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Abstract

We proceed with an analysis of 1-basedness for bounded hyperdefin-
able groups of the form G/G00 where G = E(K)0 is the semialgebraic
connected component of the K-points of an elliptic curve over a saturated
real closed field K, or G a truncation of E(K)0; we follow the method
developed in [1]. We then relate the map G→ G/G00 with the algebraic
geometric notion of reduction, and we characterize 1-basedness of G/G00

in terms of algebraic geometric reduction and the notion of internality to
the value group or to the residue field of a real closed valued field.

1 Introduction

In this section we shall recall Pillay’s conjecture and the main results obtained
in [1].

In section 2 we introduce elliptic curves and some tools useful for the cal-
culations: the notion of minimal form for an elliptic curve, the definition of
algebraic reduction and a simplification of the Weierstrass equation that allows
us to describe the groups studied using only one parameter.

In section 3 we proceed in the study of 1-basedness when G = E(K)0 where
E is an elliptic curve with three “real” roots.

In section 4 we extend the results obtained to truncations of the groups
studied in section 3.

This research has its roots in the positive solution of Pillay’s conjecture [5]:

Theorem 1.1 (Pillay’s conjecture). Given G a definably connected definable
group in a saturated o-minimal structure M , then

1. G has a smallest type definable subgroup of bounded index G00.

2. G/G00 is a compact connected Lie group, when equipped with the logic
topology.

3. If, moreover, G is definably compact, then the dimension of G/G00 (as a
Lie group) is equal to the o-minimal dimension of G.

4. If G is commutative then G00 is divisible and torsion free.
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This theorem gives us a functor from the category of definable, definably
connected, definably compact groups to the category of compact Lie groups:
L : G → G/G00. It has become a mainstream topic in model theory to study
which (topological, algebraic geometric...) properties are conserved by L.

Another reason for my research is the extension of stability geometric no-
tions, such as modularity and 1-basedness, to a broader context: to NIP theories
and to definable sets.

For the rest of the paper K denotes a saturated model of the real closed
fields.

We suppose that the reader is familiar with o-minimality, in particular with
the notion of dimension of a definable set in an o-minimal theory; the book of
Van den Dries [12] provides all the necessary theory.

The aim here is to give a dichotomy classification, on the lines of [2], of
the groups G/G00 where G is a 1-dimensional definable, definably connected,
definably compact group in K. We say that a definable group G is definably
connected if there are no proper definable subgroups of finite index, and that it
is definably compact if any function from an open interval of the base structure
to G has limit in G.

Observe that G00 is only type definable in K, so G/G00 is a hyperdefinable
group. We need to expand the structure we work on, in order to be able to
“extract” the theory TG/G00 of G/G00, and to define 1-basedness for G/G00 in
terms of 1-basedness for TG/G00 . This construction is presented in [1], where K
is expanded by a predicate for G00.

We recall the main definitions and facts:
Given an o-minimal theory T , and a model M , f(x, y) a ∅-definable function

in M , and a ∈ M , we define an equivalence relation ∼a on tuples of the same
length as y by c ∼a c′ if neither of f(−, c), f(−, c′) is defined in an open
neighbourhood of a or if there is an open neighbourhood U of a such that
f(−, c) = f(−, c′) in U . We call the equivalence class of c the germ of f(−, c)
at a, and denote it by c/ ∼a.

We say that T is 1-based if in any saturated model M � T , for any a ∈ M ,
for all definable functions f(x, y) : M ×Mn → M , and for any c ∈ Mn such
that a /∈ dcl(c), we have c/∼a ∈ dcl(a, f(a, c)). This definition was introduced
by Pillay in [7] and is equivalent to the notion of CF-linearity of [8].

The basic example of a 1-based o-minimal theory is the theory of an ordered
vector space over a field, an example of non-1-based theory is the theory of real
closed fields.

Let K ′ be a model of the theory Th(K,G00, . . . ); we consider the structure
G whose universe is G/G00 and there is a predicate for each ∅-definable (in K ′)
subset of G/G00. Then G is uniformly-o-minimal, by theorem 2.6 of [1], and,
by theorem 2 of [10], G/G00 is stably embedded in K ′, i.e., every subset of
(G/G00)n definable with parameters from K ′ is definable with parameters from
G/G00, it makes therefore sense to talk about the theory of G.

We say then that G/G00 is 1-based in M ′ if the theory TG/G00 = Th(G) is
1-based.

Observe that the construction above can be generalised in the obvious way
to define 1-basedness for any definable, uniformly-o-minimal set in a structure
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M .

We define the notion of internality, introduced in [9].

Definition 1.2. Given a definable set X in a saturated structure M we say
that a definable set Y is internal to X if Y ⊆ dcl(X ∪A) where A is a finite set
of parameters.

In [6] internality is used the context of algebraically closed valued fields,
mainly to correlate stability of definable sets with their internality to the residue
field. In our context we shall consider internality to the sorts Γw (value group) or
kw (residue field) of a real closed valued field, in order to transfer 1-basedness
(or non-1-basedness, respectively) from Γw or kw to our groups G/G00 in a
suitable ambient structure.

A simple but useful remark is the following:

Remark 1.3. Given saturated model M , a definable uniformly-o-minimal set
Y internal to a 1-based set X is 1-based.

Proof. Internality implies that there is a definable (with parameters) surjec-
tion g from Xn to Y . Then it is a definable bijection from a definable subset
Z of Xn into Y . Suppose Y is non-1-based. This is witnessed by a func-
tion f(y, y) : Y × Y n → Y . The function h : Z × Zn → Z defined as
h(x, x) = g−1(f(g(x), g(x))) witnesses non-1-basedness of Z and therefore non-
1-basedness of X, contradicting our hypotesis.

An immediate consequence is the corollary:

Corollary 1.4. Given a model M , uniformly-o-minimal definable sets X,Y in
M , and a definable bijection f : X → Y , then X is (non-) 1-based if and only
if Y is (non-) 1-based.

We shall maintain the notation of [1].
We assume basic knowledge of valuation theory. We denote a real closed

valued field by Kw = (K,Γw, w : K → Γw ∪ ∞), where K is a saturated real
closed field with its signature, Γw a divisible abelian ordered group, called the
value group, with its signature, and w a surjective map called valuation.

We denote the valuation ring by Rw, its unique maximal ideal (the valuation
ideal) by Iw, kw = Rw/Iw the residue field; we recall moreover that Γw =
K/(Rw \ Iw).

When the valuation ring is Fin: the convex hull of Q in K, we call the val-
uation the standard valuation and denote it by v; the corresponding real closed
valued field is Mv. The valuation ideal is µ, the infinitesimal neighbourhood of
0. The standard residue field, kv, is R, and the projection Fin → Kv is called
standard part map.

We recall the notation for the open balls B>γ(a) = {x ∈ K|w(x − a) > γ}
and closed balls B≥γ(a) = {x ∈M |w(x− a) ≥ γ}, where γ ∈ Γw and a ∈ K. A
simple remark is:

Remark 1.5. There is a definable field isomorphism B≥γ(0)/B>γ(0) ∼= kw for
any γ ∈ Γw
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Clearly the map f : B≥γ(0) → B≥0Γw
(0), sending x 7→ x

u , where u ∈
K such that v(u) = γ, is well defined in the quotients B≥γ(0)/B>γ(0) →
B≥0Γw

(0)/B>0Γw
(0) = kv and is a field isomorphism.

Remark 1.6. In [11], Mellor proved that both Γw and kw are stably embedded
in Mw. This implies that Th(Γw) = Th(Q,+, 0, <, λq)q∈Q, and therefore Γw is
1-based in Mw. Analogously Th(kw) = Th(R,+, ·, 0, 1, <), and therefore kv is
non-1-based in Mw.

Given a point P ∈ M2 we shall denote by xP and yP the projections of P
on the x-axis and the y-axis respectively.

Given a linearly ordered group G = (G, ∗, <) a truncation of G by an element
a is the group

([
a−1, a

)
, ∗ mod a2

)
, where the operation ∗ mod a2 is defined

as follows:

b ∗ mod a2 c =

 b ∗ c if a−1 < b ∗ c < a
b ∗ c ∗ a−1 if b ∗ c > a
b ∗ c ∗ a if b ∗ c < a−1 .

In [1] the following theorem is proved:

Theorem 1.7. Given a definable, definably compact, definably connected, one
dimensional (in the o-minimal sense) group G in a saturated real closed field M ,
if G is an additive truncation, a small multiplicative truncation (a truncation of
the multiplicative group by an element of nonnegative valuation) or a truncation
of SO2(M), G/G00 is non-1-based in the expansion of M by a predicate for G00.

If G is a big multiplicative truncation, i.e. G =
([
b−1, b

)
, ∗ mod b2

)
, with

v(b) < 0, the group G/G00 is 1-based in the expansion of M by a predicate for
G00.

In this paper we shall often refer to the result above.

We shall observe that when we consider G to be the semialgebraic connected
component of the K-points of an elliptic curve over K: E(K)0, or G is a trun-
cation of E(K)0; its unique minimal, bounded index, type-definable subgroup
G00 determines a cut on K. Adding a predicate for G00 to K, the cut becomes
definable and it determines a valuation w on K. We denote the enriched struc-
ture (K,G00, . . . ) by K ′. Given the group G as above, we determine (definably
in K ′) canonically a value group Γw and a residue field kw, therefore K ′ will be
interdefinable with a real closed valued field Kw.

We shall moreover determine a notion of minimal form of an elliptic curve,
for curves in minimal form we define three kinds of reductions of their K-points.

Theorem 1.8. Given an the group G = E(K)0, or G a truncation of E(K)0,
where E is an elliptic curve with three “real” roots, over a saturated real closed
field K, the structure K ′ obtained by adding a predicate for G00 to K is inter-
definable with a real closed valued field Kw.

There are two possible behaviours, either one of the following conditions hold:

1. The group G/G00 is 1-based.

2. The group G/G00 is internal to Γw in K ′.
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3. • Either G = E(K)0 and E has split multiplicative reduction, or

• G is the truncation of E(K)0 by a point P with infinitesimal projec-
tion on the x-axis, where E is an elliptic curve with split multiplica-
tive reduction.

Or one of the following condition holds:

1. The group G/G00 is non-1-based.

2. The group G/G00 is internal to kw in K ′.

3. • Either G = E(K)0 and E has good or nonsplit multiplicative reduc-
tion, or

• G is the truncation of E(K)0 by a point P with projection on the
x-axis non infinitesimal, where E is an elliptic curve with split mul-
tiplicative reduction.

2 Elliptic curves in minimal form

An elliptic curve over a field F is a one-dimensional projective curve defined by
an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, . . . , a6 ∈ F , plus a point at infinity, denoted by O.
When we work in the projective space we define it by ZY 2 + a1XY Z +

a3Y Z
2 = X3 +a2X

2 +a4XZ
2 +a6Z

3, and the point at infinity is O = [0 : 1 : 0].
Such a curve can be endowed with a group structure, whose identity is O;

we denote the operation by ⊕ and the inverse of a point P by 	P .
Any line will intersect an elliptic curve at precisely three points (recall that

also O is a point in this context). Given points P,Q, the line through P and Q
(or the tangent line if P = Q) intersects E at the point R. The line between
R and O will again intersect E at one point, which we call R′. We then define
P ⊕Q to be R′.

The explicit addition formula, given P = (xP , yP ) and Q = (xQ, yQ), P 6= Q
is:

xP⊕Q =
(
yQ − yP
xQ − xP

)2

+ a1
yQ − yP
xQ − xP

− a2 − xP − xQ.

Observe that E(K) is a topological group, but since the usual topology
of K it is totally disconnected (by saturation), we consider its semialgebraic
connected component E(K)0.

To work with elliptic curves we need some simplifications. Since all proper-
ties we are going to deal with are invariant under definable isomorphisms, we
can limit our study to curves expressed in a “minimal” form.

Firstly we recall that two elliptic curves E and E′ are isomorphic if you can
obtain E′ from E by the following change of variables:

(1)
{
x = u2x′ + r
y = u3y′ + u2sx′ + t,

5



where u, r, s, t ∈ K, u 6= 0. These transformations are clearly definable in
the structure K.

Given a valuation ring Rw with valuation w, we can always express the curve
with an equation with coefficients from Rw (recall that x ∈ Rw ⇐⇒ w(x) ≥ 0):

Lemma 2.1. Given a curve y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, defined

over K, and a valuation w, we can always suppose that the coefficients ai are
in Rw.

Proof. If it is not the case, we can replace (x, y) by (u−2x, u−3y). So each ai in
the equation becomes aiui. Therefore it is sufficient to take u such that w(u) ≥
maxi(−w(ai)), so, for each aiu

i, we shall have w(aiui) = w(ai) + iw(u) ≥ 0.

It is a well known fact that in K, we can rewrite E as

(2) y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4
,

(it is sufficient to complete the square, i.e., use the function y 7→ 1
2 (y−a1x−a3),

and then change again variable y 7→ 2y).
A curve in this form is an elliptic curve (i.e., is nonsingular) if and only if

the discriminant of the curve ∆ 6= 0, in this case ∆ = −b22−8b34−27b26 +9b2b4b6.
When applying the transformation (◦) the new curve will have discriminant

∆′ = u−12∆.
We can define a formal multiplication by integers: Given m ∈ Z, we define

[m]P =

 P ⊕ P ⊕ · · · ⊕ P (m times) if m > 0
O if m = 0
[−m]	 P if m < 0

The doubling formula is:

x[2]P =
x4
P − b4x2

P − 2b6xP − b8
4x3

P + b2x2
P + 2b4xP + b6

The definably connected component G = E(K)0 is therefore a definable
group in K, clearly definably connected. Since E(K) is nonsingular and has a
point at infinity it is definably compact.

Moreover G can be naturally endowed with a linear ordering (by fixing a
point, e.g. O), denoted C. It is defined by:

P CQ if



yP < 0 and yQ > 0
xP > xQ and yP , yQ > 0
xQ < xP and yP , yQ < 0
P ⊕ P = O
yP < 0 and Q = O
yQ > 0 and P = O

For a more extensive introduction to the theory of the elliptic curves the
reader is invited to refer to [3].
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2.1 Minimal form of an elliptic curve

In a local field there is a discrete valuation w, and we can in an unique way (up
to certain transformations, see proposition 2.3 below) define a minimal form for
an elliptic curve (this is the usual definition, we shall use a slightly different one
given later):

Given an elliptic curve E defined over a local field, with valuation ring R
and valuation w, an equation for E is in minimal form if w(∆) is minimised
subject to the condition a1, a2, a3, a4, a6 ∈ R.

When we are in a real closed field, equipped with a valuation ring, the
definition above gives us a family of curves, we adapt the definition as follows:

Definition 2.2. An elliptic curve E defined over a real closed field K equipped
with a valuation ring Rw and a valuation w is in minimal form if w(∆) is
minimised subject to the conditions: a1, a2, a3, a4, a6 ∈ R, one root is in (0, 0)
and w(ai) = 0 for some i.

An analogy of proposition 1.3 of [3] can now be proved in this context:

Proposition 2.3. 1. Every curve E defined over K has a minimal Weier-
strass equation

2. This minimal Weierstrass equation is unique up to a change of coordinates{
x = u2x′ + r,
y = u3y′,

where r = −a±
√
a2 − 4b and v(u) = 0.

Proof. 1) The equation of an elliptic curve over a real closed field can always be
factorized as y2 = (x−e1)(x2 +ax+b), with a, b ∈M . A translation guarantees
that we can fix a root at (0, 0). We can then suppose our curve is in the form
y2 = x(x2 + ax + b), with a, b ∈ Fin. If neither a nor b have valuation 0, then
w(∆) = w(16a2b3 − 64b3) = 2w(b) + w(a− 16b) > 0. A transformation{

x = u2x′,
y = u3y′,

gives us a curve E′ = x(x2 + a′x + b′), for which a′ = a/u2 and b′ = b/u4.
We can therefore find u with positive valuation such that either a′ or b′ have
valuation 0. Such u will then be the unique element which produces an elliptic
curve satisfying the conditions on the minimal form.

2) In the change of coordinates above, the choice of r preserves one root at
(0, 0). Observe that the new curve is y2 = x

(
x− a+

√
a2−4b

2u2

)(
x− a−

√
a2−4b

2u2

)
,

and that v
(
a+
√
a2−4b

2u2

)
+ v

(
a−
√
a2−4b

2u2

)
= v(a2 − a2 + 4b)− v(u2) = v(b). Now

if we have v(b) = 0, then v
(
a+
√
a2−4b

2u2

)
and v

(
a−
√
a2−4b

2u2

)
are both 0, since

they are both positive, and so the new equation is still a minimal Weierstrass
equation.

Otherwise, v(b) > 0, and v(a) has to be 0 by minimality of the Weierstrass
equation, and therefore either v

(
a+
√
a2−4b

2u2

)
or v

(
a−
√
a2−4b

2u2

)
has to be 0, and

so the new equation is still minimal.
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By working with a curve in minimal form we guarantee that we can define
certain properties in an unique way for the all the curves in the isomorphism class
(in particular it determines a unique reduction over a residue field, discussed in
the following chapters).

2.2 Algebraic geometric reductions

An important tool in the arithmetic study of elliptic curves defined over local
fields is the notion of reduction over a residue field. This topic is developed in
Chapter VII of [3].

We present here a description of this tool, adapted to the context of real
closed fields.

We suppose E is defined over a saturated real closed field K, and equip K
with the standard valuation. As we noticed in lemma 2.1 we can suppose E to
be defined by coefficients in Fin, and by property 2.3 we can moreover suppose
E to be in minimal form.

When we project the K-points E(K) of the elliptic curve onto the standard
residue field we obtain a curve Ẽ(R) which is easier to study. The definition of
this operation is delicate and requires some care.

We define the reduction Ẽ of a curve E : y2+a1xy+a3y = x3+a2x
2+a4x+a6

in minimal form as the curve over kv defined by y2 + ã1xy+ ã3y = x3 + ã2x
2 +

ã4x+ ã6.
Observe that the eqution over kv is well defined since we supposed the coef-

ficients to be in Fin (and Fin /µ = kv = R).
This gives us a reduction map

E(K) → Ẽ(R),
P 7→ P̃ ,

defined as follows: given a point P = (x, y) ∈ E(K) we rewrite it in homo-
geneous coordinates: P = [x; y; 1]. This clearly can always be rewritten with
coefficients in Fin: P = [x′; y′; z′] (it is sufficient to multiply the factors by a
sufficiently small λ ∈ K, if x and y are infinite). We can now project the coor-
dinates onto the residue field, and P reduces to P̃ = [st(x′); st(y′); st(z′)]. We
multiply back by λ−1 to obtain P̃ = [λ−1 (st(x′)) ;λ−1 (st(y′)) ;λ−1 (st(z′))]. In
affine coordinates it is then simply{

P̃ = (st(x), st(y)) if x, y ∈ Fin
P̃ = O if x, y /∈ Fin .

This operation, however, is not harmless: Ẽ(R) may not longer be an elliptic
curve, and it could have singularities. The set of nonsingular points of Ẽ(R)
forms a group, denoted by Ẽns(R).

We define two subsets of E(K) depending on how the curve reduces:

(3) E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(R)},

i.e., the set of all points of E whose reduction is nonsingular, and

(4) E1(K) = {P ∈ E(K) : P̃ = Õ} (= {P ∈ E(K)|v(xP ) < 0}),
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i.e., the set of all points whose reduction is the identity.
Such notions are well defined by Property 2.3.

By E0(K)0 and E1(K)0 we shall denote {P ∈ E(K)0|P̃ ∈ Ẽns(R)} and
{P ∈ E(K)0|P̃ = Õ} respectively.

A useful proposition is the following:

Proposition 2.4. There is a group isomorphism E1(K)/E0(K) ∼= Ẽns(R).

Proof. The proof is in proposition 2.1 of [3], observing that a real closed valued
field satisfes Hensel’s lemma.

2.3 Three “real” roots elliptic curves

We have two cases, either we can factorise the right hand side of equation 2 into
three roots in K2, or in only a root and a quadratic term. In this article we
consider the first case.

We use the terms “real” and “complex” in this context in an improper way:
by “real” we mean in the real closed field K, and by “complex” we mean in its
algebraic closure K[i].

Our equation becomes y2 = (x− e1)(x− e2)(x− e3) with ei ∈ K, i = 1, 2, 3.
We want to write this curve in a minimal form with respect to the standard
valuation and fix two roots.

We apply the transformation{
x 7→ x+ e1,
y 7→ y.

and get an isomorphic curve with a root on (0, 0): y2 = x(x−e′2)(x−e′3), where
e′2 = e2 − e1 and e′3 = e3 − e1.

We can suppose that v(e′2) ≤ v(e′3); by divisibility of the value group we can
take u such that v(u2) = −v(e2). Applying the transformation{

x 7→ u−2x,
y 7→ u−3y.

we get an isomorphic curve y2 = x(x − e′′2)(x − e′′3) where e′′2 = u2e2, and
e′′3 = u2e3. Therefore v(e′′2), v(e′′3) > 0, i.e. all the roots are in Fin.

This is a necessary condition for a minimal equation.

We have now 2 possibilities: either e′′2 > 0 or e′′2 < 0.

1. If e′′2 > 0 then (e′′2)
1
2 is inM , and we can therefore apply the transformation{

x 7→ e′′2x

y 7→ (e′′2)
3
2 y.

This produces the isomorphic curve y2 = x(x− 1)
(
x− e′′3

e′′2

)
; observe that

since v(e′′2) ≤ v(e′′3), we have that e′′3
e′′2
∈ Fin.
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We can transform such a curve into a curve of the form y2 = x(x+1)(x−ε),
via {

x 7→ x+ 1
y 7→ y.

2. If e′′2 < 0 then (−e′′2)
1
2 is in M , and we can therefore apply the transfor-

mation {
x 7→ −e′′2x
y 7→ (−e′′2)

3
2 y.

This produces the isomorphic curve y2 = x(x+ 1)
(
x+ e′′3

e′′2

)
, where again

− e
′′
3
e′′2
∈ Fin. Renaming − e

′′
3
e′′2

= ε we get y2 = x(x+ 1)(x− ε).

We have therefore obtained a form for the equations of the elliptic curves with
three “real” roots in which each curve (and its isomorphism class) is determined
by a single parameter (note that there can be ε 6= ε′ ∈ K such that they define
curves in the same isomorphism class though they can be different.)

We need to check that it is a minimal form with respect to the standard
valuation.

One of the roots is at (0, 0), and one is in Fin \µ, thus the determinant has
valuation v(∆) = 2v(ε) + 2v(ε + 1). Clearly either v(ε) or v(ε + 1) is equal to
0. If both are equal to 0 we are done, if not, any transformation of the form (◦)
with v(u) 6= 0 would send −1 to either µ or to K \Fin, contradicting minimality.
Therefore this is a minimal form.

We can rewrite the sum and the doubling formulae for curves in this form
in a simpler way:

(5) π1(P ⊕Q) =
(
yQ − yP
xQ − xP

)2

− (1− ε)− xQ − xP ,

(6) π1([2]P ) =
(x2
P + ε)2

4xP (xP + 1)(xP − ε)

For such curves we can compute the possible reductions over the reals:

Remark 2.5. We obtain three kinds of curves:

1. Good reduction curves: if v(ε) = 0 and v(ε + 1) = 0, this imples that
the standard part of the root (ε, 0) does not coincide with any of the other
roots, and therefore the reduced curve is nonsingular.

2. Non-split multiplicative reduction curves: if v(ε+ 1) > 0, this implies that
the root (ε, 0) is sent by the standard part map to the root (−1, 0), and
therefore the reduced curve has a complex node.

3. Split multiplicative reduction curves: if v(ε) > 0, this implies that the root
(ε, 0) is sent by the standard part map to the root (0, 0), and therefore the
reduced curve has a real node.
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3 Case study

We can now check for which curves E the groups G/G00, where G = E(K)0,
are 1-based in the structure K ′ = (K,G00, . . . )eq.

In section 2 we proved that any elliptic curve with three real roots is iso-
morphic to a curve of the form y2 = x(x+ 1)(x− ε) with ε ∈ Fin.

Our first step is to determine the cut on K produced by G00 (or, better, by
its projection on the first coordinate). In order to compute it we consider the
torsion points, i.e., the points Tn ∈ G such that [n]Tn = O for n ∈ ω. We such
call Tn an n-torsion point.

We can then type-define G00 as follows:

(7) E00 =
⋂
n∈ω
{P |∀T [(T BO ∧ [n]T = O)→ 	T C P C T ]} .

We already know that T2 is either (0, 0) or (ε, 0), if ε < 0 or ε ≥ 0 respectively.
It is convenient to compute aside the projection of the 4-torsion points T4,

we shall then compute inductively an approximation of xT2n for n ∈ ω.

• If ε < 0 (T2 = (0, 0)), the tangent to the curve passing from T2 is y = αx,
with α such that the following system has a double solution:{

y = αx
y2 = x(x+ 1)(x− ε).

On solving it we obtain

(8) x2 + (1− ε− α2)x− ε = 0.

The α must then satisfy (1 − ε − α2)2 − 4ε = 0, so α2 = 1 − ε ± 2
√
−ε;

we take the positive root to obtain the tangent to G (otherwise, taking
the negative root, we obtain the tangent to the semialgebraic component
E(K) \G).

Substituting into the solution of (8) we get x = 1−ε+2
√
−ε+ε−1
2 =

√
−ε =

xT4 .
(I.e., T4 = (

√
−ε,+

√
1− ε+ 2

√
−ε), and	T4 = (

√
−ε,−

√
1− ε+ 2

√
−ε)).

• If ε > 0 (T = (ε, 0)), the system to be solved to obtain the 4-torsion points
is {

y = αx− αε
y2 = x(x+ 1)(x− ε).

This leads to the solutions α2 = ε±
√
ε2 − ε and so x = ε+

√
ε
√
ε+ 1 = xT4 .

(Observe that we cannot have ε = 0 since E is an elliptic curve, therefore
it is nonsingular)

Before proving the main lemma we observe that if v(ε) > 0 we can suppose
ε > 0. In fact if ε < 0 we can apply to E : y2 = x(x− 1)(x+ ε) the homotety:{

x = 1
1+εx

′

y = y′.

11



Since v(ε) > 0 we have v( 1
1+ε ) = 0, and therefore such a transformation does

not harm the minimality of the equation by Proposition 2.3.

We can now compute G00 in terms of ε.
A fact that we shall often use without mention is that if v(a) 6= v(b) or

sign(a) = sign(b), v(a+ b) = min{v(a), v(b)}.

Lemma 3.1. Let E be a curve in the form y2 = x(x+ 1)(x− ε), G = E(K)0.
Then G00 =

⋂
n∈ω

{
P ∈ G|v (xP ) < 1

nv(ε)
}

.

Proof. The idea is to compute the valuation of the projection of the torsion
points using the doubling formula: an induction will show the behaviour of the
valuation of the 2n-torsion points.

Without harm we shall always consider torsion points Tn that have projec-
tion on the x-axis greater than the projection of the torsion points Ti where
i < n; this is due to the definition of G00: (7), and the symmetry of the elliptic
curve. Thus we shall suppose that v

(
xTn+1

)
≤ v (xTn). Moreover, due to the

symmetry of G with respect to the x-axis, we shall consider only torsion points
with positive projection on the second cordinate, i.e., v (yTn

) ≥ 0 for all n ∈ ω.
We have two cases:

1. v(ε) = 0, i.e. ε is not infintesimally close to 0.

To get the desired G00 = {P ∈ G|v(xP ) < 0} we need to prove that the
torsion points have projection, and are cofinal, in Fin.

The first part is trivial, the second is equivalent to the statement that
that for each s ∈ Fin we can find a torsion point whose projection on the
x-axis is greater than s; it sufficies to prove that for some n ∈ N the point
P such that xP = s has x[n]P ≤ xT4 .

We have two sub-cases:

• ε > 0, so xT4 = ε +
√
ε
√
ε+ 1 > 2ε. We prove that if P = (xP , yP )

has xP > xT4 then x[2n]P ≤ xT4 , for some n ∈ N.

Recall the duplication formula: x[2]P = (x2
P +ε)2

4xP (xP +1)(xP−ε) . Since we
suppose P is smaller (with respect to the order C of E0(M)) than T4,

then xP > 2ε, so x[2]P <
(x2

P +
xP
2 )2

4xP (xP +1)(xP−
xP
2 )

= (xP + 1
2 )2

2(xP +1) = xP (xP +1)+ 1
4

2(xP +1) =
xP

2 + 1
8(xP +1) <

xP

2 + 1
8xP

< xP

2 + 1
16ε .

We can therefore define a sequence of points pi such that for each
i, pi ≥ x[2i]P using the formula above. It is easy to observe that,

setting p0 = xP , we have pi = p0
2i +

Pi−1
j=0 2i

2i+4ε = p0
2i + 2i−1

(2−1)2i+4ε =
p0
2i − 1

2i+4ε + 1
16ε . But since limi→ω pi = 1

16ε , we must have that for
some n ∈ ω, x[2n]P ≤ pn ≤ xT4 .

• ε < 0, so xT4 =
√
−ε. As above we take P = (xP , xQ) and sup-

pose xP >
√
−ε. Using the duplication formula we get x[2]P =

(x2
P +ε)2

4xP (xP +1)(xP−ε) <
x4

P

4x3
P

= xP

4 . We can therefore find an n ∈ ω

such that x[2n]P ≤ xT4 as in the previous case.

12



2. If v(ε) > 0, then by our observation ε > 0, and so T2 = (ε, 0). We denote
by pn the projection on the x axis of the n-torsion point. The calculation
of the 4-torsion points leads to xT4 = ε+

√
ε
√
ε+ 1. So v(xT4) = v(

√
ε)−

v(
√
ε+
√
ε+ 1) = v(

√
ε) = 1

2v(ε).

The doubling formula for torsion points can be then written as:

(9) xTn/2 =
1
4

x4
Tn

+ 2εx2
Tn

+ ε2

x3
Tn

+ (1− ε)x2
Tn
− εxTn

.

Passing to the valuation we get v
(
xTn/2

)
= 2v

(
x2
Tn

+ ε
)
−v(xTn)−v(xTn +

1)− v(xTn − ε).
A couple of considerations:

• All torsion points have valuation of the first coordinate strictly posi-
tive. In fact, by induction let n be the smallest such that v(xTn

) ≤ 0.
Then v

(
xTn/2

)
= 2v(x2

Tn
)−v(xTn

)−v(xTn
+1)−v(xTn

) = 4v(xTn
)−

3v(xTn
) = v(xTn

) > 0, contradicting our assumption that Tn/2 C Tn
and yTn

, yTn/2 > 0.

• We need to make sure that the valuation of xT8 is strictly less than
v(xT4). Again by contradiction suppose v(xT8) = v(xT4) = 1

2v(ε).
Then 1

2v(ε) = v(xT4) = 2v(x2
T8

+ε)−v(xT8)−v(xT8 +1)−v(xT8−ε) ≥
2v(ε)− 1

2v(ε)− 1
2v(ε) = v(ε), which contradicts v(ε) > 0. In conclusion

we have for n ≥ 8: 1
2v(ε) > v(xTn) > v(xT2n) > 0 (It is in fact trivial

to prove this for n > 8).

By the considerations we get v(xTn) = 2v(x2
T2n

) − v(xT2n) − v(xT2n) =
2v(xT2n

), i.e., v(xT2n
) = 1

2v(xTn
).

This implies G00 =
⋂
n∈ω

{
P ∈ G|v (xP ) < 1

nv(ε)
}

.

It is easy and left to the reader to check that the projection on the x-axis
of G00 is a valuational cut, and that therefore there is an unique valuation
associated to G00.

We now check which curves produce 1-based G/G00, relating them to the
behaviour of E(K) when reduced over the standard residue field.

We have three possible kind of reductions, see Remark 2.5.

3.1 The good reduction case

This is the case of a curve E : y2 = x(x + 1)(x − ε) with v(ε) = 0, and
v(ε+ 1) = 0. Here the algebraic geometric reduction leads to the elliptic curve
curve Ẽ(R) : y2 = x(x+ 1)(x− st(ε)).

Clearly then E(K) = E0(K), and, by lemma 3.1, E1(K) = {P ∈ E(K)|v(xP ) <
0} = G00.

This, together with proposition 2.4, implies that

13



(10) G/G00 = E(K)0/E(K)00 = E0(K)0/E1(K)0 = Ẽ0(R).

We add now to K a predicate for G00 as in [1]: let K ′ = (K,G00, . . . ). We
can define in it the sets Fin and µ:

(11) Fin =
{
x ∈ K|∃y ∈ K

(
(x, y) ∈ G00 ∨ (−x, y) ∈ G00

)}
,

(12) µ =
{
x ∈ K|x−1 ∈ Fin

}
.

Clearly in the standard real closed valued field Kv = (K,Fin, µ, v, . . . ) the
set G00 is definable, so K ′ is interdefinable with Kv.

Moreover G/G00 is a definable set of kv and it is clearly internal to kv in
K ′. By remark 1.6 kv is non-1-based in Kv = K ′ and by lemma 1.3 also G/G00

is non-1-based in K ′.

3.2 The non-split multiplicative reduction case

In this case we have a curve E : y2 = x(x+ 1)(x− ε), with v(ε+ 1) > 0, i.e., the
roots (ε, 0) and (−1, 0) are infinitely close.

The algebraic geometric reduction here leads to a singular curve with a
“complex node”: the semialgebraic component without the identity is sent by
the standard reduction map to the point (−1, 0).

We can easily compute the sets G00 = {P ∈ G|v(xP ) < 0} = E1(K)0 =
E1(K) and G = E0(K)0 = E0(K).

We can use the same argument of the good reduction case to prove non-1-
basedness of G/G00. By proposition 2.4 and our considerations we have that
G/G00 = E0(K)0/E1(K)0 ∼= (=)Ẽ0(R) as abelian groups.

Again the structure K ′ = (K,E00) defines Fin and µ and so we again get
that K ′ is interdefinable with the standard real closed valued field Kv, and
that G/G00 is internal to kv = R. Thus, by lemma 1.3, G/G00 inherits non-1-
basedness from kv.

In the previous and this subsection we proved the following lemma:

Lemma 3.2. Given an elliptic curve E in minimal form, and such that E(K)
has good or nonsplit multiplicative reduction, the group G/G00, where G =
E(K)0, is non-1-based in K ′ = (K,G00, . . . ) and is internal to kv, the residue
field of the real closed valued field interdefinable with K ′.

We highlight now what is the actual Lie group structure of G/G00, by propo-
sition 2.4, it is sufficient to consider the connected component of y2 = x(x+1)2,
i.e., of Ẽ(R). We will follow the procedure shown in Exercise 3.5, page 104
of [3]: first we find an isomorphism of E(C) into (C, ·), then show that E(R) ∼=
{t ∈ C : |t| = 1}, therefore E(R) ∼= SO2(R).

The node is clearly N = (−1, 0), and to find the tangent is sufficient to solve
the system {

y = αx+ α
y2 = x3 + 2x2 + x

14



In a way in which α leads to a multiple root, therefore we have (α2 − x)(x +
1)2 = 0, and so α = ±i. The isomorphism f : (E(C),⊕) ∼= (C, ·) is (x, y) 7→
y−ix−i
y+ix+i , by Proposition 2.5, page 61 of [3]. We now have just to show that
if x, y ∈ R then |f(x, y)| = 1. In fact y−ix−i

y+ix+i = 1
y2+(x+1)2 |(y − i(x + 1))2| =

1
y2+(x+1)2

√
(y2 − (x+ 1)2)2 + 4y2(x+ 1)2 = y2+(x+1)2

y2+(x+1)2 = 1.

We notice here a difference between the algebraic geometric reduction of
E(K) and the functor L : E(K) → E(K)/E(K)00: with the former we obtain
a connected component isomorphic to SO2(R) and an isolated point (−1, 0)
(see [3] exercise 3.5, page 104 for details), whereas the image under the functor
L is instead still a nonsingular curve; with the two connected components in
bijection and therefore both isomorphic to SO2(R).

3.3 The split multiplicative reduction case

This is the case of a curve E : y2 = x(x+ 1)(x− ε), where v(ε) > 0 and ε > 0.
The algebraic geometric reduction leads here to a curve with a singularity,

more precisely a “real” node, in (0, 0).

We denote by H the group
(
[ε, 1

ε ), ∗ mod ε2
)

(the truncation of the mul-
tiplicative group by ε). Theorem 4.10 of [1] states that the group H/H00 is
1-based in KH00 = (K,H00, . . . ).

By Corollary 1.4 to obtain 1-basedness for G/G00 in K ′ = (K,G00, . . . )
from the known case of the “big” multiplicative truncation, it will suffice to
show that KH00 is interdefinable with K ′, and to find a definable bijection
f : G/G00 → H/H00.

We denote by P a point in G and by P∼ the class in G/G00 of which it is a
representative. Analogously we denote x ∈ H and x∼ ∈ H/H00.

We firstly define a map f∗ : G→ H as follows:

f∗(P ) =



1 if xP ≥ 1,(
1
xP

)
if yP ≥ 0 ∧ xP < 1,

xP if yP < 0 ∧ xP < 1.

We prove that f∗ induces a well defined map f : G/G00 → H/H00 on the
quotients, i.e., that given P∼ the image f(P∼) does not change if we change the
representative P .

It is convenient to study aside the cases of G00 and of (T2)∼.

Lemma 3.3. The map f sends G00 to H00.

Proof. We recall lemma 3.1: G00 =
⋂
n∈ω {P | ∀T BO, [n]T = A⇒ 	T C P C T} =⋂

n∈ω
{
P | v(xP ) < 1

nv(ε)
}

. And it easy to see thatH00 =
⋂
n∈ω

{
x| ε < xn < 1

ε

}
=⋂

n∈ω
{
x| |v(x)| < 1

nv(ε)
}

. Thus f∗(G00) = H00, and then also f(G00) =
H00.

We characterise (T2)∼ via the valuation of the projection of its points on the
x-axis.
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Lemma 3.4. We have (T2)∼ =
⋂
n∈ω

{
P ∈ G|v

(
xP

ε − 1
)
> 1

nv
(

1
ε

)}
.

Proof. By definition P ∈ (T2)∼ if and only if P 	 T2 ∈ G00 if and only if
v(P 	 T2) < 1

nv(ε), for all n.

Then v(xP	T2) = v
(

y2
P

(xP−ε)2 − 1 + ε− x− ε
)

= v
(
xP (xP +1)(xP−ε)

(xP−ε)2 − 1− xP
)

=

v
(
x2

P +xP−xP +ε−x2
P +xP ε

xP−ε

)
= v(ε) + v(1 + xP )− v(xP − ε).

Clearly v(1 + xP ) = 0 and since P ∈ (T2)∼: v(ε)− v(x− ε) < 1
nv(ε), for all

n. Therefore −v
(
xP

ε − 1
)
< 1

nv(ε), from which we get the conclusion.

It is now easy to prove the lemma:

Lemma 3.5. The function f is well defined for (T2)∼, i.e., if P ∈ (T2)∼, then
f(P ) · f(T2)−1 = H00.

Proof. Observe that f∗(T2) = 1
ε , and that if yP > 0, then f∗(P ) = 1

xP
. So

f∗(P )f∗(T2)−1 = ε
xP

. f∗(P )f∗(T2)−1 is in H00 if and only if 1
nv(ε) > v( ε

xP
) ≥ 0

for all n; i.e., if 0 ≥ v(xP

e ) > 1
nv
(

1
ε

)
for all n.

On the other hand if yP < 0, then f∗(P ) = xP , so f∗(P )f∗(T2)−1 ∈ H00 if
and only if 0 ≥ v

(
xP

ε

)
> 1

nv
(

1
ε

)
.

So what we need to prove is that if P ∈ (T2)∼, i.e., v
(
xP

ε − 1
)
> 1

nv
(

1
ε

)
for

all n, then v(xP

ε ) > 1
nv( 1

ε ) for all n.
This is obvious: suppose not, then v

(
xP

ε

)
< 0, so v

(
xP

ε − 1
)

= v
(
xP

ε

)
<

1
kv
(

1
ε

)
, for some k ∈ ω, contradicting P ∈ (T2)∼.

We want to prove for all the other cases that the map f is well defined.

Theorem 3.6. The map f is a well defined function G/G00 → H/H00.

Proof. Let P,Q ∈ P∼, then P 	Q ∈ G00, i.e., v(xP	Q) < 1
nv(ε), for all n. Our

aim is to prove that f∗(P ) ∼ f∗(Q): i.e., f∗(P )f∗(Q)−1 ∈ H00. Notice that
we already proved this for the class of T2 and for G00, we shall then suppose
P,Q /∈ (T2)∼, and P,Q /∈ G00, so we have, by convexity of the equivalence
relation, sign(yP ) = sign(yQ), v(xP ) > 0 and v(xQ) > 0. Moreover

(�) v(xP ) <
1
nP

v(ε) and v(xQ) <
1
nQ

v(ε) for some nP , nQ ∈ N.

We make now some observations regarding the choice of P = (xP , yP ) and
Q = (xQ, yQ).

Due to the symmetry of E with respect to the x-axis there is no harm in
supposing xQ < xP , and yP , yQ > 0, the other case is analogous. Let us call
f∗(P )f∗(Q)−1 = xQ

xP
= h.

Observation 1 : 0 ≤ v(h) < v(ε).

Proof: Since we supposed xQ < xP we get 0 ≤ v(h), for the other inequal-
ity suppose v(h) = v(xQ) − v(xP ) ≥ v(ε), but v(xP ) > 0, so v(xQ) ≥ v(ε),
contradicting (�).

We proceed now with the proof that if v(xP	Q) < 1
nv(ε) ∀n then v(xQ

xP
) =

h < 1
nv(ε) ∀n.
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Obviously if v(h) = 0 we are already done, so let v(h) > 0.
Recall that xP	Q = (yP +yQ)2

(xP−xQ)2 − 1− xP − xQ + ε.
The yi’s are hard to deal with directly, but observe that (yP + yQ)2 =

y2
P

(
1 + yQ

yP

)2

= y2
P

(
1 +

√
xQ

xP

√
xQ+1
xP +1

√
xQ−ε
xP−ε

)2

, and, since xQ < xP , we get
xQ+1
xP +1 < 1 and xQ−ε

xP−ε < h. Thus (yP + yQ)2 < y2
P (1 + h)2 = xP (xP + 1)(xP −

ε)(1 + h)2.

So 1
nv(ε) > v(xP	Q) ≥ (∗), for all n, where

(∗) = v

(
(xP + 1)(xP − ε)(1 + h)2

xP (1− h)2
− 1− xP (1 + h) + ε

)
.

We shall use (∗) to compute v(h).

Observation 2 : v

(
(xP + 1)(xP − ε)(1 + h)2

xP (1− h)2

)
= 0.

In fact v
(

(xP +1)(xP−ε)(1+h)2
xP (1−h)2

)
= v(xP + 1) + v(xP − ε) + 2v(1 + h) − v(xP ) −

2v(1 − h). Since 0 < v(xP ) < v(ε) and v(h) > 0, v(1 + h) = v(1 − h) = 0; so
v
(

(xP +1)(xP−ε)(1+h)2
xP (1−h)2

)
= 0 + v(xP )− v(xP )− 0 = 0.

This implies that there are two summands with same valuation in (∗) (the
other one is 1, so to compute (∗) we need to expand the whole expression).

Moreover (∗) ≥ min
{
v
(

(xP +1)(xP−ε)(1+h)2
xP (1−h)2 − 1− xP (1 + h)

)
, v(ε)

}
.. Since

we supposed (∗) < supn
{

1
nv(ε)

}
, clearly (xP +1)(xP−ε)(1+h)2

xP (1−h)2 − 1−xP (1 +h) has
to have smaller valuation than v(ε), and we can exclude ε from the computation
of (∗):

(∗) = v

(
(xP + 1)(xP − ε)(1 + h)2

xP (1− h)2
− 1− xP (1 + h)

)
.

This implies (∗) ≥ min
{
v
(

(xP +1)(xP−ε)(1+h)2
xP (1−h)2 − 1

)
, v(xP (1 + h))

}
. We al-

ready observed that v(xP (1 + h)) = v(xP ). Moreover if the two valuations are
different the inequality becomes an equality (this will be the first case in the
following two cases). We distinguish two cases:

• v
(

(xP +1)(xP−ε)(1+h)2
xP (1−h)2 − 1

)
6= v(xP ).

Then (∗) = v(x2
P (1 + h)2 + 4hxP − ε(1 + h)2(1 + xP )) − v(xP ). Clearly

v(ε(1 + h)2(1 + xP )) = v(ε) is greater than v(x2
P (1 + h)2) = 2v(xP ) and

v(4hxP ) = v(xQ).

Observe that since both x2
P (1 + h)2 and 4hxP are positive, v(x2

P (1 +
h)2 + 4hxP ) = min{v(x2

P (1 + h)2), v(4hxP )}. So either (∗) = v(x2
P ) −

v(xP ) = v(xP ), but since (∗) < 1
nv(ε) for all n, which contradicts (�), or

(∗) = v(xQ) − v(xP ) = v(h), in this case v(h) = (∗) < 1
nv(ε) for all n by

the hypothesis, and this concludes the proof of the case.

• v
(

(xP +1)(xP−ε)(1+h)2
xP (1−h)2 − 1

)
= v(xP ).
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Then

(∗) = v
(

(xP +1)(xP−ε)(1+h)2
xP (1−h)2 − 1− xP (1 + h)

)
=

= v
(
hx2

P (1 + h)(2− h) + 4xPh− ε(1 + xP )(1 + h)2
)
− v(xP ).

Since v(hx2
P (1 + h)(2 − h)) = v(xPxQ), v(4xPh) = v(xQ) and v(ε(1 +

xP )(1 + h)2) = v(ε), we get (∗) = v(h), so v(h) < 1
nv(ε) and we have

finished the proof.

Easy to check now is

Corollary 3.7. The map f is a bijection.

Proof. Surjectivity: trivial by construction.

Injectivity: Suppose f(P∼) = f(Q∼). Choosing the representatives P,Q
such that sign(yP ) = sign(yQ) in case P or Q are in T2)∼, we have

∣∣∣v (xQ

xP

)∣∣∣ =

v(h) < 1
nv(ε), for all n.

Now we need to prove that also |v(xP	Q)| < 1
nv(ε) for all n. We can suppose

xP > xQ, so 0 ≤ v(xP	Q), and, by the choice of the representatives, (yP +
yQ)2 < y2

P . So 0 ≤ v(xP	Q) ≤ (◦), where

(◦) = v

(
(xP + 1)(xP − ε)
xP (xP − h)2

− 1− xP (1 + h)− ε
)
.

Thus 0 ≤ v(xP	Q) ≤ (◦) = v(−ε(xP + 1) + h(2xP − hxP + hx2
P − h2x2

P ) +
ε(xP (1 − xP )2)) − v(xP ) = v(hxP ) − v(xP ) = v(h) < 1

nv(ε), for all n. Thus
P ∼ Q, so P∼ = Q∼ and f is injective.

In [1] it is highlighted how the structure (K,H00, . . . ) is interdefinable with
a nonstandard real closed field Kw, whose valuation is w and that H/H00 is
a definable subset of Γw in Kw. Having found a definable bijection between
G/G00 and H/H00 we get then that G/G00 is internal to Γw, and Corollary 1.4
implies the following theorem:

Theorem 3.8. Given an elliptic curve E with split multiplicative reduction, the
group G/G00 is 1-based in the structure K ′ = (K,G00, . . . ).

This and the results in chapter 3.1 and 3.2 prove part of theorem 1.8. In the
next chapter is proved the remaining part, with the analysis of the truncations.

4 Truncations of elliptic curves

Given an elliptic curve E defined over a saturated real closed field K, we call
a group G of the form ([	P, P )⊕ mod [2]P ), where P ∈ E(K)0 and the
interval is considered according to the order C of E(K), a truncation of E(K).

We shall denote by Q∗,C∗,⊕∗, [n]∗ the points, order, operation and formal
multiplication on E(K) respectively and by Q,C,⊕, [n] those in G.

Our aim is to extend the classification above to truncations of elliptic curves.
We shall consider separately the case of E when E(K) has good reduction
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and nonsplit multiplicative reduction, and when E(K) has split multiplicative
reduction.

We shall prove the following theorem:

Theorem 4.1. The truncation G = ([	P, P ),⊕ mod [2]P ) of the K-points of
an elliptic curve E is 1-based if and only if G/G00 is internal to the value group
determined by G00, and if and only if E(K) has split multiplicative reduction
and v(xP ) > 0.

Proof. We shall consider all the possible cases, and therefore get all the impli-
cations in the theorem by exhaustion.

Firstly we prove that for the good reduction and nonsplit multiplicative
reduction case non-1-basedness is preserved in truncations.

We split into two subcases:

Subcase 1: if the point P defining the truncation is in E(K)0 \E(K)00; and
Subcase 2: if it is in E(K)00.

1. G = ([	P, P ),⊕ mod [2]P ) and P /∈ E(K)00. Then this implies that
T ∗n C

∗ P C∗ T ∗n+1 (or T ∗n B
∗ P B∗ T ∗n+1) for some n. We consider the first

inequality, the second one is identical. Let Tk be a torsion point of G,
then it is easy to see that xT∗kn

< xTk
< xT∗

k(n+1)
. So for each torsion point

T of G, there are two torsion points of E whose projections on the x-axis
bound the projection of T , therefore G00 = E(K)00. Moreover G/G00 is
a definable truncation of E(K)0/E(K)00 = Ẽ(R)0 in the expansion of K
by a predicate for G00, and so it is non-1-based by Corollary 3.7.

2. G = ([	P, P ),⊕ mod [2]P ) and P ∈ E(K)00. Clearly then G00 6=
E(K)00, we show then that G00 is still definable in the expansion K ′

of K by E(K)00 and that moreover it is definable in a sort of (K ′)eq

interdefinable with kv ∼= R in (K ′)eq, this clearly implies non-1-basedness.

Observe that v(xP ) < 0. We firstly want to determine G00.

We recall that v(ε) ≥ 0, and that if S ∈ G, then v(xS) < 0. Hence
v
(
x[2]S

)
= v

(
(x2

S+ε)2

4xS(xS+1)(xS−ε)

)
= 2v(x2

S + ε) − v(xS) − v(xS) − v(xS) =

v(xS), and we find that G00 = {S ∈ G|v(xS) < v(xP )}.
We prove now that S ∼ Q (i.e., S 	Q ∈ G00 if and only if v(xS − xQ) >
v(xP ) and yS , yQ have the same sign (of course also if S ∼ P and Q ∼ P ),
then we get that G/G00 is definable in the sort B≥v(xP )(0)/B>v(xP )(0) ∼=
kv ∼= R (by remark 1.5) and therefore that G/G00 is internal to the residue
field of a real closed valued field and so it is non-1-based by Remark 1.3.

Observe that for each S, v(xS) = v(xP ), so it is sufficient to show the
following claim holds:

Claim: v(xS	Q) < v(xS) if and only if v(xS−xQ) > v(xS), or equivalently

v
(
xQ

xS
− 1
)
> 0.

Proof of the claim: firstly we prove RHS ⇒ LHS. We use valuations:
v(xS 	 xQ) = v

(
(yQ+yS)2

(xQ−xS)2 − 1 + ε− xS − xQ
)

. After denoting xQ

xS
− 1 by

δ and a bit of manipulation we find that it is equal to:
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v

(
(xS + 1)(xS − ε)

(
yQ

yS
+ 1
)2

− (1− ε)xSδ2 − x2
Sδ

2 − xSxQδ2
)
−v(xS)−

2v(δ). Now some considerations: v(xS) = v(xQ) implies v(yS) = v(yQ),

therefore v
(
yQ

yS

)
= 0, and since sign(yS) = sign(yQ) we get v

(
yQ

yS
+ 1
)

=
0; moreover v(δ) ≥ 0.

Also: v(xS + 1) = v(xS), v(xS − ε) = v(xS).

We consider separately the parts of the above polynomial:

• v
(

(xS + 1)(xS − ε)
(
yQ

yS
+ 1
)2
)

= 2v(xS).

• v
(
(1− ε)xSδ2

)
= v(xS) + 2v(δ) > 2v(xS).

• v
(
x2
Sδ

2 + xSxQδ
2
)

= 2v(xS) + 2v(δ).

Then v

(
(xS + 1)(xS − ε)

(
yQ

yS
+ 1
)2

− (1− ε)xSδ2 − x2
Sδ

2 − xSxQδ2
)
≥

2v(xS), so v(xS	Q) ≥ 2v(xS) − v(xS) − 2v(δ) = v(xS) − 2v(δ). Since we

assumed v(xS	Q) < v(xS), we obtain −v(δ) < 0, so v
(
xQ

xS
− 1
)
> 0 and

we are done.

For the other direction suppose v(δ) > 0, v(xS	Q) = 2v(xS) − v(xS) −
2v(δ) = v(xS)− 2v(δ) < v(xS) = v(xP ), so S 	Q ∈ G00.

This concludes the proof of the claim and hence of the subcase.

We consider now the case of E(K) with split multiplicative reduction, i.e.,
E is defined by y2 = x(x+ 1)(x− ε) where v(ε) > 0. We have four subcases:

1. If P ∈ E(K)0 \ E(K)00, it is analogous to subcase 1 above: we have that
G00 = E(K)00. Let H be the multiplicative truncation

(
[ε, 1

ε ), ∗ mod ε2
)
.

The definable bijection f : E(K)0/E(K)00 → H/H00 of theorem 3.6
restricted to G/G00 is then a definable bijection f ′ : G/G00 → H ′/H ′00,
where

H ′ =
([
f(P ),

1
f(P )

)
, ∗ mod f(P )2

)
is a “big” multiplicative truncation. By Corollary 1.4 G/G00 is then 1-
based and it is clearly internal to the value group of a real closed valued
field.

Therefore f ′ transfers 1-basedness of H ′/H ′00 to G/G00 as in the proof of
Theorem 3.8.

2. P ∈ E(K)00 and v(xP ) < 0. This is identical to subcase 2 above, and the
same calcualtion leads to non-1-basedness of G/G00.

3. P ∈ E(K)00 and v(xP ) > 0. Observe that if xS ∈ G, and v(xS) > 0, then
also v(xS) < v(ε). Then v

(
x[2]S

)
= v

(
(x2

S+ε)2

4xS(xS+1)(xS−ε)

)
= 2v(x2

S + ε) −
v(xS)− 0− v(xS) = 2v(xS).

As in the split multiplicative case we shall produce a definable bijection

G/G00 → H/H00 with H =
([
xS ,

1
xS

)
, ∗ mod

(
1
xs

)2
)

a “big” multi-

plicative truncation.
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We define the map f∗ : G→ H as

f∗(S) =



1 if S ∈ O∼,(
1
xS

)
if yS ≥ 0,

xS if yS < 0,

Consider the induced map f : G/G00 → H/H00. The same calculation
that led to Corollary 3.7 gives us that f is a definable bijection. Therefore
G/G00 inherits 1-basedness from H/H00 by Corollary 1.4 and again it is
internal to the value group of a real closed valued field.

4. P ∈ E(K)00 and v(xP ) = 0. It is again immediate to observe that if
xS ∈ G and v(xS) = 0, v

(
x[2]S

)
= 2v(xS). Therefore G00 = {S ∈

G|v(xS) < 0}. By the same argument as Subcase 3 we obtain a definable
bijection with a multiplicative truncation, though this time it is a “small”
one, and therefore G/G00 is non-1-based and internal to the residue field
of a real closed valued field again by Corollary 1.4.

With this last case study we have completed the proof of Theorem 4.1 and
therefore of Theorem 1.8.
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