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Abstract

In this paper we study (strongly) locally o-minimal structures. We
first give a characterization of the strong local o-minimality. We also
investigate locally o-minimal expansions of (R, +, <).

1 Introduction

Toffalori and Vozoris [8] introduced the notion of local o-minimality and that
of strong local o-minimality, by weakening the definition of o-minimality. A
typical example of locally o-minimal structure is (R, +, <, sin), which is not o-
minimal (see [8, Theorem 2.7]). They systematically investigated the notions,
and, among many others, showed that any weakly o-minimal structure is
locally o-minimal.

In this paper we first give a characterization of the strong local o-
minimality. This characterization shows that a strongly locally o-minimal
structure really resembles an o-minimal structure if it is seen locally. In [4],
9], [7], several generalizations of the cell decomposition theorem were studied
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in the weakly o-minimal context. In this paper, using the characterization,
we show that the local version of cell decomposition holds for strongly locally
o-minimal structures.

We then introduce the notion of simple products of two structures. This
notion is already implicit in [8], and in the present paper we give an ex-
plicit definition. Using the method of taking simple products, a number of
structures are shown to be (strongly) locally o-minimal. For example, in
Section 4, we show that any structure of the form (R, +, <, P) with P C Z
is locally o-minimal. Conversely, we also show that any locally o-minimal
structure expanding (R, +,<,Z) can be written as a simple product of Z
and an o-minimal structure.

We only assume the reader’s familiarity with a few basic model theo-
retic notions. In Section 2, we recall some definitions and results on (local)
o-minimality. The notion of local structures are introduced here. For a struc-
ture M and its subset A, the local structure Aqe is defined roughly as the
set A with M-definable subsets. Agqef is an important tool in our characteri-
zation.

In Section 3, we give a characterization of strong local o-minimality, us-
ing local structures (see Theorem 9). The local monotonicity theorem and
the local cell decomposition theorem (for strongly locally o-minimal struc-
tures) are easily obtained from our characterization. In this section, we also
introduce the notion of uniform local o-minimality, and study the relation
between this notion and (strong) local o-minimality. Several examples will
be given.

Section 4 is the section for simple products. Let M and N be two struc-
tures. If the product M x N is simple in our sense then every definable subset
of M x N has the form A x B, where A C M is M-definable and B C N
is N-definable. Simple products play important roles in constructing locally
o-minimal structures (see Theorem 18). As an application, we can show the
following:

e Let R* be a nonstandard real closed field elementarily extending R.
Then (R* 4+, <, P) is locally o-minimal, where P is a unary predicate
whose interpretation is R.

In Section 5, we concentrate on expansions of the additive structure (R, 4, <).
For an expansion M of (R, +, -, <) we easily have that M is locally o-minimal



if and only if M is o-minimal. So the restriction to additive structures seems
natural. The main result (Theorem 24) of this section is the following:

e Let M be a locally o-minimal expansion of (R, +,<,Z). Then M is
expressed as a simple product of Z and I = [0, 1)gef-

General references on o-minimal structures are [1], [2], [5], see also [6].

2 Preliminaries

Our notations are standard. L denotes a language. M, N,... are used to
denote L-structures. The universe of M is also denoted by M. A, B,...
are used to denote subsets of some structures. We use x,, ... for variables.
Formulas are denoted by ¢, 9,.... We simply say that A is definable in
M (or M-definable) if it is definable in M using parameters from M. So,
if A C M" is definable, then there is an L-formula (21, ..., Zp, Y1, -, Ym)
and parameters by, ...,b,, € M such that A = p(xy,..., 2, by, ..., bp)M (the
set of all tuples satisfying ¢(x1, ..., x,,01,...,b,)). A family F, consisting
of M-definable sets, will be called uniformly definable if F has the form
F={p(x1, s Tpy b1y ooy b)) 2 by, o by € M}

Definition 1 Let M be an L-structure and A a subset of M.

1. For n € w, Def"(A, M) is the set of all subsets of M™ of the form
A" N D, where D is an M-definable subset of M". Def(A,M) =

Uneo Def™ (A, M).

2. We simply write Def(M) for Def(M,M) (i.e. the set of all M-
definable sets).

Definition 2 Let A C M. We prepare an n-ary predicate symbol Px for
each X € Def"(A, M), and let L4 be the language {Px : X € Def(A, M)}.
The local structure Ages of A is the following L 4-structure:

e The universe of Ager is A;

e The interpretation of Py in Age is X, for all X € Def(A, M).

Remark 3 In general, Def(Aqgef) and Def(A, M) are not equal. However,
if A is a definable subset of M, then we have Def(Aqgef) = Def(A, M).
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From now on, we assume that M has the form (M, <, ...) and that <™ is
a dense linear ordering, unless otherwise stated. An open interval of M is a
set of the form (a,b), where a € M U{—oo} and b € M U {oo}. Recall that
M is said to be o-minimal if every definable subset of M is a finite union of
points and open intervals in M. The notion of local o-minimality and that
of strongly local o-minimality were defined in [8]. The ordered pair of a and
b is usually denoted by (a, b), avoiding confusion of pairs and intervals.

Definition 4 1. M is called locally o-minimal if for any definable set
A C M and a € M there is an open interval I 5 a such that IN A is a
finite union of intervals and points.

2. M is strongly locally o-minimal, if for any a € M there is an open
interval I 5 a such that whenever A is a definable subset of M then
I N A is a finite union of intervals and points.

3. M is uniformly locally o-minimal if for any ¢(z,y) € L and a € M
there is an open interval I 5 a such that I N p(M,b) is a finite union
of intervals and points for any b € M.

The following facts are proved in [8, Corollaries 2.5 and 3.9].

Fact 5 1. Local o-minimality s preserved under elementary equivalence.

2. Strong local o-minimality is not preserved under elementary equiva-
lence.

Several examples are given below.

Example 6 Let L = {<} U{P, : i € w}, where P; is an unary predicate.
Let M = (Q,<M PM PM ..) be the structure defined by P = {a € M :
a < 27'\/2}. Then M is uniformly locally o-minimal, but it is not strongly
locally o-minimal.

If we assume the saturation, we can show the following:

Proposition 7 Let M be a uniformly locally o-minimal structure. Suppose
that M is w-saturated. Then M is strongly locally o-minimal.



Proof: Let a € M. Choose an L-formula ¢(z,y) arbitrarily. By the
uniformity of M, there is an open interval I 5 a and numbers ny, € w (b € M)
such that I N (M,b) is a union of n, many intervals and points. We may
assume that each n, is chosen minimum. By the saturation of M, n,’s are
uniformly bounded, say by n, € w. (Otherwise, by saturation, there would
be b € M such that I N p(M,b) cannot be expressed as a finite union of
intervals and points.) Let 6,(u,v) be the formula saying that for any z the
set of x € (u,v) with ¢(z,z) is a union of n, many intervals and points.
Then the following set

I'(u,v) ={u<a<viU{by(u,v):pelL}
is finitely satisfiable in M. So, by saturation, there are ¢, d € M realizing the

set I'. The open interval I = (¢, d) witnesses the strong local o-minimality.

Example 8 We show that there is an w-saturated locally o-minimal struc-
ture that is not uniformly locally o-minimal. For each non-negative ¢ € Q,
we prepare a binary predicate Py(z,y). L = {<, P;},eq+ is our language.
We define an L-structure M = (Q, <M, PM) by the following:

o <M is the standard ordering on Q;
e Pa,b) <= a++2-¢<b(inR).

T = Thr(M) admits elimination of quantifiers. For showing this, let M* be
an w-saturated model of T'. For r € RT U {0}, let I'.(x,y) be the following
set of quantifier-free formulas.

{r <y} U{P,(z,y): ¢ € Q",V2¢ <r}U{=P,(v,y) : ¢ € Q",r < V2¢}.

Intuitively speaking, I',(x,y) asserts that the distance of two points x < y is
r. Let A={a; <---<a,}and B={b <---<b,} be two finite subsets of
M*. We will write A ~ B if we have

M* = Ty(as; a5) <= M" =Ty (bi, by),

for all i, 7 <n and r € R™ U {co}. Let ¢ € M* be any element. We want to
find an element d € M* with Ac ~ Bd. To simplify our argument, we treat
the case when ¢ is bigger than A. Choose 7, ...,r, such that I';,(a;, ¢) holds
(i =1,...,n). Let us consider the following set A(z):

U Tn(oi2).

1<i<n



Since M* is w-saturated, we can find d € M* such that I';, (b,,d). Then this
d automatically satisfies A(z). Now we have Ac ~ Bd. The above argument
shows that T admits elimination of quantifiers. From the elimination of
quantifiers, we see that M is locally o-minimal.

Now we show that M is not uniformly locally o-minimal. Let (b, ¢) be a
small interval containing a. Notice that the following sentence is a member
of T

VaVa!' (z < o' — Jy(Pi(x,y) A =P (2, y)).

So we can choose ¢ € M* such that Py(b,q) A =Pi(c,q). Then the set X
defined by P;(z,q) divides (b,c) into two convexes C; and Cy. Neither C
nor Cy are intervals.

3 Strong local o-minimality

The following theorem is easy but important.

Theorem 9 The following two conditions are equivalent:

1. M s strongly locally o-minimal.

2. For any finite subset {ay,...,a,} of M, there are left-open and right-
closed intervals I; with a; € (I;)° such that, by putting I = J,,,, Li,
Laes is o-manimal. (I° is the interior of 1.)

Proof: 1 — 2: Choose any ay,...,a, € M. Then, by the strong local
o-minimality, there are intervals I; = (b;, ¢;| with a; € (1;)° (i = 1,...,n) such
that, for any definable set X C M, X N I; is a finite union of points and
open intervals in M (i = 1,...,n). We may assume that a; < --- < a, and
L < <1,

Let I = |JI; and choose any Y € Def!(Igr). Then Y is a definable
subset of M and Y =Y NI =J,(Y N1;). By the item 1, there are d;;’s and
e;r’s such that

Y n Il = (dih 62'1) U---u (dzmla eimi> U {ﬁmte pOiIltS}.

Hence Y is a finite union of convex sets. Using the fact that < is dense,
we may assume that d;o, ..., dim,, €1, ..., €im; € ;. The point d;; need not to
be an element in I;. However, even if d;; ¢ I, in I, Y N I; can be written as

YNNI =(—00,e1)U--U(dim,, €im,) U {finite points} (if i = 1),
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YNI=(ci1,eq) U+ U (dim;, €im,) U {finite points} (if i > 1).
So, in Igef, Y is expressed as a finite union of intervals and points in I.

2 — 1: Assume 2. Let {a} be a singleton set in M. Choose an interval
I' = (b, ¢] witnessing the condition in 2. Notice that I = (b, ¢) also satisfies
the required condition in 2, i.e., It is o-minimal. Let X € Def!(M). Then
we have X NI € Def'(I4). By the o-minimality, we have

XNI=5LU---UI,U {finite points},

for some open intervals in the sense of I4.¢. Notice that each I; is an interval
in M. So X N1 is a finite union of intervals and points in M. Thus we are
done.

The following definition is taken from [8].

Definition 10 We say that a definable unary (possibly partial) function f
has local monotonicity if, for every point a € M, there exists some open
interval I containing a such that domf N I can be broken up into a finite
union of points and open intervals, on each of which f is constant, strictly
increasing, or strictly decreasing. We say that M has local monotonicity if
every definable unary function f of M has local monotonicity.

In [8], it was shown that a strongly locally o-minimal structure satisfies
local monotonicity. In o-minimal case, we can add the local continuity in
the monotonicity theorem. As we will see later, this is not the case of local
o-minimality. However, by Theorem 9, we can prove the following:

Proposition 11 Let M be strongly locally o-minimal. Let D be a definable
set of M and f : D — M a definable function. Then, for any a € D, there
are open intervals I C M containing a and J C M containing f(a) such that,
by putting f* = f N (I x J), the domain of f* can be broken up into a finite
union of points and open intervals, on each of which f* is constant, strictly
increasing and continuous, or strictly decreasing and continuous.

The following example shows that the replacement of f by f* in the above
proposition is necessary.

Example 12 Let M be any o-minimal structure and let a € M. Let f :
{a} x M — M? be the function defined by (a,b) — (b,a). Then N =
(M?, <jep, f) is an M-definable structure (in eq-sense), where <., is the
lexicographic ordering on M?. So, N is strongly locally o-minimal. However,
f is discontinuous at any point.



As in the o-minimal setting, we can define cells and cell decompositions of
definable sets in the locally o-minimal setting, see [3]. We have the following
proposition by Theorem 9:

Proposition 13 Assume that M = (M,<,...) is a strongly locally o-
minimal structure. Let a € M™. Then, the following results hold.

1. Let X4,...,X,, be definable subsets of M"™. Then there is an open
box B 3 a and a finite decomposition P of B into cells partitioning
XiNnB,..,X,NB.

2. Let X C M™ be a definable set and f : X — M a definable function.
Then there is an open box B 3 (a, f(a)) such that for the restriction
f* = fNB, the domain of f* admits a finite decomposition P into cells
so that for any Y € P, f*|Y is continuous.

3. Let X C M"! be a definable set and b € M. Suppose that X. = {d €
M : {c,d) € X} is finite for any ¢ € M". Then, there is an open box
B > a, an open interval I 5 b and K € w such that | X.NI| < K for
all ce X N B.

4 Simple Products

Let Ly, L, and L be languages. For simplicity, we assume that these lan-
guages are relational. Under this assumption, a binary function will be
treated as a ternary relation. Let M; be an L;-structure (i = 1, 2).

Definition 14 1. Let A C M{™ and B C M,". Then A x B is the subset
of N*, N = M; x M, defined by:

Ax B :={{{a1,b1), ..., {an,by)) € N" : {aq,...,a,) € A,{by,...,b,) € B}

2. Let N be an L-structure whose universe is the product M; x M,. We say
that N is a simple product of M; and M, if for any P(xy,...,z,) € L
there are M;i-definable sets Aq,..., A, C M;"™ and Ms-definable sets
By, ..., By C My" such that PV is a boolean combination of the following
sets

o AjxMy" (i=1,...k),



o Mi"xB; (i=1,..,1).
Many important structures can be expressed using simple products.

Example 15 1. Let M; and M5 be two ordered sets. The lexicographic
order <"V on the product N = M; x M, can be expressed as

<M= [(<M) M) U (=) % Mz) N (Mo (<)),
So (N, <) is a simple product.

2. Let My and M5 be two groups. The product group of M; and M, is a
simple product.

3. Let I = ([0,1),<,+) be the additive group of reals modulo 1. Let
N =7 x I be the simple product defined by:

+=(P+xQ)U (P *Q),

where P = {{(m,n, k) € Z> : m+n = k}, P' = {{m,n, k) € Z° :
m+n+1=k}, Q= {{a,bc) € [0,1):a,b<a+!b=c} and
Q = {{a,b,c) € 0,1 : c=a+'b < a,b}. Then N is isomorphic to
R = (R, +, <) by the mapping (n,a) — n + a.

Lemma 16 Suppose that N = My x My is a simple product. Let D be an
N-definable subset of N™. Then there are My-definable sets Aq, ..., Ax C M;"™
and Msy-definable sets By, ..., By C My™ such that D is a boolean combination
of Aix My" (i =1,...,k) and Mi" x B; (i =1,..., k).

Proof:  For simplicity, we assume D is ()-definable. Choose an L-formula
o(x1, ..., ,) defining D. If  is an atomic formula, the lemma follows from the
definition of simpleness. Our proof proceeds by induction on the complexity
of ¢. The case when ¢ has the form ¥ A x, ¥ V x, =1 or ¢ — x is clear. So
we assume that ¢ has the form Jyi. Further, for simplicity of the notation,
we assume ¢ = (z,y), where x and y are single variables. By the induction
hypothesis, ¥V has the form

U (A % Ma*) N (M2 % By),

1<i<k



where all A; C M,? and all B; C M,? are definable sets. Then ¢V is the
following set.

U U (a1, b1) = ({a1,01), (a,)) € (Ai % Mp%) N (M) % By)}.

(a,bye My x My 1<i<k

This set is equal to

U U awb):(ara) € A fb,b) € B

1<i<k <a,b>€M1 X Mo

Finally, notice that the set U, yye s, <, {(a1,01) = (a1, @) € A;, (b1,b) € Bi}is
equal to {(ay,b1) : a1 € proj(A;),b € proj(B;)}, where proj is the projection
map to the first coordinate. Since proj(A;) and proj(B;) are definable sets,
the induction step is complete.

Lemma 17 Let N be a simple product of My and Msy. For every a € M,
and every definable set D C N, the section D, = {b € My : {a,b) € D} is
definable in Ms.

Proof: We can find definable sets A; € M; and B, C M, such that
D = cicp(Ai % My™) N (M™% B;). Then D, can be written as

Da = LJ{.Bz ac Az}
So D, is a definable subset of Ms.

Theorem 18 Fori= 1,2, let M; = (M;,<M:,...) be an expansion of a linear
order. Let N = (N,<™,...) be a simple product of My and My, where < is
given by the lexicographic ordering.

1. Suppose that My is a (strongly) locally o-minimal structure without
endpoints. Then N is (strongly) locally o-minimal.

2. Suppose that Ms is an o-minimal structure possibly with endpoints.
Suppose also that M, is a discrete order. Then N is strongly locally
o-minimal.
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Proof: ~ We prove 2, since 1 can be proven similarly. We assume that M,
has the form (—oo, m|, where m is the maximum element. Let (a,b) € N be
any point. First assume that b € M, is not an endpoint. Let I be an open
Ms-interval with I  b. Then I’ = {a} x I is an N-interval containing (a, b).
Let D C N be any definable set. Then DN I’ = {a} x (D, NI). By Lemma
17, D, is a definable subset of M>. So D, N1 is a finite union of intervals and
points. Hence D N I’ is a finite union of intervals and points in the sense of
N. This shows the o-minimality of I}, and hence we have the strong local
o-minimality of V.

Then we treat the case that b is the maximum element m. Choose any
c € My~ {b} and let I = ({a} x (¢,b]) U ({a+ 1} x (—o0,¢)), where a + 1 is
the successor of a in the discrete structure M;. (If a + 1 does not exist, we
can put I = {a} X (¢,b].) As in the previous case, I4cf is 0-minimal, hence N
is strongly locally o-minimal.

ef»

Example 19 Let A C Z and P a new unary predicate symbol. Then the
structure (R, +, <, P®) with P® = A is locally o-minimal.

Proof:  Let I = ([0,1),+, <) be the additive group of reals modulo 1. Let
Py be a unary predicate symbol and Py” = A. There is a simple product
N =7 x I such that N = (R, +, <). We give a P-structure on N by

PY = P« {0}.

Then (N, PY) is a simple product, hence it is locally o-minimal by Theorem
18. Tt is easy to see that (N, PV) = (R, +, <, A).

Example 20 Let (R*, +,-, <,Z*) be a saturated elementary extension of
(R, +,-,<,7Z). Let P be a new unary predicate symbol such that P*" = Q.
Then (R*, +, <, P®") is locally o-minimal. To see this, using the saturation,
choose a positive infinitesimal A € R* such that hZ* = {hn | n € Z*} D Q.
Then, for a similar reason as in the previous example, (R*, +, <, Q) is given
by a simple product of Z* and [0, h)*.

Example 21 Let R* be a nonstandard real closed field extending R. Then
(R*, +, <, P®") is locally o-minimal, where P®" = R. This is a corollary of
the following more general statement:

Let (G,0,+,—,<) be a divisible ordered abelian group and Gy C G a
subgroup. Suppose there is an h € G such that nh < |a| for all n € N and
a € Go\{0}. Then (G,0, <, +, —, P%) is locally o-minimal, where P% = G.
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Proof: First notice that every ordered divisible abelian group with the
language L = {0, 4+, —, <} has quantifier elimination. Let H = {a € G | 3n €
N, |a| < nh}. Then H is also a divisible ordered abelian group. So H is an o-
minimal structure with the language L. Let G’ D G be a maximal divisible
subgroup of G such that G’ N H = {0}. Then G splits as the direct sum of
G’ and H. It is easy to check that (G,0,+, —, <,Gy) is given by a simple
product of G’ and H.

5 Locally o-minimal structures on R

As is shown in the last section, the structure (R, 4, <, Z) is locally o-minimal.
On the other hand, for an expansion M of (R, +, -, <), M is locally o-minimal
if and only if it is o-minimal. So, in the study of local o-minimality, it may
be important to consider structures without multiplication. In this section
we show that any locally o-minimal expansion R of (R, +, <,Z) is given by
a simple product of Z and I = [0, 1).

We start with some basic remarks on local o-minimality.

Remark 22 1. For any a € R, the structure M = (R, +, <, aZ) is locally
o-minimal. If ¢ € R is an irrational number, then the structure N =
(R, +, <,Z,aZ) is not locally o-minimal, since 0 is a limit of the set
{m+z:meZuxecadl}.

2. Let M be locally o-minimal. Let K C M be a (nonempty) compact
definable subset of M. Then Ko is an o-minimal structure. (K is
possibly not dense, but it is a finite union of dense subsets.)

Proof:  Let A be a definable subset of Kge. First notice that A is
definable in M also. We show that A is a finite union of intervals (in
the sense of Kgef) and points. Let a € Kger. By the local o-minimality,
we can choose an open interval I C M with a € I such that K NI has
one of the following form:

(a) (b;¢), (b,d], [b,c),
(b) {a},

where b < c and b < a < ¢. But, by the closedness of K, the endpoints
b and ¢ must belong to K. So K N[ is an interval (or a point) in Kgef.

12



Since other cases can be treated similarly, we assume K NI = [b, ¢] and
b < a < c. Now we consider the set KNINA. By the local o-minimality
of M, there are by,¢; € M such that K N (by,c;) N A is a finite union
of intervals and points. We may assume that b < b; < a < ¢; < c.
So, by letting I, = (b1,c1), K NI, N A is a finite union of intervals
in K and points in K. Since |J,cx I is an open covering of K, by
compactness of K, there is a finite set F' C K such that UaeF I, DO K.
Then KNA = J,cp(KNI,NA) is a finite union of intervals and points
in the sense of Kgef.

Lemma 23 Let M be a locally o-minimal expansion of (R,+,<) and let
I =10,1). Suppose that a family X C Def™(I, M) is at most countable. If
X is uniformly M-definable, then it is finite.

Proof: ~ We use the fact that any compact subset of M is o-minimal (see
Remark 22). So we know that /g is an o-minimal structure.

We proceed by induction on n. First let n = 1 and let X be uniformly
definable. By the o-minimality of I, for each X € X, §(X) = cl(X) — X°
is finite. So A = [J ¢ 6(X) is at most countable. Moreover, by the uniform
M-definability, A \ {1} is an Ig.-definable set. Again, by the o-minimality
of I4er, A must be finite. From this, we see that X is a finite set.

Now we consider the case when X C M"" is a uniformly defin-
able countable family. For X € X and a € I™, let X, be the section
{bel:{(ab) € X} and let §(X,) = cl(X,) — (X,)°. As in the case n = 1,
the set A, = [Uycr 0(Xa) is a finite set. So {A, : a € I"} is a uniformly Ige¢-
definable family of finite sets in I. By the uniform finiteness (o-minimality
of I4ef), there is a number k such that, for any a € I, |A,| < k.

We enumerate A,U{0, 1} as {do(a), d1(a), ..., dx41(a) } in increasing order.
For F,G C {0, .., k+1}, let J, rc be the union of all singletons {d;(a)} (i € F')
and open intervals (d;(a), d;+1(a)) (i € G). Then, for any X € X and a € I",
we can find F, G with X, = J, . Using this fact, we define definable sets

Yxrec={acl": X,=Jurc}

and we put YV = {Yx rc}xrg. There are only finitely many (F,G)’s. So
the family ) (consisting of subsets of I™) is a uniformly M-definable family.
From this, using the induction hypothesis, we know that ) is a finite family.
Now notice that if Yx po = Yx/ g for all F, G, then X = X'. So we know
that X' is a finite family.
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Theorem 24 Let M be a locally o-minimal expansion of (R, +,<,Z). Then
M is expressed as a simple product of Z and I = [0,1)gef.

Proof:  Let L be the language of M. Let P be an n-ary predicate symbol
in L. For each n = (n(1),...,n(n)) € Z", we define

D, = {{dy,....;d,) € I" : (n(1) + dy,...,n(n) + d,,) € PM}.

Then, using the predicate for Z, we can show that X = {D,}, is a uniformly
M-definable family. Since & is at most countable, it must be finite, by
Lemma 23. So we can enumerate X as Xo,...,X;. For ¢ = 0,...,k, let
A;={neZ":D,=X;}. Now we regard Z as a {4; : i < k}-structure. We
give a simple structure on N = 7Z x [ by

PN = Agx XgU---UAy* Xp.
Now it is sufficient to show the following.

Claim A The natural mapping (m,a) — m+ a gives an isomorphism of N
and M.

Suppose that ({(mq,ai), ..., (m,,a,)) is a member of PY. Then, by the defi-
nition of PV, there is i < k such that

((my,a1), ..., (Mp,a,)) € A; % X;.

So we have (1) (mq,...,m,) € A; and (2) (a1,...,a,) € X;. From (1) and
the definition of A;, we have Dy, m,) = X;. From this and (2), we have
(a1, ...;an) € Dy, myy. Hence (ay +mi,...,a, + m,) € PM. The other
direction can be shown similarly.

Theorem 24 shows that, if the given locally o-minimal expansion of (R, <
,+) has Z as a definable set, then it can be expressed as a simple product.
The next proposition shows that there is a locally o-minimal expansion M
having the properties (1) M has an infinite discrete definable set and (2) M
cannot be expressed as a simple product.

Proposition 25 Let £ = {¢" : n € w}, where e is the base of the natural
logarithm. Then the structure (R, +, <, F) is locally o-minimal.
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Proof:  Let (R*,+, <, E*) be a proper elementary extension of (R, 4, <, F)
with infinitesimals. Let p be the monad of 0, i.e. p={a € R* : |a| < r (Vr €
R)}. Let D* C R* be the smallest divisible group containing E*.

Claim A D*np={0}.

Assume otherwise. We consider R and R* as Q-modules. Then there is an
infinitesimal e € R*~\ {0} and finitely many rationals ¢; € Q and E*-elements
a; < -+ < ay such that € = gy + -+ + g, By (R, +, <, F) < (R, +, <
, E*), for any positive r € R, there are E-elements a; < --- < a, such that
0 # |qay + -+ + gnan| < r. We show that this is impossible. For fixed
S1y.s S € Q, let Ay, 5, = {[s1€™ + -+ s, iy < -0 <My, € W
Then, by induction on n, we can show that for any sy, ..., s, € Q and positive
r € R, there are only finitely many elements a € Ay, 5, with a < r. (End of
Proof of Claim A)

Using Claim A, choose a maximal divisible group X C R* extending D*
such that X Ny = {0}. Then we have R* = X @ u, and X is a representative
set of R*/p. X has a natural induced order. On M = X X pu, we can define
naturally +" and <™ so that M becomes a simple product. We also define
EM by

{a,b) € EM <= a € E* and b= 0.
Then the expanded structure M = (M, + <M EM) is still simple. So M
is a locally o-minimal structure, by Theorem 18.

Claim B Let 0 : R* — M be the natural mapping defined by o — (a,b),
where a € X and b € p are (unique) elements with « = a +b. Then o is an
1somorphism.

We only need to check o(E*) = EM. Let a € E*. Then a € X and
o(a) = (a,0). So o(a) belongs to EY. The other inclusion follows similarly.
(End of Proof of Claim B)

By Claim B, we see that (R*, +, <, £*) is locally o-minimal. Since the
local o-minimality is preserved by elementary equivalence (see Fact 5), we
have the local o-minimality of (R, +, <, E).

Remark 26 Let us say that £ C R is a good set if for all n € w and for

all ¢1,...,q, € Q ~\ {0}, the set {|g1a1 + - - + gnan| : a; € E} has a positive
infimum. Then, for any good F, we can prove the local o-minimality of

15



(R, +, <, F), exactly by the same argument as above. Moreover, if Py, P, ...
are relations on F, then the structure (R, +, <, E, Py, P, ...) is also locally
o-minimal.
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