption, and if we choose a such that in addition g−1(a) 6∈ dom(hn),
then g−1h−1

n+1ghn+1 is fixed-point-free. So suppose b ∈ supp(g). If h−1
n (g(b)) is

defined, and equals c, say, choose a so that hn∪{(a, b)} is a partial isomorphism
and a 6= g−1(c). On the other hand, if h−1

n (g(b)) is undefined, choose a to be
any point in supp(g) so that hn ∪ {(a, b)} is a partial isomorphism, and build
in for the future the commitment h−1

n (g(b)) 6= g(a); we also ensure a is chosen
with g−1(a) 6∈ dom(hn), to ensure g−1h−1

n+1ghn+1 is fixed-point-free. In both
cases in this paragraph, when choosing a, we also avoid finitely many points, to
ensure that eventually [g, h] has no 2-cycle. �

Remark 2.12 The conclusion of Lemma 2.11 holds for many homogeneous
structures for which the amalgamation is not free. Note though that it fails for
Aut(Q, <), since an automorphism may have support within a bounded interval,
in which case all elements of its normal closure have support within a bounded
interval. It also fails for many treelike structures.

3 Proof of the Theorem 1.1.

The heart of the proof of Theorem 1.1 is the following proposition (an analogue
of Lemme 9 of [16]). A small adaptation of the proof, with an appropriate
notion of ↓, yields simplicity also for the automorphism group of the universal
homogeneous tournament (see Remark 3.2 below).

Proposition 3.1 Let M be a free homogeneous L-structure, let G := Aut(M),
and suppose that g ∈ G is fixed-point-free and has no 2-cycles. Define α : G6 →
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G by α(h1, h2, h3, h4, h5, h6) := gh1gh2gh3gh4gh5gh6 . Let U1, U2, U3, U4, U5, U6

be non-empty open subsets of G. Then there is non-empty open Y ⊂ G such
that α(U1 × . . .× U6) is dense in Y .

Proof of Proposition 3.1. We may suppose that there are finite partial au-
tomorphisms u, v, w, x, y, z of M such that U1 = Ou, U2 = Ov, U3 = Ow,
U4 = Ox, U5 = Oy and U6 = Oz. It suffices to prove the proposition with
u, v, w, x, y, z replaced by finite extensions. Let α(u, v, w, x, y, z) denote the
partial function

u−1guv−1gvw−1gwx−1gxy−1gyz−1gz.

For a ∈M , we write α(a) for α(u, v, w, x, y, z)(a). In the claim below, part (1)
and (2) ensure that if a sufficiently big final segment of α is defined on a ∈M ,
then α(a) is defined, and (2) ensures the same for α−1.

Claim 1. We may extend u, v, w, x, y, z finitely to ensure the following.
(1) For any a ∈M , if yz−1gz(a) is defined, then α(a) is defined.
(2) For any a ∈M , if vu−1g−1u(a) is defined, then α−1(a) is defined.
(3) If ā := dom(w) ∩ dom(x), b̄ := dom(w) \ dom(x), and c̄ := dom(x) \

dom(w), then b̄ ↓ā c̄.
(4) If a ∈ dom(w) ∩ dom(x) then (gu ◦ gv ◦ gw)(a)) is defined and lies in

ran(α(u, v, w, x, y, z)).
(5) dom(v) ∩ (dom(x) \ dom(w)) = ∅ and dom(y) ∩ (dom(w) \ dom(x)) = ∅.
Proof of Claim 1. We first indicate the basic idea. We define finitely many

one-point extensions of u, v, . . . , z. To avoid proliferation of notation, we keep
the same symbols u, . . . , z, i.e., we avoid writing un, vn, etc. Thus, the construc-
tion is dynamic in the sense that the meaning of the symbols u, . . . , z changes as
the construction proceeds, but they always denote finite partial isomorphisms.
We remind the reader that unlike u, . . . , z, the element g is already completely
defined as an automorphism of M .

At any stage, with given defined u, . . . , z, we say that a point a ∈ M is old
if a ∈ A′ :=

⋃
−2≤i≤2 g

i(A), where

A = dom(u) ∪ . . . ∪ dom(z) ∪ ran(u) ∪ . . . ∪ ran(z).

Suppose we wish to make a one-point extension of u, by defining u(a). Let A′

be set of old points at this stage. If b̄ is an enumeration of dom(u) and u(b̄) = c̄,
choose d such that b̄a ≡ c̄d and d ↓c̄ A, and define u(a) = d. Such d exists by
free amalgamation, and the extension of u is a partial isomorphism. The same
applies to one-point extensions of u−1, and likewise for v, w, x, y, z and their
inverses. Call such one-point extensions good extensions. All our extensions
below are good.

Initially, we aim for the following strengthenings of (1), (2), namely:
(1)′ For any a ∈M , if z−1gz(a) is defined, then α(a) is defined.
(2)′ For any a ∈M , if u−1g−1u(a) is defined, then α−1(a) is defined.
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Suppose for example (z−1gz)(a) is defined, and equals b, but y(b) is undefined
(a violation of (1)′). To ensure that α(a) is defined, we first make a good
extension of y to define y(b). Then, after defining y(b), as g is fixed-point-free
and as y(b) was chosen not among the old points at that stage, y−1(g(y(b)))
is undefined. Make a good extension of y−1 to define this, and proceed right-
to-left along α(u, v, w, x, y, z), always making good extensions, to ensure a ∈
dom(α(u, . . . , z)). If we do this successively for all points a such that (z−1gz)(a)
is defined but α(a) is undefined, then (1)′ is achieved. (Of course it could be that
for the above pair a, b, the element y(b) was already defined, but α(u, . . . , z)(a)
was not – in that case start the process further to the left along α.) Call this
‘Step A’. After Step A, (1)′ holds, but (2)′ may not.

Next, as Step B, we repeat this process, with α−1 in place of α, to ensure
that (2)′ holds. That is, we work from left to right along α (or right-to-left along
α−1), always making good extensions. In the process, for certain points a, we
may define z(a) = b and then z−1(g−1(b)) = c (or it may be that z(a) = b was
already defined, after Step A or in an earlier stage of Step B, but z−1(g−1(b)) = c
is now defined). In particular, it could happen that we create a violation of (1)′;
that is, for some d, after Step A z−1gz(d) was undefined, but now after Step B
it is defined but α(d) is not. So after Step B, (2)′ holds but (1)′ may fail.

We claim that after Step B, if z−1gz(d) is defined, but α(d) is not defined,
then y(z−1gz(d)) is undefined. To see this, suppose first that z−1gz(d) became
defined when we put z−1(g−1(b)) = c; that is, there was some c′ such that
(u−1g−1u)(c′) was defined but α−1(c′) was undefined, and as part of Step B
we ensured that α−1(c′) is defined and equals c. If c = d, then after Step B,
α(u, . . . , z)(d) is indeed defined, contrary to hypothesis. The other possibility
is that z−1gz(d) becomes defined because g−1(b) = gz(d), but then, because c
was chosen to witness a good extension of z−1, y(z−1gz(d)) = y(c) is undefined.
Alternatively, suppose z−1gz(d) became defined when at Step B we put z(a) = b,
so before putting z−1(g−1(b)) = c. If a = d then as b was chosen witnessing a
good extension of z, and g(b) 6= b, g(b) 6∈ dom(z−1), contradicting that z−1gz(d)
becomes defined at this stage. The other possibility is that z(d) was previously
defined and z−1gz(d) becomes defined when we put z(a) = b, because b = gz(d).
This too could not occur, for as b witnesses a good extension of z, z(d) cannot
previously have been defined.

As Step C, apply Step A again, to ensure that (1)′ holds. By the last
paragraph, when dealing at Step C with some d such that z−1gz(d) is defined,
but α(d) is not, we will make a good extension of u and then a good extension
of u−1, i.e. two good extensions. Of course, Step C may be applied to several
such points d, but each such d will involve a good extension of u followed by a
good extension of u−1.

It can be checked that now (2)′ also holds. For suppose it fails, that is,
u−1g−1u(a) is defined, but α−1(a) is not defined. Then this failure was caused
at Step C. That is, at Step C, to ensure that α(u, . . . , z) was defined at some
point d, we defined u(e) = c for some e and c, and then u−1(g(c)) = b. As a
result, u−1g−1u(a) became defined. We emphasise that by the last paragraph
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both c and b are new points witnessing good extensions – there was a good
extension of u followed by a good extension of u−1. There are four possibilities.

(i) a = b. In this case, α−1(a) is defined and equals d, contrary to hypothesis.
(ii) a = e. Then c was chosen outside the previous set g(dom(u−1)) (as it was

chosen when making a good extension), and as g has no 2-cycles, g−1(c) 6= g(c),
so u−1 is still (after putting u(e) = c and u−1(g(c)) = b) not defined on g−1(c).
(This is the reason for the requirement in Lemma 2.11 that [g, h] have no 2-
cycles.) Likewise, by the choice of c, it could not be that earlier in Step C
when dealing with another violation of (1)′, we defined u−1(g−1(c)). Hence
u−1g−1u(a) is undefined, a contradiction.

(iii) u(a) was defined before Step C or at an earlier part of Step C when
handling another violation of (1)′, and g−1(u(a)) = g(c), so u−1g−1u(a) = b. In
this case, c = g−2(u(a)), contrary to the choice of c at Step C.

(iv) u(a) was defined before Step C or at an early part of Step C, and
g−1(u(a)) = c, so u−1g−1u(a) = e. In this case, again, α−1(a) is defined and
equals d, a contradiction.

Thus, after Steps A-C, conditions (1)′ and (2)′ hold, and it remains to ensure
(3) and (4). At Step D we ensure (3). For this, for any b ∈ dom(w) \ dom(x),
make a good extension to ensure x(b) is defined, and for any c ∈ dom(x) \
dom(w), define w(c) by a good extension. This ensures that dom(w) = dom(x),
so (3) (and also (5)) hold. It is easily seen that (1)′ and (2)′ are preserved, since
only the ‘middle’ elements w, x of α are extended.

As Step E, we ensure (4). If a ∈ dom(w) ∩ dom(x), make good extensions
to ensure that (gu ◦ gv ◦ gw)(a)) is defined, and ((g−1)z ◦ (g−1)y ◦ (g−1)x)(a) is
defined. At Step E, we might have to extend w to w′, by defining w′−1(c) = d,
where c = gw(a). Such d will be chosen with d ↓dom(w) A, where A is the set of
old points at this stage. Likewise, we might have to extend x to x′ by defining
x′−1(c) = d where c = g−1x(a), and for such d we will have A ↓dom(x) d. It
follows that Step E cannot create a violation of (3). Likewise no violation of (5)
is created.

Step E could create a violation of (1)′ or (2)′. For example, possibly at Step
E we define u−1(e) = f , where f is a new point, and possibly e = g−1u(e′), so
u−1g−1u(e′) is defined but α−1(e′) is not, violating (2)′. However, since f is
chosen new, at the end of Step E the element v(f) will not have been defined,
so vu−1g−1u(e′) is not defined. Thus, (2) holds, and likewise (1) holds.

Given the claim, define y to be the partial map α(u, v, w, x, y, z), and put
Y := Oy. We show that α(U1 × . . . × U6) is dense in Y . That is, we show
that for any finite extension y′ of y induced by an element of G, there are finite
extensions u′, v′, w′, x′, y′, z′ of u, v, w, x, y, z respectively such that α(u′, . . . , z′)
extends y′. We may suppose that y is the map ā 7→ b̄, and y′ is the map āē 7→ b̄f̄ ,
with ē disjoint from ā. Applying α(u, . . . , z), read from right to left, we may
put

ā0 := ā, ā1 := z(ā), ā2 := gz(ā), ā3 = z−1gz(ā), . . . , ā18 := b̄.
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Also put ē0 := ē, ē18 := f̄ . Making good extensions of z, u if necessary, we
may suppose ē1 := z(ē0), ē2 := gz(ē0), ē3 = gz(ē0), and also ē17 := u(ē18),
ē16 := g−1u(ē18), and ē15 = (g−1)u(ē18) are defined, but that Claim 1 above
still holds.

At this stage, we extend u, v, w, x, y, z to u∗, v∗, w∗, x∗, y∗, z∗, successively
choosing appropriate ē4, . . . , ē7, ē14, . . . , ē11 and putting z∗ := z, y∗ = y ∪
{(ē3, ē4), (ē6, ē5)} (where g(ē4) = ē5), x∗ = x ∪ {(ē6, ē7)}, and also u∗ := u,
v∗ = v∪{(ē15, ē14), (ē12, ē13)} (where g−1(ē14) = ē13), and w∗ = w∪{(ē12, ē11)}.
Here, if ā := (a1, . . . , an), b̄ = (b1, . . . , bn), then (ā, b̄) is a slight abuse of notation
for the partial map {(a1, b1), . . . , (an, bn)}. All such extensions are chosen to be
good. Now define ē8 := g(ē7) and ē10 := g−1(ē11). At this stage conditions (1)
and (2) of Claim 1 may be violated, but (3) and (4) hold. The fact that (3)
still holds uses part (5) of Claim 1. Indeed, ē12 is in dom(w∗) but was chosen
to have a certain type over dom(v), and as dom(v) ∩ (dom(x) \ dom(w)) = ∅,
no violation of (3) was forced, so as ē12 was chosen successively to realise good
extensions, there is no such violation. Likewise, ē6 is in dom(x∗), but realises
a certain type over dom(y), which is disjoint from dom(w) \ dom(x), so again
causes no violation of (3).

The remaining task is to choose ē9 so that x′ := x∗ ∪ (ē9, ē8) and w′ := w∗ ∪
(ē9, ē10) are both partial isomorphisms. We may suppose that w̄∗ = (ā9, ā10) ∪
(b̄9, b̄10), and x̄∗ = (ā9, ā8) ∪ (c̄9, c̄8), for some b̄9, b̄10, c̄9, c̄8. Observe that ē10

and b̄10 have no common entries, and ē8 and c̄8 have no common entries, by the
choice of ē11 and ē7 realising good extensions.

Claim 2. b̄9 ↓ā9 c̄9.
Proof of Claim 2. By (4), if d ∈ b̄9 ∩ c̄9 then d ∈ ā9. Therefore, the claim

follows from (3).

Given Claim 2, choose ē′9 so that x∗ ∪ (ē′9, ē8) is a partial isomorphism;
that is, ā9c̄9ē

′
9 ≡ ā8c̄8ē8. Then ā9ē9

′ ≡ ā10ē10, as ā9ē
′
9 ≡ ā8ē8 and ((g−1)z∗ ◦

(g−1)y∗ ◦ (x∗)−1g−1)(ā8ē8) = ā0ē0 ≡ ā18ē18 = (gu∗ ◦ gv∗ ◦ (w∗)−1g)(ā10ē10).
Thus, there is b̄′9 such that a9ē

′
9b̄
′
9 ≡ ā10ē10b̄10, and b̄′9 ↓ā9ē′9

c̄9. By the remark
before Claim 2, ē′9 does not meet c̄9 or b̄′9. Thus, b̄′9 ↓ā9 c̄9. Hence, by Claim
2, as b̄′9ā9 ≡ b̄10ā10 ≡ b̄9ā9, we have ā9b̄9c̄9 ≡ ā9b̄

′
9c̄9 so there is h ∈ G with

h(ā9b̄
′
9c̄9) = ā9b̄9c̄9. Put ē9 = h(ē′9). Then ā9b̄

′
9c̄9ē

′
9 ≡ ā9b̄9c̄9ē9. In particular,

ā9c̄9ē9 ≡ ā9c̄9ē
′
9 ≡ ā8c̄8ē8 and ā9b̄9ē9 ≡ ā9b̄

′
9ē
′
9 ≡ ā10b̄10ē10. Thus, ē9 has the

required properties. �

Remark 3.2 LetM be the universal countable homogeneous tournament. Since
any two vertices must be related by an arc, M is not a free homogeneous L-
structure. However, there is an asymmetric notion of free amalgamation: given
finite A,B1, B2 ⊂M write B1 ↓A B2 if B1 ∩B2 ⊆ A and for all b1 ∈ B1 \A and
b2 ∈ B2 \A we have b1 → b2.

With this notion of free amalgamation, the proof of Proposition 3.1 can
be shown to hold with very minor modifications. In the definition of a good
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extension, when extending u, v, w or their inverses, if finding an element d in
an appropriate orbit over a tuple c̄, we choose d so that d ↓c̄ A, where A is the
set of old points. However, when extending x, y, z or their inverses, we would
choose d so that A ↓c̄ d. This ensures that property (4) in Claim 1 holds, with
the adapted definition of ↓.

The following lemma encapsulates the idea we have taken from Lascar [16]
(where it is applied with G the automorphism group of a strongly minimal set, g
an ‘unbounded’ strong automorphism, and n = 2). Of course, in the statement
below, some occurrences of g could be replaced by g−1.

Lemma 3.3 Let G be a Polish group, let g ∈ G \ {1}, let n be a positive
integer, and define β : Gn → G by β(h1, . . . , hn) = gh1 . . . ghn . Suppose that
for any non-empty open U1, . . . , Un ⊆ G there is non-empty Y ⊂ G such that
β(U1 × . . .× Un) is dense in Y . Then any normal subgroup K of G containing
g is open.

Proof. As β is continuous, E = Im(β) is an analytic subset of G, so has
the Baire property. Furthermore, the group H generated by E has the Baire
property. For example this holds since H =

⋃
k≥1Xk, where Xk is the set of

elements of H expressible by a word of length k in E∪E−1: each Xk is analytic
so has the Baire property, and H is a countable union of such sets so has the
Baire property by Proposition 3.5.1 of [20].

If F is a closed nowhere-dense subset of G then F ′ := β−1(F ) is closed in
Gn. Also, F ′ is nowhere dense: for suppose that F ′ is dense in U1 × . . . × Un,
a non-empty open subset of Gn. Let Y be as in the lemma. Then β(F ′) = F is
dense in Y , a contradiction.

It follows that E := Im(α) is not meagre. For otherwise, E ⊆
⋃

k∈ω Fk where
the Fk are closed nowhere-dense. Then Gn = β−1(E) ⊆

⋃
k∈ω β

−1(Fk). Each
β−1(Fk) is closed nowhere-dense by the last paragraph, and this contradicts the
Baire Category Theorem.

Thus, H, the group generated by E, is not meagre. Hence, as H has the
Baire property, by Proposition 1.3 it is open. Thus, since any normal subgroup
of G containing g must contain H, the group K must also be open. �

Finally, we restate and prove our main theorem.

Theorem 3.4 The homogeneous structures of each of the following kinds have
simple automorphism group.

(i) Any transitive free homogeneous structure whose automorphism group is
not the full symmetric group.

(ii) The universal homogeneous tournament.
(iii) For any integer n ≥ 3, the homogeneous digraph which is universal

subject to omitting an independent set of size n.
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Parts (ii) and (iii) above also follow from [19]. The examples in (ii) arise in
Cherlin’s classification of homogeneous digraphs – see the family In in [4, p.74].

Proof. In each case, let M be the homogeneous structure under considera-
tion, and put G := Aut(M).

(i) Let N be a non-trivial normal subgroup of G. By Lemmas 2.10 and 2.11,
there is g ∈ N which is fixed point free and has no 2-cycles. Thus, we may
define the map α : G6 → G as in Proposition 3.1. By that proposition and
Lemma 3.3, N is open. Hence, by Lemma 2.8, N = G.

(ii) Let h ∈ G \ {1}. We first claim that h does not fix pointwise any infinite
definable set. Indeed, let X ⊂ M be infinite and ā-definable. Easily, there are
distinct b, c ∈ M outside ā such that h(b) = c. Then by the universal property
characterising the tournament M , there is d ∈ X with b → d and d → c; then
h(d) 6= d.

It follows from Lemma 2.11 that there is fixed-point-free g ∈ 〈h〉G with no
2-cycles (the latter is automatic for automorphisms of tournaments). Thus,
by Remark 3.2, the conclusion of Proposition 3.1 holds with respect to g, so
by Lemma 3.3, any normal subgroup of G containing h is open. The proof of
Lemma 2.8, working with the notion ↓ from Remark 3.2, easily shows that G
has no proper non-trivial open normal subgroups.

(iii) This is essentially as in (ii). Again for finite A,B,C ⊂M we put B ↓A C
if for any b ∈ B \A and c ∈ C \A we have b→ c, and argue as in Proposition 3.1
and Remark 3.2. �
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