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Abstract. We introduce a very weak language Lp on Qp, which is just rich
enough to have the same definable subsets of the line Qp than one has using the
ring language. We prove that the only definable functions in the language Lp

are trivial functions. We further give a definitional expansion L′
p of Lp in which

Qp has quantifier elimination and we obtain a weak cell decomposition. Our
language Lp can serve as the p-adic analogue of the very weak language (<) on
the real numbers to define a notion of minimality on the p-adics. Finally we give a
universal-existential definition, in the ring language, of Zp inside Qp and of Fp[[t]]
inside Fp((t)), which works uniformly in all p, and in all finite field extensions.

1. Introduction and main results

In nowadays common usage of terminology, for L an expansion of a first order
language L0, an L-structure K is called L0-minimal if and only if every L-definable
subset of the line K is already L0-definable, where definable means with parameters
from the model K. When the property holds for all the models K of an L-theory T ,
then T is called L0-minimal. Famous examples of this kind are o-minimality, mini-
mality, C-minimality, P-minimality, and so on. Note that among the existing notions
of minimality that make sense on the p-adic number field, namely P -minimality [8]
and b-minimality [4], only P -minimality follows the mentioned common usage of
terminology.

We introduce here a very weak language Lp on Qp, which is just rich enough
to have the same definable subsets of the line Qp as with the ring language (the
definable sets in the ring language are called semi-algebraic sets). It is thus a natural
candidate for a notion of p-adic minimality for languages on Qp expanding Lp, where
the advantage over P -minimality is that weaker languages than the ring language
are allowed (whereas for P -minimality the basic language already contains the ring
language). The language Lp is a very weak language in particular because the only
definable functions in the language are trivial ones: we show that any Lp-definable
function X ⊂ Qn

p → Qp is piecewise a coordinate projection or a constant function,
where the pieces can be taken Lp-definable. The language Lp is a p-adic analogue of
the very basic language (<) of totally ordered structures which is used on the real
numbers to define the general notion of o-minimal structures.
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Further we give a definitial expansion L′p of Lp in which Qp has quantifier elim-
ination and we prove a weak cell decomposition theorem. We also discuss Skolem
functions, the definable sets up to definable bijection, and the dimension of definable
sets.

Let us be more precise. Consider the following basic semi-algebraic sets, for all
positive integers m and n

Qn,m := {x ∈ Qp | x = pan(1 + pmy) for some a ∈ Z and some y ∈ Zp}.
On the field Qp of p-adic numbers consider for all positive integers m and n the
predicates Rn,m in three p-adic variables given by

Rn,m(x, y, z) if and only if y − x ∈ zQn,m.

Let Lp be the first order language consisting of the predicates Rn,m for all positive
integers n and m. By definable we will always mean definable with parameters from
the model.

Furthermore consider the language L′p which is Lp together with for each integer
k the predicate Dk in three p-adic variables given by

Dk(x, y, z) holds if and only if z 6= y and ord(x− y) < ord(z − y) + k.

1. Proposition. The language L′p is a definitional expansion of Lp. Namely, each
L′p-definable set is already Lp-definable. Moreover, Qp allows quantifier elimination
in the language L′p.

The following is a natural candidate definition for a minimality notion on Qp (fol-
lowing the usual practice for notions of minimality), certainly in view of Proposition
2.

1.1. Definition. Let L be any language on Qp expanding Lp. Say that the L-
structure Qp is Lp-minimal if and only if all L-definable subsets of Qp are already
Lp-definable. Say that the theory of (Qp,L) is Lp-minimal if and only if all L-
definable subsets of K are already Lp-definable, where K is any structure which is
elementary equivalent to (Qp,L).

By the cell decomposition result of [2] for subanalytic sets (or, alternatively,
by the P -minimality result for the subanalytic structure on Qp of [7] and the cell
decomposition result of [5]), one finds the following.

2. Proposition. The subanalytic structure on Qp is Lp-minimal and has Lp-minimal
theory. Hence, any intermediary structure between the structure Lp and the suban-
alytic structure on Qp is Lp-minimal and has Lp-minimal theory.

Further, all P -minimal structures on Qp have Lp-minimal theory (but not the
other way around). Some of the intermediary structures between the structure
Lp and the subanalytic structure on Qp are known to have cell decomposition, for
example, the semi-affine expansion of Lp by Liu [10], or any of the analytic structures
of [3] on Qp.

We now turn our attention to cells in the language L′p.
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1.2. Definition. An L′p-cell A ⊂ Qk
p ×Qp is a set of the form

A = {(x, t) ∈ D×Qp | ord p`1(a1−c) �1 ord(t−c) �2 ord p`2(a2−c), t−c ∈ λQn,m},

where x = (x1, . . . xk), the `i are integers, the set D equals the image under the
projection of A to Qk

p and is a quantifier free L′p-definable subset of Qk
p, �1 and �2

denote ‘<’ or ‘no condition’, λ ∈ Qp, the ai and c are either one of the variables
x1, . . . , xk or a constant from Qp, and, the ai − c do not vanish on D. We call c the
center of A, and D the base of A.

Clearly, any L′p-cell is an L′p-definable set. Note however that the above functions
pk1(a1 − c) and pk2(a2 − c) are not necessarily L′p-definable functions in x ∈ D, see
Proposition 4. For this reason, we will speak of weak cell decomposition (as opposed
to cell decomposition).

The following is the main technical result of the paper.

3. Proposition (Weak Cell Decomposition). Every L′p-definable subset X of Qk
p×Qp

can be partitioned into finitely many L′p-cells.

Proposition 3 allows us to establish the triviality of Lp-definable functions.

4. Proposition. Any Lp-definable function f : X ⊂ Qk
p → Qp is piecewise a coordi-

nate projection or a constant function, where the pieces can be taken Lp-definable.

By providing two examples in Section 3 we show that Lp does not have definable
Skolem functions, and that the classification of [2] for semi-algebraic and subana-
lytic sets does not analogously hold for Lp-definable sets. Of course, all results in
this paper could be formulated, with the necessary adaptations, for any finite field
extension of Qp. However, to clarify the theory of (Qp,Lp) is a delicate matter and
we leave this to the future. Remark 3.3 gives that structures with Lp-minimal theory
have a well-behaved dimension invariant.

In the final section we give a universal-existential definition, in the ring language,
of Zp inside Qp and of Fp[[t]] inside Fp((t)), which works uniformly in all p, and
also uniformly in all finite field extensions. Previously, Poonen and Koenigsmann
obtained and used an existential-universal definition [11], [9] of Zp in Qp.

2. The proofs

The following is the main technical lemma.

2.1. Lemma. Let C1, C2 be L′p-cells with centers c1, resp. c2. Then C1 ∩C2 can be
partitioned into a finite union of L′p-cells A each of which has a center which is a
restriction of either c1 or of c2.

Proof. By partitioning C1 and C2 further if necessary, we may suppose that they
both use Qn,m with the same positive integers m,n, that is, that Ci is of the form

{(x, t) ∈ Di×Qp | ord pk1i(a1i−ci) �1i ord(t−ci) �2i ord pk2i(a2i−ci), t−ci ∈ λiQn,m}
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for i = 1, 2, where the symbols have their meaning as in Definition 1.2. Up to a
finite partition, we may suppose that on C1 one of the following conditions holds for
k = 1 +m+ n+

∑
i,j=1,2 |kij| and some integer `1 with −k ≤ `1 ≤ k

ord(t− c1) > ord(c2 − c1) + k, (I)k
ord(t− c1) < ord(c2 − c1)− k, (II)k

ord(t− c1) + `1 = ord(c2 − c1). (III)`1

Note that (I)k and (II)k imply respectively
ord(t− c1) > ord(c2 − c1) + k = ord(t− c2) + k, (i)k
ord(t− c2) = ord(t− c1) < ord(c1 − c2)− k. (ii)k

If (I)k holds on C1, put

W = {x ∈ D2 | ord pk12(a12 − c2) �12 ord(c1 − c2) �22 ord p
k22(a22 − c2)}.

Then one has

C1 ∩ C2 = {(x, t) ∈ (W ×Qp) ∩ C1 | c1 − c2 ∈ λ2Qn,m},
which is easily seen to be a finite disjoint union of L′p-cells of the desired form. If (II)k
holds on C1, then we may suppose, up to partitioning C2, that either C1∩C2 is empty,
or, that (ii)k holds for all (x, t) ∈ C1 and all (x, t) ∈ C2. If now the intersection
C1 ∩ C2 is nonempty then C1 ∩ C2 consists of all points (x, t) ∈ (D1 ∩ D2) × Qp

satisfying the conditions

max
i∈I
{ord pk1i(a1i − ci)} < ord(t− c1) < min

i=1,2
{ord pk2i(a2i − ci)},

and
t− c1 ∈ λ1Qn,m,

where I consists of i such that �1i is the condition <, and where the maximum
over the emptyset is −∞. If ]I ≥ 1 we have to show that the function x 7→
maxi∈I{ord pk1i(a1i−ci)} is piecewise of the form pr(a−c1), or of the form pr(a−c2),
for some integer r and some a being either a constant from Qp or one of the variables
xi, and correspondingly for the minimum. If ]I = 1, this is easy, and if ]I = 2, then
one has

ord(a12 − c2) = ord(a12 − c1),
by (ii)k and since C1 ∩ C2 is nonempty. The minimum is treated likewise: one has,
again by (ii)k and since C1 ∩ C2 is nonempty, that

ord(a22 − c2) = ord(a22 − c1) and ord(a21 − c2) = ord(a21 − c1),
which finishes the case (II)k. We may suppose by symmetry (that is, up to reversing
the role of C1 and C2) that, if (III)`1 holds on C1, then also

ord(t− c1) + `1 = ord(c2 − c1) = ord(t− c2) + `2 (iii)`

holds with ` = (`1, `2) and −k ≤ `2 ≤ k. Suppose again that C1 ∩ C2 is nonempty.
If one now fixes the residue classes of c2− c1 and of t− c1 modulo Q2kn,2kn, then the
conditions

ord(c2 − c1) = ord(t− c2) + `2 and t− c2 ∈ λ2Qn,m
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follow automatically from ord(t − c1) + `1 = ord(c2 − c1). Hence, one can easily
partition C1 ∩ C2 into finitely many L′p-cells. �

The previous lemma has the following consequence, which forms a part of Propo-
sition 3.

2.2. Lemma. Any quantifier-free L′p-definable subset of Qk+1
p can be partitioned as

a finite union of L′p-cells.

Proof. By Lemma 2.1, it is enough to show that the sets (and complements of these
sets)

{x ∈ Qk+1
p | Dn(g1, g2, g3)} and {x ∈ Qk+1

p | Rn,m(g1, g2, g3)},
with gi ∈ {x1, . . . , xk, t} ∪ Qp, can be partitioned as a finite union of L′p-cells, for
integers k, n ≥ 0 and n,m ≥ 1. Since the Qn,m have finite index in Q×p , the situation
for the relation Rn,m is easy. To treat the relations Dn, it suffices to show that the
set

A := {(x, t) ∈ Qk+1
p | ord(t− c1) < ord pn(t− c2)},

with c1, c2 ∈ {x1, . . . , xk} ∪ Qp, and n ≥ 0, can be partitioned as a finite union of
L′p-cells. We may suppose that c1 6= c2. Partition Qk+1

p in the following way:

Qk+1
p = {(x, t) ∈ Qk+1

p | ord(t− c1) > ord(c1 − c2)}
∪ {(x, t) ∈ Qk+1

p | ord(t− c1) < ord(c1 − c2)}(2.2.1)

∪ {(x, t) ∈ Qk+1
p | ord(t− c1) = ord(c1 − c2)}.

By working on these three parts separately, we can write A as a union of sets on
which one of the conditions in (2.2.1) holds. For example, on

B := A ∩ {(x, t) ∈ Qk+1
p | ord(t− c1) > ord(c1 − c2)},

one has that ord(t− c2) = ord(c1 − c2), and therefore B is equal to the set

B = {(x, t) ∈ Qk+1
p | ord(c1 − c2) < ord(t− c1) < ord pn(c1 − c2)}

which is easily seen to be a finite disjoint union of L′p-cells. The other cases are
similar. �

Proof of Proposition 1. The quantifier elimination statement follows easily from Lemma
2.2 and the definition of L′p-cells. Indeed, by the cell decomposition theorem 3, it is
sufficient to eliminate ∃t from a condition (x, t) ∈ A, where A ⊂ Qk+1

p is an L′p-cell.
But the base of a cell is defined in a quantifier free way by Definition 1.2, and so
we are done. It remains to show that L′p is a definitional expansion of Lp. Write
λ ∼3,1 µ for λQ3,1 = µQ3,1. The relation P (x, z) given by

(z − x) ∼3,1 z 6∼3,1 x

is Lp-definable and is equivalent with

ord(z) < ord(x) ∧ z 6∼3,1 x.
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Hence, the relation ord(x) ≤ ord(y) for x and y in Qp is equivalent to

∀z
(
P (x, z) =⇒ z − y ∼3,1 z

)
.

Likewise, the relation P (z−y, w−y) in y, z, w is Lp-definable and is equivalent with

ord(w − y) < ord(z − y) ∧ w − y 6∼3,1 z − y.

Hence, ord(z − y) < ord(x− y) is equivalent with

∀w
(
P (z − y, w − y) =⇒ w − x ∼3,1 w − y

)
,

which is clearly Lp-definable. Finally, for each integer k, Dk(x, y, z) can easily be
seen to be an Lp-definable relation by using the above Lp-definable relations and
some quantifiers. �

Proof of Proposition 2. Follows immediately from the cell decomposition result of
[2] for subanalytic sets, or, alternatively, from the P -minimality result for the sub-
analytic structure on Qp of [7] together with the cell decomposition result of [5].

�

Proof of Proposition 3. By Proposition 1 and Lemma 2.2. �

Proof of Proposition 4. Partition the graph of the definable function f in finitely
many L′p-cells G of the form

{(x, t) ∈ D×Qp | ord pk1(a1− c) �1 ord(t− c) �2 ord pk2(a2− c), t− c ∈ λQn,m},

where the symbols have the same meaning as in Definition 1.2. For each x ∈ D
there is a unique t such that (x, t) ∈ G, since G is a part of the graph of f . This
uniqueness condition implies that λ = 0, and thus G has the form

G = {(x, t) ∈ D ×Qp | t = c}

and we are done, by the form of the center as given by Definition 1.2.
�

3. Some examples

The following lemma exhibits the fact that Lp does not have definable skolem
functions.

3.1. Lemma. Consider the Lp-definable set

A = {(x, y) ∈ (Q×p )2 | ord y = 1 + ordx}.

Then there exists no Lp-definable function g : Q×p → Qp such that the graph of g lies
in A.

Proof. Follows directly from Proposition 4. �
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Another natural question is whether it is possible to give a simple classification
of definable sets up to definable bijections. For semi-algebraic sets, it is shown in
[1] that there exists a semi-algebraic bijection between two infinite semi-algebraic
sets if and only if they have the same dimension, and in [2] this is extended to the
subanalytic setting. Such a classification no longer holds for Lp-definable sets, by
the following.

3.2. Lemma. Consider Lp-definable sets given by

Ai := {x ∈ Qp | ord(x) = ki}
for i = 1, 2 and some integers k1 6= k2. Then there does not exist an Lp-definable
bijection between A1 and A2.

Proof. After a finite partition of A1 in L′p-cells, the bijection restricted to any of the
parts should be of the form x 7→ x or x 7→ a, for a ∈ Qp, by Propositions 3 and 4.
But it is clear that none of these maps can have an image which is an infinite subset
of A2. Hence, such a bijection cannot exist. �

3.3. Remark. Note that any structure L on Qp with Lp-minimal theory comes with
a dimension invariant for its definable sets. This dimension invariant has nice prop-
erties, for example, one has dim(f(X)) ≤ dim(X) for any L-definable function
f : X → Y . Indeed, the structure L on Qp is always a reduct of a P -minimal
structure on Qp which comes with such a dimension invariant, see [8].

3.4. Remark. To generalize our setting to a finite field extension K of Qp, one should
replace the prime number p by a fixed uniformizer π of the valuation ring ofK. Then
all results and definitions go through correspondingly, referring to [6] instead of [5]
for the semi-algebraic cell decomposition result.

4. A uniform, universal-existential definition of Zp inside Qp

Let P3 stand for the nonzero cubes in Qp. Write λ ≡ µ mod P3 if and only if
λP3 = µP3, where λP3 = {λt | t ∈ P3}. Let P ′(z) be the property about z ∈ Qp

saying that
(z − 1) ≡ z 6≡ 1 mod P3.

4.1. Lemma. A p-adic number x lies in Zp if and only if

(4.1.1) ∀z
(
P ′(z) =⇒ z − x ≡ z mod P3

)
.

Instead of proving this lemma, we will prove the more general Lemma 4.2 below.
By Lemma 4.1, we can define Zp inside Qp in the ring language (+,−, ·, 0, 1) by

∀z1
(
∃z2∀y2(z32(z1 − 1) = z1 6= y32) =⇒ ∃y1(z1 − x = y31z1)

)
which is equivalent to

∀z1∀z2∃y1∃y2
(
z32(z1 − 1) = z1 6= y32 =⇒ z1 − x = y31z1

)
.

In fact, we obtain the following
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4.2. Lemma. Let K be a nonarchimedean local field. If K has characteristic different
from 3, then an element x of K lies in the valuation ring of K if and only if

(4.2.1) ∀z1∀z2∃y1∃y2
(
z32(z1 − 1) = z1 6= y32 =⇒ z1 − x = y31z1

)
.

If K has characteristic 3, then an element x of K lies in the valuation ring of K if
and only if

∀z1∀z2∃y1∃y2
(
z42(z1 − 1) = z1 6= y42 =⇒ z1 − x = y41z1

)
.

Proof. Suppose first that K has characteristic different from 3. Clearly Condition
(4.2.1) is equivalent to condition (4.1.1), interpreted in K. We will reason on (4.1.1),
interpreted in K. Take x ∈ K with x not in the valuation ring of K. Write π for
a uniformizer and write ord(π) = 1. First suppose that ord(3) = 0 or ord(x) <
− ord(3) − 1. In the case that ord(x) 6≡ 0 mod 3 then take z = x + 1 to violate
(4.1.1). In the case that ord(x) ≡ 0 mod 3 then take z = πx to violate (4.1.1). In
the remaining case that ord(x) ≥ − ord(3) − 1 and that ord(3) > 0, one can take
z = 3−1π−1u, with u a well-chosen unit, to violate (4.1.1). The proof for K having
characteristic equal to 3 is similar, where one replaces the exponent 3 by 4. �
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