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Abstract

In this paper we study (strongly) locally o-minimal structures. We
first give a characterization of the strong local o-minimality. We also
investigate locally o-minimal expansions of (R, +, <).

1 Introduction

Toffalori and Vozoris [8] introduced the notion of local o-minimality and that
of strong local o-minimality, by weakening the definition of o-minimality. A
typical example of locally o-minimal structure is (R, +, <, sin), which is not o-
minimal (see [8, Theorem 2.7]). They systematically investigated the notions,
and, among many others, showed that any weakly o-minimal structure is
locally o-minimal.

In this paper we first give a characterization of the strong local o-
minimality. This characterization shows that a strongly locally o-minimal
structure really resembles an o-minimal structure if it is seen locally. In [4],
[9], [7], several generalizations of the cell decomposition theorem were studied
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in the weakly o-minimal context. In this paper, using the characterization,
we show that the local version of cell decomposition holds for strongly locally
o-minimal structures.

We then introduce the notion of simple products of two structures. This
notion is already implicit in [8], and in the present paper we give an ex-
plicit definition. Using the method of taking simple products, a number of
structures are shown to be (strongly) locally o-minimal. For example, in
Section 4, we show that any structure of the form (R, +, <, P ) with P ⊂ Z
is locally o-minimal. Conversely, we also show that any locally o-minimal
structure expanding (R, +, <, Z) can be written as a simple product of Z
and an o-minimal structure.

We only assume the reader’s familiarity with a few basic model theo-
retic notions. In Section 2, we recall some definitions and results on (local)
o-minimality. The notion of local structures are introduced here. For a struc-
ture M and its subset A, the local structure Adef is defined roughly as the
set A with M -definable subsets. Adef is an important tool in our characteri-
zation.

In Section 3, we give a characterization of strong local o-minimality, us-
ing local structures (see Theorem 9). The local monotonicity theorem and
the local cell decomposition theorem (for strongly locally o-minimal struc-
tures) are easily obtained from our characterization. In this section, we also
introduce the notion of uniform local o-minimality, and study the relation
between this notion and (strong) local o-minimality. Several examples will
be given.

Section 4 is the section for simple products. Let M and N be two struc-
tures. If the product M×N is simple in our sense then every definable subset
of M × N has the form A × B, where A ⊂ M is M -definable and B ⊂ N
is N -definable. Simple products play important roles in constructing locally
o-minimal structures (see Theorem 18). As an application, we can show the
following:

• Let R∗ be a nonstandard real closed field elementarily extending R.
Then (R∗, +, <, P ) is locally o-minimal, where P is a unary predicate
whose interpretation is R.

In Section 5, we concentrate on expansions of the additive structure (R, +, <).
For an expansion M of (R, +, ·, <) we easily have that M is locally o-minimal
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if and only if M is o-minimal. So the restriction to additive structures seems
natural. The main result (Theorem 24) of this section is the following:

• Let M be a locally o-minimal expansion of (R, +, <, Z). Then M is
expressed as a simple product of Z and I = [0, 1)def .

General references on o-minimal structures are [1], [2], [5], see also [6].

2 Preliminaries

Our notations are standard. L denotes a language. M , N ,... are used to
denote L-structures. The universe of M is also denoted by M . A, B,...
are used to denote subsets of some structures. We use x, y, ... for variables.
Formulas are denoted by φ, ψ, .... We simply say that A is definable in
M (or M -definable) if it is definable in M using parameters from M . So,
if A ⊂ Mn is definable, then there is an L-formula φ(x1, ..., xn, y1, ..., ym)
and parameters b1, ..., bm ∈ M such that A = φ(x1, ..., xn, b1, ..., bm)M (the
set of all tuples satisfying φ(x1, ..., xn, b1, ..., bm)). A family F , consisting
of M -definable sets, will be called uniformly definable if F has the form
F = {φ(x1, ..., xn, b1, ..., bm)M : b1, ..., bm ∈ M}.

Definition 1 Let M be an L-structure and A a subset of M .

1. For n ∈ ω, Defn(A,M) is the set of all subsets of Mn of the form
An ∩ D, where D is an M -definable subset of Mn. Def(A,M) =∪

n∈ω Defn(A,M).

2. We simply write Def(M) for Def(M, M) (i.e. the set of all M -
definable sets).

Definition 2 Let A ⊂ M . We prepare an n-ary predicate symbol PX for
each X ∈ Defn(A,M), and let LA be the language {PX : X ∈ Def(A,M)}.
The local structure Adef of A is the following LA-structure:

• The universe of Adef is A;

• The interpretation of PX in Adef is X, for all X ∈ Def(A, M).

Remark 3 In general, Def(Adef) and Def(A,M) are not equal. However,
if A is a definable subset of M , then we have Def(Adef) = Def(A,M).
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From now on, we assume that M has the form (M, <, ...) and that <M is
a dense linear ordering, unless otherwise stated. An open interval of M is a
set of the form (a, b), where a ∈ M ∪ {−∞} and b ∈ M ∪ {∞}. Recall that
M is said to be o-minimal if every definable subset of M is a finite union of
points and open intervals in M . The notion of local o-minimality and that
of strongly local o-minimality were defined in [8]. The ordered pair of a and
b is usually denoted by ⟨a, b⟩, avoiding confusion of pairs and intervals.

Definition 4 1. M is called locally o-minimal if for any definable set
A ⊂ M and a ∈ M there is an open interval I ∋ a such that I ∩A is a
finite union of intervals and points.

2. M is strongly locally o-minimal, if for any a ∈ M there is an open
interval I ∋ a such that whenever A is a definable subset of M then
I ∩ A is a finite union of intervals and points.

3. M is uniformly locally o-minimal if for any φ(x, y) ∈ L and a ∈ M
there is an open interval I ∋ a such that I ∩ φ(M, b) is a finite union
of intervals and points for any b ∈ M .

The following facts are proved in [8, Corollaries 2.5 and 3.9].

Fact 5 1. Local o-minimality is preserved under elementary equivalence.

2. Strong local o-minimality is not preserved under elementary equiva-
lence.

Several examples are given below.

Example 6 Let L = {<} ∪ {Pi : i ∈ ω}, where Pi is an unary predicate.
Let M = (Q, <M , PM

0 , PM
1 , ...) be the structure defined by PM

i = {a ∈ M :
a < 2−i

√
2}. Then M is uniformly locally o-minimal, but it is not strongly

locally o-minimal.

If we assume the saturation, we can show the following:

Proposition 7 Let M be a uniformly locally o-minimal structure. Suppose
that M is ω-saturated. Then M is strongly locally o-minimal.

4



Proof: Let a ∈ M . Choose an L-formula φ(x, y) arbitrarily. By the
uniformity of M , there is an open interval I ∋ a and numbers nb ∈ ω (b ∈ M)
such that I ∩ φ(M, b) is a union of nb many intervals and points. We may
assume that each nb is chosen minimum. By the saturation of M , nb’s are
uniformly bounded, say by nφ ∈ ω. (Otherwise, by saturation, there would
be b ∈ M such that I ∩ φ(M, b) cannot be expressed as a finite union of
intervals and points.) Let θφ(u, v) be the formula saying that for any z the
set of x ∈ (u, v) with φ(x, z) is a union of nφ many intervals and points.
Then the following set

Γ(u, v) = {u < a < v} ∪ {θφ(u, v) : φ ∈ L}

is finitely satisfiable in M . So, by saturation, there are c, d ∈ M realizing the
set Γ. The open interval I = (c, d) witnesses the strong local o-minimality.

Example 8 We show that there is an ω-saturated locally o-minimal struc-
ture that is not uniformly locally o-minimal. For each non-negative q ∈ Q,
we prepare a binary predicate Pq(x, y). L = {<,Pq}q∈Q+ is our language.
We define an L-structure M = (Q, <M , PM) by the following:

• <M is the standard ordering on Q;

• Pq(a, b) ⇐⇒ a +
√

2 · q ≤ b (in R).

T = ThL(M) admits elimination of quantifiers. For showing this, let M∗ be
an ω-saturated model of T . For r ∈ R+ ∪ {∞}, let Γr(x, y) be the following
set of quantifier-free formulas.

{x < y} ∪ {Pq(x, y) : q ∈ Q+,
√

2q ≤ r} ∪ {¬Pq(x, y) : q ∈ Q+, r <
√

2q}.

Intuitively speaking, Γr(x, y) asserts that the distance of two points x < y is
r. Let A = {a1 < · · · < an} and B = {b1 < · · · < bn} be two finite subsets of
M∗. We will write A ≃ B if we have

M∗ |= Γr(ai, aj) ⇐⇒ M∗ |= Γr(bi, bj),

for all i, j ≤ n and r ∈ R+ ∪ {∞}. Let c ∈ M∗ be any element. We want to
find an element d ∈ M∗ with Ac ≃ Bd. To simplify our argument, we treat
the case when c is bigger than A. Choose r1, ..., rn such that Γri

(ai, c) holds
(i = 1, ..., n). Let us consider the following set ∆(x):∪

1≤i≤n

Γri
(bi, x).
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Since M∗ is ω-saturated, we can find d ∈ M∗ such that Γrn(bn, d). Then this
d automatically satisfies ∆(x). Now we have Ac ≃ Bd. The above argument
shows that T admits elimination of quantifiers. From the elimination of
quantifiers, we see that M is locally o-minimal.

Now we show that M is not uniformly locally o-minimal. Let (b, c) be a
small interval containing a. Notice that the following sentence is a member
of T :

∀x∀x′(x < x′ → ∃y(P1(x, y) ∧ ¬P1(x
′, y)).

So we can choose q ∈ M∗ such that P1(b, q) ∧ ¬P1(c, q). Then the set X
defined by P1(x, q) divides (b, c) into two convexes C1 and C2. Neither C1

nor C2 are intervals.

3 Strong local o-minimality

The following theorem is easy but important.

Theorem 9 The following two conditions are equivalent:

1. M is strongly locally o-minimal.

2. For any finite subset {a1, ..., an} of M , there are left-open and right-
closed intervals Ii with ai ∈ (Ii)

◦ such that, by putting I =
∪

1≤i≤n Ii,
Idef is o-minimal. (I◦ is the interior of I.)

Proof: 1 → 2: Choose any a1, ..., an ∈ M . Then, by the strong local
o-minimality, there are intervals Ii = (bi, ci] with ai ∈ (Ii)

◦ (i = 1, ..., n) such
that, for any definable set X ⊂ M , X ∩ Ii is a finite union of points and
open intervals in M (i = 1, ..., n). We may assume that a1 < · · · < an and
I1 < · · · < In.

Let I =
∪

Ii and choose any Y ∈ Def 1(Idef). Then Y is a definable
subset of M and Y = Y ∩ I =

∪
i(Y ∩ Ii). By the item 1, there are dik’s and

eik’s such that

Y ∩ Ii = (di1, ei1) ∪ · · · ∪ (dimi
, eimi

) ∪ {finite points}.

Hence Y is a finite union of convex sets. Using the fact that <M is dense,
we may assume that di2, ..., dimi

, ei1, ..., eimi
∈ Ii. The point di1 need not to

be an element in Ii. However, even if di1 /∈ Ii, in I, Y ∩ Ii can be written as

Y ∩ Ii = (−∞, ei1) ∪ · · · ∪ (dimi
, eimi

) ∪ {finite points} (if i = 1),
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Y ∩ Ii = (ci−1, ei1) ∪ · · · ∪ (dimi
, eimi

) ∪ {finite points} (if i > 1).

So, in Idef , Y is expressed as a finite union of intervals and points in I.

2 → 1: Assume 2. Let {a} be a singleton set in M . Choose an interval
I ′ = (b, c] witnessing the condition in 2. Notice that I = (b, c) also satisfies
the required condition in 2, i.e., Idef is o-minimal. Let X ∈ Def 1(M). Then
we have X ∩ I ∈ Def 1(Idef). By the o-minimality, we have

X ∩ I = I1 ∪ · · · ∪ Im ∪ {finite points},

for some open intervals in the sense of Idef . Notice that each Ii is an interval
in M . So X ∩ I is a finite union of intervals and points in M . Thus we are
done.

The following definition is taken from [8].

Definition 10 We say that a definable unary (possibly partial) function f
has local monotonicity if, for every point a ∈ M , there exists some open
interval I containing a such that domf ∩ I can be broken up into a finite
union of points and open intervals, on each of which f is constant, strictly
increasing, or strictly decreasing. We say that M has local monotonicity if
every definable unary function f of M has local monotonicity.

In [8], it was shown that a strongly locally o-minimal structure satisfies
local monotonicity. In o-minimal case, we can add the local continuity in
the monotonicity theorem. As we will see later, this is not the case of local
o-minimality. However, by Theorem 9, we can prove the following:

Proposition 11 Let M be strongly locally o-minimal. Let D be a definable
set of M and f : D → M a definable function. Then, for any a ∈ D, there
are open intervals I ⊂ M containing a and J ⊂ M containing f(a) such that,
by putting f ∗ = f ∩ (I × J), the domain of f ∗ can be broken up into a finite
union of points and open intervals, on each of which f ∗ is constant, strictly
increasing and continuous, or strictly decreasing and continuous.

The following example shows that the replacement of f by f ∗ in the above
proposition is necessary.

Example 12 Let M be any o-minimal structure and let a ∈ M . Let f :
{a} × M → M2 be the function defined by ⟨a, b⟩ 7→ ⟨b, a⟩. Then N =
(M2, <lex, f) is an M -definable structure (in eq-sense), where <lex is the
lexicographic ordering on M2. So, N is strongly locally o-minimal. However,
f is discontinuous at any point.

7



As in the o-minimal setting, we can define cells and cell decompositions of
definable sets in the locally o-minimal setting, see [3]. We have the following
proposition by Theorem 9:

Proposition 13 Assume that M = (M, <, ...) is a strongly locally o-
minimal structure. Let a ∈ Mn. Then, the following results hold.

1. Let X1, ..., Xm be definable subsets of Mn. Then there is an open
box B ∋ a and a finite decomposition P of B into cells partitioning
X1 ∩ B, ..., Xm ∩ B.

2. Let X ⊂ Mn be a definable set and f : X → M a definable function.
Then there is an open box B ∋ ⟨a, f(a)⟩ such that for the restriction
f ∗ = f ∩B, the domain of f ∗ admits a finite decomposition P into cells
so that for any Y ∈ P, f∗|Y is continuous.

3. Let X ⊂ Mn+1 be a definable set and b ∈ M . Suppose that Xc = {d ∈
M : ⟨c, d⟩ ∈ X} is finite for any c ∈ Mn. Then, there is an open box
B ∋ a, an open interval I ∋ b and K ∈ ω such that |Xc ∩ I| ≤ K for
all c ∈ X ∩ B.

4 Simple Products

Let L1, L2 and L be languages. For simplicity, we assume that these lan-
guages are relational. Under this assumption, a binary function will be
treated as a ternary relation. Let Mi be an Li-structure (i = 1, 2).

Definition 14 1. Let A ⊂ M1
n and B ⊂ M2

n. Then A ∗ B is the subset
of Nn, N = M1 × M2, defined by:

A∗B := {⟨⟨a1, b1⟩, ..., ⟨an, bn⟩⟩ ∈ Nn : ⟨a1, ..., an⟩ ∈ A , ⟨b1, ..., bn⟩ ∈ B}

2. Let N be an L-structure whose universe is the product M1×M2. We say
that N is a simple product of M1 and M2 if for any P (x1, ..., xn) ∈ L
there are M1-definable sets A1, ..., Ak ⊂ M1

n and M2-definable sets
B1, ..., Bl ⊂ M2

n such that PN is a boolean combination of the following
sets

• Ai ∗ M2
n (i = 1, ..., k),
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• M1
n ∗ Bi (i = 1, ..., l).

Many important structures can be expressed using simple products.

Example 15 1. Let M1 and M2 be two ordered sets. The lexicographic
order <N on the product N = M1 × M2 can be expressed as

<N = [(<M1) ∗ M2] ∪ [(( =M1) ∗ M2) ∩ (M1 ∗ (<M2))].

So (N,<N) is a simple product.

2. Let M1 and M2 be two groups. The product group of M1 and M2 is a
simple product.

3. Let I = ([0, 1), <, +) be the additive group of reals modulo 1. Let
N = Z × I be the simple product defined by:

+N = (P ∗ Q) ∪ (P ′ ∗ Q′),

where P = {⟨m,n, k⟩ ∈ Z3 : m + n = k}, P ′ = {⟨m,n, k⟩ ∈ Z3 :
m + n + 1 = k}, Q = {⟨a, b, c⟩ ∈ [0, 1)3 : a, b < a +I b = c} and
Q′ = {⟨a, b, c⟩ ∈ [0, 1)3 : c = a +I b < a, b}. Then N is isomorphic to
R = (R, +, <) by the mapping ⟨n, a⟩ 7→ n + a.

Lemma 16 Suppose that N = M1 × M2 is a simple product. Let D be an
N -definable subset of Nn. Then there are M1-definable sets A1, ..., Ak ⊂ M1

n

and M2-definable sets B1, ..., Bl ⊂ M2
n such that D is a boolean combination

of Ai ∗ M2
n (i = 1, ..., k) and M1

n ∗ Bi (i = 1, ..., k).

Proof: For simplicity, we assume D is ∅-definable. Choose an L-formula
φ(x1, ..., xn) defining D. If φ is an atomic formula, the lemma follows from the
definition of simpleness. Our proof proceeds by induction on the complexity
of φ. The case when φ has the form ψ ∧ χ, ψ ∨ χ, ¬ψ or ψ → χ is clear. So
we assume that φ has the form ∃yψ. Further, for simplicity of the notation,
we assume ψ = ψ(x, y), where x and y are single variables. By the induction
hypothesis, ψN has the form∪

1≤i≤k

(Ai ∗ M2
2) ∩ (M1

2 ∗ Bi),
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where all Ai ⊂ M1
2 and all Bi ⊂ M2

2 are definable sets. Then φN is the
following set.∪

⟨a,b⟩∈M1×M2

∪
1≤i≤k

{⟨a1, b1⟩ : ⟨⟨a1, b1⟩, ⟨a, b⟩⟩ ∈ (Ai ∗ M2
2) ∩ (M1

2 ∗ Bi)}.

This set is equal to∪
1≤i≤k

∪
⟨a,b⟩∈M1×M2

{⟨a1, b1⟩ : ⟨a1, a⟩ ∈ Ai, ⟨b1, b⟩ ∈ Bi}.

Finally, notice that the set
∪

⟨a,b⟩∈M1×M2
{⟨a1, b1⟩ : ⟨a1, a⟩ ∈ Ai, ⟨b1, b⟩ ∈ Bi} is

equal to {⟨a1, b1⟩ : a1 ∈ proj(Ai), b1 ∈ proj(Bi)}, where proj is the projection
map to the first coordinate. Since proj(Ai) and proj(Bi) are definable sets,
the induction step is complete.

Lemma 17 Let N be a simple product of M1 and M2. For every a ∈ M1

and every definable set D ⊂ N , the section Da = {b ∈ M2 : ⟨a, b⟩ ∈ D} is
definable in M2.

Proof: We can find definable sets Ai ⊂ M1 and Bi ⊂ M2 such that
D =

∪
1≤i≤k(Ai ∗ M2

n) ∩ (M1
n ∗ Bi). Then Da can be written as

Da =
∪

{Bi : a ∈ Ai}.

So Da is a definable subset of M2.

Theorem 18 For i = 1, 2, let Mi = (Mi, <
Mi , ...) be an expansion of a linear

order. Let N = (N, <N , ...) be a simple product of M1 and M2, where <N is
given by the lexicographic ordering.

1. Suppose that M2 is a (strongly) locally o-minimal structure without
endpoints. Then N is (strongly) locally o-minimal.

2. Suppose that M2 is an o-minimal structure possibly with endpoints.
Suppose also that M1 is a discrete order. Then N is strongly locally
o-minimal.
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Proof: We prove 2, since 1 can be proven similarly. We assume that M1

has the form (−∞,m], where m is the maximum element. Let ⟨a, b⟩ ∈ N be
any point. First assume that b ∈ M2 is not an endpoint. Let I be an open
M2-interval with I ∋ b. Then I ′ = {a}× I is an N -interval containing ⟨a, b⟩.
Let D ⊂ N be any definable set. Then D ∩ I ′ = {a} × (Da ∩ I). By Lemma
17, Da is a definable subset of M2. So Da∩I is a finite union of intervals and
points. Hence D ∩ I ′ is a finite union of intervals and points in the sense of
N . This shows the o-minimality of I ′

def , and hence we have the strong local
o-minimality of N .

Then we treat the case that b is the maximum element m. Choose any
c ∈ M2 r {b} and let I = ({a} × (c, b])∪ ({a + 1} × (−∞, c)), where a + 1 is
the successor of a in the discrete structure M1. (If a + 1 does not exist, we
can put I = {a}× (c, b].) As in the previous case, Idef is o-minimal, hence N
is strongly locally o-minimal.

Example 19 Let A ⊂ Z and P a new unary predicate symbol. Then the
structure (R, +, <, P R) with P R = A is locally o-minimal.
Proof: Let I = ([0, 1), +, <) be the additive group of reals modulo 1. Let
P0 be a unary predicate symbol and P0

Z = A. There is a simple product
N = Z × I such that N ∼= (R, +, <). We give a P -structure on N by

PN = P0
Z ∗ {0}.

Then (N, PN) is a simple product, hence it is locally o-minimal by Theorem
18. It is easy to see that (N, PN) ∼= (R, +, <, A).

Example 20 Let (R∗, +, ·, <, Z∗) be a saturated elementary extension of
(R, +, ·, <, Z). Let P be a new unary predicate symbol such that P R∗

= Q.
Then (R∗, +, <, P R∗

) is locally o-minimal. To see this, using the saturation,
choose a positive infinitesimal h ∈ R∗ such that hZ∗ = {hn | n ∈ Z∗} ⊃ Q.
Then, for a similar reason as in the previous example, (R∗, +, <, Q) is given
by a simple product of Z∗ and [0, h)∗.

Example 21 Let R∗ be a nonstandard real closed field extending R. Then
(R∗, +, <, P R∗

) is locally o-minimal, where P R∗
= R. This is a corollary of

the following more general statement:

Let (G, 0, +,−, <) be a divisible ordered abelian group and G0 ⊂ G a
subgroup. Suppose there is an h ∈ G such that nh < |a| for all n ∈ N and
a ∈ G0\{0}. Then (G, 0, <, +,−, PG) is locally o-minimal, where PG = G0.
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Proof: First notice that every ordered divisible abelian group with the
language L = {0, +,−, <} has quantifier elimination. Let H = {a ∈ G | ∃n ∈
N, |a| < nh}. Then H is also a divisible ordered abelian group. So H is an o-
minimal structure with the language L. Let G′ ⊃ G0 be a maximal divisible
subgroup of G such that G′ ∩ H = {0}. Then G splits as the direct sum of
G′ and H. It is easy to check that (G, 0, +,−, <, G0) is given by a simple
product of G′ and H.

5 Locally o-minimal structures on R
As is shown in the last section, the structure (R, +, <, Z) is locally o-minimal.
On the other hand, for an expansion M of (R, +, ·, <), M is locally o-minimal
if and only if it is o-minimal. So, in the study of local o-minimality, it may
be important to consider structures without multiplication. In this section
we show that any locally o-minimal expansion R of (R, +, <, Z) is given by
a simple product of Z and I = [0, 1).

We start with some basic remarks on local o-minimality.

Remark 22 1. For any a ∈ R, the structure M = (R, +, <, aZ) is locally
o-minimal. If a ∈ R is an irrational number, then the structure N =
(R, +, <, Z, aZ) is not locally o-minimal, since 0 is a limit of the set
{m + x : m ∈ Z, x ∈ aZ}.

2. Let M be locally o-minimal. Let K ⊂ M be a (nonempty) compact
definable subset of M . Then Kdef is an o-minimal structure. (K is
possibly not dense, but it is a finite union of dense subsets.)

Proof: Let A be a definable subset of Kdef . First notice that A is
definable in M also. We show that A is a finite union of intervals (in
the sense of Kdef) and points. Let a ∈ Kdef . By the local o-minimality,
we can choose an open interval I ⊂ M with a ∈ I such that K ∩ I has
one of the following form:

(a) (b, c), (b, c], [b, c),

(b) {a},

where b < c and b ≤ a ≤ c. But, by the closedness of K, the endpoints
b and c must belong to K. So K ∩ I is an interval (or a point) in Kdef .
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Since other cases can be treated similarly, we assume K ∩ I = [b, c] and
b < a < c. Now we consider the set K∩I∩A. By the local o-minimality
of M , there are b1, c1 ∈ M such that K ∩ (b1, c1) ∩ A is a finite union
of intervals and points. We may assume that b < b1 < a < c1 < c.
So, by letting Ia = (b1, c1), K ∩ Ia ∩ A is a finite union of intervals
in K and points in K. Since

∪
a∈K Ia is an open covering of K, by

compactness of K, there is a finite set F ⊂ K such that
∪

a∈F Ia ⊃ K.
Then K∩A =

∪
a∈F (K∩Ia∩A) is a finite union of intervals and points

in the sense of Kdef .

Lemma 23 Let M be a locally o-minimal expansion of (R, +, <) and let
I = [0, 1). Suppose that a family X ⊂ Defn(I,M) is at most countable. If
X is uniformly M-definable, then it is finite.

Proof: We use the fact that any compact subset of M is o-minimal (see
Remark 22). So we know that Idef is an o-minimal structure.

We proceed by induction on n. First let n = 1 and let X be uniformly
definable. By the o-minimality of Idef , for each X ∈ X , δ(X) = cl(X) − X◦

is finite. So ∆ =
∪

X∈X δ(X) is at most countable. Moreover, by the uniform
M -definability, ∆ r {1} is an Idef-definable set. Again, by the o-minimality
of Idef , ∆ must be finite. From this, we see that X is a finite set.

Now we consider the case when X ⊂ Mn+1 is a uniformly defin-
able countable family. For X ∈ X and a ∈ In, let Xa be the section
{b ∈ I : ⟨a, b⟩ ∈ X} and let δ(Xa) = cl(Xa) − (Xa)

◦. As in the case n = 1,
the set ∆a =

∪
X∈X δ(Xa) is a finite set. So {∆a : a ∈ In} is a uniformly Idef-

definable family of finite sets in I. By the uniform finiteness (o-minimality
of Idef), there is a number k such that, for any a ∈ In, |∆a| ≤ k.

We enumerate ∆a∪{0, 1} as {d0(a), d1(a), ..., dk+1(a)} in increasing order.
For F, G ⊂ {0, .., k+1}, let Ja,F,G be the union of all singletons {di(a)} (i ∈ F )
and open intervals (di(a), di+1(a)) (i ∈ G). Then, for any X ∈ X and a ∈ In,
we can find F,G with Xa = Ja,F,G. Using this fact, we define definable sets

YX,F,G = {a ∈ In : Xa = Ja,F,G},

and we put Y = {YX,F,G}X,F,G. There are only finitely many ⟨F, G⟩’s. So
the family Y (consisting of subsets of In) is a uniformly M -definable family.
From this, using the induction hypothesis, we know that Y is a finite family.
Now notice that if YX,F,G = YX′,F,G for all F,G, then X = X ′. So we know
that X is a finite family.
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Theorem 24 Let M be a locally o-minimal expansion of (R, +, <, Z). Then
M is expressed as a simple product of Z and I = [0, 1)def .

Proof: Let L be the language of M . Let P be an n-ary predicate symbol
in L. For each η = ⟨η(1), ..., η(n)⟩ ∈ Zn, we define

Dη = {⟨d1, ..., dn⟩ ∈ In : ⟨η(1) + d1, ..., η(n) + dn⟩ ∈ PM}.

Then, using the predicate for Z, we can show that X = {Dη}η is a uniformly
M -definable family. Since X is at most countable, it must be finite, by
Lemma 23. So we can enumerate X as X0, ..., Xk. For i = 0, ..., k, let
Ai = {η ∈ Zn : Dη = Xi}. Now we regard Z as a {Ai : i ≤ k}-structure. We
give a simple structure on N = Z × I by

PN = A0 ∗ X0 ∪ · · · ∪ Ak ∗ Xk.

Now it is sufficient to show the following.

Claim A The natural mapping ⟨m, a⟩ 7→ m + a gives an isomorphism of N
and M .

Suppose that ⟨⟨m1, a1⟩, ..., ⟨mn, an⟩⟩ is a member of PN . Then, by the defi-
nition of PN , there is i ≤ k such that

⟨⟨m1, a1⟩, ..., ⟨mn, an⟩⟩ ∈ Ai ∗ Xi.

So we have (1) ⟨m1, ..., mn⟩ ∈ Ai and (2) ⟨a1, ..., an⟩ ∈ Xi. From (1) and
the definition of Ai, we have D⟨m1,...,mn⟩ = Xi. From this and (2), we have
⟨a1, ..., an⟩ ∈ D⟨m1,...,mn⟩. Hence ⟨a1 + m1, ..., an + mn⟩ ∈ PM . The other
direction can be shown similarly.

Theorem 24 shows that, if the given locally o-minimal expansion of (R, <
, +) has Z as a definable set, then it can be expressed as a simple product.
The next proposition shows that there is a locally o-minimal expansion M
having the properties (1) M has an infinite discrete definable set and (2) M
cannot be expressed as a simple product.

Proposition 25 Let E = {en : n ∈ ω}, where e is the base of the natural
logarithm. Then the structure (R, +, <, E) is locally o-minimal.
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Proof: Let (R∗, +, <, E∗) be a proper elementary extension of (R, +, <,E)
with infinitesimals. Let µ be the monad of 0, i.e. µ = {a ∈ R∗ : |a| < r (∀r ∈
R)}. Let D∗ ⊂ R∗ be the smallest divisible group containing E∗.

Claim A D∗ ∩ µ = {0}.

Assume otherwise. We consider R and R∗ as Q-modules. Then there is an
infinitesimal ε ∈ R∗r{0} and finitely many rationals qi ∈ Q and E∗-elements
α1 < · · · < αn such that ε = q1α1 + · · · + qnαn. By (R, +, <, E) ≺ (R∗, +, <
, E∗), for any positive r ∈ R, there are E-elements a1 < · · · < an such that
0 ̸= |q1a1 + · · · + qnan| < r. We show that this is impossible. For fixed
s1, ..., sn ∈ Q, let As1...sn = {|s1e

m1 + · · · + sne
mn| : m1 < · · · < mn ∈ ω}.

Then, by induction on n, we can show that for any s1, ..., sn ∈ Q and positive
r ∈ R, there are only finitely many elements a ∈ As1...sn with a ≤ r. (End of
Proof of Claim A)

Using Claim A, choose a maximal divisible group X ⊂ R∗ extending D∗

such that X ∩µ = {0}. Then we have R∗ = X ⊕µ, and X is a representative
set of R∗/µ. X has a natural induced order. On M = X × µ, we can define
naturally +M and <M so that M becomes a simple product. We also define
EM by

⟨a, b⟩ ∈ EM ⇐⇒ a ∈ E∗ and b = 0.

Then the expanded structure M = (M, +M , <M , EM) is still simple. So M
is a locally o-minimal structure, by Theorem 18.

Claim B Let σ : R∗ → M be the natural mapping defined by α 7→ ⟨a, b⟩,
where a ∈ X and b ∈ µ are (unique) elements with α = a + b. Then σ is an
isomorphism.

We only need to check σ(E∗) = EM . Let α ∈ E∗. Then α ∈ X and
σ(α) = (α, 0). So σ(α) belongs to EM . The other inclusion follows similarly.
(End of Proof of Claim B)

By Claim B, we see that (R∗, +, <, E∗) is locally o-minimal. Since the
local o-minimality is preserved by elementary equivalence (see Fact 5), we
have the local o-minimality of (R, +, <,E).

Remark 26 Let us say that E ⊂ R is a good set if for all n ∈ ω and for
all q1, ..., qn ∈ Q r {0}, the set {|q1a1 + · · · + qnan| : ai ∈ E} has a positive
infimum. Then, for any good E, we can prove the local o-minimality of
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(R, +, <, E), exactly by the same argument as above. Moreover, if P0, P1, ...
are relations on E, then the structure (R, +, <, E, P0, P1, ...) is also locally
o-minimal.
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