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Abstract. In the literature there are two different notions of lovely pairs of
a theory T, according to whether T is simple or geometric. We introduce a
notion of lovely pairs for an independence relation, which generalizes both the
simple and the geometric case, and show how the main theorems for those two
cases extend to our general notion.
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1. Introduction

Let T be a complete first-order theory and C be a monster model for T . In
the literature there are at least two different notions of lovely pairs, according to
whether T is simple [Poi83, BYPV03,Vas05] or geometric [Mac75, vdD98,Box09].
Another class of lovely pairs, generalizing the geometric case, is given by dense pairs
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2 A. FORNASIERO

of theories with an existential matroid (see [For10] for the case when T expands a
field).

The study of lovely pairs started with [Rob59], where dense pairs of real closed
fields and pairs of algebraically closed fields were studied, and has continued, under
various names, until present day: [Mac75] studied lovely pairs of geometric theories
and [vdD98] lovely pairs of o-minimal structure expanding a group (they called
them “dense pairs”, because when T is an o-minimal theory expanding a group, a
lovely pair for T is a pair A ≺ B |= T , with A dense subset of B); on the other
hand, [Poi83] studied beautiful pairs of stable structures, which were generalized to
lovely pairs of simple structures in [BYPV03].

Many results and techniques are similar for all the above classes of theories. In
this article we introduce a unified approach, via a general notion, the |̂ -lovely pairs
(Definition 3.1), where |̂ is an independence relation on C in the sense of [Adl05],
and show that for suitable values of |̂ we get the various special cases we recorded
above:

(1) if C is simple and |̂f is Shelah’s forking, then a |̂f -lovely pair is a lovely pair
of a simple theory in the sense of [BYPV03];
(2) if C is geometric and |̂acl is the independence relation induced by acl, then a
|̂acl-lovely pair is a lovely pair of a geometric theory in the sense of [Box09];
(3) if C has an existential matroid cl and expands a field and |̂cl is the independence
relation induced by cl, then a |̂cl-lovely pair is a dense pair in the sense of [For10].

It may happen that C has more than one independence relation: in this case,
to different independence relations correspond different notions of lovely pairs. For
instance, C can be both stable and geometric, but |̂f 6= |̂cl : in this case, a lovely
pair of T as a geometric theory will be different from a lovely pair of T as a simple
theory: see Example 3.6.

We generalize some of the main results for lovely pairs from [vdD98,BYPV03,
Box09] to |̂ -lovely pairs: see §3.1, 3.2, 4, 5. Moreover, we show how lovely pairs
inherit “stability” properties from T : that is, if T is stable, or simple, or NIP, then
lovely pairs of T have the same property, see §7.

Since |̂ -lovely pairs depend in an essential way on the independence relation |̂ ,
we need a more detailed study of independence relations, which we do in §2. More-
over, different independence relations give different kinds of lovely pairs: thus, it
seems worthwhile to produce new independence relations; a technique to produce
new independence relations is explained in §9. Finally, a |̂ -lovely pair has at least
one independence relation |̂

P
inherited from C (see §8): we hope that, among

other things, |̂
P

will prove useful in studying the original theory T .
A notion of |̂ -lovely pairs has been also proposed by I. Ben Yaacov, using a

different notion of “independence relation” than the one employed here.

2. Preliminaries on independence relations

Let C be a monster model of some complete theory T ; “small” will mean “of
cardinality smaller than the monstrosity of C”.

Let |̂ be a symmetric independence relation on C, in the sense of [Adl05]; so |̂
is a ternary relation on small subsets of C satisfying, for every small A,B,C,D ⊆ C,
the following conditions.

Invariance: for every σ ∈ Aut(C), A |̂
B
C ⇒ σ(A) |̂

σ(B)
σ(C).

Normality: A |̂
C
B ⇒ AC |̂

C
B.

Symmetry: A |̂
B
C ⇒ C |̂

B
A.
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Left Transitivity: (which we will simply call Transitivity) assuming B ⊆ C ⊆ D,
A |̂

B
D iff A |̂

B
C and A |̂

C
D.(1)

Finite character: A |̂
B
C iff A0 |̂ B C for all finite A0 ⊆ A.

Extension: there is some A′ ≡B A such that A′ |̂
B
C.

Local character: there is some small κ0 (depending only on |̂ ), such that there is
some C0 ⊆ C with |C0| < κ0 + |A|+ and A |̂

C0
C.

Following [Adl05], we say that |̂ satisfies strong finite character if, whenever
A 6 |̂

B
C, there exists a formula φ(x̄, ȳ, z̄), ā ∈ A, b̄ ∈ B, and c̄ ∈ C, such that

C |= φ(x̄, ȳ, z̄), and, for every ā′ ∈ C, if C |= φ(ā′, b̄, c̄), then ā′ 6 |̂
B
C.

We are not assuming that C eliminates imaginaries. For non-small A,B,C ⊆ C,
A |̂

B
C is defined to mean the following:

For all small A′ ⊆ A, B′ ⊆ B, and small C ′ ⊆ C, there is some small B′′ such
that B′ ⊆ B′′ ⊆ B, and A′ |̂

B′′ C
′.

For every A ⊂ C and c ∈ C, we say that c ∈ cl(A) if c |̂
A
c. By “tuple” we will

mean a tuple of small length.

Remark 2.1. In the axioms of an independence relation, we can substitute the
Local Character Axiom with the following one:
(LC’) There is some κ0 such that, for every ā finite tuple in C and B small subset
of C, there exists B0 ⊂ B, such that |B0| < κ0 and ā |̂

B0
B.

Moreover, the κ0 in (LC’) and the κ0 in the Local Character Axiom are the same.

Proof. Let A and B be small subsets of C. For every ā finite tuple in A, let Bā ⊂ B,
such that |Bā| < κ0 and ā |̂

Bā
B. Define C :=

⋃
{Bā : ā ⊂ A finite} ⊆ B. Then,

by Finite Character, A |̂
C
B, and |C| < κ0 + |A|+. �

Remark 2.2. Let ā be a small tuple and B and C be small subsets of C. Assume
that tp(ā/BC) is finitely satisfied in C. Then, ā |̂

C
B.

Proof. The assumptions imply that tp(ā/BC) does not fork in the sense of Shelah’s
over C. By [Adl05, Remark 1.20], we are done. �

Question 2.3. Is there a more direct proof of the above remark, that does not use
Shelah’s forking?

Definition 2.4. κ0 is the smallest regular cardinal κ, such that, for every finite
tuple ā and every small set B, there exists B0 ⊆ B, with |B0| < κ and ā |̂

B0
B.

Remark 2.5. κ0 ≤ |T |+; hence, for every small sets A and B, there exists B0 ⊆ B,
such that |B0| ≤ |T |+ |A| and A |̂ B0

B.

Proof. Given a small tuple ā and a small set B, let C be a subset of ā such that
tp(ā/BC) is finitely satisfied in C, and |C| ≤ |B| + |T | ([Adl05, Remark 2.4]).
Hence, ā |̂

C
B. �

Definition 2.6. Let A and B be small subsets of C, with A ⊆ B. Let p be a type
over A and q be a type over B. We say that q is a nonforking extension of p,
and write q v p, if q extends p and q |̂

A
B. We say that q is a forking extension

of p, and write q v6 p, if q extends p and q 6 |̂
A
B.

In the next lemma we use the fact that κ0 is regular.

Lemma 2.7. Let A ⊂ C be small and p ∈ Sn(A). There is no sequence p = p0 v6
p1 v6 . . . v6 pi . . . , indexed by κ0, of forking extensions of p.

(1) In Adler’s terminology, this axiom also includes Monotonicity and Base Monotonicity.
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Proof. Assume, for contradiction, that such a sequence exists. For every i < κ0,
let Bi be the domain of pi. Let B :=

⋃
i<κ0

Bi, and D ⊂ B such that |D| < κ0

and p |̂
D
B (D exists by definition of κ0). Since κ0 is regular, D ⊆ Bi for some

i < κ0, and therefore p |̂
Bi
B, and in particular p |̂

Bi
Bi+1, absurd. �

Lemma 2.8. All axioms for |̂ , except extension, are valid also for large subsets
of C. The Local Character Axiom holds with the same κ0.

Proof. Let us prove Local Character for non-small sets. Let A and B be subsets
of C. Assume, for contradiction, that, for every C ⊂ B, if |C| < κ0, then A 6 |̂ CB.
First, we consider the case when A = ā is a finite tuple. Define inductively a family
of sets (Bi : i < κ0), such that:
(1) each Bi is a subset of B, of cardinality strictly less than κ0;
(2) (Bi : i < κ0) is an increasing family of sets;
(3) ā 6 |̂ S

j<i Bj
Bi.

In fact, choose B0 a finite subsets of B, such that ā 6 |̂ ∅ B0; then, choose Bi
inductively, satisfying the given conditions. Finally, let pi := tp(ā/Bi). Then,
(pi : i < κ0) is chain of forking extensions of length κ0, contradicting Lemma 2.7.

If A is infinite, proceed as in the proof of Remark 2.1. �

Remark 2.9. Let P be a (possibly, large) subsets of C. Let |̂ ′ the following
relation on subsets of C: A |̂ ′

C
B iff A |̂

CP
B. Then, |̂ ′ satisfies Symmetry,

Monotonicity, Base Monotonicity, Transitivity, Normality, Finite Character and
Local Character (with the same constant κ0). If moreover P is Aut(C)-invariant
(that is, f(P ) = P for every f ∈ Aut(C)), then |̂ ′ also satisfies Invariance.

Proof. Let us prove Local Character. Let A and B be small subsets of C. Let
B0 ⊂ B and P0 ⊂ P , such that |B0 ∪ P0| < κ0 + |A|+ and A |̂

B0P0
BP . Then,

A |̂
B0P

B, and therefore A |̂ ′
B0
B. �

Example 2.10. Let P ⊂ C be definable without parameters, and |̂ ′ be as in the
above remark. It is not true in general that |̂ ′ is an independence relation: more
precisely, it might not satisfy the Extension axiom. For instance, let 〈G,+〉 be a
monster model of the theory of 〈Q,+〉, and let C be the 2-sorted structure G tG,
with the group structure on the first sort, and the action by translation of the first
sort on the second. Notice that C is ω-stable; let |̂ be Shelah’s forking on C, and
P be the first sort. Choose a and b in the second sort arbitrarily. Then, there is no
a′ ≡ a such that a′ |̂ ′ b, because C = acl(Pb), but C 6= acl(P ).

We will always consider models of T as elementary substructures of C: therefore,
given A ⊂ M |= T , we can talk about cl(A) (a subset of C, not of M !), and for
p ∈ S(M) we can define p |̂

A
M .

We say that |̂ is superior if κ0 = ω.

Remark 2.11. |̂ is superior iff, for every finite set A ⊂ C and every set C ⊆ C,
there exists a finite subset C0 ⊂ C such that A |̂

C0
C. Moreover, |̂ is superior iff

v is a well-founded partial ordering, and therefore one can define a corresponding
rank U |̂ for types (as in [Wag00, §5.1] for supersimple theories).

Example 2.12. (1) If C is simple, we can take |̂ equal to Shelah’s forking |̂f .
κ0 ≤ |T |+, and |̂f is superior iff C is supersimple, and the rank induced by |̂f is
the Lascar rank SU.
(2) If C is rosy, we can take |̂ equal to þ-forking |̂þ . |̂þ is superior iff C is
superrosy.
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(3) If C is geometric, we can take |̂ equal to |̂acl, the independence relation induced
by the algebraic closure. |̂ is then superior of rank 1, and coincides with real þ-
forking.

In all three cases, cl is the algebraic closure (that is, |̂ is strict).

Example 2.13. If cl is an existential matroid on C, we can take |̂ equal to the
induced independence relation |̂cl : see [For10] for details; |̂cl is superior, of rank 1.

Remark 2.14. If C is supersimple then |̂ is superior, and U |̂ ≤ SU.

Proof. Let a ⊂ C be a finite tuple and B ⊂ C. Let B0 ⊂ B be finite such that
a |̂f

B0
B. Then, by [Adl05, Remark 1.20], a |̂

B0
B. �

Let L be the language of T .
Notice that the same structure C could have more than one independence rela-

tion. The following example is taken from [Adl05, Example 1.33].

Example 2.15. Let L = {E(x, y)} and C be the monster model where E is an
equivalence relation with infinitely many equivalence classes, all infinite. Then C is
ω-stable, of Morley rank 2, and geometric. Hence, C has the following 2 indepen-
dence relation: |̂f and |̂acl. More explicitly: A |̂acl

B
C iff A ∩ C ⊆ B, and A |̂f

B
C

if acleq(AB) ∩ acleq(BC) = acleq(B). Both independence relations are superior,
strict, and satisfy Strong Finite Character. However, these two independence re-
lations are different, and the rank of C is different according to the two different
ranks: Uacl(C) = 1 (the rank induced by acl), while SU(C) = 2. C also has a third
independence relation, which we will now describe. For every X ⊂ C, let clE(X) be
the set of elements which are equivalent to some element in X. Define A |̂E

C
B if

clE(AC) ∩ clE(BC) = clE(C). |̂E is superior and satisfy Strong Finite Character,
but it is not strict. The rank of C according to |̂E is 1.

Definition 2.16. Let A and B be small subsets of C and π(x̄) be a partial type
with parameters from AB. We say that π does not fork over B (and write π |̂

B
A)

if there exists a complete type q(x̄) ∈ Sn(AB) containing π and such that q |̂
B
A

(or, equivalently, if there exists c̄ ∈ Cn realization of π(x̄) such that c̄ |̂
B
A).

The interesting cases are when π is either a single formula or a complete type
over AB.

Remark 2.17. The above definition does not depend on the choice of the set of
parameters A: that is, given some other subset A′ of C such that the parameters
of π are contained in A′ ∪ B, then there exists c̄ ∈ Cn satisfying π and such that
c̄ |̂

B
A iff there exists c̄ ∈ Cn satisfying π and such that c̄ |̂

B
A′.

Proof. Assume that π |̂
B
A. Let c̄ ∈ Cn such that c̄ satisfies π and c̄ |̂

B
A. Let

c̄′ ∈ Cn such that c̄′ ≡AB c̄ and c̄′ |̂
AB

A′. Therefore, c̄′ realizes π and c̄′ |̂
B
A,

and thus c̄′ |̂
B
A′. �

2.1. The closure operator cl. For this subsection, A, A′, B, and C will always
be subsets of C, and a, a′ be elements of C.

Remark 2.18 (Invariance). Assume that a ∈ cl(B) and a′B′ ≡ aB; then a′ ∈
cl(B′).

Remark 2.19. If a ∈ cl(A) then a |̂
A
B.

Proof. Suppose a ∈ cl(A). By definition, a |̂
A
a. Moreover, a |̂

Aa
B. Thus, by

transitivity, a |̂
A
B. �

Remark 2.20 (Monotonicity). If a ∈ cl(B), then a ∈ cl(BC).



6 A. FORNASIERO

Proof. By Remark 2.19, a |̂
B
BCa. Thus, a |̂

BC
a. �

Remark 2.21. If A ⊆ cl(B), then A |̂
B
A.

Proof. W.l.o.g., A = 〈a1, . . . , an〉 is a finite tuple. By repeated application of
Remarks 2.19 and 2.20, we have BA |̂

B
Ba1, BA |̂ Ba1

Ba1a2, . . . . Hence, by
transitivity, A |̂

B
A. �

Remark 2.22. If A ⊆ cl(B), then A |̂
B
C.

Proof. By the above remark, A |̂
B
A. Moreover, A |̂

AB
C, and therefore, by

transitivity, A |̂
B
C. �

Remark 2.23. A |̂
B
C iff A |̂

cl(B)
C. Therefore, |̂

B
and U |̂ (·/B) depend

only on cl(B), and not on B.

Proposition 2.24. cl is an invariant closure operator. If moreover |̂ is superior,
then cl is finitary.

Proof. The fact that cl is invariant is Remark 2.18. To prove that cl is a closure
operator, we have to show:

Extension: A ⊆ cl(A).
This is clear.

Monotonicity: A ⊆ B implies cl(A) ⊆ cl(B).
This follows from Remark 2.20.

Idempotency: cl(cl(A)) = cl(A).
This follows from Remark 2.23.
Finally, we have to prove that if |̂ is superior, then cl is finitary. Let a ∈ cl(B), that
is a |̂

B
a. Since |̂ is superior, there exists B0 ⊆ B finite, such that a |̂

B0
B. �

Conjecture 2.25. cl is always finitary. Moreover, cl is definable: that is, for every
A ⊆ C small, the set cl(A) is ord-definable over A.

Remark 2.26. If A |̂
B
C, then cl(AB)∩ cl(BC) = cl(B) (but the converse is not

true in general).

3. Lovely pairs

Let P be a new unary predicate symbol, and T 2 be the theory of all possible
expansions of T to the language L2 := L ∪ {P}. We will use a superscript 1 to
denote model-theoretic notions for L, and a superscript 2 to denote those notions
for L2: for instance, we will write a ≡1

C a′ if the L-type of a and a′ over C is the
same, or S2

n(A) to denote the set of complete L2-types in n variables over A.
Let MP = 〈M,P (M)〉 |= T 2. Given A ⊆M , we will denote P (A) := P (M)∩A.

We will write CP := 〈C, P 〉 for a monster model of T 2.

Definition 3.1. Fix some small cardinal κ > max(κ0, |T |); we will say that A
is very small if it is of cardinality much smaller than κ. We say that MP is a
|̂ -lovely pair for T (or simply a lovely pair if |̂ and T are clear from the context)
if it satisfies the following conditions:
(1) M is a small model of T .
(2) (Density property) Let A ⊂ M be very small, and q ∈ S1

1(A) be a complete
L-1-type over A. Assume that q |̂

P (A)
A. Then, q is realized in P (M).

(3) (Extension property) Let A ⊂ M be very small and q ∈ S1
1(A). Then, there

exists b ∈M realizing q such that b |̂
A
P (M).
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The above definition is the natural extension of Definition 3.1 in [BYPV03] to
the case when |̂ 6= |̂f . If we need to specify the cardinal κ, we talk about κ-lovely
pairs.

Remark 3.2. If MP satisfies the Extension property, then M is κ-saturated (as
an L-structure).

Definition 3.3. Let X ⊆M |= T . The closure of X in M is

clM (X) := M ∩ cl(X).

X is closed in M if clM (X) = X.

Remark 3.4. If MP satisfies the Density property, then

(1) P (M) �M ;
(2) P (M) is closed in M ;
(3) P (M) is κ-saturated (as an L-structure).

Proof. Let p̄ ∈ P (M)n and φ(x, ȳ) be some L-formula. Assume that there exists
a ∈ M such that M |= φ(a, p̄). Let q := tp1(c/p̄). Since P (p̄) = p̄, we have
q |̂

P (p̄)
p̄, and therefore there exists a′ ∈ P (M) such that M |= φ(a′, p̄), proving

that P (M) �M .
Assume that a |̂

P (M)
a. Let P0 ⊂ P (M) be very small, such that a |̂

P0
a. Let

q := tp1(a/P0a); notice that q |̂
P0
P0a; therefore, by the Density property, q is

realized in P (M), that is a ∈ P (M).
Assume that A ⊆ P (M) is a very small subset and let q ∈ S1

1(A). Since P (A) =
A, we have q |̂

P (A)
A, and therefore q is realized in P (M), proving saturation. �

Example 3.5. If |̂ is the trivial independence relation (that is, A |̂
B
C for

every A, B, and C), then MP is a lovely pair iff M |= T is sufficiently saturated
and P (M) = M (more precisely, the Extension Property always hold, and the
Density Property holds iff M = P (M)).

Example 3.6. Let T and C be as in Example 2.15. The 3 choices for an inde-
pendence relation |̂ on C will correspond to 3 different kind of lovely pairs; in
particular, the theory of lovely pairs for T as a simple theory (which is equal to the
theory of Beautiful Pairs for T [Poi83]) is different from the theory of lovely pairs
for T as a geometric theory.

More explicitly, let MP |= T 2, and assume that M is sufficiently saturated.
Then, MP is a model of the theory of |̂f -lovely pairs iff:

(1) infinitely many equivalence classes are disjoint from P (M);
(2) infinitely many equivalence classes intersect P (M);
(3) for each equivalence class C, both C \ P (M) and C ∩ P (M) are infinite.

On the other hand, MP is a model of the theory of |̂acl-lovely pairs iff:

(1) all equivalence classes intersect P (M);
(2) for each equivalence class C, both C \ P (M) and C ∩ P (M) are infinite.

Finally, MP is a model of |̂E-lovely pairs iff:

(1) infinitely many equivalence classes are disjoint from P (M);
(2) infinitely many equivalence classes are contained in P (M);
(3) every equivalence class is either disjoint or contained in P (M).
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3.1. Existence.

Lemma 3.7. Let A, B, and C be small subsets of C. Assume that A |̂
C
B. Then,

there exists N ≺ C small model, such that AC ⊆ N and N |̂
C
B. In particular,

for any B and C small subsets of C, there exists N ≺ C small model, such that
C ⊆ N and N |̂

C
B.

Proof. Let N ′ ≺ N be a small model containing A. Choose N ≡1
AC N ′ such that

N |̂
C
B (N exists by the Extension Axiom). �

Modifying the above proof a little, we can see that, for any small cardinal κ,
in the above lemma we can additionally require that N is κ-saturated, or that
|N | ≤ |A|+ |T |, etc.

Fix κ > κ0 a small cardinal.

Lemma 3.8. κ-lovely pairs exist. If 〈C,P (C)〉 is an L2-structure, where P (C) ⊆
C ⊂ C, C is small, and P (C) is closed in C (i.e., cl(P (C)) ∩ C = P (C)), then
there exists a κ-lovely pair MP , such that 〈C,P (C)〉 is an L2-substructure of MP ,
and P (M) |̂

P (C)
C.

Therefore, given A and B small subsets of C, there exists a κ-lovely pair MP

such that P (M) |̂
A
B and A ⊆ P (M).

Proof. The proof of [BYPV03, Lemma 3.5] works also in this situation, with some
small modification. Here are some details. If 〈C,P (C)〉 is not given, define C =
P (C) = ∅. Construct a chain

(
〈Mi, P (Mi)〉 : i < κ+

)
of small subsets of C, such

that:
(a) 〈A,P (A)〉 is an L2-substructure of 〈M0, P (M0)〉, and M0 |̂ P (A)

P (M0);
(b) for every i < κ+, any complete L-type over Mi(2), which does not fork over
P (Mi) is realized in P (Mi+1);
(c) i < j < κ+ implies that 〈Mi, P (Mi)〉 is an L2-substructure of 〈Mj , P (Mj)〉,
and P (Mj) |̂ P (Mi)

Mi;
(d) for i successor, Mi is a (κ+ |P (Mi)|)+-saturated model of T .

First, we construct 〈M0, P (M0)〉. Let M0 ≺ C be a small model containing A,
and define P (M0) := P (A). Notice that A |̂

P (A)
P (M0).

Given 〈Mi, P (Mi)〉, let
(
pj : j < λ

)
to be an enumeration of all L-types

over Mi,(3) such that pj |̂ P (Mi)
Mi. Let

• a0 be any realization of p0 (in C);
• a1 be a realization of p1 such that a1 |̂ Mi

a0;
• . . .
• for every j < λ, let aj be a realization of pj such that aj |̂ Mi

(
ak : k < j

)
.

Define A :=
(
aj : j < λ

)
. It is then easy to see that A |̂

P (Mi)
Mi. Conclude the

proof as in [BYPV03] (using Lemma 3.7 where necessary). �

3.2. Uniqueness: the back-and-forth argument. In this subsection, MP will
be a lovely pair. The following definition is from [BYPV03].

Definition 3.9. (1) A set A ⊂ M is P-independent if A |̂
P (A)

P (M) (and
similarly for tuples).
(2) Given a possibly infinite tuple ā from M , P-tp(ā), the P-type of ā, is the
information which tell us which members of ā are in P (M).

(2) Here we can choose: either in one variable, or in finitely many variables, or in a small number
of variables: see §5.
(3) With the same meaning of “type” as in (b).
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Remark 3.10. Let A ⊆M be P-independent. Then cl(A) ∩ P (M) = clM
(
P (A)

)
.

Proof. Let c ∈ cl(A)∩P (M). Then c |̂
A
P (M), by Remark 1.2, andA |̂

P (A)
P (M).

Therefore c |̂
P (A)

P (M). Therefore c |̂
P (A)

c, that is c ∈ cl
(
P (A)

)
. �

Proposition 3.11. Let MP and M ′
P be two |̂ -lovely pairs for T . Let ā be a

P-independent very small tuple from M , and ā′ be a P-independent tuple of the
same length from M ′. If ā ≡1 ā′ and P-tp(ā) = P-tp(ā′), then ā ≡2 ā′.

Proof. Back-and-forth argument. Let

Γ :=
{
f : ā→ ā′ : ā ⊂M, ā′ ⊂M ′, ā & ā′ very small, f bijection,

ā & ā′ P-independent, ā ≡1 ā′, P-tp(ā) = P-tp(ā′)
}
.

We want to prove that Γ has the back-and-forth property. Let f : ā→ ā′ be in Γ.
Let b ∈M .

Case 1: Suppose b ∈ P (M). Then, since ā is P-independent, b |̂
P (ā)

ā. Let b′ ∈M
be such that tp1(āb) = tp1(ā′b′). Then b′ |̂

P (ā′)
ā′. By density, we may assume

b′ ∈ P (M). Then P-tp(āb) = P-tp(ā′b′). Since b, b′ ∈ P (M), both āb and ā′b′ are
P-independent. So the partial isomorphism has been extended.

Case 2: Suppose b /∈ P (M). Let f̄ be a very small tuple from P (M) such that
ābf̄ is P-independent. By repeated use of case 1, we obtain a small tuple f̄ ′ from
P (M ′) such that tp1(āf̄) = tp1(ā′f̄ ′). Let b′ ∈ M ′ be such that tp1(ābf̄) =
tp1(ā′b′f̄ ′). By extension, we may assume b′ |̂

ā′f̄ ′ P (M ′). It follows that ā′b′f̄ ′

is P-independent, and that cl(b′ā′f̄ ′) ∩ cl(ā′f̄ ′P (M ′)) = cl(ā′f̄ ′). Suppose b′ ∈
P (M ′). Then, b′ ∈ cl(ā′f̄ ′) ∩ P (M ′). Since ā′f̄ ′ is P-independent, b′ ∈ cl(f̄ ′P (ā′)).
Therefore, b ∈ clM

(
f̄P (ā)

)
⊆ P (M), absurd. So P-tp(ābf̄) = P-tp(ā′b′f̄ ′). So the

partial isomorphism has been extended. �

Definition 3.12. T d is the theory of |̂ -lovely pairs (the “d” stands for “dense”, a
legacy from the o-minimal case). Given a property S of models of T 2, we will say
that “S is first-order” to mean that there is an L2-theory T ′ expanding T 2, such
that every model of T 2 with the property S is a model of T ′, and every sufficiently
saturated model of T ′ has the property S. In particular, by “ |̂ -loveliness is first-
order” (or simply “loveliness is first-order” when |̂ is clear from the context), we
will mean that every sufficiently saturated model of T d is a lovely pair.

If T is pregeometric, then |̂acl-loveliness is first-order iff T is geometric (see § 6.1).
[BYPV03] and [Vas05] investigate the question when |̂f -loveliness is first-order for
simple theories. We will not study this question for |̂ , except for a partial result
in Corollary 6.5 .

4. Near model completeness and other properties

In this section we assume that loveliness is first order and that CP := 〈C, P 〉 is a
monster model of T d.

4.1. Near model completeness.

Lemma 4.1. For every finite tuple ā from C there is some small C ⊆ P such that
ā |̂

C′ P for all C ′ ≡1
ā C such that C ′ ⊆ P .

Proof. Suppose not. Then for each small Cα ⊆ P there is some small Cα+1 ⊆ P
such that ā 6 |̂

Cα
Cα+1 and tp1(Cα/ā) is realised in Cα+1. By compactness there

is, for any κ less than the monstrosity of C, an increasing sequence (Cα)α<κ such
that ā 6 |̂

Cα
Cβ for all α < β < κ, contradicting Lemma 2.7. �
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Definition 4.2. Given a tuple of variables z̄, we will write P (z̄) as a shorthand for
P (z1)∧· · ·∧P (zn). A special formula is a formula of the form (∃z̄)

(
P (z̄)∧ϕ(x̄, z̄)

)
,

where ϕ is an L-formula.

Proposition 4.3 (Near model completeness). Every L2-formula without parameter
is equivalent modulo T 2 to a Boolean combination of special formulae (without
parameters).

Proof. Let ā and b̄ be finite tuples from C. Suppose they both satisfy exactly the
same special formulae. It suffices to prove that tp2(ā) = tp2(b̄). Let C ⊂ P be as
in Lemma 4.1. By assumption and compactness there is some D ⊆ P such that
tp1(āC) = tp1(b̄D). Suppose b̄ 6 |̂

D
P . Then there is some small E ⊆ P such

that ā 6 |̂
D
E. By assumption and compactness there exist C ′, E′ ⊆ P such that

tp1(āC ′E′) = tp1(b̄DE). But then C ′ |= tp1(C/ā) and so ā |̂
C′ P and hence

ā |̂
C′ E

′. This contradicts invariance of |̂ . So b̄ |̂
D
P . So both āC and b̄D are

P-independent. It follows from our assumption that P-tp(āC) = P-tp(b̄D) and we
know tp1(āC) = tp1(b̄D). Therefore tp2(āC) = tp2(b̄D). �

4.2. Definable subsets of P.

Lemma 4.4 ([Box09, 4.1.7]). Let b̄ ∈ Cn be P-independent. Given a set Y ⊆ Pm,
t.f.a.e.:

(1) Y is T d-definable over b̄;
(2) there exists Z ⊆ Cm that is T -definable over b̄, such that Y = Z ∩ Pm.

Proof. (2⇒ 1) is obvious. Assume (1). Then, (2) follows from compactness and the
fact that the L2-type over b̄ elements from P is determined by their L-types. �

4.3. Definable and algebraic closure. Let 〈M,P (M)〉 be a lovely pair. In the
next proposition we will consider imaginary elements; to simplify the notation, we
will use acl1 for the algebraic closure for imaginary elements in M eq, and acl2 for
the algebraic closure for imaginary elements in 〈M,P (M)〉eq, and similarly for dcl.

Proposition 4.5 ([Box09, 4.1.8, 4.1.9]). Let ā ⊂ M be P-independent. Then,
acl2(ā) ∩M eq = acl1(ā) ∩M eq and dcl2(ā) ∩M eq = dcl1(ā) ∩M eq.

Proof. Clearly, dcl2(ā) ∩M eq ⊆ dcl1(ā) ∩M eq, and similarly for acl. We have to
prove the opposite inclusions. W.l.o.g., ā is a very small tuple.

Let us prove first the statement for dcl. So, let e ∈ M eq ∩ dcl2(ā). Let b̄ be a
P-independent very small tuple in M containing ā, such that e ∈ dcl1(b̄). Denote
b̄0 := P (b̄) and b̄1 := b̄ \ P (b̄); notice that b̄ |̂

b̄0
P (M).

Claim 1. Let b̄′ ≡1
ā b̄ be such that b̄′ |̂

ā
b̄. Then, b̄′ ≡1

e b̄.

Notice that b̄′0 * P (M) in general. Since a is P-independent, we have a |̂
P (ā)

b̄0,
and therefore b̄′0 |̂ P (ā)

ā. Since moreover b̄′0 |̂ ā b̄, by transitivity we have b̄
′
0 |̂ P (ā)

b̄,
and thus b̄′0 |̂ P (b̄)

b̄. Therefore, by the Density property, there exists b̄′′0 ⊂ P (M)

such that b̄′′0 ≡1
b̄
b̄′0.

Let θ ∈ Aut1(C/b̄) be such that θ(b̄′0) = b̄′′0 . Let r(x) := tp1(b̄′1/b̄b̄
′
0), and

q := θ(r) ∈ S1(b̄b̄′′0). By the Extension property, there exists b̄′′1 in M , such that b̄′′1
realizes q and

(4.1) b̄′′1 |̂
b̄b̄′′0

P (M).
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Denote b̄′′ := b̄′′0 b̄
′′
1 ; notice that b̄′′ ≡1

b̄
b̄′. Since b̄ |̂

ā
b̄′, we have b̄ |̂

ā
b̄′′, and

therefore b̄′′1 |̂ b̄′′0 ā b̄b̄
′′
0 . Therefore, by (4.1) and transitivity, b̄′′1 |̂ āb̄′′0 P (M). Since

moreover ā is P-independent, by transitivity again we have b̄′′ |̂
b̄′′0
P (M).

Thus, we proved that b̄′′ is P-independent and has the same P-type over ā as b̄,
and thus b̄′′ ≡2

e b̄. Since moreover, by definition, b̄′′ ≡1
b̄
b̄′, we have b̄′′ ≡1

e b̄
′, and

the claim is proved.
Since e ∈ dcl1(b̄), there exists a function f which is T -definable without param-

eters, and such that e = f(b̄)

Claim 2. Assume that b̄′′ ⊂M and b̄′′ ≡ā b̄. Then, e = f(b̄′′).

It follows immediately from Claim 1.
Now, since loveliness is first-order, we can assume that 〈M,P (M)〉 is sufficiently

saturated; therefore, Claim 2 implies that e ∈ dcl1(ā), and thus dcl1(ā) ∩M eq =
dcl2(ā) ∩M eq.

Assume now that e ∈ acl2(ā)∩M eq. Let X be the set of realizations of tp2(e/ā).
Notice that X is a finite subset of M eq, and therefore it is definable in M eq; Let
e′ be a canonical parameter for X in the sense of M eq. Since e′ ∈ dcl2(ā) ∩M eq,
by the first assertion we have e′ ∈ dcl1(ā). Since e ∈ acl1(e′), we e ∈ acl1(ā).
Therefore, acl1(ā) ∩M eq = acl2(ā) ∩M eq. �

Proposition 4.6 ([Box09, 6.1.3]). Let ā ⊂M be P-independent. Let f : P (M)n →
M eq be T d-definable with parameters ā. Then, there exists g : Mn →M eq which is
T -definable with parameters ā, such that f = g � P (M)n.

Proof. Let 〈N,P (N)〉 be an elementary extension of 〈M,P (M)〉 and c ∈ P (N). By
Proposition 4.5, f(c) ∈ dcl1(ā), and therefore there exists gi : Nn → N eq which
is T -definable with parameters ā, such that f(c) = gi(c). By compactness, finitely
many gi will suffice. The conclusion follows from Lemma 4.4. �

Notice that in the above proposition we were not able to prove the stronger
result that pgq ∈ dcl2(pfq), where pfq is the canonical parameter of f according
to T d (cf. [Box09, 6.1.3]). Nor were we able to prove any form of elimination of
imaginaries for T d (cf. [Box09, theorems 1.2.4, 1.2.6 and 1.2.7] and [For10, §8.5]).

5. Small and imaginary tuples

5.1. Small tuples. We show how in Definition 3.1, we can pass from L-1-types to
L-types in very small number of variables. Let MP = 〈M,P (M)〉 be a small model
of T 2.

Lemma 5.1. Assume that MP satisfies the Density Property (for L-1-types).
Then, MP satisfies the Density Property for L-types of very small length.

Proof. Let A ⊂ M be very small and b̄ be a tuple in M of very small length, such
that b̄ |̂

P (A)
A. We must prove that there exists b̄′ ⊂ P (M) such that b̄′ ≡1

A b̄.
Define

F := {f partial 1-automorphism of M/A : Dom(f) ⊆ b̄, Im(f) ⊆ P (M)}.
Let f ∈ F be a maximal element (Zorn). I claim that Dom(f) = b̄ (this suffices
to prove the conclusion). Assume not. Let d̄ := Dom(f) and e ∈ b̄ \ d̄. Let
d̄′ := f(d̄) ⊂ P , q := tp1(e/Ad̄), and q′ := f(q). Notice that e′d̄′ |̂

P (A)
A, and

therefore q′ |̂
P (A)d̄′ Ad̄

′. Since d̄′ ⊆ B, the Density Property for L-1-types implies
that there exists e′ ∈ P (M) satisfying q′, and hence d̄′e′′ ≡1

A d̄e, contradicting the
maximality of f . �
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Lemma 5.2. Assume that MP satisfies the Extension Property (for L-1-types).
Then, MP satisfies the Extension Property for L-types of very small length.

Proof. Let A ⊂ M be very small and b̄ be a tuple in M of very small length. We
must prove that there exists b̄′ ⊂M such that b̄′ ≡1

A b̄ and b̄
′ |̂

A
P . Define

F := {f partial 1-automorphism of M/A : Dom(f) ⊆ b̄, Im(f) |̂
A

P (M)}.

Let f ∈ F be a maximal element (Zorn). I claim that Dom(f) = b̄ (this suffices to
prove the conclusion). Assume not. Let d̄ := Dom(f) and e ∈ b̄ \ d̄. Let d̄′ := f(d̄),
q := tp1(e/Ad̄), and q′ := f(q). The Extension Property for L-1-types implies
that there exists e′ ∈ M satisfying q′ and such that e′ |̂

Ad̄′ P (M). Besides, by
assumption, d̄′ |̂

A
P (M); therefore e′d̄′ |̂

A
P . Since moreover e′d̄′ ≡1

A ed̄, we
have a contradiction. �

5.2. Imaginary tuples. Given an independence relation |̂ on C, we do not know
if there always exists an independence relation |̂eq on Ceq extending |̂ . However,
as the next lemma shows, the independence relation |̂eq, if it exists, it is unique.(4)

Lemma 5.3. Let |̂eq be an independence relation on Ceq extending |̂ . Let A, B,
and C be small subsets of Ceq. Then, the following are equivalent:
(1) A |̂eq

C
B;

(2) There exist A0 and B0 small subsets of C, such that A ⊆ dcleq(A0), B ⊆
dcleq(B0), and for every C0 small subset of C with C ⊆ dcleq(C0), there exists
A′0 ⊂ C such that A′0 ≡B0C A0 and A′0 |̂ C0

B0.

Proof. Exercise: first reduce to the case when A and B are subsets of C. �

Remember that |̂ is strict if cl = acl.

Warning. It may happen that |̂ is strict, but |̂eq is not strict: consider for
instance the independence relation |̂aclin Example 2.15 (cf. [For10, §6]).

Proviso. For the remainder of this section, we assume that |̂eq is an independence
relation on Ceq extending |̂ . Moreover, we also assume that P is closed in C.

Definition 5.4. Assume that MP = 〈M,P (M)〉 is a model of T 2. Let A ⊆M eq.
(1) Define P (A) := cleq(P ) ∩ A. Notice that P (A) is the same as before if A is a
set of real elements.
(2) We say that A is P-independent if A |̂eq

P (A)
P .

(3) Given a possibly infinite tuple ā from M eq, P-tp(ā), the P-type of ā, is the
information which tell us which members of ā are in P (M eq) (again, notice that
P-tp(ā) is the same as before if ā is a tuple of real elements).

The following two lemmas are the analogues of [BYPV03, Remark 3.3].

Lemma 5.5. If MP satisfies the Density Property (for L-1-types), then it satisfies
the Density Property for imaginary tuples: that is, if c̄ and ā are very small tuples
in M eq and c̄ |̂eq

P (ā)
ā, then there exists c̄′ ∈ cleq(P ), such that c̄′ ≡1

ā c̄.

Proof. Fix d̄ a small tuple inM such that c̄ = [d̄]E , for some ∅-definable equivalence
relation E. Let ā0 := P (ā) and ā1 := ā \ P . Fix b̄1 small tuple in M such that
ā1 = [b̄1]F , for some ∅-definable equivalence relation F . Let d̄′ in M such that
d̄′ ≡1

ā0c̄ d̄ and d̄′ |̂eq

ā0c̄
ā. Since, by assumption, c̄ |̂eq

ā0
ā, we have d̄′ |̂eq

ā0
ā. Notice,

moreover, that [d̄′]E = c̄. Let b̄′1 ≡1
ā b̄1 such that b̄′1 |̂eq

ā
d̄′; notice that [b̄′1]F = ā1.

(4) Thanks to H. Adler for pointing this out.
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Moreover, by Transitivity, b̄′1 |̂eq

ā0
d̄′; therefore, ā0b̄

′
1 |̂eq

P (ā0b̄′1)
d̄′. Let b̄0 be a small

tuple in P such that ā0 ∈ acleq(b̄0); moreover, we can choose b̄0 that satisfies
b̄0 |̂eq

ā0
b̄′1d̄

′. Hence, b̄′1 |̂ b̄0 d̄
′: notice that all tuples are real. Hence, by Lemma 5.1,

there exists d̄′′ in P such that d̄′′ ≡1
b̄0b̄′1

d̄′. Define c̄′′ := [d̄′′]E . Then, c̄′′ ≡1
ā c̄ and

c̄′′ ∈ cleq(P ). �

Lemma 5.6. If MP satisfies the Extension Property (for L-1-types), then it satis-
fies the Extension Property for imaginary tuples: that is, if c̄ and ā are very small
tuples in M eq, then there exists c̄′ ∈M eq, such that c̄′ ≡1

ā c̄ and c̄′ |̂eq

ā
P .

Proof. Fix b̄ and d̄ small tuples in M such that ā = [b̄]F and c̄ = [d̄]E , for some ∅-
definable equivalence relations E and F . Let b̄′ ≡1

ā b̄ such that b̄′ |̂eq

ā
d̄. Notice that

ā = [b̄′]F and that ā ∈ cleq(b̄′) (because ā ∈ dcleq(b̄′)). By Lemma 5.1, there exists
d̄′ in M such that d̄′ ≡1

b̄′
d̄ and d̄′ |̂

b̄′
P . Notice that d̄′ ≡b̄′ā d̄; therefore, since

d̄ |̂
ā
b̄′, we have d̄′ |̂eq

ā
b̄′, hence, by transitivity, d̄′ |̂

ā
P . Finally, let c̄′ := [d̄′]E .

Thus, c̄′ ≡1
ā c̄ and c̄ |̂eq

ā
P . �

Lemma 5.7. Let MP and M ′
P be two |̂ -lovely pairs for T . Let ā be a P-indepen-

dent small tuple from M eq, and ā′ be a P-independent tuple of the same length and
the same sorts from M ′eq. If ā ≡1 ā′ and P-tp(ā) = P-tp(ā′), then ā ≡2 ā′.

Proof. Again, by a back-and-forth argument. Denote P := P (M) and P ′ := P (M ′).
Let ā0 := P (ā) and ā′0 := P (ā′). Let

Γ :=
{
f : ā→ ā′ : ā ⊂M eq, ā′ ⊂M ′eq

, ā & ā′ very small, f bijection,

ā & ā′ P-independent, ā ≡1 ā′, P-tp(ā) = P-tp(ā′)
}
.

We want to prove that Γ has the back-and-forth property. So, let f : ā→ ā′ be in
Γ, and c̄ ⊂ M eq \ ā be a small tuple; we want to find g ∈ Γ such that g extends f
and c̄ is contained in the domain of g. We can reduce ourselves to two cases.

Case 1: c̄ ⊂ cleq(P ). Let q := tp1(c̄/ā) and q′ := f(q). Since ā is P-indepen-
dent, we have q |̂eq

ā0
ā, and hence q′ |̂eq

ā′
0
ā′. Therefore, by the Density property in

Lemma 5.5, there exists c̄′ ⊂ cleq(P ′) satisfying q′; extend f to āc̄ setting f(c̄) = c̄′.

Case 2: c̄ ⊂ M eq \ cleq(P ). Let p̄0 be a small subset of P such that c̄p̄0ā is
P-independent. By Case 1, w.l.o.g. p̄0 ⊆ ā0, i.e. c̄ā is P-independent, that is
c̄ā |̂

ā0
P . Let q := tp1(c̄/ā) and q′ := f(q). By Lemma 5.6, there exists c̄′ ⊂M ′eq

satisfying q′ such that c̄′ |̂eq

ā′ P
′.

Claim 3. c̄′ ∩ cleq(P ′) = ∅.

Assume, for contradiction, that c0 ∈ c̄′ ∩ cleq(P ′). Since c̄′ |̂eq

ā′ P
′, we have

c0 ∈ cleq(ā′) ∩ cleq(P ′) = cl(ā′0) hence, c0 ∈ cl(ā) ⊆ cleq(P ), absurd.
Thus, c̄ā and c̄′ā′ have the same P-type and the same L-type. Moreover, by

transitivity, c̄′ā′ |̂eq

ā′
0
P ′, that is c̄′ā′ is P-independent. Thus, we can extend f to

c̄ā setting f(c̄) = c̄′. �

6. Lowness and equivalent formulations of loveliness

Let MP = 〈M,P (M)〉 |= T 2.

Remark 6.1. The Density Property for MP is equivalent to:
(§) For every A very small subset of M and q |̂ S1

1(A), if q |̂
P (M)

A, then q is
realized in P (M).
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Proof. Let A ⊂M be very small.
The proof that the Density Property implies (§) is as in [BYPV03, Remark 3.4]:

given c ∈ C such that c |̂
P (M)

A, let P0 ⊂ P (M) very small such that P (M) |̂
P0
A;

by Transitivity, c |̂
P (A)P0

A, and therefore, by the Density Property, there exists
c′ ∈ P (M) such that c′ ≡1

P0A
c.

For the converse, assume that 〈M,P (M)〉 satisfies (§), and let q ∈ S1
1(A) such

that q |̂
P (A)

A. Let r ∈ S1
1(A ∪ P (M)) be a non-forking extension of q. Let c ∈ C

be a realization of r. By transitivity, we have that c |̂
P (A)

AP (M), and therefore
c |̂

P (M)
A. Hence, by (§), there exists c′ ∈ P (M) such that c ≡1

A c, and hence c′

is a realization of q in P (M).(5) �

Lemma 6.2. Assume that MP is κ-saturated. Then, t.f.a.e.:
(1) MP satisfies the Density property;
(2) for every A ⊂ M very small, for every L-formula φ(x) in 1 variable with
parameters from A, if φ does not fork over P (A), then φ is realized in P (M).
(3) for every A ⊂M very small, for every L-formula φ(x̄) in many variables with
parameters from A, if φ does not fork over P (A), then φ is realized in P (M).

Proof. (1 ⇒ 2). Let q(x) ∈ S1
1(A) extending φ(x) such that q |̂

P (A)
A. Choose

c ∈ P (M) realizing q(x). (Notice that we did not use the fact that MP is κ-
saturated).

(2 ⇒ 1). Let q ∈ S1
1(A) be a complete L-1-type over some very small set A,

such that q |̂
P (A)

A. Consider the following partial L2-1-type over A: Φ(x) :=
q(x) & x ∈ P . By (2), Φ is consistent, and hence, by saturation, realized in P (M).

(3⇒ 2) is trivial, and (1⇒ 3) follows as in (1⇒ 2) using Lemma 5.1. �

Definition 6.3. Let x̄ and ȳ be finite tuples of variables. Fix a formula φ(x̄, ȳ).
Let z̄ be very small tuple, and define

Σφ,z̄(ȳ, z̄) := {〈b̄, c̄〉 : φ(x̄, b̄) forks over c̄}.
We say that |̂ is low if Σφ(ȳ, z̄) is type-definable, for every formula φ.

Remark 6.4. When T is simple and |̂f is Shelah’s forking, then |̂f is low iff T
is a low simple theory. Moreover, if T is stable, then T (and hence |̂f ) is low. See
[BYPV03] for definitions and proofs.

Corollary 6.5 ([BYPV03, 4.1]). If |̂ is low iff the Density property is first order.
If |̂ is low, the axiomatization for the Density property is:

(6.1) (∀b̄) (∀c̄ ∈ P )
(
〈b̄, c̄〉 /∈ Σφ,z̄(ȳ, z̄)⇒ (∃a ∈ P ) φ(a, b̄, c̄)

)
,

where φ(x, ȳ) varies among all the L-formulae, with x a single variable, ȳ and b̄
are finite tuples of variables of the same length, and z̄ and c̄ are very small tuples
of variables of the same length.

Notice that if |̂ is low, then (6.1) is indeed given by a set of axioms.

Proof. Assume that |̂ is low. Let MP be a κ-saturated model of T 2. We have to
prove that MP satisfies the Density property iff (6.1) holds. Notice that (6.1) is
equivalent to:
“If φ(x, b̄) does not fork over c̄, with c̄ very small tuple in P (M), then φ(x, b̄) is
satisfied in P (M)”.
By Lemma 6.2, this is equivalent to the Density property.

(5) Thanks to E. Vassiliev for the proof.
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Conversely, assume that the Density property is first order. Fix an L-formula
φ(x̄, ȳ); we must show that Σ := Σφ,z̄(ȳ, z̄) is preserved under ultraproducts. As-
sume that, for every i in some index set I, 〈b̄i, c̄i〉 ∈ Σ, that is φ(x̄, b̄i) forks over c̄i
(where |b̄i| = |ȳ|, and c̄i are very small tuples all of the same length). By Lemma 3.8,
for every i ∈ I there exists a lovely pair 〈Ni, Pi〉 such that c̄i ∈ Pi and b̄i |̂ c̄i Pi.
Let 〈N,P (N), b̄, c̄〉 be an ultraproduct of the 〈Ni, Pi, b̄i, c̄i〉, and let 〈M,P 〉 be a
κ-saturated elementary extension of 〈N,P (N)〉.

Claim 4. φ(x̄, b̄) is not realized in P .

In fact, for every i ∈ I, since φ(x̄, b̄i) forks over c̄i, and 〈Ni, Pi〉 satisfies the
Density property, φ(x̄, b̄i) is not realized in Pi; thus, φ(x̄, b̄) is not realized in P (N),
and hence not in P .

Moreover, since the Density property is first order, 〈M,P 〉 satisfies it. Therefore,
by Lemma 6.2, φ(x̄, b̄) forks over c̄. �

6.1. The rank 1 case. In this subsection we will study more in details the case
when |̂ is superior and U |̂ (C) = 1.

Remark 6.6. Let C be pregeometric (that is, acl has the Exchange property).
Then, |̂acl is superior and Uacl(C) = 1. If V ⊆ C is definable, then V is infinite iff
Uacl(V ) = 1.

Proviso. For the remainder of this subsection, |̂ is superior and U |̂ (C) =
1. Moreover, we denote U := U |̂ . Finally, M is a small model and MP =
〈M,P (M)〉 |= T 2.

Lemma 6.7. If MP satisfies the Density Property, then

(1) P (M) is an elementary substructure of M ;
(2) P (M) is κ-saturated;
(3) P (M) is cl-dense in M : that is, for every T -definable subset V of M , if
U(V ) = 1, then P (M) ∩ V 6= ∅.
Conversely, if MP is κ-saturated and satisfies conditions (1), (2), and (3), then
MP satisfies the Density Property.

Proof. Assume that MP satisfies the Density property. (1) and (2) follow from
Remark 3.4. For (3), let V ⊂ M be T -definable with parameters ā, such that
U(V ) = 1. Notice that V does not fork over any set, because U(M) = 1 = U(V ),
and in particular V does not fork over P (ā). Let q(x) ∈ S1

1(ā) expanding x ∈ V and
such that q 6 |̂

P (ā)
ā. By the Density property, q is realized in P (M) and therefore

V ∩ P (M) is nonempty.
For the converse, assume that MP is κ-saturated and satisfies the conditions in

the lemma. LetA ⊂M be very small and q ∈ S1
1(A) such that q |̂

P (A)
A. If U(q) =

0, then U
(
q � P (A)

)
= 0, and hence, since P (M) is closed in M , all realization

of q are in P (M), and in particular q is realized in P (M). Otherwise, U(q) = 1.
Thus, for every V := φ(x, ā) ∈ q(x), U(V ) = 1, and therefore V ∩ P (M) 6= ∅.
Therefore, q is finitely satisfiable in P (M), and hence, by saturation, q is satisfiable
in P (M). �

Example 6.8. There exists a pregeometric structure C such that |̂acl is not low.
In fact, let C be a monster model of T := Th(〈Z, <〉). We have a ∈ acl(b) iff |a− b|
is finite, and acl(B) =

⋃
b∈B acl(b). We shall prove that, for every MP |= T 2, if

P (M) 6= M , P (M) is algebraically closed in M , and MP is ω-saturated, then P
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is not dense in M (and therefore MP does not satisfy the Density Property). Let
a ∈M \ P (M), and let q(y) be the following partial S2

1 -type over a:

a < y & y − a =∞ & [a, y] ∩ P = ∅.

Notice that q(y) if finitely satisfiable in M , and hence, by saturation, there ex-
ists b ∈ M satisfying it. Thus, [a, b] is a T -definable infinite set that does not
intersect P (M).

Definition 6.9. Let f : Cm  Cn be an application (that is, a multi-valued
partial function); we say that f is a Z-application if f is definable and U(f(c̄)) ≤ 0
is finite for every c̄ ∈ Cm.

Definition 6.10. We say that “U is definable” if, for every formula φ(x̄, ȳ) and
every n ∈ N, the set {b̄ ∈ Cm : U

(
φ(Cn, b̄)

)
= n} is definable, with the same

parameters as φ.

Remark 6.11. U is definable iff, for every formula φ(x, y) without parameters
(where x and y have length 1), the set {b ∈ C : U

(
φ(Cn, b)

)
= 0} is definable

without parameters.

Remark 6.12. If C is pregeometric, then Uacl is definable iff C eliminates the
quantifier ∃∞.

Remark 6.13. If U is definable, then loveliness is first-order. The axioms of T d
are:

Closure: P (M) is closed in M ;
Density: for every V T -definable subset of M , if U(V ) = 1, then intersects P (M);
Extension: let V be a T -definable subset of M with U(V ) = 1 and f : Mn  M be

any T -definable Z-application; then, V * f(P (M)n).

In particular, if C is geometric and |̂ = |̂acl, then the axioms of T d are:

Closure: P (M) ≺M ;
Density: for every V T -definable subset ofM , if V is infinite, then V intersects P (M);
Extension: let V be a T -definable infinite subset of M with U(V ) = 1 and b̄ be a

finite tuple in M ; then, V * cl(b̄P (M)).
In both cases, if C expands an integral domain, then the Extension axiom can be
proved from the first two axioms ([For10, Theorem 8.3]).

Conversely, we have the following result.

Proposition 6.14. Assume that loveliness is first-order. Then, U is definable.

Proof. Fix an L-formula ψ(x, y). Denote Vc := φ(C, c), and define Z := {c ∈ C :
U(Vc) = 1}. We have to prove that Z is definable. This is equivalent to show that
both Z and its complement are preserved under ultraproducts.
(1) Let (bi : i ∈ I) be a sequence such that bi ∈ Z for every i ∈ I. For every
i ∈ I, choose ci ∈ C such that ci ∈ Vc \ cl(∅). By Lemma 3.8, for every i ∈ I
there exists a lovely pair 〈Ni, Pi〉 such that bi ∈ Pi and ci |̂ bi Pi. Therefore, ci /∈
Pi. Let 〈N,P (N), b, c〉 be an ultraproduct of the 〈Ni, Pi, bi, ci〉 and let 〈M,P (M)〉
be a κ-saturated elementary extension of 〈N,P (N)〉. Thus, c /∈ P (M). If, for
contradiction, U(Vb) = 0, then c ∈ cl(b). However, b ∈ P (M) and P (M) is closed
in M , absurd.
Notice that for this half of the proof we only used the fact that the Density property
is first-order. Notice moreover that we proved that cl is a definable matroid in the
sense of [For10].
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(2) Let (bi : i ∈ I) be a sequence such that bi /∈ Z for every i ∈ I. By Lemma 3.8,
for every i ∈ I there exists a lovely pair 〈Ni, P (Ni)〉 such that bi ∈ P (Ni). Let
〈N,P (N), b〉 be the ultraproduct of the 〈Ni, P (Ni), bi〉 with ultrafilter µ, and let
〈M,P (M)〉 be a κ-saturated elementary extension of 〈N,P (N)〉. By the first half
of the proof, the set cl(b) is ord-definable. Hence, “x ∈ Vb and x /∈ cl(b)” is a
consistent partial type (in x, with parameter b). Thus, by the Extension property,
there exists d ∈ M such that d ∈ Vb, d /∈ cl(b), and d |̂

b
P (M). Since P (M) is

closed in M , we have d /∈ P (M). Thus, there exists c ∈ N such that c ∈ Vb \P (N).
Choose (ci : i ∈ I) such that c = (ci : i ∈ I)/µ, and such that ci ∈ Vbi \ P (Ni) for
every i ∈ I. However, since U(Vbi) = 0, we have ci ∈ clNi(bi) ⊆ P (Ni), absurd. �

See [For10] for more results on the case when U is definable, and [Box09] for
more on lovely pairs of geometric structures.

7. NIP, stability, etc. in lovely pairs

For this section, we assume that CP = 〈C, P 〉 is a monster model of T 2.

7.1. Coheirs. Let M ⊆ N ⊂ C be small subsets of C, such that 〈M,P (M)〉 �
〈N,P (N)〉 ≺ CP . Assume also that both 〈M,P (M)〉 and 〈N,P (N)〉 are sufficiently
saturated (in particular, they are κ0-saturated).

Remark 7.1. M |̂
P (M)

P , and similarly for N .

Proof. It is sufficient to prove that m̄ |̂
P (M)

P for every finite tuple m̄ from M .
By local character there is some C ⊆ P with |C| < κ0 and such that m̄ |̂

C
P . Let

C ′ |= tp2(C/m̄) be such that C ′ ⊆M . Then C ′ ⊆ P (M) and m̄ |̂
C′ P . Therefore

m̄ |̂
P (M)

P . �

Lemma 7.2. Let a ∈ Ch and q be a small tuple in P . Assume that a |̂
MP

N and
aM |̂

P (M)q
P . Then, aN |̂

P (N)q
P .

Proof.

aM |̂
P (M)q

P ⇒ a |̂
Mq

P ⇒ a |̂
Mq

MP.(7.1)

a |̂
Mq

MP & a |̂
MP

NP ⇒ a |̂
Mq

NP.(7.2)

aM |̂
Mq

NP ⇒ aM |̂
Nq

NP ⇒ aN |̂
Nq

P.(7.3)

〈N,P (N)〉 ≺ 〈C, P 〉 ⇒ N |̂
P (N)

P ⇒ Nq |̂
P (N)q

P.(7.4)

aN |̂
Nq

P & Nq |̂
P (N)q

P ⇒ aN |̂
P (N)q

P.(7.5)

�

Remember that T d is the theory of lovely pairs.

Proviso. For the remainder of this section, we assume that “being lovely” is a
first order property and that CP = 〈C, P 〉 is a monster model of T d.

7.2. NIP.

Theorem 7.3. If T has NIP, then T d also has NIP.

Short proof. Apply Proposition 4.3 and [CS10, Corollary 2.7]. �
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Long proof. Let a ∈ C. Suppose tp2(a/N) is finitely satisfied in M . We show that
there are no more than 2|M | choices for tp2(a/N).

By local character there is some C ⊂ NP such that |C| ≤ κ0 and a |̂
C
NP .

Therefore there is some M ′ such that 〈M,P (M)〉 ≺ 〈M ′, P (M ′)〉 ≺ 〈N,P (N)〉,
|M ′| = |M | and a |̂

M ′P
NP . This M ′ depends on a. However we are assuming

tp2(a/N) is finitely realisable in M which implies that tp2(a/N) is invariant over
M . Therefore any M ′′ |= tp2(M ′/M) such that M ′′ ⊆ N would work in place of
M ′. There are no more than 2|M | possibilities for tp2(M ′/M). For each of these,
fix some particular realisation. Then, when we chooseM ′, we are actually selecting
it from a list of at most 2|M | things.

First we select the correct M ′ from our list and assert that a |̂
M ′P

NP . We
now choose tp2(af̄/M ′) extending tp2(a/M ′) such that aM ′f̄ is P-independent.
We know we can do this such that |f̄ | ≤ |M ′| = |M |. This was also a choice of one
thing from a list of no more than 2|M | things. Let f̄ ′ be such that f̄ ∈ P , af̄ ′ |=
tp2(af̄/M ′), and tp1(af̄ ′/N) is finitely realisable in M ′. We specify tp1(af̄ ′/N)
and we know that this too is a choice from a list of no more than 2|M | things (since
the original theory T has NIP). We now have enough to completely determine
tp2(af̄ ′/N). This is because the choice of tp2(af̄ ′/M ′) determines P-tp(af̄ ′) and,
by Lemma 7.2, it also gives that aNf̄ ′ is P-independent and then we only need
tp1(af̄ ′/N) to determine tp2(af̄ ′/N). Overall, we made our choice from a list of
2|M | × 2|M | × 2|M | = 2|M | things. �

7.3. Stability, super-stability, ω-stability.

Theorem 7.4. If T is stable (resp. superstable, resp. totally transcendental), then
T d also is.

Proof. Assume that T is stable. Remember that a theory T is stable iff it is λ-stable
for some cardinal λ, iff it is λ-stable for every λ|T | = λ. Choose λ a small cardinal
such that λκ0+|T | = λ. Let 〈M,P (M)〉 ≺ CP be a model of T d of cardinality λ.
Notice that |S1

κ0
(M)| = λ. We must prove that |S2

1(M)| ≤ λ. Let q ∈ S2
1(M)

and c ∈ C satisfying q. Let p̄ ⊂ P such that c |̂
Mp̄

P and |p̄| < κ0. Since
moreover M |̂

P (M)
P , we have c |̂

P (M)p̄
P , and therefore cMp̄ is P-independent.

Thus, tp2(cMp̄) is determined only by tp1(cMp̄) plus the P-type of c. Therefore,
tp2(c/M) is determined by tp1(c/M) plus the P-type of c. Since |p̄| < κ0, we have
|S2

1(M)| ≤ |S1
κ0

(M)| = λ, and we are done.
Assume now that T is super-stable. Remember that a theory T is super-stable iff

there exists a cardinal µ such that T it is λ-stable every cardinal λ > µ, and that T
is totally transcendental iff we can take µ = |T |. Moreover, since T is super-stable,
|̂ is superior, and therefore κ0 = ω. Let λ ≥ µ and 〈M,P (M)〉 ≺ CP be a model
of T d of cardinality λ. Let p̄ ⊂ P such that c |̂

Mp̄
P and p̄ is finite. As before, cMp̄

is P-independent, and thus tp2(c/M) is determined by tp1(c/M) plus the P-type
of c. Since p̄ is finite, we have |S2

1(M)| ≤ |S1
<ω(M)| = λ. Hence, T d is super-stable,

and, if T is totally transcendental, then T d is also totally transcendental. �

Example 7.5. In general, if T is geometric, T d is not geometric. For instance,
if C is an o-minimal structure expanding a field and |̂ = |̂acl, then T d is not
geometric [For10].

7.4. Simplicity and supersimplicity. By “divides” we will always mean “divide
in the sense of Shelah’s” (but we might have to specify in which structure).

Fact 7.6. The following are equivalent:
(1) tp(c̄/Ab̄) does not divide over A;



LOVELY PAIRS, V. 2.0 19

(2) for any indiscernible sequence I = 〈b̄i : i ∈ N〉 with b̄0 = b̄, let pi(x) be the copy
of tp(c̄/Ab̄) over Ab̄i; then, there is a tuple c̄′ realizing

⋃
i pi(x);

(3) for any indiscernible sequence I = 〈b̄i : i ∈ N〉, with b̄0 = b̄, there is a tuple c̄′
realizing tp(c̄/Ab̄), such that I is indiscernible over Ac̄′.

Proof. [Cas07, Remark 3.2(2) and Lemma 3.1]. �

The following fact is well known: for a reference, see [TZ10, Exercise 29.1].

Fact 7.7. Let T be a simple theory. Let 〈Mi : i < ω〉 be an indiscernible sequence
over A. Assume that C |̂f

A
M0. Let p0(y) := tp(C/M0) and pi(y) be the copy of

p0 over Mi. Then, there exists C ′, such that:
(1) C ′ |=

⋃
i pi(y);

(2) C ′ |̂f
A

⋃
iMi;

(3) 〈Mi : i < ω〉 is an indiscernible sequence over AC ′.

Remember that A |̂f
B
C implies A |̂

B
C.

Remark 7.8. Assume that 〈M,P (M)〉 � 〈C, P 〉 (but not necessarily that 〈C, P 〉 |=
T d). Then, for every c̄ ∈ P , tp2(c̄/M) is finitely satisfiable in P (M). Therefore,
M |̂f

P (M)
P (in the sense of both T and T d), and M |̂

P (M)
P .

Proposition 7.9. If T is simple, then T d is also simple. If T is supersimple, then
T d is also supersimple.

Proof. The proof is almost identical to the one of [BYPV03, Proposition 6.2]. We
will use the notation A |̂f

B
C to mean that A and C do not fork over C, in the

sense of Shelah’s, according to the theory T (and not to the theory T d), while,
when saying “tp2(ā/B) divides over C”, we will imply “according to T d”.

Let 〈M,P (M)〉 be a small model of T d and ā be a finite tuple. We have to find
A ⊆ M such that |A| ≤ |T |, and tp2(ā/M) does not divide over A (by [BYPV03,
Lemma 6.1], this will prove that T d is simple). When T is supersimple, we will see
that A could be chosen finite (and hence T d is supersimple).

By Remark 7.8, M |̂f
P (M)

P . Hence, since |̂f satisfies local character, there
exist C ⊂ P and A ⊂M , both of cardinality at most |T |, such that

(7.6) ā |̂f
AC

MP.

Moreover, since C ⊂ P , C |̂f
P (M)

M , and hence, after maybe enlarging A, we can
also assume that

(7.7) C |̂f
P (A)

M.

If moreover T was supersimple, then A and C could be chosen finite.
Let 〈Mi : i < ω〉 be an L2-indiscernible sequence over A, such that M0 =

M . (7.7) implies that C |̂f
A
M ; therefore, we can apply Fact 7.7. Let p0(y) :

= tp1(C/M0) and pi(y) be the copy of p0 over Mi. Then, there exists C ′ real-
izing the conclusions of Fact 7.7. Notice that C ′ |̂f

P (A)
A, thus, by transitivity,

C ′ |̂f
P (A)

⋃
iMi, and hence C ′ |̂

P (A)

⋃
iMi. Since CP is lovely, there exists C ′′ in

P such that C ′′ ≡1S
iMi

C ′; thus, w.l.o.g. C ′ ⊂ P .
Notice that M |̂

P (M)C
P , thus MC is P-independent, and the same for MC ′.

Moreover, MC and MC ′ satisfy the same L-type and the same P-type: therefore,
they have the same L2-type. Thus, by changing the sequence of Mi’s, we can
assume that C = C ′. Let r(x̄) := tp1(ā/MC), and ri(x̄) be the copy of r(x) over
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Mi. By (7.6), ā |̂f
AC

MC, moreover, 〈Mi : i < ω〉 is L-indiscernible over AC.
Thus, there exists ā′ realizing

⋃
i ri(x̄), such that

(7.8) ā′ |̂f
AC

⋃
i

MiC.

By loveliness of CP again, we can assume that ā′ |̂ S
iMiC

P (note: here we have |̂ ,
not |̂f ). Thus, for each i, by (7.8),

(7.9) ā′ |̂
MiC

P.

Since moreover C ⊂ P and Mi |̂ P (Mi)
P , we have MiC |̂ P (Mi)C

P , and therefore
ā′MiC |̂ P (Mi)C

P . Thus, each ā′MiC is P-independent. Moreover, they have all
the same P-type and the same L-type. Thus, all the ā′MiC have the same L2-type.
Moreover, by (7.6), ā |̂

MC
P , and thus āMC is P-independent, and therefore

āMC ≡2 ā′MiC. Therefore, by Fact 7.6, tp2(ā/M) does not divide over C, and we
are done. �

Question 7.10. Assume that T is (super)rosy. Is T d also (super)rosy?

8. Independence relation in lovely pairs

In this section, we will assume that “being lovely is first order” and that CP =
〈C, P 〉 is a monster model of T d.

Let |̂ ′ the following relation on subsets of CP : A |̂ ′C B iff A |̂
CP

B; we will
write |̂

P
instead of |̂ ′.

Definition 8.1. |̂ satisfies (*) if:
For every a ∈ Ck, b ∈ Ch, for every C tuple in C (not necessarily of small length),
if a 6 |̂

C
b, then there exists a finite subtuple c of C (of length l) and an L-formula

φ(x, y, z), such that:
(1) C |= φ(a, b, c);
(2) for every a′ ∈ Ck, for every c′ subtuple of C of length l, if C |= φ(a′, b, c′), then
a′ 6 |̂

C
b.

Notice that (*) implies Strong Finite Character.

Remark 8.2. the independence relations in examples 2.12 and 2.13 satisfy (*).

Proof. Let us show that when T is simple, then |̂f satisfies (*) Assume that a 6 |̂
C
b.

Let p(y) := tp(b/Ca) and p0 := tp(b/C). Thus, p divides over C. Hence, by
[Wag00, Proposition 2.3.9 and Remark 2.3.5], there exist a formula ψ, a cardi-
nal λ, a finite subtuple c ⊂ C, and a formula θ(y, a, c) ∈ p(y), such that such that
D0(θ(y, a, c) < D0(p0), where D0(·) := D(·, ψ, λ). Let n := D0(p0). By [Wag00, Re-
mark 2.3.5], the set {a′, c′ : D0(θ(y, a′, c′)) < n} is ord-definable; hence, there exists
a formula σ(x, z) such that C |= φ(a, c), and for every c′ and a′, if φ(a′, c′), then
D(θ(y, a′, c′)) < n. Define φ(x, y, z) := θ(y, x, z) & σ(y, z). Then, φ satisfies the
conclusion of (*).

The other cases are similar: when T is rosy, use the local þ-ranks instead of the
rank D ([Ons06, §3]); when cl is an existential matroid, to prove (*) for |̂cl use the
associated global rank. �

Proposition 8.3. |̂
P

is an independence relation on CP ; the constant κ0 for
the local character axiom is the same for |̂

P
and for |̂ . Besides, the closure

operator clP induced by |̂
P

satisfies clP (X) = cl(XP ); in particular, clP (∅) = P .
Moreover, if |̂ satisfies (* ), then |̂

P
also satisfies (* ).



LOVELY PAIRS, V. 2.0 21

In particular, one can consider |̂
P
-lovely pairs.

Proof. Let us verify the various axioms of an independence relation. Invariance is
clear from invariance of |̂ . Symmetry, Monotonicity, Base Monotonicity, Transi-
tivity, Normality, Finite Character and Local Character (with the same constant
κ0) follow from Remark 2.9.

It remains to prove Extension; instead, we will prove the Existence Axiom
(which, under the other axioms, is equivalent to Extension [Adl05, Exercise 1.5]).
Let A, B and C be small subsets of C. Let P0 ⊂ P be a small subset, such that
P (ABC) ⊆ P0 and ABC |̂

P0
P (here we use that Local Character holds also for

large subsets of C). W.l.o.g., we can assume that P0 ⊂ A ∩ B ∩ C. Let A′ ≡1
C A

such that A′ |̂
C
B. Since C(P ) is a lovely pair, there exists A′′ ≡1

CB A′ such that
A′′ |̂

CB
P . Notice that A′′ |̂

C
B. Hence, by some forking calculus, A′′ |̂

CP
B.

Moreover, A′′C ≡1 AC, and AC is P-independent. We claim that A′′C is also P-in-
dependent: in fact, CB |̂

P0
P and A′′ |̂

BC
P , and hence A′′BC |̂

P0
P . Since

P is closed, this also implies that P (A′′BC) = P0, and thus, since C(P ) is lovely,
A′′C ≡2 AC, and we are done.

Assume now that |̂ satisfies (*). Let a and b be finite tuples in C, and C be
a (not necessarily small) subset of C. Assume that a 6 |̂

PC
B. Then, by (*), there

exists an L-formula φ(x, y, z, w) and finite tuples c in C and p in P , such that
C |= φ(a, b, c, p) and, for every a′ ⊂ C, c′ ⊂ C and p′ ⊂ P , if C |= φ(a′, b, c′, p′), then
a′ 6 |̂

CP
b. Let ψ(x, y, z) be the L2-formula (∃w ∈ P )φ(x, y, z). Then, ψ witnesses

the fact that |̂
P

satisfies (*). �

Conjecture 8.4. There exists an independence relation |̂2 on CP , such that:
(1) |̂2 coincides with |̂ on subsets of P ;
(2) |̂2

P
= |̂

P
.

8.1. Rank. Assume that |̂ is superior (that is, κ0 = ω). We have seen that then
|̂
P

is also superior. Let U := U |̂ be the rank on C induced by |̂ and UP the
rank on CP induced by |̂

P
. We now investigate the relationship between the 2

ranks. Given a partial L-type π(x̄), we define U(π) as the supremum of the U(q),
where q(x̄) varies among the complete L-types extending π(x̄), and similarly for
UP on partial L2-types. However, if q is a complete L-type, then q is also a partial
L2-type. Hence, we can compare U(q) and UP(q).

Lemma 8.5 ([For10, 8.31]). For every B ⊂ C small and every q ∈ S1
n(B), U(q) =

UP(q). The same equality holds for partial L-types.

Proof. First, we will prove, by induction on α, that, for every ordinal number α,
and every L-type q′, if UP(q′) ≥ α, then U(q′) ≥ α. If α is limit, the conclusion
follows immediately from the inductive hypothesis. Assume that α = β+1, and that
q′ = q. Let C ⊃ B be a small set and ā ∈ Cn, such that UP(ā/C) ≥ β and ā 6 |̂

PB
C

(C and ā exist by definition of UP). By inductive hypothesis, U(ā/C) ≥ β. Let
P0 ⊂ P be small (actually, finite), such that ā |̂

CP0
P ; define C ′ := CP0. Notice

that ā 6 |̂
PB

C ′ and ā |̂
C′ P .

Claim 5. ā 6 |̂
B
C ′.

If not, then, since B ⊂ C ′ and by transitivity, we would have a |̂
B
C ′P , and

therefore a |̂
PB

C ′, contradiction.
Moreover, since clP(C ′) = clP(C), we have UP(a/C ′) = UP(a/C) ≥ β. Hence, by

Inductive Hypothesis, U(a/C ′) ≥ β. Since a 6 |̂
B
C ′, we have U(a/B) ≥ β+ 1 = α,

and we are done. Therefore, U(q) ≥ UP(q).
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Second, we will prove by induction on α, that, for every ordinal number α,
and every L-type q′, if U(q′) ≥ α, then UP(q′) ≥ α. If α is a limit ordinal,
the conclusion is immediate from the inductive hypothesis. If α = β + 1, let
C ′ ⊃ B be a small set and r′ ∈ S1

n(C ′), such that q v6 r′ and U(r′) ≥ β. By the
Extension Property, there exists C ≡1

B C ′ such that C |̂
B
P ; let f ∈ Aut(C/B)

such that f(C ′) = C, and let r := f(r′). Then, q v6 r and U(r) ≥ β. By inductive
hypothesis, UP(r) ≥ β. Let a ∈ C be any realization of r. If a |̂

PB
C, then, since

C |̂
B
P , we have a |̂

B
C, contradicting q 6 |̂

B
C. Thus, a 6 |̂

PB
C, and hence

then UP(q) ≥ UP(a/B) > UP(r) ≥ β, and we are done. Therefore, UP(q) ≥ U(q).
For the case when q is a partial L-type, let r ∈ S1

n(B) be any complete type
extending q. Then, U(r) = UP(r). Since this is true for any such r, we have
U(q) = UP(q). �

8.2. Approximating definable sets. We say that a ran U is continuous if, for
every ordinal α and small set B, the set {q ∈ Sn(B) : U(q) > α} is closed in Sn(B).

Proposition 8.6 ([For10, 8.36]). Assume that |̂ is superior and UP is continuous.
Let b̄ be a small P-independent tuple in C. Let X ⊆ Cn be T -definable over b̄. Let
Y ⊆ X be T d-definable over b̄. Then, there exists Z ⊆ X T -definable over b̄, such
that, for every c̄ ∈ Z ∆ Y , UP(c̄/b̄) < U |̂ (X).

Proof. Let α := U |̂ (X). Let W := {q ∈ S2
X(b̄) : UP(q) = α}. Since UP is

continuous, W is closed. Let θ : S2
X(b̄) → S1

X(b̄) be the restriction map and
V := ρ(W ). Define Ỹ := ρ

(
S2
Y (b̄)∩W

)
⊆ V . By Transitivity and Proposition 3.11,

ρ is a homeomorphism betweenW and V , and therefore Ỹ is clopen inW , andW is
closed in S1

X(b̄). By standard arguments, there exists Z ⊆ Cn which is T -definable
over b̄ and such that S1

Z(b̄) ∩ V = Ỹ . Then, Z satisfies the conclusion. �

9. Producing more independence relations

For this section, we assume that loveliness is first-order and that CP = 〈C, P 〉 is
a monster model of T d. Moreover, we assume that |̂ is superior, and we denote
U := U |̂ .

Remark 9.1. Let B be a small subset of C and q be a complete type over B.
Assume that α ≤ U(q). Then, there exists a complete type r extending q, such
that U(r) = α.

Proof. By induction on β := U(q). If β = α, let r := q. Otherwise, β > α.
If, for every r forking extension of q, U(r) < α, then , by definition, U(q) ≤ α,
absurd. Hence, there exists r forking extension of q, such that U(r) ≥ α. Thus,
α ≤ U(r) < β, and therefore, by inductive hypothesis, there exists s extension of r,
such that U(s) = α. �

Let θ be an ordinal such that θ = ωδ for some δ. We will use the “big O” and
“small o” notations: α = o(θ) (or β � α) if α < θ, α = β+o(θ) if there exists ε < θ
such that α = β + ε, and α = O(θ) if there exists n ∈ N such that α ≤ nθ. Notice
that, since θ is a power of ω, o(θ) + o(θ) = o(θ).

Define |̂θ , the coarsening of |̂ at θ, in the following way: for every ā finite tuple
in C and every B, C small subsets of C, ā |̂θ

B
C if U(ā/B) = U(ā/BC) + o(θ). If

A is a small subset of C, define A |̂
B
C if, for every ā finite tuple in A, ā |̂θ

B
C.

We will use also the notation ( |̂ )θ for |̂θ .
Notice that |̂θ is trivial if θ is large enough. Assume that

(**) For every a ∈ C, U(a/∅) = O(θ).
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Notice that Condition (**) is equivalent to:
For every ā finite tuple in C and every B ⊂ C, U(ā/B) = O(θ).

However, it might happen that U(C)� θ; for instance, if θ = 1, it can happen that
U(a/∅) is finite for every a ∈ C and, for every n ∈ N there exists an ∈ C such that
U(a/∅) > n, and thus U(C) = ω � 1.

Proposition 9.2. |̂θ is a superior independence relation on C, and |̂ refines |̂θ .

Proof. The only non-trivial axiom is Left Transitivity, which is also the only place
where we use the Condition (**) (Right Transitivity instead is always true). Assume
that c̄ |̂θ

B
A and d̄ |̂θ

Bc̄
A, for some finite tuples c̄ and d̄, and some small sets A

and B. We claim that c̄d̄ |̂θ
B
A. In fact, by Lascar’s inequalities, we have

U(c̄d̄/B) ≤ U(d̄/c̄B)⊕U(c̄/B) ≤
U(d̄/c̄b̄A) + o(θ)⊕U(c̄/BA) + o(θ) = U(d̄/c̄b̄A)⊕U(c̄/BA) + o(θ).

By (**), we have that U(d̄/c̄b̄A)⊕U(c̄/BA) = U(d̄/c̄b̄A) + U(c̄/BA) + o(θ). Hence,
again by Lascar’s inequalities, U(c̄d̄/B) ≤ U(d̄c̄/BA) + o(θ).

Symmetry then follows (see [Adl05, Theorem 1.14]). �

Let clθ be the closure operator induced by |̂θ : thus, a ∈ clθ(B) iff U(a/B) < θ.
Let Uθ be the rank induced by |̂θ .

Remark 9.3. Let B be a small subset of C. For every q ∈ Sm(B), we have
U(q) = nθ + o(θ), for a unique n ∈ N. Then, Uθ(q) = n.

Proof. First, we will prove, by induction on n, that, if U(q) ≥ nθ, then Uθ(q) ≥ n.
If n = 0, there is nothing to prove. Assume that we have already proved the
conclusion for n, and let q ∈ Sm(B) such that U(q) ≥ (n + 1)θ. Let C ⊃ B small
and r ∈ SM (C) extending q, such that U(r) = nθ. Thus, by inductive hypothesis,
Uθ(r) ≥ n, and, by definition, r is a non-forking extension of q in the sense of |̂θ .
Therefore, Uθ(q) ≥ Uθ(r) + 1 ≥ n+ 1.

Conversely, we will now prove, by induction on n, that, if Uθ(q) ≥ n, then
U(q) ≥ nθ. Again, if n = 0, there is nothing to prove. Assume that we have
already proved the conclusion for n, and let q ∈ Sm(B) such that Uθ(q) ≥ n + 1.
Let r be a |̂θ -forking extension of q such that U(r) ≥ n. By inductive hypothesis,
U(r) ≥ nθ. Moreover, by our choice of r, U(q) ≥ U(r) + θ ≥ (n+ 1)θ. �

Notice that there is at most one θ satisfying (**) and such that |̂θ is nontrivial,
that is the minimum ordinal satisfying (**).

Example 9.4. Let T = ACF0. Let T d be the theory of Beautiful Pairs for T ;
that is 〈M,P (M)〉 |= T d if M |= ACF0 and P (M) is a proper algebraically closed
subfield ofM . Then, T d is ω-stable of U-rank ω. Let CP be a monster model of T d.
We have two natural equivalence relations on CP : Shelah’s forking |̂f and |̂

P
,

where |̂ is Shelah’s forking relation for models of T . We claim that ( |̂f )ω = |̂
P
.

In fact, according to both ( |̂f )ω and |̂
P
, 〈M,P 〉 has rank 1. However, since

〈M,P (M)〉 expands a field, there is at most one independence relation on it that
has rank 1 [For10].
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