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Abstract

This article addresses the question which structures occur as fixed

structures of stable structures with a generic automorphism. Among oth-

ers we give a Galois theoretic characterisation. As application we prove:

Any pseudofinite field is the fixed field of some model of ACFA. Any

one-free pseudo-differentially closed field of characteristic zero is the fixed

field of some model of DCFA. Any one-free PAC field of finite degree of

imperfection is the fixed field of some model of SCFA

1 Introduction

A difference field is a field with a distinguished automorphism. They were
studied by model theorists since the 1990’s, while originating in the work of
Birkhoff, Ritt, Cohn and others in the early 20th century. A difference field
is called generic, and its underlying automorphism is called a generic automor-
phism, if it is existentially closed in all its difference field extensions. The term
difference closed field is used as a synonyme. It is well-known that the class of
generic difference fields is elementary, its theory being called ACFA.

The fixed field of a generic automorphism is a pure pseudofinite field, and given
a pseudofinite field k one can fairly easily show that there is some model of
ACFA whose fixed field is elementarily equivalent to k.

We ask whether, given a pseudofinite field k, is there a model of ACFA whose
fixed field actually equals k. Note that in characteristic zero any generic differ-
ence field has infinite transcendence degree, while there are plenty pseudofinite
subfields of the algebraic closure of Q.

The same question arises in the context of difference-differential fields of charac-
teristic zero, whose common theory admits a model companion called DCFA,
and in the context of fields with a finite named p-basis endowed with an automor-
phism fixing the p-basis, whose common theory also admits a model companion
that we call SCFA.

We give a positive answer to each of the above questions by passing to the fol-
lowing more general context. Fix a countable stable L-theory T with elimination
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of imaginaries and quantifier elimination. Let σ be a new function symbol and
Lσ = L∪{σ}. We denote Tσ the theory whose models are Lσ-structures (M,σ),
where M |= T and σ ∈ Aut(M) is an automorphism of M . We assume that
Tσ has a model companion, which we call TA, and that TA has elimination of
imaginaries. Given a model (M,σ) of TA we write Fix(M,σ) for the subset of
M which is fixed by σ pointwise, which is naturally an L-substructure of M .
If A is any subset of some model M of T , we denote by Gal(A) the group of
permutations of the algebraic closure of A in M that leave A pointwise fixed
and are elementary in the sense of the L-structure M . It is a profinite group in a
natural way and we call it the absolute Galois group of A. If K is an L-structure
elementarily equivalent to Fix(M,σ), we can embed K into some model of T
and assigm to K its absolute Galois group as a subset of that model. By virtue
of quantifier elimination of T this does not dependend on the embedding cho-
sen, and so Gal(K) is an invariant of K and we speak about the absolute Galois
group of K. In this setting we prove:

Theorem 1.1 Let (M,σ) be a model of TA and K ≡L Fix(M,σ). Then there

is some model (N,σ) of TA with Fix(N,σ) = K if and only if Gal(K) = Ẑ, the
profinite completion of Z.

We note that the only if part should be folklore. In the context of fields we
obtain the following corollaries.

Corollary 1.2 Any difference field whose fixed field k is pseudofinite embeds
into some model of ACFA with fixed field k.

Corollary 1.3 Any difference-differential field of charactieristic zero whose fixed
differential field (k, d) is one-free pseudo-differentially closed embeds into some
model of DCFA with fixed differential field (k, d).

Corollary 1.4 Any difference field whose fixed field k is one-free PAC and of
finite Ershov invariant embeds into some model of SCFA with fixed field k.

We are not going to recall but use freely stability and simplicity theory. Para-
graph 2 introduces notation and provides preliminaries about stable structures
with a generic automorohism and their fixed structures. In paragraph 3 we in-
troduce the notion of conservative embedding over a subset, see below. We show
that if K 4L Fix(M,σφ) and if K and Fix(M,σ) satisfy a certain condition on
definable and algebraic closures, then Fix(M,σ) is conservatively embedded over
K in (M,σ) for any model (M,σ) of TA. This is used in paragraph 4 in the
proof of theorem (1.1), where we also discuss some variants. The applications
to generic automorphisms of various theories of fields are dealt with in section
5. The last paragraph is independent from the rest of the article and contains
a result concerning elimination of imaginaries.
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for his most valuable comments. We also thank Immanuel Halupcok, Richard
Elwes and Mihai Prunescu for helpful discussions. Special thanks are due to
Olivier A. Roche for the valuable discussions which made this work possible.
Last but not least we would like to mention that Zoé Chatzidakis has proved
corollary 1 independently in yet unpublished work. We are deeply indebted to
her for her encouragement to go further in this direction.
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2 Preliminaries

This section introduces notation and recalls some known facts about stable
theories with a generic automorphism. Our main reference is [6].

Let T be a be a complete stable theory with infinite models and with elimination
of imaginaries and quantifier elimination in the language L. aclT and dclT
denote the algebraic resp. definable closure in models of T . For a subset A ⊂M
of some model of T we write Gal(A) for the group of elementary permutations
of aclT(A) that leave A pointwise fixed and call it the Galois group of A. For
a tuple ā, not necessarily finite, and a parameter set A we denote by tpT (ā/A)
the type of ā over A and qftpT (ā/A) for the quantifier-free type of ā over A.

We let Lσ = L ∪ {σ}, where σ is a new unary function symbol, and Tσ be
the theory whose models are those Lσ-structures (M,σ) with M |= T and
σ ∈ Aut(M). By abuse of notation we write σ for the function symbol as
well as for the automorphism of (M,σ). We always assume that Tσ has a model
companion, which we denote by TA, and say TA exists for short. So in particular
TA is model complete. We write aclσ and dclσ for the algebraic resp. definable
closure in models of TA. If A is a subset of some model of TA then clσ(A)
denotes the closure of A under σ and σ−1. Of course these closures depend on
the model of TA they are taken in, however there will be no ambiguity so that
we use this simple notation. Also, if ā is a tuple in some model of TA and A is
a parameter set, we write tpσ(ā/A) for the type of ā over A and qftpσ(ā/A) for
the quantifier-free type of ā over A, both in that model.

For any Lσ-structure (A,α), not necessarily a model of Tσ, we denote by

Fix(A,α) = {x ∈ A | α(x) = x}

the set of elements of A which are invariant under α. By remark (2.1) below,
Fix(M,σ) is an L-substructure ofM for any model (M,σ) of TA; we will not dis-
tinguish between the subset Fix(M,σ) of M and the L-substructure Fix(M,σ)
of M , and talk about the fixed structure of (M,σ).

Let us observe a set of basic facts, which we state in remarks for future reference.

Remark 2.1 Let T be as above and (M,σ) be a model of Tσ. Let further φ be
an automorphism of M that is L-definable without parameters.

1. (M,σ) is a model of TA if and only if (M,σφ) is, and moreover a subset of
M is definable in the Lσ-structure (M,σ) using parameters from A ⊂ M
if and only if it is A-definable in the Lσ-structure (M,σφ).

2. Fix(M,σ) is a dclT-closed subset of M . If (M,σ) is a model of TA, then
Fix(M,σ) is non-empty, and hence we can view it as an L-substructure of
M . The same applies to Fix(M,σφ).

Proof. We only prove that Fix(M,σ) 6= ∅ in case (M,σ) is a model of TA and
leave the rest to the reader. So let (M,σ) |= TA. Choose an element a /∈ M
in some elementary extension of M . Then tpT (a/M) is stationary because T
is stable. Therefore σ(tpT (a/M)) = tpT (a/M), whence the map σ ∪ {(a, a)} is
elementary in the sense of T , and we find a model (N,σ) of Tσ that extends
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(M,σ) and contains a, and with σ(a) = a. But (M,σ) is existentially closed in
(N,σ) as TA is the model companion of Tσ, so the assertion follows. 2

Remark 2.2 Let T be as above and (M,σ) be a model of TA. Then every
automorphism of the L-structure Fix(M,σ) is elementary in the sense of T .

Proof. This is valid even if (M,σ) is only a model of Tσ and follows from
quantifier elimination of T . 2

Remark 2.3 Let T be as above. Then Gal
(
Fix(M,σ)

)
= Ẑ for any model

(M,σ) of TA.

Proof. Again we believe this is folklore, but for lack of reference we sketch a
possible proof. As Fix(M,σ) = Fix(aclT(Fix(M,σ)), σ), it follows from Galois
theory [14] that Gal

(
Fix(M,σ)

)
is procyclic. So we only have to show that

for any n < ω there is some tuple a with exactly n conjugates over Fix(M,σ).
Let to that end a0, . . . , an−1 be the beginning of a Morley sequence over M
and define a map τ on M ∪ {a0, . . . , an−1} to be σ on M , τ(an−1) = a0 and
τ(aν) = aν+1 otherwise. As {a0, . . . , an−1} is an indiscernible set it follows that
τ is elementary in the sense of T , so as in the proof of remark (2.1) we conclude
that there is a ∈M with exactly n conjugates over Fix(M,σ). 2

The following fact was proved by Chatzidakis and Pillay in [6].

Fact 2.4 (Chatzidakis-Pillay) Let T be a complete stable L-theory with quan-
tifier elimination and elimination of imaginaries such that TA exists. Then the
following hold.

1. Let (M1, σ1) and (M2, σ2) be models of TA containing a common sub-
structure (A, σ), and let A be aclT-closed. Then (M1, σ1) ≡A (M2, σ2). In
particular any bijection between aclσ-closed sets that is elementary in the
sense of T and commutes with σ is elementary in the sense of TA. See
[6], proposition (3.5.2).

2. If A is a subset of a model of TA, then aclσ(A) = aclT(clσ(A)), see [6],
lemma (3.6).

3. For subsets A, B and C of a model of TA, A is said to be independent
from C over B if and only if aclσ(A) is independent from aclσ(C) over
aclσ(B) in the sense of T . This is non-forking independence and turns
TA into a simple theory. See [6], corollary (3.8).

Quantifier-free Stability. We will later be interested in fields with a generic
automorphism. In these cases, TA is simple unstable. However, the quantifier-
free fragment of TA is always stable by the following lemma. Recall that a first
oder theory T ′ is quantifier-free stable if for all cardinals λ with λ|T

′| = λ and
any parameter set A of size λ there are at most λ quantifier-free types over A.
Equivalently, every quantifier-free formula has finite ∆-rank for all finite sets ∆
of quantifier-free formulae.
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Lemma 2.5 Let T be a stable complete L-theory with quantifier elimination
and elimination of imaginaries such that TA exists. Then TA is quantifier-free
stable (i.e. every completion of TA is quantifier-free stable). Furthermore, if T
is totally transcendental then TA is quantifier-free totally transcendental.

Proof. Let σ ∈ AutT (C) such that (C, σ) |= TA and A be a subset of (C, σ) of
size λ with λ|T | = λ. Then λω = λ. We may assume that A is aclσ-closed .
Then A is also aclT-closed. Consider a tuple ā ∈ (M̄, σ). Obviously qftpσ(ā/A)
is uniquely determined by qftpT (σi(ā)i∈Z/A) by quantifier elimination of T . As
T is stable there are only λ-many (quantifier-free) types over A of sequences of
length ω.

The second part was proved by Bustamante-Medina, see [2], the discussion
preceding remark (3.32). His proof is for countable T , but clearly works for
arbitrary cardinality of T . 2

So in particular we have local ranks on quantifier-free formulae in TA. Quantifier-
free stability of TA has the following consequence, which will play an important
rôle in our proof of theorem (4.1). Recall that for a theory T ′ and parameter
set A in T ′ the locally isolated quantifier-free types are said to be dense in (the
space of) quantifier-free types over A if for any quantifier-free formula ϕ(x̄) in
the language of T ′ there is some quantifier-free type π containing ϕ such that
for any finite set ∆ of quantifier-free formulae there is some δ(x̄) ∈ π (in the
language of T ′) such that δ(x̄) ⊢ π|∆.

Proposition 2.6 Let T be a countable complete stable L-theory, with quanti-
fier elimination and elimination of imaginaries. Assume that TA exists and
eliminates imaginaries. Then for any completion of TA and any parameter set
A (in the sense of that completion) the locally isolated quantifier-free types are
dense in the space of quantifier-free types over A. If T is totally transcendental,
not necessarily countable, then the isolated quantifier-free types are dense in the
space of quantifier-free types over A.

Proof. It is well-known that in a countable stable theory the locally isolated
types are dense over any parameter set (see for example [16], theorem (11.8)).
Even if TA might be unstable, its quantifier-free fragment is stable by lemma
(2.5). It is countable because T is. From now on the proof follows the same
line as for countable stable theories: Let ϕ(x̄) be a quantifier-free Lσ-formula
and (∆i)i∈N be an enumeration of all finite sets of quantifier-free Lσ-formulae
ψ(x̄, ȳ). One constructs recursively a sequence ϕi(x̄) of quantifier-free Lσ(A)-
formulae. Starting with ϕ0(x̄) = ϕ(x̄) one lets ϕn+1(x̄) be a quantifier-free
Lσ(A)-formula of minimal ∆n+1-rank and -degree with |= ϕn+1(x̄) → ϕn(x̄).
Then {ϕn(x̄) | n ∈ N} axiomatises a locally isolated quantifier-free type over A
that contains ϕ(x̄). 2

Stable embedding. Let M be an L′-structure, L′ an arbitrary first order
language, and n ∈ N. Recall that a ∅-definable subset P of Mn is called stably
embedded in M if for any m and any set X ⊂ Mmn which is definable using
parameters, X ∩ Pm is definable using parameters from P . Chatzidakis and
Hrushovski prove the following lemma in [4].
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Lemma 2.7 (Chatzidakis-Hrushovski) Let M be sufficiently saturated and
P ⊂Mn be definable over ∅. Then P is stably embedded in M if and only if any
automorphism of P ind lifts to an automorphism of M . Here P ind denotes P
with its induced structure from M , i.e. the ∅-definable subsets of Pm are those
of the form Pm ∩X for ∅-definable X ⊂Mmn.

Remark 2.8 If TA eliminates imaginaries, then Fix(M,σ) is stably embedded
for all models (M,σ), for the canonical parameter of σ(x) = x is fixed by σ.

3 Conservative Embedding

Definition 3.1 Let L1 and L2 be first-order languages with L1 ⊂ L2. Let
furthermore P be an L1-substructure of the L2-structure M and A be a subset
of P . We say that P is conservatively embedded over A in M if every subset
of (some cartesian power of) P that is A-definable in the L2-structure M , is
A-definable in the L1-structure P .

Note that this is different from the notion of conservative extension of theories.
Note also that in the special case that L1 = L2 and A = P , if P is ∅-definable
and conservatively embedded over A in M , then P is stably embedded in M .

Our aim in the present section is to show in proposition (3.7) that if T is a
stable L-theory with quantifier elimintion and elimination of imaginaries such
that TA exists and eliminates imaginaries, and if (M,σ) is a model of TA,
then the fixed structure Fix(M,σ) is conservatively embedded over every L-
elementary substructure K such that

dclT( aclT(K),Fix(M,σ) ) = aclT(Fix(M,σ)) .

It will turn out that this condition on definable and algebraic closures is also
necessary, see theorem (4.1), but first of all we show that conservative embedding
is preserved in elementary extensions in the following sense.

Lemma 3.2 Let L1 and L2 be first-order languages with L1 ⊂ L2 and M1 4 M2

be an elementary extension of L2-structures. Let further ϕ be an L2-formula
without parameters. Assume that ϕ(M1) is an L1-substructue of M1 and A ⊂
ϕ(M1). Then ϕ(M1) is conservatively embedded in M1 over A if and only if
ϕ(M2) is so in M2.

Proof. The proof is straightforward using relativisation of quantifiers. 2

Also the above condition on definable and algebraic closures is preserved in
elementary extensions.

Proposition 3.3 Let T eliminate imaginaries and (N,σ) 4 (M,σ) be models
of Tσ. Then dclT

(
aclT(Fix(N,σ)) , Fix(M,σ)

)
= aclT

(
Fix(M,σ)

)
.

Proof. We denote FM = Fix(M,σ) and FN = Fix(N,σ). We will show that
AutT

(
aclT(FM )/aclT(FN ), FM

)
is trivial. By Galois theory (see [14]) the auto-

morphism σ (of M) restricts to topological generators of Gal(FM ) and Gal(FN )
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respectively because FM = Fix(aclT(FM ), σ) and FN = Fix(aclT(FN ), σ). Hence
both Gal(FM ) and Gal(FN ) are procyclic and the natural restriction map

Gal(FM )
res

−−−→ Gal(FN )

is surjective. Thus AutT

(
aclT(FM )/aclT(FN ), FM

)
is trivial if and only if res is

an isomorphism. Again by Galois theory (see [14]) it suffices to show that for
all n ∈ N and b̄ ∈ aclT(FM ) of degree n over FM there is c̄ ∈ aclT(FN ) of degree
n over FN .

To see this, note that as σ generates Gal(FM ) and b̄ has degree n over FM , we
have

(M,σ) |= ∃x̄ σn(x̄) = x̄ ∧
n−1∧

i=1

σi(x̄) 6= x̄

and thus

(N,σ) |= ∃x̄ σn(x̄) = x̄ ∧
n−1∧

i=1

σi(x̄) 6= x̄ ,

so we are done. 2

The next two lemmata are easy observations.

Lemma 3.4 Let T have quantifier elimination. Then for any model (M,σ) of
Tσ and K 4L Fix(M,σ) we have aclT(K) ∩ Fix(M,σ) = K.

Proof. The proof is straightforward using quantifier elimination of T . 2

Lemma 3.5 Let T be a stable theory with elimination of imaginaries, A a set
of parameters, and p ∈ S(aclT(A)). If β ∈ Aut(C/A) is an automorphism of the
monster model of T over A such that β(p) = p, then p|acl(A)∩Fix(β) is stationary.

Proof. By elimination of imaginaries the canonical base c of p is contained in
aclT(A). As β(p) = p, it follows that c is also contained in Fix(β). 2

Lemma 3.6 Let T be a stable L-theory with quantifier elimination and elimina-
tion of imaginaries such that TA exists and eliminates imaginaries. Let (M,σ)
be a sufficiently saturated model of TA and K 4L Fix(M,σ). If

dclT
(
aclT(K),Fix(M,σ)

)
= aclT

(
Fix(M,σ)

)

then the natural restriction map

res : AutLσ

(
(M,σ)/K

)
−→ AutL

(
Fix(M,σ)/K

)

is surjective. Here AutL

(
Fix(M,σ)/K

)
denotes the group of automorphisms

over K of the L-structure Fix(M,σ).

Note that if T and TA are as in lemma (3.6) and if φ is an automorphism of T
that is L-definable over ∅, and if K 4L Fix(M,σφ) with

dclT
(
aclT(K),Fix(M,σ)

)
= aclT

(
Fix(M,σ)

)
,

7



then any α ∈ AutL

(
Fix(M,σφ)/K

)
lifts to an automorphism of (M,σ) over K.

Namely, (M,σφ) is a model of TA by remark (2.1.1), so by the lemma α lifts
to an automorphism α̃ of (M,σφ) over K, which is an automorphism of the
Lσ-structure (M,σ) by remark (2.1.1).

Proof of lemma (3.6). Note first that any automorphism α of (M,σ) restricts
to an automorphism of the L-structure Fix(M,σ) because the latter is definable
in (M,σ) without parameters.

Now let α ∈ AutL

(
Fix(M,σ)/K

)
. α is a partial elementary map in the sense

of T , see remark (2.2), and commutes with σ|Fix(M,σ) simply because σ is the
identity on Fix(M,σ). We are going to lift α to a permutation α̃ of aclT(F ) that
is elementary in the sense of T and commutes with σ. As aclT(Fix(M,σ)) =
aclσ(Fix(M,σ)) by fact (2.4.2), fact (2.4.1) then implies that α̃ is elementary
in the sense of TA. Then in particular α is an automorphism of the induced
structure from (M,σ) on Fix(M,σ). So by saturation of (M,σ), lemma (2.7)
implies that α lifts to an automorphism of (M,σ) over K.

To lift α we work entirely in the L-structure M . In particular, types, indepen-
dence and so on are all ment to be in the sense of T , not TA.

Let ā ∈ Fix(M,σ) and b̄ ∈ aclT(K). As aclT(K) ∩ Fix(M,σ) = K by lemma
(3.4) and because α leaves K pointwise fixed, it follows from lemma (3.5)
that tpT (ā/K) is stationary. So tpT (α(ā)/K) is stationary, too, and equals
tpT (ā/K). As b̄ is independent from Fix(M,σ) overK it follows that tpT (ā/Kb̄)
equals tpT (α(ā)/Kb̄), which in turn implies that tpT (ā, b̄) = tpT (α(ā), b̄). So
the map id|aclT(K)∪α is elementary in the sense of T . It lifts uniquely to an ele-

mentary permutation α̃ of dclT
(
aclT(K),Fix(M,σ)

)
, which is aclT

(
Fix(M,σ)

)

by assumption. α̃ commutes with σ by construction, so we are done. 2

Proposition 3.7 Let T be a stable L-theory with quantifier elimination and
elimination of imaginaries and let φ be an automorphism of T which is L-
definable over ∅. Assume that TA exists and has elimination of imaginaries.

Let (M,σ) be a model of TA and K 4L Fix(M,σφ). If

dclT
(
aclT(K),Fix(M,σφ)

)
= aclT

(
Fix(M,σφ)

)
,

then Fix(M,σφ) is conservatively embedded over K in (M,σ).

Proof. First note that if (N,σ) is an elementary extension of (M,σ), then
Fix(M,σφ) is conservatively embedded overK in (M,σ) if and only if Fix(N,σφ)
is so in (N,σ) by lemma (3.2). Furthermore it follows from proposition (3.3)
that dclT

(
aclT(K),Fix(N,σφ)

)
= aclT

(
Fix(N,σφ)

)
. So we may assume that

(M,σ) is sufficiently saturated.

Let X be a subset of (some cartesian power of) Fix(M,σφ) that is K-definable
in (M,σ). As we have noted above, it follows from lemma (3.6) that we can
lift any automorphism of Fix(M,σφ) over K to an automorphism of (M,σφ)
over K, which is an automorphism of (M,σ) over K as well by remark (2.1.1).
This shows that for any tuple a ∈ Fix(M,σφ) the type of a over K in the sense
of Fix(M,σφ) (relativised to σφ(x) = x) implies modulo the theory of (M,σ)
the type of a over K in (M,σ). Hence by compactness X is definable in the
L-structure Fix(M,σφ) using parameters from K. 2
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Taking K = Fix(M,σφ) we obtain the following result as a special case of
proposition (3.7). It was proved before in the cases of fields: when T is ACF
by Chatzidakis, Hrushovski and Peterzil in [5], for separably closed fields with
generic automorphism by Chatzidakis in [3], when T is DCF0 by Bustamante-
Medina in [2] and for strongly minimal T by Pillay in [12].

Corollary 3.8 Let T be a stable L-theory with quantifier elimination and elim-
ination of imaginaries and let φ be an automorphism of T which is L-definable
over ∅. Assume that TA exists and eliminates imaginaries. Let (M,σ) be a
model of TA. Then every subset X of (some cartesian power of) Fix(M,σφ)
definable in (M,σ) using parameters is definable in the L-structure Fix(M,σφ)
using parameters.

4 Prescribed Fixed Structures

In this section we prove our main theorem and discuss some variants.

Theorem 4.1 Let T be a countable complete stable L-theory with quantifier
elimination and elimination of imaginaries. Assume that TA exists and has
elimination of imaginaries. Let (M,σ) be a model of TA and K 4L Fix(M,σ).
Then the following are equivalent:

(1) There is some (N,σ) ≡ (M,σ) with Fix(N,σ) = K.

(2) Fix(M,σ) is conservatively embedded over K in (M,σ).

(3) dclT
(
aclT(K),Fix(M,σ)

)
= acl

(
Fix(M,σ)

)
.

(4) Gal(K) = Ẑ.

Needless to say that as a corollary we obtain theorem (1.1).

Proof. That (1) implies (4) is remark (2.3) because of elimination of imaginaries.

To see that (4) implies (3), note that K = aclT(K) ∩ Fix(M,σ) by lemma
(3.4), so by Galois theory ([14]) we have K = Fix(aclT(K), σ|aclT(K)). Hence
the natural restriction map res : Gal(Fix(M,σ))−→Gal(K) is surjective. As

both Galois groups equal Ẑ, res must be an isomorphism because any surjective
endomorphism of bounded1 profinite groups is an automorphism. So the
assertion follows as in the proof of proposition (3.3).

That (3) implies (2) is the content of proposition (3.7).

We finally prove that (2) implies (1). In view of lemma (3.2) we may assume
that (M,σ) is sufficiently2 saturated. We construct (N,σ) with the aid of the
following standard chain argument. Starting with N0 = aclσ(K), whose set
of elements fixed by σ is precisely K by (3.4), we build an ascending chain
(Nν)ν<ω of aclσ-closed subsets of (M,σ) with the property that every consistent
quantifier-free Lσ(Nν)-formula has a realisation in Nν+1 and furthermore that

1recall that a profinite group G is called bounded if for any natural number n there are up
to isomorphism only finitely many homomorphic images of order n

2in fact we only need that (M, σ) is |K|+-saturated.
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Fix(M,σ) ∩ Nν = K for all ν < ω. Then we let N =
⋃
Nν . By model

completeness of TA, any Lσ-formula is equivalent modulo TA to an existential
formula. So by Tarski’s Test (N,σ|N ) will be an elementary substructure of
(M,σ), with Fix(N,σ) = K by construction.

The only delicate point is to ensure Fix(Nν , σ) = K for all ν < ω. So let A be
an aclσ-closed subset of M such that Fix(A, σ) = K and ϕ(x̄) be a consistent
quantifier-free Lσ(A)-formula. TA is quantifier-free stable by lemma (2.5) and
countable because T is. By proposition (2.6) and by saturation of (M,σ) we
can choose a tuple ā ∈ M satisfying ϕ whose quantifier-free type qftpσ(ā/A)
over A in the sense of (M,σ) is locally isolated. Then the following proposition
(4.2) implies that aclσ(A, ā) ∩ Fix(M,σφ) = Fix(A, σ).

Proposition 4.2 Let T and TA be as in theorem (4.1) and (M,σ) |= TA.
Let A be an aclσ-closed subset of (M,σ) such that Fix(A, σ) 4L Fix(M,σ). If
Fix(M,σ) is conservatively embedded over Fix(A, σ) in (M,σ), then

aclσ(A, ā) ∩ Fix(M,σ) = Fix(A, σ)

for any tuple ā ∈ M whose quantifier-free Lσ-type qftpσ(ā/A) over A is locally
isolated.

Proof. Let ā be a tuple in M whose quantifier-free Lσ-type over A is locally
isolated. We abbreviate Fix(A, σ) by K and show first that

dclT(clσ(A, ā)) ∩ Fix(M,σ) = K .

Let b ∈ dclT(clσ(A, ā)) be fixed by σ. Then b is L-definable over

A, σ−n(ā), . . . , σ−1(ā), ā, σ(ā), . . . , σn(ā)

for some n ∈ N, and, as σ(b) = b, applying σn we see that b is already L-
definable over A, ā, . . . , σn(ā) for some n ∈ N since σ is an Lσ-automorphism.
So there is some L-formula

ψ(x̄0, x̄1, . . . , x̄n; z, ȳ)

and ē ∈ A such that ψ(ā, σ(ā), . . . , σn(ā); z, ē) defines b in M . As T eliminates
quantifiers, we may assume that ψ is quantifier-free. Let

∆ = {ψ(x̄, σ(x̄), . . . , σn(x̄); z, ȳ) , σ(z) = z }

and choose an Lσ(A)-formula δ(x̄) ∈ qftpσ(ā/A) isolating qftpσ(ā/A)|∆.

Consider the Lσ-formula

Φ(z) = ∃x̄
(
δ(x̄) ∧ ψ(x̄, σ(x̄), . . . , σn(x̄); z, ē) ∧ σ(z) = z

)

with parameters from A and let X be the subset of Fix(M,σ) defined by Φ.

We claim that X is Lσ-definable in (M,σ) over A ∩ Fix(M,σ). To see this,
note that both A and Fix(M,σ) are dclσ-closed. TA eliminates imaginaries by
assumption, so on the one hand Fix(M,σ) is stably embedded by remark (2.8),
whence the canonical parameter of X is in Fix(M,σ). On the other hand the
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canonical parameter of X is also in A. Thus X is Lσ-definable in (M,σ) over
A ∩ Fix(M,σ) = K.

By assumption Fix(M,σ) is conservatively embedded over K in (M,σ), so it
follows that X is L-definable over K in the L-structure Fix(M,σ). X is non-
empty because b ∈ X, hence Fix(M,σ) |= ∃z z ∈ X. But K 4L Fix(M,σ), so
K |= ∃z z ∈ X, whence there is λ ∈ X(K).

We have shown that the Lσ(A)-formula

ψ(x̄, σ(x̄), . . . , σn(x̄);λ, ē)

is consistent with δ(x̄) for some λ ∈ K. Thus

ψ(x̄, σ(x̄), . . . , σn(x̄);λ, ē) ∈ qftpσ(ā/A)

and therefore b = λ ∈ K, because ψ(ā, . . . , σn(ā); z, ē) has exactly one solution
in M . This shows that dclT(clσ(A, ā)) ∩ Fix(M,σ) = K.

Finally we show that any tuple ā with dclT(clσ(A, ā))∩Fix(M,σ) = K has the
property that

aclσ(A, ā) ∩ Fix(M,σ) = K .

Indeed, by fact (2.4.2) we have aclσ(A, ā) = aclT(dclT(clσ(A, ā))), so the next
lemma (4.3) implies that any b ∈ aclσ(A, ā) which is fixed by σ is in the aclT-
closure of

dclT(clσ(A, ā)) ∩ Fix(M,σ) = K .

It follows that b ∈ aclT(K). As A is algebraically closed and contains K we
conclude that b ∈ A and thus, as σ(b) = b, that b ∈ K. 2

Lemma 4.3 Let T ′ be any theory with elimination of imaginaries and B a
definably-closed set. If α is an automorphism of a sufficiently saturated model
mapping B into itself and if b algebraic over B and fixed by α, then b is algebraic
over B ∩ Fix(α).

Proof. Choose an L(B)-formula ψ isolating the type of b over B. As b is fixed by
α, ψ is invariant under α and thus the canonical parameter for ψ is in B∩Fix(α).

2

The proof of theorem (4.1) is complete. 2

For the applications in the next section, the following corollary will be suitable.

Corollary 4.4 Let T, TA be as in theorem (4.1) and (M,σ) be a model of TA.
Let further A be an aclσ-closed subset of M and denote K = Fix(A, σ). If

Gal(K) = Ẑ and K 4L Fix(M,σ), then (A, σ) embeds into a model (N,σ) of
TA such that Fix(N,σ) = K.

We now discuss two variants of theorem (4.1). The first is a strengthening in
case T is totally transcendental. Let us examine once more the proof of theorem
(4.1). The only place where we use saturation of (M,σ) is where we realise a
locally isolated quantifier-free type containing the formula ϕ(x̄). As mentioned
earlier in lemma (2.5), TA is quantifier-free totally transcendental if T is totally
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transcendental. So in this case proposition (2.6) allows us to choose a tuple
ā realising ϕ(x̄) whose quantifier-free type is even isolated, rather than locally
isolated only. For such ā, following the proof of (4.2) word by word, we then
obtain aclσ(Aā) ∩ Fix(M,σ) = K. So we have proved the following theorem.

Theorem 4.5 Let T be a complete totally transcendental L-theory with quan-
tifier elimination and elimination of imaginaries. Assume that TA exists and
has elimination of imaginaries.

Let (M,σ) be a model of TA and K 4L Fix(M,σ). Then the following are
equivalent:

(0) There is some (N,σ) ≡ (M,σ) with Fix(N,σ) = K.

(1) There is some (N,σ) 4 (M,σ) with Fix(N,σ) = K.

(2) Fix(M,σ) is conservatively embedded over K in (M,σ).

(3) dclT
(
aclT(K),Fix(M,σ)

)
= aclT

(
Fix(M,σ)

)
.

(4) Gal(K) = Ẑ.

For the second variant of theorem (4.1), let T and TA be as in that theorem. Let
(M,σ) be a model of TA and A = aclσ(A) be a subset of M . Consider an auto-
morphism φ of T which is L-definable over ∅. Then by remark (2.1.1), (M,σφ) is
a model of TA, too, and A is aclσ-closed in (M,σφ). Furthermore, by the same
remark, the quantifier-free type in the sense of (M,σ) of a tuple ā ∈M is locally
isolated in (M,σ) if and only if the quantifier-free type in the sense of (M,σφ)
of ā is locally isolated in (M,σφ). Hence if K = Fix(A, σφ) 4L Fix(M,σφ) and
dclT(aclT(K),Fix(M,σφ)) = aclT(Fix(M,σφ)), then Fix(M,σφ) is conserva-
tively embedded over K in (M,σφ) by proposition (3.7), and so by proposition
(4.2) we get

aclσ(A, ā) ∩ Fix(M,σφ) = Fix(A, σφ) .

The same argument applies if we consider several φ’s at once, so the proof of
theorem (4.1) shows also the following corollary, which in the case when T is
ACF was proved independently by Zoé Chatzidakis (unpublished).

Corollary 4.6 Let T and TA be as in theorem (4.1). Let further (φi)i∈I be a
family of L-automorphisms of T , with each φi L-definable over ∅, and (M,σ) be
a model of TA. If A is an aclσ-closed subset of (M,σ) such that for all i ∈ I,
Fix(A, σφi) 4L Fix(M,σφi) and

dclT
(
aclT(Fix(A, σφi)),Fix(M,σφi)

)
= aclT

(
Fix(M,σφi)

)
,

then there is a model (N,σ) ≡ (M,σ) of TA such that for all i ∈ I

Fix(N,σφi) = Fix(A, σφi) .

As before, if T is totally transcendental, we can choose (N,σ) to be an elemen-
tary submodel of (M,σ).
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5 Fixed Fields of Generic Automorphisms

We now apply the results of the previous section to the case of generic auto-
morphisms of fields. For a field k we denote abs(k) the absolute part of k,
which is the subfield of elements algebraic over the prime field. Frob denotes
the Frobenius homomorphism in positive characteristic. Recall that a field is
called one-free if its absolute Galois group is Ẑ. Recall also that a difference field
(F, σ) is a field F endowed with an automorphism σ and a difference-differential
field (F, d, σ) is a differential field (F, d) endowed with a field automorphism σ
that commutes with the derivation d. We call Fix(F, d, σ) the fixed differential
field of (F, d, σ), which is the subdifferential field of (F, d) whose elements are
fixed by σ. Our reference for algebra is [10], and [7] for difference fields. For the
model theory of difference fields we refer to [4], and for difference-differential
fields to [2]. We give further references below.

We will need the following algebraic lemma.

Lemma 5.1 Any difference-differential field (F, d, σ) whose fixed differential
field (k, d) has procyclic absolute Galois group admits an extension (F sep, d̄, σ̄)
with Fix(F sep, d̄, σ̄) = (k, d).

Proof. Recall from [11] that the derivation d on F extends uniquely to a deriva-
tion d̄ on F sep. If α ∈ F sep and p(X) ∈ F [X] is the normalised minimal

polynomial of α over F , then d̄(α) = −pd(α)
p′(α) , where p′ is the formal derivative

of p and pd is the polynomial obtained by applying d to the coefficients of p, so
one computes right away that any extension of σ to F sep commutes with d̄.

Thus we only have to show that there is some extension σ̄ of σ to F sep such
that Fix(F sep, σ̄) = Fix(F, σ). Let to that end L = F ∩ ksep be the elements
of F separably algebraic over k. Since k has procyclic absolute Galois group,
any element x ∈ L, which generates the unique (in ksep) algebraic extension of
k of degree [k[x] : k], is mapped into L by all automorphisms of ksep over k.
Therefore L is invariant under Gal(ksep/k). As σ transforms algebraic elements
into algebraic ones, it restricts to an automorphism of L with fixed field k. Thus
L/k is Galois and σ|L generates Gal(L/k).

Now σ|L extends to a topological generator τ of Gal(ksep/k) because Gal(ksep/k)
is procyclic and res : Gal(ksep/k) → Gal(L/k) is surjective. Of course ksep/L
is a Galois extension and thus by choice of L, F and ksep are linearly dis-
joint over L. So as σ and τ agree on L we can find a (unique) automorphism
of Fksep extending σ and τ . We lift it to an automorphism σ̄ ∈ Aut(F sep)
and claim that Fix(F sep, σ̄) = Fix(F, σ) = k. To see this, note first that
Fix(F sep, σ) ⊂ Fix(F, σ)sep. Indeed, let p ∈ F [X] be the minimal normalised
polynomial of some x ∈ Fix(F sep, σ̄). Because σ̄(x) = x, one calculates that
pσ(x) = pσ(σ̄(x)) = σ̄(p(x)) = 0, where pσ denotes the polynomial obtained by
applying σ to the coefficients of p. This implies p = pσ and thus that all coeffi-
cients of p are contained in Fix(F, σ), so x ∈ ksep. Finally, as τ is a topological
generator of Gal(ksep/k), it follows that x ∈ k. 2
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5.1 Pseudofinite fields and models of ACFA

Let L be the language of rings and ACF be the theory of algebraically closed
fields (of a fixed characteristic), which is ω-stable and has quantifier elimina-
tion and elimination of imaginarires. ACFA exists and eliminates imaginaries.
Given any pseudofinite field k, there is some model of ACFA whose fixed field
is elementarily equivalent to k. For more details and proofs about ACFA we
refer to [4], and to [1] for pseudofinite fields.

Theorem 5.2 Any difference field whose fixed field k is pseudofinite embeds
into some model of ACFA with fixed field k.

Proof. Obviously any difference field can be considered a difference-differetial
field by adding the trivial derivation. So by lemma (5.1) we may assume that
our difference field, call it (F, σ), is separably closed. Further we may assume
that (F, σ) is algebraically closed, because σ lifts uniquely to an automorphism
σ̄ of F alg, and one has Fix(F alg, σ̄) = Fix(F, σ)perf = Fix(F, σ).

(F, σ) embeds into some model (Ω, σ) of ACFA, and is aclσ-closed therein.
abs(k) = abs(Fix(Ω, σ)) and thus, both fields being pseudofinite, k 4 Fix(Ω, σ).
Hence corollary (4.4) finishes the proof. 2

Corollary 5.3 Any pseudofinite field k is isomorphic to the fixed field of some
model of ACFA. In positive characteristic, if abs(k) = Fix( Falg

p , σ ◦Frobn ) for
some σ ∈ Gal(Fp) and n ∈ Z, then there is some model (K,σ) of ACFA such
that Fix(K,σ ◦ Frobn) = k.

Proof. To show the first assertion, apply theorem (5.2) to the difference field
(k, id). For the second let char(k) = p > 0. Again because Gal(abs(k)) is pro-
cyclic and the natural restriction map res : Gal(k)−→Gal(abs(k)) is surjective,
σ lifts to an automorphism σ̄ of kalg such that σ̄ ◦Frobn is a topological genera-
tor of Gal(k). By theorem (5.2) the difference field (kalg, σ ◦Frobn) embeds into
some model (Ω, τ) of ACFA with Fix(Ω, τ) = k, and setting σ = τ ◦ Frob−n,
we obtain a model (Ω, σ) of ACFA with Fix(Ω, σ ◦ Frobn) = k. 2

Note that any two different choices of topological generators of Gal(k) give non-
elementarily equivalent models of ACFA with fixed field k by applying theorem
(5.2) to the difference field (kalg, σ).

As an application of corollary (4.6) we obtain in positive characteristic the
following theorem, which was pointed out to us and proved independently by
Zoé Chatzidakis (unpublished).

Theorem 5.4 (Chatzidakis) Let (K,σ) be an algebraically closed difference
field and Σ ⊆ Z such that for all n ∈ Σ the fixed fields Fix(K,σ ◦ Frobn) are
pseudofinite. Then there is some model (Ω, σ) of ACFA such that for all n ∈ Σ

Fix(Ω, σ ◦ Frobn) = Fix(K,σ ◦ Frobn) .
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5.2 One-free pseudo-differentially closed fields and models

of DCFA

Let L be the language of differential fields, which is the ring language together
with a unary function symbol d, and let T be the theory DCF0 of differen-
tially closed fields. DCF0 is ω-stable and has elimination of quantifiers and of
imaginaries. Hrushovski shows (in unpublished work) that DCFA exists, and
elimination of imaginaries for DCFA was proved by Bustamante-Medina in [2].
There it is also shown that if (k, d) is a differential field, then (k, d) ≡ Fix(Ω, d, σ)
for some model Fix(Ω, d, σ) of DCFA if and only if

1. k is pseudofinite of characteristic zero, and

2. (k, d) satisfies the geometric axioms of differentially closed fields. Namely
for every (absolutely irreducible) variety V over k and (abs. irred.) sub-
variety W of the torsor τ(V ) of V projecting generically onto V , there is
a ∈ V (k) such that (a, d(a)) ∈W .

We refer to [2] for more details and proofs. We call a differential field of char-
acteristic zero pseudo-differentially closed if it satisfies 2. Note that (k, d) is
one-free pseudo-differentially closed if and only if it is elementarily equivalent
to some fixed differential field of some model of DCFA.

Theorem 5.5 An difference-differential field whose fixed differential field (k, d)
is one-free pseudo-differentially closed embeds into a model (Ω, d, σ) of DCFA
such that Fix(Ω, d, σ) = (k, d).

Proof. By lemma (5.1) and because the characteristic is zero, we may assume
that our difference-differential field, call it (F, d, σ), is algebraically closed. We
embed it into some model of (Ω, d, σ) of DCFA. Then k and Fix(Ω, d, σ) are
elementarily equivalent as pure fields, and hence by proposition (5.8) of [13]),
the differential fields (k, d) and Fix(Ω, d, σ) are elementarily equivalent because
both are pseudo-differentially closed. As F is algebraically closed in the sense
of DCF0 and σ is an automorphism of (F, d), we see that F is aclσ-closed.
As furthermore kalg is the algebraic closure of k in the sense of DCF0 and
any field automorphism of kalg commutes with the derivation on kalg, we have
Gal(k) = Ẑ. Hence corollary (4.4) finishes the proof. 2

Corollary 5.6 Any one-free pseudo-differentially closed field is isomorphic to
the fixed differential field of some model of DCFA.

Proof. Apply theorem (5.5) to the difference-differential field (k, d, id). 2

Note that, as above, any choice of a topological generator of the absolute Galois
group of k yields non-elementarily equivalent models of DCFA having fixed
differential field (k, d).

5.3 One-free PAC fields and models of SCFA

We fix a prime number p and a positive natural number e. Let L be the ring
language augmented by e constant symbols b1, . . . , be for p-bases, and let SCFe,b
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be the L-theory of separably closed fields of Ershov invarant e. SCFe,b is model
complete, stable and has elimination of imaginaries. Our reference for separa-
bly closed fields is [8]. Chatzidakis shows in [3] that the model companion of
(SCFe,b)σ exists, which we denote by SCFAe, and that SCFAe has elimina-
tion of imainaries. (Our SCFAe is the SCFAe,b of [3].) It is clear from the
description of the completions of SCFAe given in [3] that for every one-free
PAC field k of degree of imperfection e there is some model of SCFAe whose
fixed field is elementarily equivalent to k. For details and proofs about one-free
PAC fields we refer to [9].

Theorem 5.7 Any difference field whose fixed field k is one-free PAC and of
finite Ershov invariant e embeds into some model (Ω, σ) of SCFAe,b such that
Fix(Ω, σ) = k.

Before we give the proof, let us make the following simple observations. If
(F, σ) is any difference field, and if c̄ is a tuple fixed by σ such that there is
some p-monomial in c̄ which can be expressed as a minimal non-trivial linear
combination of other p-monomials in c̄ with coefficients in F p, then these co-
efficients must also be fixed by σ. So any set of p-independent elements in
Fix(F, σ) is p-independent in F , or equivalently the field extension F/Fix(F, σ)
is separable. If finally (Ω, σ) is a model of SCFAe, then the p-basis b̄ is fixed
by σ, and is hence a p-basis of Fix(Ω, σ).

Proof. We may assume that our difference field, call it again (F, σ), is separably
closed by lemma (5.1). We choose a p-basis b̄ = b1, . . . , be of k. then of course
b̄ is also a p-basis of ksep, and we expand ksep to an L-structure. As mentioned
above, b̄ is p-independent in F .

Now lemma (2.2) of [3] states that if (K,σ) is a difference field with finite p-
basis B and K(ā)σ is a finitely generated separable difference field extension
of (K,σ), then K(ā)σ embeds into some difference field with p-basis B. This
implies that for any finite tuple ā ∈ F , the difference field ksep(ā)σ embeds into
some separably closed difference field with p-basis b̄, or in other words into some
model of (SCFe,b)σ, as b̄ is fixed by σ. Thus by compactness (F, σ) embeds into
some model of (SCFe,b)σ, and consequently into some model (Ω, σ) of SCFAe,b

by model completeness.

By the above remarks, b̄ is a p-basis of Fix(Ω, σ), whence Fix(Ω, σ)/k is a
separable field extension. As k is algebraically closed in Fix(Ω, σ), Fix(Ω, σ)/k is
a regular extension, and hence elementary by corollary (20.4.3) of [9]. Gal(k) =

Ẑ by assumption and F is algebraically closed in the sense in SCFe,b, so we
apply theorem (4.1) to finish the proof. 2

Corollary 5.8 Any one-free PAC field with finite Ershov invariant e is iso-
morphic to the fixed field of some model of SCFAe.

Proof. Apply theorem (5.7) to the difference field (k, id). 2

Note again that any choice of a topological generator of Gal(k) gives non-
elementarily equivalent models of SCFAe with fixed field k.
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6 Elimination of Imaginaries

In this section we prove a result concerning elimination of imaginaries for TA.

Any simple theory satisfies the Independence Theorem over models, see [15]. As
Chatzidakis and Pillay show in [6], TA even satisfies the Independence Theorem
over models of Tσ, see theorem (3.7) in [6]. We say that TA satisfies the Inde-
pendence Theorem over algebraically closed sets if it satisfies the Independence
Theorem over algebraically closed sets of the home sort.

Proposition 6.1 Let T be stable and eliminate imaginaries and let TA satisfy
the Independence Theorem over algebraically closed sets. Then TA eliminates
imaginaries (i.e. every completion of TA does).

The statement is proved for example when T is ACF by Chatzidakis and
Hrushovski in [4] and for strongly minimal T with aclT(∅) infinite by Chatzi-
dakis and Pillay in [6]. We step here along Pillays proof line in [12] where he
did the strongly minimal case.

Proof. Let (M,σ) be a model of TA and e be an imaginary element. We may
assume that (M,σ) is sufficiently saturated. To distinguish, we write aclσ and
dclσ if we compute the respective closure in the home sort, and acleqσ and dcleqσ
if we compute the respective closure in (M,σ)eq. Choose a ∅-definable function
f and a tuple ā ∈M such that e = f(ā). Let b̄ realise the type of ā over e and
be independent from ā over e. Further let c̄ ∈ M realise the type of ā over e
and be independent from aclσ(ā, b̄) over acleqσ (e).

Because T is stable and eliminates imaginaries, there is a unique smallest aclσ-
closed subset A ⊂ M (not Meq) such that c is independent from acleq

σ (ā, b̄)
over A. Namely, take for A the aclT -closure of the canonical base of p =
tp(σi(c)i∈Z/acleqσ (a)), all in the sense of T . Clearly σ(p) = p, hence A is invariant
under σ and σ−1 and thus it is aclσ-closed by fact (2.4.2). By the definition of
independence in TA, see (2.4.3), one sees that A is smallest possible.

By transitivity we have A ⊆ aclσ(ā) and A ⊆ aclσ(b̄), whence we get that A ⊆
aclσ(ā)∩aclσ(b̄). As acleqσ (ā)∩acleqσ (b̄) = acleqσ (e) we conclude that A ⊆ acleqσ (e).
Since c is independent from acleqσ (ā, b̄) it follows again by transitivity that c is
independent from e over A, and thus that e is independent from c over A. But
e is algebraic over c, so it must be algebraic already over A.

We want to show that e is even definable over A. To that end choose any realisa-
tion ā′ of tpσ(ā/A). There is some b̄′ realising tpσ(ā′/A) which is independent
from ā′ over A, with f(b̄′) = f(ā′) and which is independent from b̄ over A.
As A is aclσ-closed we can apply the Indepedence Theorem over algebraically
closed sets to find some realization d̄ of tpσ(ā/Ab̄) ∪ tpσ(ā′/Ab̄′). But then
f(ā) = f(d̄) = f(ā′), so it follows that e is definable over A.

What we have shown is that there is some real tuple ā′ with ā′ ∈ acleq
σ (e)

and e ∈ dcleq
σ (ā′). As T eliminates imaginaries, the set of e-conjugates of ā′ is

interdefinable with a real tuple, and thus so is e. 2
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