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Abstract. We study the theory of a Hilbert space H as a module for a unital

C∗-algebra A from the point of view of continuous logic. We show this theory,

in an appropiate lenguage, has quantifier elimination and it is superstable.

We show that for every v ∈ H the type tp(v/∅) is in correspondence with

the positive linear functional over A defined by v. Finally, we characterize

forking, orthogonality and domination of types and show the theory has weak

elimination of imaginaries.

1. introduction

Let A be a unital C∗-algebra and let π : A → B(H) be a C∗-algebra nondegen-

erate isometric homomorphism, where B(H) is the algebra of bounded operators

over a Hilbert space H . The goal of this paper is to study H as a metric structure

expanded by A from the point of view of continuous logic (see [6] and [5]). In order

to describe the structure of H as a module for A, we include a symbol ȧ in the

language of the Hilbert space structure whose interpretation in H will be π(a) for

every a in the unit ball of A. Following [5], we study the theory of H as a metric

structure of only one sort:

(Ball1(H), 0,−, i, x+y
2 , ‖ · ‖, (π(a))a∈Ball1(A))

where Ball1(H) and Ball1(A) are the corresponding unit balls in H and A respec-

tively; 0 is the zero vector in H ; − : Ball1(H) → Ball1(H) is the function that

to any vector v ∈ Ball1(H) assigns the vector −v; i : Ball1(H) → Ball1(H) is
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the function that to any vector v ∈ Ball1(H) assigns the vector iv where i2 = −1;

x+y
2 : Ball1(H)×Ball1(H) → Ball1(H) is the function that to a couple of vectors

v, w ∈ Ball1(H) assigns the vector v+w
2 ; ‖ · ‖ : Ball1(H) → [0, 1] is the norm

function; A is an unital C∗-algebra; π : A → B(H) is a C∗-algebra isometric ho-

momorphism. The metric is given by d(v, w) = ‖ v−w
2 ‖. Briefly, the structure will

be refered to as (H, π).

It is worthy noting that with this language, we can define the inner product

taking into account that for every v, w ∈ Ball1(H),

〈v | w〉 = ‖ v+w
2 ‖2 − ‖ v−w

2 ‖2 + i(‖ v+iw
2 ‖2 − ‖ v−iw

2 ‖2)

Because of this reason, we will make free use of the inner product as if it were

included in the language. In most arguments, we will forget this formal point of

view, and will treat H directly. To know more about the continuous logic point of

view of Banach spaces please see [5], Section 2.

The main results of this paper are the following:

Theorem 1.1. The theory of (H, π) admits quantifier elimination and is super-

stable.

Theorem 1.2. Let v, w ∈ H. Then tp(v/∅) = tp(w/∅) if and only if φv = φw,

where φv and φw are the positive linear functionals on A corresponding to the

vectors v and w (see Lemma 2.38).

Theorem 1.3. Let v̄ ∈ Hn and E ⊆ H. Then the type tp(v̄/E) has a canonical

base and therefore, the theory of (H, π) has weak elimination of imaginaries.

Theorem 1.4. Let E ⊆ H, p, q ∈ S1(E) be stationary and v, w ∈ H be such that

v |= p and w |= q. Then, p ⊥E q if and only if φP⊥

acl(E)
(ve) ⊥ φP⊥

acl(E)
(we) (see

Definition 2.35 and Definition 2.46).

Theorem 1.5. Assume (H, π) is saturated. Let E, F and G be small subsets of

H such that E ⊆ G and F ⊆ G. Let p ∈ S1(E) and q ∈ S1(F ) be two stationary

types. Then p ⊲G q if and only if there exist v, w ∈ H such that tp(v/G) is a non-

forking extension of p, tp(w/G) is a non-forking extension of q and φP⊥

acl(F )
(we) ≤

φP⊥

acl(E)
(ve) (see Definition 2.35 and Definition 2.46).
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The author and Berenstein ([3]) studied the theory of the structure (H,+, 0, 〈|〉, U)

where U is a unitary operator in the case where the spectrum is countable and char-

acterized prime models and orthogonality of types. The author and Ben Yaacov

([4]) studied the more general case of a Hilbert space expanded by a normal oper-

ator N . Most results in this paper are generalizations of results present in [3, 4].

Previous to that, Henson and Iovino in [19], observed that the theory of a Hilbert

space expanded with a family of bounded operators is stable. A geometric charac-

terization of forking in such structures was first done by Berenstein and Buechler

[9]. In [8] Ben Yaacov, Usvyatsov and Zadka characterized the unitary operators

corresponding to generic automorphisms of a Hilbert space as those unitary trans-

formations whose spectrum is S1 and gave the key ideas used in this paper to

characterize domination and orthogonality of types.

A work related to this one is the one of Farah, Hart and Sherman who recently

have showed that the theory of a C∗-algebra is not stable (See [15] and [16]). These

papers and Farah’s work point out one phenomenon: C∗-algebras have complicated

model theoretical structure but their representations are very well behaved. This

is similar to the case of the integers Z: The theory Th(Z) is quite difficult from

the model theoretic point of view, but some of its representations like torsion free

abelian groups are very well behaved.

This paper is divided as follows: In Section 2 we give a summary of the tools of

C∗-algebras that we will use in this paper. In Section 3, we give an explicit axiom-

atization of Th(H, π) and build the monster model for the theory. In Section 4, we

characterize the types over the emtpy set as positive linear functionals on A and

prove quantifier elimination. In section 5, we characterize definable and algebraic

closures. In Section 6, we give a geometric interpretation of forking and show weak

elimination of imaginaries. Finally, in Section 7, we characterize orthogonality and

domination of types.

2. representations of C∗-algebras and bounded positive linear

functionals

This section deals with the representations of a C∗-algebra and with bounded

positive linear functionals. The main theorems here are Theorem 2.43 which gives a
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canonical way to build representations of a C∗-algebra called the Gelfand-Naimark-

Segal construction; Theorem 2.49 that generalizes Radon Nikodim Theorem; and

Theorem 2.32, which states that a representations of an algebra of compact oper-

ators can be seen as a direct sum of representations on finite dimensional Hilbert

spaces.

Gelfand-Naimark-Segal construction will be very helpful in defining definable

closures and forking between types. Theorem 2.32 we will be used in Section 3

to characterize the theory of (H, π). The Gelfand-Naimark-Segal construction and

Theorem 2.49 will be used in Section 4 to show that positive linear functionals will

correspond to types of vectors in H , and in Section 7 to prove that the relations

of almost domination and orthogonality between positive linear functionals over A

characterize domination and orthogonality between types.

Definition 2.1. Let A be a complex Banach algebra. A is called a C∗-algebra

if there exists a map ∗ : A → A, called involution such that for all a, b ∈ A and

α ∈ C:

(1) (a+ b)∗ = a∗ + b∗

(2) (ab)∗ = b∗a∗

(3) (αa)∗ = ᾱa∗

(4) (a∗)∗ = a

(5) |a∗a| = |a|2

Fact 2.2. C is a C∗-algebra under complex conjugation.

Definition 2.3.

• Let S be a linear operator from H into H . The operator S is called bounded

if the set {‖Su‖ : u ∈ H, ‖u‖ = 1} is bounded in C. If S is bounded we

define the norm of S by:

‖S‖ = sup
u∈H,‖u‖=1

‖Su‖

Let H be a Hilbert space. We denote by B(H) the algebra of all bounded

linear operators from H to H .
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• Given a linear operator S : H → H , its adjoint operator, denoted S∗ is

the unique linear operator S∗ : H → H such that for every u, v ∈ H ,

〈Su|v〉 = 〈u|S∗v〉.

Remark 2.4. The unicity of the adjoint comes from a duality relation between H

and H ′. See [21], Volume 1, Chapter V I, Section 2.

Fact 2.5. B(H) is a C∗-algebra under the adjoint operation.

Remark 2.6. There are three important topologies on B(H): The norm topology,

the strong and the weak. Strong topology is the topology of pointwise convergence.

In weak topology Tk → T if for all v and w ∈ H , 〈Tkv |w〉 → 〈Tv |w〉

Definition 2.7. Given a subset M ⊆ B(H), we define de commutant M′ of M

the set,

M′ = {S ∈ B(H) | ∀T ∈M,ST = TS}

Theorem 2.8 (Von Neumann Bicommutant Theorem. Theorem 2.2.2 in [20]). Let

M be a sub C∗-algebra of B(H) containing the identity. Then the following are

equivalent:

(1) M = M′′.

(2) M is weakly closed.

(3) M is strongly closed.

Definition 2.9. A C∗-subalgebra of B(H) satisfying any of this equivalent condi-

tion is called a Von Neumann algebra.

Theorem 2.10 (Kaplanski densitiy theorem. Theorem 2.3.3. in [20]). Let A be

a C∗-subalgebra of B(H) with strong closure M. Then the unit ball Ball1(A)

of A is strongly dense in the unit ball Ball1(M) of M. Furthermore, the set of

selfadjoint elements in Ball1(A) is strongly dense in the set of selfadjoint elements

of Ball1(M).

Definition 2.11. Let A be a C∗-algebra. A representation is an algebra homo-

morphism π : A → B(H) such that for all a ∈ A, π(a∗) = (π(a))∗. In this case

H is called an A-module. A Hilbert subspace H ′ ⊆ H is called an A-submodule or

a reducing A-subspace of H if H ′ is closed under π. H is called A-irreducible or
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A-minimal if H has no proper non trivial A-submodules. The set of representations

of an algebra A on B(H) is denoted rep(A, B(H)).

Definition 2.12. Let (H, π) be a representation of a C∗-algebra A. (H, π) is

called non-degenerate if for every nonzero vector v ∈ H , there exists a ∈ A such

that π(a)v 6= 0.

Fact 2.13 (Remark 2.2.4 in [20]). A representation (H, π) of an unital C∗-algebra

A is non-degenerate if and only if π(e) = I, where e is the identity of A and I is

the identity of B(H).

Assumption 2.14. From now on, every C∗-algebra A will be assumed to have iden-

tity e and every representation will be asumed to be non-degenerate.

Fact 2.15 (Corollary 2.2.5 in [20]). Let A be a C∗algebra and π : A → B(H) a

nondegenerate representation of A. Let M be the strong closure of π(A). Then M

is weakly closed and M = A′′.

Let (H, π) be a fixed representaton for a C∗-algebra A.

Definition 2.16. Two subrepresentations (H1, π1), (H2, π2) of (H, π) are said to

be disjoint if no subrepresentation of (H1, π1) is unitarily equivalent to any subrep-

resentation of (H2, π2).

Fact 2.17 (Proposition 3 in [11], Chapter 5, Section 2). Two subrepresentations

(H1, π1), (H2, π2) of (H, π) are disjoint if and only if there is a projection P in

π(A)′∩π(A)′′ such that if P1 and P2 are the projections on H1 and H2 respectively,

we have that PP1 = P1 and (I − P )P2 = P2.

Definition 2.18. Given E ⊆ H and v ∈ H , we denote by:

(1) HE , the Hilbert subspace of H generated by the elements π(a)v, where

v ∈ E and a ∈ A.

(2) πE := {π(a) ↾ HE | a ∈ A}.

(3) (HE , πE), the subrepresentation of (H, π) generated by E.

(4) Hv, the space HE when E = {v} for some vector v ∈ H

(5) πv := πE when E = {v}.

(6) (Hv, πv), the subrepresentation of (H, π) generated by v.
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(7) H⊥
E , the orthogonal complement of HE

(8) PE , the projection over HE .

(9) PE⊥ , the projection over H⊥
E .

Remark 2.19. For a tuple v̄ = (v1, . . . , vn), by PE v̄ we denote the tuple (PEv1, . . . , PEvn).

Definition 2.20. (H, π) is called cyclic if there exists a vector vπ such that π(A)vπ

is dense in H . Such a vector is called a cyclic vector for the representation (H, π).

Remark 2.21. For v ∈ H , it is clear that v is a cyclic vector for A on Hv.

Notation 2.22. We say that (H, π, vπ) is a cyclic representation if vπ is a cyclic

vector for (H, π).

Theorem 2.23 (Remark 3.3.1. in [20]). Every representation can be seen as a

direct sum of cyclic representations.

Definition 2.24. Two representations (H1, π1) and (H2, π2) are said to be unitarily

equivalent if there exists an isometry U from H1 to H2 such that for every a ∈ A,

Uπ1(a)U
∗ = π2(a).

Definition 2.25. Two cyclic representations (H1, π1, v1) and (H2, π2, v2) are said

to be isometrically isomorphic if there is an isometry U from H1 to H2 such that

for every a ∈ A, Uπ1(a)U
∗ = π2(a) and Uv1 = v2.

Theorem 2.26 (Proposition 3.3.7 in [20]). Two cyclic representations (H1, π1, v1)

and (H2, π2, v2) are isometrically isomorphic if and only if for all a ∈ A, 〈π1(a)v1|v1〉 =

〈π2(a)v2|v2〉.

Definition 2.27. Two representations (H1, π1) and (H2, π2) are said to be approx-

imately unitarily equivalent if there exists a sequence of unitary operators (Un)n<ω

from H1 to H2 such that for every a ∈ A π2(a) = limn→∞ Unπ1(a)U
∗
n in the norm

topology.

Theorem 2.28 (Theorem II.5.8 in [12]). Two nondegenerate representations (H1, π1)

and (H2, π2) of a separable C∗-algebra on separable Hilbert spaces are approximately

unitarily equivalent if and only if, for all a ∈ A, rank(π1(a)) = rank(π2(a))
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Definition 2.29. A representation (H, π) of A is called compact if π(A) ⊆ K(H),

where K(H) is the algebra of compact operators on H .

Lemma 2.30 (Lemma I.10.7 in [12]). Let A be an algebra of compact operators

on a Hilbert space H. Every non-degenerate representation of A is a direct sum of

irreducible representations which are unitarily equivalent to subrepresentations of

the identity representation.

Notation 2.31. For a Hilbert space H and a positive integer n, H(n) denotes the

direct sum of n copies of H . If S ∈ B(H), S(n) denotes the operator on H(n) given

by Sn(v1, · · · , vn) = (Sv1, · · · , Svn). If B ⊆ B(H), B(n) is the set {S(n) | S ∈ B}.

Theorem 2.32 (Theorem I.10.8 in [12]). Let (H, π) be a compact representation

of A. Then for every i ∈ Z+, there are a Hilbert spaces Hi and positive integers ni

and ki such that dim(Hi) = ni and

H ≃ ker(π(A)) ⊕
⊕

i∈Z+

H
(ki)
i

and

π(A) ≃ 0⊕
⊕

i∈Z+

K(Hi)
(ki)

Remark 2.33. In case that ker(A) = 0, (A no necessarilly unital) we have that this

representation is non-degenerate.

Remark 2.34. Recall that if R ∈
⊕

i∈Z+ K(Hi)
(ki), then there is a sequence (Ri)i∈Z+

such that Ri ∈ K(Hi)
(ki) and R =

∑

i∈Z+ Ri in the norm topology. This means, in

particular, that limi→∞ ‖Ri‖ = 0.

Definition 2.35. Let (H, π) be a representation of A. We define:

The essential part of π: It is the C∗-algebra homomorphism,

πe := ρ ◦ π : A → B(H)/K(H)

of π(A), where ρ is the canonical proyection of B(H) onto the Calkin Al-

gebra B(H)/K(H).

The discrete part of π: It is the restriction,

πd : ker(πe) → K(H)

a→ π(a)



OPERATOR C∗-ALGEBRAS ON HILBERT SPACES 9

The discrete part of π(A): It is defined in the following way:

π(A)d := π(A) ∩ K(H).

The essential part of π(A): It is the image π(A)e of π(A) in the Calkin

Algebra.

The essential part of H: It is defined in the following way:

He := ker(π(A)d)

The discrete part of H: It is defined in the following way:

Hd := ker(π(A)d)
⊥

The essential part of a vector v ∈ H: It is the projection ve of v overHe.

The discrete part of a vector v ∈ H: It is the projection vd of v over Hd.

The essential part of a set E ⊆ H: It is the set

Ee := {ve | v ∈ E}

The discrete part of a set G ⊆ H: It is the set

Ed := {vd | v ∈ G}

Remark 2.36. Let (H, π) be a non-degenerate representation of A. By Theorem

2.32, for every i ∈ Z+, there are a Hilbert spaces Hi and positive integers ni and

ki such that dim(Hi) = ni and

Hd ≃
⊕

i∈Z+

H
(ki)
i

Definition 2.37. Let A′ be the dual space of A. An element φ ∈ A′ is called

positive if φ(a) ≥ 0 whenever a ∈ A is positive, i.e. there is b ∈ A such that

a = b∗b. The set of positive functionals is denoted by A′
+.

Lemma 2.38. Let A be a C∗-algebra of operators on a Hilbert space H, and let

v ∈ H. Then the function φv on A such that for every S ∈ A, φv(S) = 〈Sv | v〉 is

a positive linear functional.

Proof. Linearity is clear. Let S be a positive selfadjoint operator in A, let Q

be its square root, that is, an operator such that S = QQ∗. Let v ∈ H ; then

〈Sv | v〉 = 〈Q∗Qv | v〉 = 〈Qv |Qv〉 ≥ 0 �
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Definition 2.39. Let φ be a positive linear functional on A. Let

Λ2(A, φ) = {a ∈ A | φ(a∗a) <∞}/ ∼φ,

where a1 ∼φ a2 if φ(a∗1a2) = 0. For (a)∼φ
, (b)∼φ

∈ Λ2(A, φ), let

〈(a)∼φ
| (b)∼φ

〉φ = φ(a∗b).

Remark 2.40. The product 〈· | ·〉φ is a natural inner product on the space Λ2(A, φ)(see

[11] page 472).

Definition 2.41. We define the space L2(A, φ) to be the completion of Λ2(A, φ)

under the norm defined by 〈· | ·〉φ.

Definition 2.42. Let φ be a positive linear functional on A. We define the rep-

resentation Mφ : A → B(L2(A, φ)) in the following way: For every a ∈ A and

(b)∼φ
∈ L2(A, φ), let Mφ(a)((b)∼φ

) = (ab)∼φ
.

Theorem 2.43 (Theorem 3.3.3. and Remark 3.4.1. in [20]). Let φ be a positive

functional on A. Then there exists a cyclic representation (Hφ, πφ, vφ) such that for

all a ∈ A, φ(a) = 〈πφ(a)vφ|vφ〉. This representation is called the Gelfand-Naimark-

Segal construction.

Proof. Take (L2(A, φv),Mφv
, (e)∼φv

). Note that

〈Mφv
(a)(e)∼φv

| (e)∼φv
〉 = 〈(a)∼φv

| (e)∼φv
〉 = φv(a · e) = φv(a).

�

Theorem 2.44. Let v ∈ H. Then (Hv, πv, v) ≃ (L2(A, φv),Mφv
, (e)∼φv

).

Proof. By Gelfand-Naimark-Segal Theorem 2.43 and Theorem 2.26. �

Definition 2.45. We define the following (see [20]):

(1) A positive linear functional φ on A is called a quasistate if ‖φ‖ ≤ 1.

(2) The set of the of quasistates on A is denoted by QA.

(3) In the case where ‖φ‖ = 1, the positive linear functional φ is called a state.

(4) The set of states is denoted by SA.

(5) A state is called pure if it is not a convex combination of other states.

(6) The set of pure states is denoted by PSA.
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Definition 2.46. Let φ and ψ be positive linear functionals on A.

(1) They are called orthogonal (φ ⊥ ψ) if ‖φ− ψ‖ = ‖φ‖+ ‖ψ‖.

(2) Also, φ is called dominated by ψ (φ ≤ ψ) if there exist γ > 0 such that the

functional γψ − φ is positive.

Fact 2.47 (Lemma 3.2.3 in [20]). Let φ and ψ be two positive linear functionals

on A. Then, φ ⊥ ψ if and only if for all ǫ > 0 there exists a positive element a ∈ A

with norm less than or equal to 1, such that φ(e − a) < ǫ and ψ(a) < ǫ.

Lemma 2.48. Let φ1, φ2, ψ1 and ψ2 be positive linear functionals on A such that

φ1 ≤ φ2 and ψ1 ≤ ψ2. If φ2 ⊥ ψ2, then φ1 ⊥ ψ1.

Proof. Let γ1 > 0 and γ2 > 0 be such that γ1φ2 − φ1 and γ2ψ2 − ψ1 are positive.

By Fact 2.47, for ǫ > 0 there exists a positive a ∈ A with norm less than or equal to

1 such that φ2(e− a) < ǫ
γ1+γ2

and ψ2(a) <
ǫ

γ1+γ2
. Then φ1(e− a) ≤ γ1φ2(e− a) <

γ1ǫ
γ1+γ2

< ǫ and ψ1(a) ≤ γ2ψ2(a) <
γ2ǫ

γ1+γ2
< ǫ. �

Theorem 2.49 (Generalized Radon-Nikodim Theorem in [17]). Let π : A → B(H)

be a representation and let v, w ∈ H. Then φv ≤ φw if and only if there exists a

bounded positive operator P : Hw → Hv that commutes with π(A) and P (w) = v.

Definition 2.50. Let (Hi, πi) for i ∈ I be a family of representations of A. We

define a representation ⊕πi on ⊕Hi in the following way: Let v =
∑

i vi and a ∈ A,

⊕πi(a)v =
∑

i πi(a)vi.

Definition 2.51. We define the following:

• A subset F ⊆ SA is called separating if for every a ∈ A, φ(a) = 0 for every

φ ∈ F implies that a = 0.

• Let φ ∈ SA. φ is said to be faithful if for every a ∈ A+, φ(a) = 0 implies

that a = 0. A faithful representation is a representation (H, π) such that if

π(a) = 0 then a = 0 for a ∈ A+.

Notation 2.52. For each φ ∈ SA, let (Hφ, πφ) be the Gelfand-Naimark-Segal con-

struction of φ. For F ⊆ SA let (HF , πF ) = (⊕φ∈FHφ,⊕φ∈Fπφ).

Theorem 2.53 (Proposition 3.7.4 in [20]). If F ⊆ SA is separating, then (HF , πF )

is a faithful representation.



12 CAMILO ARGOTY

Definition 2.54. The representation (HSA
, πSA

) is called the universal represen-

tation.

3. the theory of (H, π)

In this section we use some results from section 2 to provide an explicit axioma-

tization of Th(H, π). The main tool here is Theorem 2.28 which is mainly a conse-

cuence of Voiculescu’s theorem (see [12]). This Theorem states that two separable

representations (H1, π1) and (H2, π2) of a separableC
∗-algebraA are approximately

unitarily equivalent if and only if for every a ∈ A, rank(π1(a)) =rank(π2(a)). This

last statement can be expressed in continuous first order logic and is the first step

to build the axiomatization we mentioned above. Lemma 3.7, Theorem 3.8 and

Corollary 3.14 are remarks and unpublished results from C. Ward Henson.

Lemma 3.1. If S : H → H is a bounded operator, S is non-compact if and only

if for some λS > 0, S(Ball1(H)) contains an isometric copy of the ball of radius

λS of ℓ2 i.e., there exists an orthonormal sequence (wi)i∈N ⊆ S(Ball1(H)) and a

vector sequence (ui)i∈N ⊆ Ball1(H) such that for every i ∈ N, Sui = λSwi.

Proof. Suppose S is non-compact. Then there is a sequence (u′i)i∈N ⊆ Ball1(H)

such that no subsequence of (Su′i)i∈N is convergent. By Grahm-Schmidt process

we can assume that (Su′i)i∈N is an orthogonal sequence. Since no subsequence

of (Su′i)i∈N converges, we have that lim inf{‖Su′i‖ | i ∈ N} > 0 (otherwise there

wuould be a subsequence of Su′i converging to 0). Let λS :=
lim inf{‖Su′

i‖ | i∈N}
2 > 0.

For i ∈ N, let ui :=
λSu′

i

‖Sui‖
and wi :=

Su′

i

‖Su′
i
‖ . Without loss of generality, we can asume

that for all i ∈ N, ‖Su′i‖ > λS and therefore ‖ui‖ ≤ 1. Then, Sui = S( λSui

‖Sui‖
) =

λS
Su′

i

‖Su′
i
‖ = λSwi.

On the other hand, suppose there are λS > 0, an orthonormal sequence (wi)i∈N ⊆

S(Ball1(H)) and a vector sequence (ui)i∈N ⊆ Ball1(H) such that for every i ∈ N,

Sui = λSwi. Then no subsequence of (Sui)i∈N converges and S is non-compact. �

Remark 3.2. If in Lemma 3.1 ‖S‖ ≤ 1, it is clear that λS ≤ 1.
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Lemma 3.3. Let a ∈ Ball1(A) be such that π(a) is a non-compact operator on H.

Let λπ(a), (ui)i∈N and (wi)i∈N as described in Lemma 3.1. Then, for every n ∈ N

(1) (H, π) |= inf
u1,u2···un

inf
w1,w2···wn

max
i,j=1,··· ,n

(|〈wi | wj〉 − δij |, |aui − λπ(a)wi|
)

= 0

Proof. This condition is a continuous logic condition for:

(2) ∃u1u2 · · ·un∃w1w2 · · ·wn ∧
(

∧

i,j=1,··· ,n

〈wi | wj〉 = δij
)

∧

∧
(

∧

i=1,··· ,n

ȧui = λπ(a)wi

)

where δij is Kronecker’s delta. By Lemma 3.1, this set of conditions says that

π(a)(Ball1(H)) contains an isometric copy the ball of radius λπ(a) of ℓ
2. �

Remark 3.4. It is an easy consecuence of Riesz representation theorem that if

S : H → H is an operator with rank n, then there exist two orthonormal families

E1 := {u1, · · · , vn}, E2 := {w1, · · · , wn} and a family {αi, . . . , αn} of non-zero

complex numbers such that for every v ∈ H , Sv =
∑n

i=1 αi〈v | ui〉wi. Furthermore,

if R is a compact operator, there is a complex sequence (αi)i∈N+ such that for every

v ∈ H , Sv =
∑n

i=1 αi〈v | ui〉wi. If ‖S‖ ≤ 1, then for every i, |αi| ≤ 1.

Lemma 3.5. Let n ∈ N and a ∈ Ball1(A) be such that rank(π(a)) = n. Let

{αi, . . . , αn} complex numbers as described in 3.4. Then

(3) (H, π) |= inf
u1u2···un

inf
w1w2···wn

sup
v

max
i,j=1···n

(

|〈ui | uj〉 − δij |, |〈wi | wj〉 − δij |,

, ‖ȧv −
n
∑

k=1

αi〈v | ui〉wi)‖
)

= 0

Proof. This condition is a continuous logic condition for:

(4) ∃u1u2 · · ·un∃w1w2 · · ·wn

(

∧

i,j=1,··· ,n

〈ui | uj〉 = δij ∧ 〈wi | wj〉 = δij
)

∧

∧ ∀v(ȧv =

n
∑

k=1

αi〈v | ui〉wi)

where δij is Kronecker’s delta. �

Remark 3.6. If Condition 3 is valid for some a ∈ A, by Remark 3.4, it is clear that

π(a) has rank n.
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Recall that all C∗-algebras under consideration are unital and all representations

are nondegenerate. However, in the next lemma we do not use the hypothesis that

A is unital.

Lemma 3.7. Let A be a separable C∗-algebra of operators on the separable Hilbert

space H, and π1 and π2 two non-degenerate representations of A on H. Then the

structures (H, π1) and (H, π2) are elementarily equivalent if and only if π1 and π2

are approximately unitarily equivalent.

Proof. ⇒ Suppose (H, π1) ≡ (H, π2). Let a ∈ Ball1(A) and assume that

rank(π1(a)) = n < ∞ then Condition (3) will hold for π = π1. By el-

ementary equivalence, Condition (3) will hold for π = π2 and therefore

rank(π1(a)) = n. In the same way, if rank(π1(a)) = ∞, Condition (1) will

hold for every n with respect to π1. By elementary equivalence, Condition

(1) will hold for every n with respect to π2 and rank(π2(a)) = ∞. This

implies that the hypotesis of Theorem 2.28 hold, and therefore π1 and π2

are approximately unitarily equivalent.

⇐ Suppose π1 and π2 are approximately unitarily equivalent. Then, there

exists a sequence of unitary operators (Un)n<ω such that for every a ∈ A,

π2(a) = limn→∞ Unπ1(a)U
∗
n. Let F be a non-principal ultrafilter over N.

Let (H̃1, π̃1) = ΠU (H,Unπ1(A)U
∗
n) and let (H̃2, π̃2) = ΠU (H, π2). It follows

that (H̃1, π̃1) ≃ (H̃2, π̃2) and (H, π1) ≡ (H, π2).

�

Theorem 3.8. Let A be a C∗-algebra, H1 and H2 be Hilbert spaces, and π1 and

π2 be two representations of A on H1 and H2 respectively. Then the structures

(H1, π1) and (H2, π2) are elementarily equivalent if and only if for all a ∈ A,

rank(π1(a)) = rank(π2(a)).

Proof. ⇒: Suppose (H1, π1) and (H2, π2) are elementarily equivalent and let

a ∈ A. By Theorem 3.3 and Theorem 3.5, rank(π(a)) = n or ∞ is a set of

conditions in L(A). By elementary equivalence, rank(π1(a)) = rank(π2(a)).

⇐: Let (H1, π1) and (H2, π2) be such that rank(π1(a)) = rank(π2(a)), and

let φ(a1, · · · , an) = 0 be a condition in L(A). Let Â ⊆ A be the unital

sub C∗-algebra of A generated by ā = (a1, · · · , an), and π̂1 and π̂2 be the
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restrictions of π1 and π2 to Â (note that π̂1(e) = I = π̂1(e)). Then Â is

separable and by Löwenheim-Skolem Theorem and Fact 2.13, there are two

separable non-degenerate representations (H̃1, π̃1) and (H̃2, π̃2) which are

elementary substructures of (H1, π̂1) and (H2, π̂2) respectively. By Theorem

2.28 (H̃1, π̃1) is approximately unitarily equivalent to (H̃2, π̃2). By the

previous lemma, (H̃1, π̃1) and (H̃2, π̃2) are elementary equivalent.

Then, (Ĥ1, π̂1) |= φ(a1, · · · , an) = 0 if and only if (Ĥ2, π̂2) |= φ(a1, · · · , an) =

0. But (H, π1) |= φ(a1, · · · , an) = 0 if and only if (Ĥ1, π̂1) |= φ(a1, · · · , an) =

0 and (H, π2) |= φ(a1, · · · , an) = 0 if and only if (Ĥ2, π̂2) |= φ(a1, · · · , an) =

0. Then (H, π1) |= φ(a1, · · · , an) = 0 if and only if (H, π2) |= φ(a1, · · · , an) =

0.

�

Definition 3.9. Let Tπ be the theory of Hilbert spaces together with the following

conditions:

(1) For v ∈ Ball1(H) and a, b ∈ Ball1(A):

˙(ab)v = (ȧḃ)v = ȧ(ḃv)

(2) For v ∈ Ball1(H) and a, b ∈ Ball1(A):

˙(a+b
2 )(v) = ȧ+ḃ

2 (v) = ȧv+ḃv
2

(3) For v, w ∈ Ball1(H), and a ∈ Ball1(A):

ȧ
(

v+w
2

)

= ȧv+ȧw
2

(4) For v ∈ Ball1(H) and a ∈ Ball1(A):

〈ȧv | w〉 = 〈v |ȧ∗w〉

(5) For v ∈ Ball1(H) and a ∈ Ball1(A):

sup
v

(‖ȧv‖ −· ‖a‖‖v‖) = 0

inf
v
max(|‖v‖ − 1|, |‖ȧv‖ − ‖a‖ |) = 0

(6) For v ∈ Ball1(H) and e the identity element in A:

(i̇e)v = iv

ėv = v
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(7) For a ∈ Ball1(A) such that π(a) is a non-compact operator on H . Let

λπ(a), (ui)i∈N and (wi)i∈N as described in Lemma 3.1. For n ∈ N

inf
u1,u2···un

inf
w1,w2···wn

max
i,j=1,··· ,n

(|〈wi | wj〉 − δij |, |aui − λπ(a)wi|
)

= 0

(8) For a ∈ Ball1(A), such that rank(π(a)) = n ∈ N. Let α1, · · · , αn be

complex number as described in Remark 3.4.

∃u1u2 · · ·un∃w1w2 · · ·wn

(

∧

i,j=1,··· ,n

〈wi | wj〉 = δij
)

∧

∧ ∀v(ȧv =

n
∑

k=1

αi〈v | ui〉wi)

Remark 3.10. We gave in Lemmas 3.3 and 3.5 the complete continuous logic formal-

ism only for the last two conditions. Conditions in Item (5), are natural continuous

logic conditions that say that ‖π(a)‖ = ‖a‖. The translations for the other con-

ditions to the continuous logic formalism are straightforward and are left to the

reader.

Remark 3.11. Second condition in Item (6) implies that the representation is non-

degenerate.

Remark 3.12. Since the rationals of the form k
2n are dense in R, Item (3) and Item

(6) are enough to show that for all v ∈ Ball1(H) and all a ∈ Ball1(A), we have

that (λ̇a)v = λ(ȧv).

Remark 3.13. We omit an explicit condition describing compact infinite rank op-

erators in π(A) because they completely determined by the finite rank operators in

π(A).

Corollary 3.14. Tπ axiomatizes the theory Th(H, π).

Proof. By Theorem 3.8. �

Lemma 3.15. Let (H1, π1) and (H2, π2) be two non-degenerate representations of

A. If (H1, π1) ≡ (H2, π2) then
(

(H1)d, (π1)d
)

≃
(

(H2)d, (π2)d
)

.

Proof. For a given representation π, let π(A)f be the (not necessarilly closed)

algebra of finite rank operators in π(A). If (H1, π1) ≡ (H2, π2), by Lemma 3.5,
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π1(A)f ≃ π2(A)f and by density of π(A)f in π(A)d, we have that π1(A)d ≃ π2(A)d.

Let B := π1(A)d ≃ π2(A)d. Since (H1)d and (H2)d are the orthogonal complements

of ker(B) in H1 and H2 respectively, we get that
(

(H1)d, (π1)d
)

and
(

(H2)d, (π2)d
)

are non-degenerate representations of B. Then by Lemma 2.30 and Theorem 2.32,
(

(H1)d, (π1)d
)

≃
(

(H2)d, (π2)d
)

. �

Theorem 3.16. Let (H1, π1) and (H2, π2) be two representations of A. Then

(H1, π1) ≡ (H2, π2) if and only if

(

(H1)d, (π1)d
)

≃
(

(H2)d, (π2)d
)

and

((H1)e, (π1)e) ≡ ((H2)e, (π2)e)

Proof. By Theorem 3.8, (H1, π1) ≡ (H2, π2) if and only if ((H1)d, (π1)d) ≡ ((H2)d, (π2)d)

and ((H1)e, (π1)e) ≡ ((H2)e, (π2)e). By Lemma 3.15, this is equivalent to
(

(H1)d, (π1)d
)

≃
(

(H2)d, (π2)d
)

and ((H1)e, (π1)e) ≡ ((H2)e, (π2)e). �

Remark 3.17. For E ⊆ H , (HE)e = HEe
and (HE)d = HEd

Lemma 3.18. Let v ∈ Hd. Then v is algebraic over ∅.

Proof. If v ∈ Hd by Theorem 2.32, there exist a sequence vi of vectors in Hd such

that vi ∈ Hki

i , and v =
∑

i≥1 vk. Given that ‖vk‖ → 0 when k → ∞, the orbit of

v under any automorphism U of (H, π) is a Hilbert cube which is compact, which

implies that v is algebraic. �

Lemma 3.19 (Proposition 2.7 in [18]). Let M and N be L-structures, A ⊆ M

and B ⊆ N . If f : A→ B is an elementary map, then there is an elementary map

g : aclM(A) → aclN (B) extending f . Moreover, if f is onto, then so is g.

Remark 3.20. Any elementary map is 1-1 so the previous Lemma implies that a

bijective elementary map can be extended by a bijective elementary map to the

algebraic closures.

Recall from Definition 2.45 that SA denotes the collection of states of A.

Definition 3.21. Let HSA
be the space,

HSA
= ⊕φ∈SA

L2(A, φ)
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and let πSA
be,

πSA
= ⊕φ∈SA

Mφ,

Theorem 3.22. Let κ ≥ |SA| be such that cf(κ) = κ. Then the structure

(H̃κ, π̃κ) = (Hd, πd)⊕
⊕

κ

(HSπ(A)e
, πSπ(A)e

)

is κ universal, κ homogeneous and is a monster model for Th(H, π).

Proof. Let us denote (H̃κ, π̃κ) just by (H̃, π̃).

(H̃, π̃) |= Th(H, π): For every a ∈ Ball1(A), if rank(a) = ∞ in He, then

rank(a) = ∞ in H̃e and if rank(a) = 0 in He, then rank(a) = 0 in H̃e. By

Theorem 3.16 (He, πe) ≡ (H̃e, π̃e). By Theorem 3.16, (H, π) ≡ (H̃, π̃).

κ-Universality: Let (H ′, π′) |= Th(H, π) be a model with density less than κ.

Theorem 3.16, (H ′, π′
d) ≃ (H̃d, π̃d) ≃ (Hd, πd). Then without loss of gener-

ality we can asume that π(A) = π(A)e. By Theorem 2.23, there exists a set

I and a family (Hi, πi, vi)i∈I of cyclic representations such that (H ′, π′) =
⊕

i∈I(Hi, πi). By Theorem 2.44, (Hvi , πvi , vi) ≃ (L2(A, φvi ),Mφvi
, (e)∼φvi

).

Since the density of (H ′, π′) is less than κ, the size of I is less than κ and

clearly (H ′, π′) is isomorphic to a subrepresentation of (H̃, π̃).

κ-Homogeneity: Let U be a partial elementary map between E, F ⊆ H̃

with |E| = |F | < κ.

(1) We can extend U to an unitary equivalence between HE and HF : Let

a1, a2 ∈ A and e1, e2 ∈ E. Then we define U(π(a1)(e1)+π(a2)(e2)) :=

π(a1)(U(e1)) + π(a2)(U(e2)). After this, we extend this constuction

continuously to HE .

(2) We can extend U to an unitary equivalence between (Hd ⊕HEe
) and

(Hd⊕HFe
): By Lemma 3.18, (Hd⊕HEe

) ⊆ aclH̃(E) and (Hd⊕HFe
) ⊆

aclH̃(F ). By Lemma 3.19, we can extend U in the desired way.

(3) We can find an unitary equivalence between (Hd ⊕HEe
)⊥ and (Hd ⊕

HFe
)⊥: Given that |E| = |F | < κ, there are two subsets C1 and C2

of κ such that (Hd ⊕ HEe
)⊥ =

⊕

C1
HPSπ(A)e

and (Hd ⊕ HEe
)⊥ =

⊕

C2
HPSπ(A)e

. We have that |C1| = |C2| = κ and therefore,

⊕

C1

(HSπ(A)e
, πSπ(A)e

) ≃
⊕

C2

(HSπ(A)e
, πSπ(A)e

).
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Let U ′ an isomorphism between

⊕

C1

(HSπ(A)e
, πSπ(A)e

) and
⊕

C2

(HSAe
, πSπ(A)e

).

(4) Let v ∈ H̃κ. Then v = vd + vEe
+ vE⊥

e
, where vEe

:= PEe
v and

vE⊥
e

:= PE⊥
e
v. Let w := Uvd + UvEe

+ U ′vE⊥
e
, and U ′′ := U ⊕ U ′.

Then w and U ′′ are such that U ′′ is an automorphism of H̃κ extending

U such that U ′′v = w.

�

Remark 3.23. By Remark 2.36, for every i ∈ Z+, there are a Hilbert spaces Hi and

positive integers ni and ki such that dim(Hi) = ni and

H̃κ ≃
⊕

i∈Z+

H
(ki)
i ⊕

⊕

κ

(⊕φ∈SA
L2(A, φ))

and

π(A) ≃
⊕

i∈Z+

K(H
(ki)
i )⊕

⊕

κ

(⊕φ∈SA
Mφ).

4. types and quantifier elimination

In this section we provide a characterization of types in (H, π). The main results

here are Theorem 4.3 and Theorem 4.6 that characterize types in terms of subrep-

resentations of (H, π) and, its consecuence, Corollary 4.7 that states that Tπ has

quantifier elimination. As in the previous section, we denote by (H̃, π̃) the monster

model for the theory Tπ as constructed in Theorem 3.22.

Remark 4.1. An automorphism U of (H, π) is a unitary operator U on H such that

Uπ(a) = π(a)U for every a ∈ Ball1(A).

Proof. Asume U is an automorphism of (H, π). It is clear that U must be a linear

operator. Also, for every v, w ∈ H and π(a) ∈ A, we must have that U(π(a)v) =

π(a)(Uv) and 〈Uv |Uw〉 = 〈v |w〉 by definition of automorphism. Therefore U must

be unitary and commutes with the elements of π(A). Conversely, if U is an unitary

operator commuting with the elements of π(A), then U is clearly an automorphism

of (H, π). �



20 CAMILO ARGOTY

Lemma 4.2. Let

Hd =
⊕

i∈Z+

H
(ki)
i

be as in Theorem 2.32. Let v ∈ H
(ki)
i for some i ∈ Z+ and let U ∈ Aut(H, π).

Then Uv ∈ H
(ki)
i .

Proof. By Theorem 2.32, π(A)d = π(A) ∩ K(H) can be seen as:

π(A)d =
⊕

i∈Z+

K(H
(ki)
i ).

By Theorem 4.1, any automorphism U ∈ Aut((H, π)) commutes with every element

of π(A), in particular with any element K of K(H
(ki)
i ). Thus, if v ∈ H

(ki)
i and

K ∈ K(H
(ki)
i ), KUv = UKv. This implies that Uv ∈ H

(ki)
i . �

Theorem 4.3. Let v, w ∈ H̃. Then tp(v/∅) = tp(w/∅) if and only if (Hv, πv, v) is

isometrically isomorphic to (Hw, πw, w).

Proof. Let us suppose that tp(v/∅) = tp(w/∅). Then there is an automorphism

U of (H̃, π̃) such that Uv = w. Therefore the representations (Hv, πv, v) and

(Hw, πw, w) are unitarily equivalent and therefore (Hv, πv, v) is isometrically iso-

morphic to (Hw, πw, w).

Conversely, let (Hv, πv, v) be isometrically isomorphic to (Hw, πw, w). By The-

orem 3.22, (Hv, πv) and (Hw, πw) can be seen as subrepresentations of (H̃, π̃).

Given that (Hv, πv, v) and (Hw, πw, w) are isometrically isomorphic, by Theorem

2.32, Theorem 3.22 and Remark 3.23, the decompositions of (Hv, πv) and (Hw, πw)

into cyclic representations are isometrically isomorphic too, and therefore H̃⊥
v and

H̃⊥
w are isometrically isomorphic. Then we get an automorphism of (H̃, π̃) that

sends v to w, and v and w have the same type over the empty set. �

Theorem 4.4. Let v, w ∈ H. Then tp(v/∅) = tp(w/∅) if and only if φv = φw,

where φv denotes the positive linear functional on A defined by v as in Lemma 2.38.

Proof. Let v and w ∈ H be such that tp(v/∅) =tp(w/∅). Then qftp(v/∅) =qftp(w/∅)

and therefore, for every a ∈ A, 〈π(a)v|v〉 = 〈π(a)w|w〉. But this means that

φv = φw.

Conversely, if φv = φw , by Theorem 2.26, (Hv, πv, v) is isometrically isomorphic

to (Hw, πw, w) and by Theorem 4.3 tp(v/∅) =tp(w/∅). �
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Lemma 4.5. Let E ⊆ H, U ∈ Aut(H, π). Then U ∈ Aut((H, π)/E) if and only if

U ↾ (HE , πE) = Id(HE ,πE).

Proof. Suppose that U ↾ (HE , πE) = Id(HE ,πE). Then, U fixes HE pointwise, and,

therefore, fixes E pointwise. Conversely, suppose U ∈ Aut((H, π)/E). By Remark

4.1, U is an unitary operator that commutes with every S ∈ π(A). Then for every

S ∈ π(A) and v ∈ E, we have that U(Sv) = S(Uv) = Sv. So U acts on HE like

the identity and the conclusion follows. �

Theorem 4.6. Let v and w ∈ H̃ and E ⊆ H̃. Then tp(v/E) =tp(w/E) if and only

if PE(v) = PE(w) and tp(P⊥
E (v)/∅) =tp(P⊥

E (w)/∅).

Proof. ⇒: Suppose tp(v/E) =tp(w/E). Given that tp(v/E) =tp(w/E), there

exists U ∈ Aut((H̃, π̃)/E) such that Uv = w. By Lemma 4.5, U ↾

(HE , πE) = Id(HE ,πE) and PE(v) = U(PE(v)) = PE(w). On the other

hand, U(P⊥
E (v)) = P⊥

E (w) and therefore tp(P⊥
E (v)/∅) =tp(P⊥

E (w)/∅).

⇐: Asume PE(v) = PE(w) and tp(P⊥
E (v)/∅) =tp(P⊥

E (w)/∅). Then there

exists an automoprhism U of (H̃, π̃) such that U(P⊥
E (v)) = P⊥

E (w). Let Ũ =

IdHE
⊕ (U ↾ H̃⊥

E ). Then, by Lemma 4.5, Ũ is an automorphism of (H̃, π̃)

that fixes E pointwise and Uv = w. This implies that tp(v/E) =tp(w/E).

�

Corollary 4.7. The structure (H, π) has quantifier elimination.

Proof. This follows from Theorem 4.6 that shows that types are determined by

quantifier-free conditions contained in it. �

Recall that weak∗ topology in A′ (the Banach dual Algebra of A) is the coarsest

topology in A′ such that for every a ∈ A, the function Fa : A′ → C is continuous,

where Fa(φ) = φ(a) for a ∈ A and φ ∈ A′.

Theorem 4.8. The stone space S1(Th(H, π)) (i.e. the set of types of vectors of

norm less than or equal to 1) with the logic topology is homeomorphic to the quasi

state space QA with the weak∗ topology.

Proof. We consider types of vectors with norm less than or equal to 1. Similarly,

we consider positive linear functionals with norm less than or equal to 1, that is,
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the quasi state space QA. By Theorem 4.4, types of vectors in H are determined

by the corresponding positive linear functionals, so there is a bijection between

S1(Th(H, π)) and QA.

To prove bicontinuity, let h : S1(Th(H, π)) → QA be the previously defined bijec-

tion. Let X be a weak∗ basic open set in QA; then there exists an open set V ⊆ C

and an element a ∈ A such that for every φ ∈ QA, we have that φ ∈ X if and only

if φ(a) ∈ V . For φ ∈ X let vφ be a cyclic vector such that φ = φvφ . Then for every

φ ∈ X , 〈π(a)vφ | vφ〉 ∈ V but this condition defines an open set in S1(Th(H, π)).

Conversely, by quantifier elimination, every basic open sets X in the logic topology

in S1(Th(H, π)) can be expresed as finite intersection of sets with the form:

{p ∈ S1(Th(H, π)) | vφ |= p⇒ 〈π(a)vφ | vφ〉 ∈ V }

where V ⊆ C open. Each of this sets is in correspondence by h with a set of the

form

{φ ∈ QA | 〈π(a)vφ | vφ〉 ∈ V }

which defines an open set in QA. �

5. definable and algebraic closures

In this section we give a characterization of definable and algebraic closures.

The results here are consequences of Theorem 2.43 and Theorem 2.32. Gelfand-

Naimark-Segal construction is a tool for understanding definable closures (see The-

orem 2.44). Algebraic closures are studied with the help of Theorem 2.32.

Theorem 5.1. Let E ⊆ H. Then dcl(E) = HE

Proof. From Lemma 4.5, it is clear that HE ⊆ dcl(E). On the other hand, if v ∈

HE , let λ ∈ C such that l 6= 1 and |λ| = 1. Then, the operator U := IdHE
⊕λIdH⊥

E

is an automorphism of (H, π) fixing E such that Uv 6= v. �

Lemma 5.2. Let v ∈ He. Then v is not algebraic over ∅.

Proof. We can asume that (H, π) is the monster model with density κ > 2ℵ0 . Then

there are κ vectors vi for i < κ such that every vi has the same type over ∅ as v.

This means that the orbit of v under the automorphisms of (H, π) is unbounded

and therefore v is not algebraic over the emptyset. �
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Lemma 5.3. Let v ∈ H such that ve 6= 0. Then v is not algebraic over ∅.

Proof. Clear from previous Lemma 5.2. �

Theorem 5.4. acl(∅) = Hd

Proof. By Lemma 3.18, Hd ⊆ acl(∅) and, by Lemma 5.3, acl(∅) ⊆ Hd. �

Theorem 5.5. Let E ⊆ H. Then acl(E) is the Hilbert subspace of H generated by

dcl(E) and acl(∅).

Proof. Let G be the Hilbert subspace of H generated by dcl(E) and acl(∅). It

is clear that G ⊆ acl(E). Let v ∈ acl(E). By Lemma 3.18, vd ∈ acl(∅), and

by Theorem 5.1 and Lemma 5.2, ve ∈ dcl(E) \ acl(∅). Then ve ∈ dcl(E) and

acl(E) ⊆ G. �

6. forking and stability

In this section we give an explicit characterization of non-forking and prove

that Th(H, π) is stable. Henson and Iovino in [19], observed that a Hilbert space

expanded with a family of bounded operators is stable. Here, we give an explicit

independence relation that has the properties of non-forking in superstable theories.

Definition 6.1. Let E, F , G ⊆ H . We say that E is independent from G over F

if for all v ∈ E Pacl(F )(v) = Pacl(F∪G)(v) and denote it E |⌣
∗

F
G.

Remark 6.2. Let v̄, w̄ ∈ Hn. Then, v̄ is independent from w̄ over ∅ if and only if

for every j, k = 1, . . . , n, H(vj)e ⊥ H(wk)e .

Remark 6.3. Let v̄, w̄ ∈ Hn and E ⊆ H . Then, v̄ is independent from w̄ over E if

and only if for every j, k = 1, . . . , n, HP⊥
E
(vj)e ⊥ HP⊥

E
(wk)e .

Remark 6.4. Let v̄ ∈ Hn and E, F ⊆ H . Then v̄ |⌣
∗

E
F if and only if for every

j = 1, . . . , n vj |⌣
∗

E
F that is, for all j = 1, . . . , n Pacl(E)(vj) = Pacl(E∪F )(vj)

Theorem 6.5. Let E ⊆ F ⊆ H, p ∈ Sn(E) q ∈ Sn(F ) and v̄ = (v1, . . . , vn),

w̄ = (v1, . . . , vn) ∈ Hn be such that p = tp(v̄/E) and q = tp(w̄/F ). Then q is an

extension of p such that w̄ |⌣
∗

E
F if and only if the following conditions hold:

(1) For every j = 1, . . . , n, Pacl(E)(vj) = Pacl(F )(wj)
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(2) For every j = 1, . . . , n, (HP⊥

acl(E)
vj
, πP⊥

acl(E)
vj
, P⊥

acl(E)vj) is isometrically iso-

morphic to (HP⊥

acl(F )
wj
, πP⊥

acl(F )
wj
, P⊥

acl(F )wj)

Proof. Clear from Theorem 4.3 and Remark 6.2 �

Remark 6.6. Recall that for every E ⊆ H and v ∈ H , P⊥
acl(E)v = (P⊥

E v)e.

Theorem 6.7. |⌣
∗
is a freeness relation.

Proof. By Remark 6.4, to prove local character, finite character and transitivity it

is enough to show them for the case of a 1-tuple.

Local character: Let v ∈ H and E ⊆ H . Let w = (Pacl(E)(v))e. Then there

exist a sequence of (lk)k∈N ⊆ N, a sequence of finite tuples (ak1 , . . . , a
k
lk
)k∈N ⊆

A and a sequence of finite tuples (ek1 , . . . , e
k
lk
)k∈N ⊆ E such that if wk :=

∑lk
j=1 π(a

k
j )e

k
j for k ∈ N, then wk → w when k → ∞. Let E0 = {ekj | j =

1, . . . , lk and k ∈ N}. Then v |⌣
∗

E0
E and |E0| = ℵ0.

Finite character: We show that for v ∈ H , E,F ⊆ H , v |⌣
∗

E
F if and only

if v |⌣
∗

E
F0 for every finite F0 ⊆ F . The left to right direction is clear.

For right to left, suppose that v 6 |⌣
∗

E
F . Let w = Pacl(E∪F )(v)− Pacl(E)(v).

Then w ∈ acl(E ∪ F )\acl(E).

As in the proof of local character, there exist a sequence of pairs (lk, nk)k∈N ⊆

N2, a sequence of finite tuples (ak1 , . . . , a
k
lk+nk

)k∈N ⊆ A and a sequence

of finite tuples (ek1 , . . . , e
k
lk
, fk

1 , . . . , f
k
nk
)k∈N such that (ek1 , . . . , e

k
lk
) ⊆ E,

(fk
1 , . . . , f

k
nk
)k∈N ⊆ F and if wk :=

∑lk
j=1 π(a

k
j )e

k
i +

∑nk

j=1 π(a
k
lk+j)f

k
j for

k ∈ N, then wk → w when k → ∞.

If v 6 |⌣
∗

E
F , then w = Pacl(E∪F )(v) − Pacl(E)(v) 6= 0. For ǫ = ‖w‖ > 0

there is kǫ such that if k ≥ kǫ then ‖w−wk‖ < ǫ. Let F0 := {f1
1 , . . . , f

nkǫ

kǫ
}

Then F0 is a finite subset such that v 6 |⌣
∗

E
F0.

Transitivity of independence: Let v ∈ H and E ⊆ F ⊆ G ⊆ H . If

v |⌣
∗

E
G then Pacl(E)(v) = Pacl(G)(v). It is clear that Pacl(E)(v) = Pacl(F )(v) =

Pacl(G)(v) so v |⌣
∗

E
F and v |⌣

∗

F
G. Conversely, if v |⌣

∗

E
F and v |⌣

∗

F
G,

we have that Pacl(E)(v) = Pacl(F )(v) and Pacl(F )(v) = Pacl(G)(v). Then

Pacl(E)(v) = Pacl(G)(v) and v |⌣
∗

E
G.

Symmetry: It is clear from Remark 6.3.
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Invariance: Let U be an automorphism of (H, π). Let v̄ = (v1, . . . , vn),w̄ =

(w1, . . . , wn) ∈ Hn and E ⊆ H be such that v̄ |⌣
∗

E
w̄. By Remark 6.3, this

means that for every j, k = 1, . . . , n HP⊥

acl(E)
(vj) ⊥ HP⊥

acl(E)
(wk). It follows

that for every j, k = 1, . . . , n HP⊥

acl(UE)
(Uvj) ⊥ HP⊥

acl(UE)
(Uwk)

and, again by

Remark 6.3, Uv |⌣
∗

acl(UE)
Uw.

Existence: Let (H̃, π̃) be the monster model and let E ⊆ F ⊆ H̃ be small

sets. We show, by induction on n, that for every p ∈ Sn(E), there exists

q ∈ Sn(F ) such that q is a non-forking extension of p.

Case n = 1: Let v ∈ H̃ be such that p = tp(v/E) and let (H ′, π′, u) :=

(L2(A, φ(P⊥

acl(E)
v))e,M(P⊥

acl(E)
v)e , (e)(P⊥

acl(E)
v)e). Then, the model (Ĥ, π̂) :=

(H, π) ⊕ (H ′, π′) is an elementary extension of (H, π). Let v′ :=

Pacl(E)v+P
⊥
acl(E)vd+u ∈ Ĥ . Then, by Theorem 6.5, the type tp(v′/F )

is a |⌣
∗-independent extension of tp(v/E).

Induction step: Now, let v̄ = (v1, . . . , vn, vn+1) ∈ H̃n+1. By induc-

tion hypothesis, there are v′1, . . . , v
′
n ∈ H such that tp(v′1, . . . , v

′
n/F )

is a |⌣
∗
-independent extension of tp(v1, . . . , vn/E). Let U be a mon-

ster model automorphism fixing E pointwise such that for every j =

1, . . . , n, U(vj) = v′j . Let v′n+1 ∈ H̃ be such that tp(v′n+1/Fv
′
1 · · · v

′
n)

is a |⌣
∗
-independent extension of tp(U(vn+1)/Ev

′
1, · · · v

′
n). Then, by

transitivity, tp(v′1, . . . , v
′
n, v

′
n+1/F ) is a |⌣

∗-independent extension of

tp(v1, . . . , vn, vn+1/E).

Stationarity: Let (H̃, π̃) be the monster model and let E ⊆ F ⊆ H̃ be small

sets. We show, by induction on n, that for every p ∈ Sn(E), if q ∈ Sn(F )

is a |⌣
∗
-independent extension of p to F then q = p′, where p′ is the

|⌣
∗
-independent extension of p to F built in the proof of existence.

Case n = 1: Let v ∈ H be such that p = tp(v/E), and let q ∈ S(F ) and

w ∈ H be such that w |= q. Let v′ be as in previous item. Then, by

Theorem 6.5 we have that:

(1) Pacl(E)v = Pacl(F )v
′ = Pacl(F )w =

(2) (HP⊥

acl(E)
v, πP⊥

acl(E)
v, P

⊥
acl(E)v) is isometrically isomorphic to both

(HP⊥

acl(F )
w, πP⊥

acl(F )
w, P

⊥
acl(F )w)
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and

(HP⊥

acl(F )
v′ , πP⊥

acl(F )
v′ , P⊥

acl(F )v
′)

This means that Pacl(F )v
′ = Pacl(F )w and (HP⊥

acl(F )
w, πP⊥

acl(F )
w, P

⊥
acl(F )w)

is isometrically isomorphic to (HP⊥

acl(F )
v′ , πP⊥

acl(F )
v′ , P⊥

acl(F )v
′) and, there-

fore q = tp(v′/F ) = p′.

Induction step: Let v̄ = (v1, . . . , vn, vn+1), v̄
′ = (v′1, . . . , vn, v

′
n+1) and

w̄ = (w1, . . . , wn) ∈ H̃ be such that v̄ |= p, v̄′ |= p′ and w̄ |= q. By

transitivity, we have that tp(v′1, . . . , v
′
n/F ) and tp(w1, . . . , wn/F ) are

|⌣
∗-independent extensions of tp(v1, . . . , vn/E). By induction hypoth-

esis, tp(v′1, . . . , v
′
n/F ) = tp(w1, . . . , wn/F ). Let U be a monster model

automorphism fixing E pointwise such that for every j = 1, . . . , n,

U(vj) = v′j and let U ′ a monster model automorphism fixing F point-

wise such that for every j = 1, . . . , n, U ′(v′j) = w′
j . Again by transi-

tivity, tp(U−1(v′n+1)/Fv1 · · · vn) and tp((U
′ ◦U)−1(wn+1)/Fv1, · · · vn)

are |⌣
∗
-independent extensions of tp(vn+1/Ev1, · · · vn). By the case

n = 1 tp(U−1(v′n+1)/Fv1 · · · vn) = tp((U ′ ◦ U)−1(wn+1)/Fv1, · · · vn)

and therefore p′ = tp(v′1, . . . , v
′
nv

′
n+1/F ) = tp(w1, . . . , wn, wn+1/F ) =

q.

�

Lemma 6.8 (Theorem 14.14 in [6]). A first order continuous logic theory T is

stable if and only if there is an independence relation |⌣
∗
satisying local character,

finite character of dependence, transitivity, symmetry, invariance, existence and

stationarity. In that case the relation |⌣
∗
coincides with non-forking.

Theorem 6.9. The theory Tπ is superstable and the relation |⌣
∗
agrees with non-

forking.

Proof. By Lemma 6.8, Tπ is stable and the relation |⌣
∗
agrees with non-forking.

To prove superstability, we have to show that for every v̄ = (v1, . . . , vn) ∈ H , every

F ⊆ H and every ǫ > 0, there exist a finite F0 ⊆ F and v̄′ = (v′1, . . . , v
′
n) ∈ Hn such

that ‖vj−v′j‖ < ǫ and v′j |⌣F0
F for every j ≤ n. As in the proof of local character,

for j = 1, . . . , n let ( jak1 , . . . ,
jaklk)k∈N, (

jek1 , . . . ,
jeklk)k∈N, wj := (Pacl(E)(vj))e
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and (wk
j )k∈N be such that wk

j :=
∑lk

s=1 π(
jaks)

jeks for k ∈ N, and wk
j → wj . For

j = 1, . . . , n, let Kj ∈ N be such that ‖wj −w
Kj

j ‖ < ǫ, let v′j := (Pacl(E)vj)d +w
Kj

j

and let F j
0 = {eks | k ≤ Kj and s = 1, . . . , lk}. If we define F0 := Un

i=1F
j
0 , then for

every j = 1, . . . , n we have that v′j |⌣
∗

F0
F , |F0| < ℵ0 and ‖vj − v′j‖ < ǫ. �

Remark 6.10. According Theorem 6.7, Theorem 6.5 stablishes a characterization

of non-forking extensions.

Theorem 6.11. Let v̄ = (v1, . . . , vn) ∈ Hn and E ⊆ H. Then Cb(tp(v̄/E)) :=

{(PEv1, . . . , PEvn)} is a canonical base for the type tp(v̄/E)

Proof. First of all, we consider the case of a 1-tuple. By Theorem 6.5 tp(v/E) does

not fork over Cb(tp(v/E)). Let (vk)k<ω a Morley sequence for tp(v/E). We have to

show that PEv ∈ dcl((vk)k<ω). By Theorem 6.5, for every k < ω there is a vector

wk such that vk = PEv + wk and wk ⊥ acl({PEv} ∪ {wj | j < k}). This means

that for every k < ω, wk ∈ He and for all j, k < ω, Hwj
⊥ Hwk

. For k < ω, let

v′k := v1+···+vk
n

= PEv+
w1+···+wk

n
. Then for every k < ω, v′k ∈ dcl((vk)k<ω). Since

v′k → Pev when k → ∞, we have that PEv ∈ dcl((vk)k<ω).

For the case of a general n-tuple, by Remark 6.4, it is enough to repeat previous

argument in every component of v̄. �

Corollary 6.12. The theory Tπ has weak elimination of imaginaries.

Proof. Clear by previous theorem. �

7. orthogonality and domination

In this section, we characterize domination, orthogonality of types in terms of

similar relationships between positive linear functionals on A. These are the state-

ments Theorem 7.5 and Theorem 7.8. For a complete description of the relation of

domination see [10], Definition 5.6.4.

Theorem 7.1. Let v, w ∈ H. Then (Hv, πv, v) is isometrically isomorphic to a

subrepresentation of (Hw, πw, w) if and only if φv ≤ φw.

Proof. Suppose (Hv, πv, v) is isometrically isomorphic to a subrepresentation of

(Hw, πw, w). Then there exists a vector v′ ∈ Hw such that (Hv, πv, v) ≃ (Hv′ , πv′ , v′).
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By Theorem 2.49, there exists a bounded positive operator P : (Hw , πw, w) →

(Hv′ , πv′ , v′) such that Pw = v′ and P commutes with every element of πv(A). Let

γ = ‖P‖2. Then, for every positive element a ∈ A, φv(a) = φv′(a) = 〈π(a)v′ | v′〉 =

〈π(a)Pw | Pw〉 = 〈P ∗π(a)Pw | w〉 = 〈π(a)‖P‖2w | w〉 ≤ γ〈π(a)w | w〉 = γφw(a)

which means that γφw − φv is positive and φv ≤ φw.

The converse is Corollary 3.3.8 in [20]. �

Lemma 7.2. Let v, w ∈ H. If φv ⊥ φw, then (Hv, πv, v) is not isometrically

isomorphic to any subrepresentation of (Hw, πw, w).

Proof. Suppose φv ⊥ φw, and (Hv, πv, v) is isometrically isomorphic to subrepre-

sentation of (Hw, πw, w). By Theorem 7.1 φv ≤ φw; let γ > 0 be a real number

such that γφw − φv is a bounded positive functional and let u ∈ H be such that

φu = γφw − φv. Then φv = γφw − φu, and ‖φw − φv‖ = ‖φw − γφw + φu‖ = ‖(1−

γ)φw+φu‖ = |1−γ|‖φw‖+‖φu‖ 6= |1+γ|‖φw‖+‖φu‖ = ‖φw+φv‖ = ‖φw‖+‖φv‖,

but this contradicts φv ⊥ φw. �

Theorem 7.3. Let v, w ∈ H. φv ⊥ φw if and only if no subrepresentation of

(Hv, πv, v) is isometrically isomorphic to a subrepresentation of (Hw, πw, w).

Proof. Suppose φv ⊥ φw. By Lemma 2.48, if (Hv′ , πv′ , v′) is a subrepresentation of

(Hv, πv, v) and (Hw′ , πw′ , w′) is a subrepresentation of (Hw, πw, w), then φv′ ⊥ φw′ ,

By Lemma 7.2, (Hv′ , πv′ , v′) is not isometrically isomorphic to (Hw′ , πw′ , w′), and

the conclusion follows.

Conversely, suppose no subrepresentation of (Hv, πv, v) is isometrically isomor-

phic to a subrepresentation of (Hw, πw, w). Then the representations (Hv, πv) and

(Hw, πw) are disjoint. By Fact 2.17, there is a projection P ∈ π(A)′ ∩ π(A)′′ such

that PPv = Pv and (I − P )Pw = Pw. Then, φv(I − P ) = 〈(I − P )v | v〉 =

〈(v − PPvv) | v〉 = 〈(v − v) | v〉 = 0. On the other hand, φw(P ) = 〈Pw | w〉 =

〈w−(w−Pw) | w〉 = 〈w−(I−P )w | w〉 = 〈w−(I−P )Pww | w〉 = 〈w−Pww | w〉 =

〈w − w | w〉 = 0. By Fact 2.15 and Theorem 2.10, the projection P is strongly ap-

proximable by positive elements in π(A) and therefore ǫ > 0 there exists a positive

element a ∈ A with norm less than or equal to 1, such that φv(e − a) < ǫ and

φw(a) < ǫ. By 2.47, φv ⊥ φw. �
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Lemma 7.4. Let p, q ∈ S1(∅), let v, w ∈ H be such that v |= p and w |= q. Then,

p ⊥a q if and only if φve ⊥ φwe
.

Proof. Suppose p ⊥a q. By Remark 6.2, this implies that Hve ⊥ Hwe
for all v |= p

and w |= q. Let v |= p and w |= q. Then no subrepresentation of (Hve , πve , ve)

is isometrically isomorphic to any subrepresentation of (Hwe
, πwe

, we). By Lemma

7.3, this implies that φve ⊥ φwe
.

Conversely, if p 6⊥a q there are v, w ∈ H such that v |= p, w |= q and Hve 6⊥ Hwe
.

This implies that there exists an element a ∈ A such that ve 6⊥ π(a)we. Since ve =

Pwe
ve+P

⊥
we
ve and Pwe

ve 6= 0, we can prove that φPweve
≤ φve by using a procedure

similar to the one used in the proof of Theorem 7.1 and, since Pwe
ve ∈ Hwe

, we get

φPweve
≤ φwe

. By Lemma 2.48, this implies that φve 6⊥ φwe
. �

Theorem 7.5. Let E ⊆ H. Let p, q ∈ S1(E), let v, w ∈ H be such that v |= p and

w |= q. Then, p ⊥a
E q if and only if φP⊥

E
(ve) ⊥ φP⊥

E
(we)

Proof. Clear by Lemma 7.4. �

Theorem 7.6. Let E ⊆ H. Let p, q ∈ S1(E). Then, p ⊥a q if and only if p ⊥ q.

Proof. Assume p ⊥a q, E ⊆ F ⊆ H are small subsets of the monster model and

p′, q′ ∈ S1(F ) are non-forking extensions of p and q respectively. Let v, w ∈ H

be such that v |= p′ and w |= q′, then φP⊥
F

(ve) = φP⊥
E

ve
⊥ φP⊥

E
we

= φP⊥
F

(we). By

Lemma 7.4, this implies that p′ ⊥a q′. Therefore p ⊥ q.

The converse is trivial. �

Lemma 7.7. Let p, q ∈ S1(∅) and let v, w ∈ H be such that v |= p and w |= q.

Then, p ⊲∅ q if and only if φwe
≤ φve .

Proof. Suppose p ⊲∅ q. Suppose that v′ and w′ are such that v′ |= p, w′ |= q and

if v′ |⌣
∗

∅
E then w′ |⌣

∗

∅
E for every E. Then for every E ⊆ H

PEv
′
e = 0 ⇒ PEw

′
e = 0

This implies that w′
e ∈ Hv′

e
, and Hw′

e
⊆ Hv′

e
. By Theorem 7.1, φwe

= φw′
e
≤ φv′

e
=

φve .

For the converse, suppose φwe
≤ φve . Then, by Theorem 7.1 Hwe

is isometrically

isomorphic to a subrepresentation of Hve , which implies that there is w′ ∈ Hv such
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that w′ |= tp(w/∅) and for every E ⊆ H

PEve = 0 ⇒ PEw
′
e = 0

This means than tp(w/∅) ⊳∅ tp(v/∅). �

Theorem 7.8. Let E, F and G be small subsets of H̃ and p ∈ S1(E) and q ∈ S1(F )

be two stationary types. Then p ⊲G q if and only if there exist v, w ∈ H̃ such that

tp(v/G) is a non-forking extension of p, tp(w/G) is a non-forking extension of q

and φP⊥

acl(G)
we

≤ φP⊥

acl(G)
ve
.

Proof. Clear by Lemma 7.7. �
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