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Abstract. Sufficient conditions are given for groups of finite Morley rank
having non-trivial torsion-free nilpotent normal subgroups to have linear rep-
resentations with small kernels. In particular, centreless connected soluble
groups of finite Morley rank with torsion-free Fitting subgroups have faithful
linear representations. On the way, using a notion of definable weight space,
we prove that certain connected soluble groups of finite Morley rank with
torsion-free derived subgroup can be embedded in groups of finite Morley rank
whose Fitting subgroups have definable abelian supplements.

1. Introduction

Structural properties of groups of finite Morley rank are rich enough to provide
a variety of challenging problems. The central interest in the analysis of these
groups has been focused on the classification of the infinite simple ones. It was
independently conjectured by Cherlin and Zil’ber that these are linear algebraic
groups over algebraically closed fields.

This algebraicity conjecture suggests another important question, namely which
groups of finite Morley rank have faithful linear representations (of finite dimension
over fields). Not all groups of finite Morley rank have this property: direct products
of algebraic groups in different characteristics and certain structures related to
abelian varieties in algebraic geometry provide counter-examples, and there is the
following elementary counter-example relevant for this paper: a divisible abelian
group with p-torsion for infinitely many primes p such that the p-ranks are all finite
but unbounded. The nilpotent group of bounded exponent constructed by Baudisch
[3] seems likely to be a counter-example, but no proof is known to the authors. All
of the above examples are groups with large torsion subgroups.

On the other hand, there are results asserting that certain soluble groups of finite
Morley rank are linear. Various field interpretation results in nonabelian soluble
groups of finite Morley rank by Zil’ber [4], later work by Nesin and Enochs [7], [12]
on centreless metabelian groups of finite Morley rank, and ongoing work of Frécon
form a consistent line of development. Indeed, no counter-example to the following
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conjecture is known to the authors:

Conjecture. Let G be a connected soluble group of finite Morley rank and K the
intersection of all normal definable subgroups Y such that G/Y is linear. Then K
is contained in the centre of G.

Examples mentioned above show that in general one need not have K = 1.
However the situation seems to be better for groups that do not have large torsion
subgroups. In [2], we proved that all torsion-free nilpotent groups of finite Mor-
ley rank are linear groups. Here we study arbitrary groups of finite Morley rank
with non-trivial torsion-free nilpotent normal subgroups. Our object is to develop
methods for finding linear representations with small kernels for such groups, and
thereby to prove that the subgroup K in the Conjecture is small.

We shall prove that centreless connected soluble groups of finite Morley rank with
torsion-free Fitting subgroups are linear groups. This follows from our main result:

Theorem 1. Let G be a connected soluble group of finite Morley rank and suppose
that G has no infinite subgroups of finite exponent. Then G has a linear represen-
tation with kernel H contained in Z3(G).

We write Zn(G) for the nth term of the upper central series of a group G.
We cannot prove that the subgroup H in Theorem 1 is definable, but it follows

easily from Theorem 1 that the subgroup K in the Conjecture satisfies K ≤ Z4(G)
for groups G satisfying the hypotheses of the theorem; see Proposition 5.1 below.

If G is a connected soluble group of finite Morley rank with Fitting subgroup
F then G/F is abelian, and there are nilpotent supplements to F in G. On the
other hand, as is shown by [9, Proposition 3.6 and 4.2], the existence of abelian
supplements is equivalent to a difficult conjecture about fields of finite Morley rank.
However, it may be true that G always embeds in a group (interpretable in G)
having abelian supplements to the Fitting subgroup. Our second theorem, needed
for the proof of Theorem 1 provides some evidence for this:

Theorem 2. Let G be a connected soluble group of finite Morley rank having a
definable normal torsion-free nilpotent subgroup N such that G/N is abelian. Sup-
pose that G has no infinite subgroups of finite exponent. Then G/CN (G) embeds
in a group G̃ interpretable in G with Fitting subgroup Ñ , and with the following
properties:

(a) N/CN (G) ≤ Ñ ;
(b) G̃ has no infinite subgroups of finite exponent;
(c) G̃ has a definable divisible abelian subgroup T̃ such that G̃ = Ñ T̃ .

It follows in particular that if G is a centreless connected soluble group of finite
Morley rank having no infinite subgroups of finite exponent then G can be embedded
in a group interpretable in G that has an abelian supplement to its Fitting subgroup.

The proof of our theorems uses the Maltsev correspondence for torsion-free nilpo-
tent groups, and also we have to introduce a definable version of the well-known
notion of a weight space in representation theory. The prerequisite results are de-
scribed fully in Section 2. In Section 3 we prove another linearity result that is not
restricted to soluble groups, and Theorems 2 and 1 are proved in Sections 4 and 5.
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2. Preliminary results

In this section we recall some preliminary results and immediate consequences
needed in our analysis. Our main general reference for groups of finite Morley rank
is [4]. All group and ring actions in this paper are on the right.

Groups of finite Morley rank. We recall that groups of finite Morley rank satisfy
the descending chain condition on definable subgroups. Consequently each such
group G has a unique smallest definable subgroup of finite index, the connected
component of G, denoted by G◦; if G = G◦ then G is called connected. Another
consequence of this condition is that every subset X of a group of finite Morley rank
is contained in a smallest definable subgroup, its definable hull. Since centralizers
are definable, the descending chain condition also implies that each centralizer in
a group of finite Morley rank is the centralizer of a finite subset. We will refer to
this phenomenon as the chain condition on centralizers.

Lemma 2.1. Let G be a group and L a module for G such that the pair (G,L) is of
finite Morley rank and G is connected. Let m1, . . . ,md ∈ L. Then there exists an
integer n with the following property: for each element t of the augmentation ideal
of the group ring ZG, there exists an element s ∈ ZG which is a sum of at most n
elements of {g − 1 | g ∈ G} and satisfies mit = mis for 1 ≤ i ≤ d.

Proof. The componentwise action of G on the dth Cartesian power of L is inter-
pretable in (G,L). Thus, it suffices to set m = (m1, . . . , md) and apply Zil’ber’s
indecomposability criterion ([4, §5.4]) to 〈m(g − 1) | g ∈ G〉. ¤

Suppose that G is a torsion-free group of finite Morley rank. It is easy to prove
that if N is a definable normal subgroup, then G/N is also torsion-free (see [4,
§5.1, Exercise 13.b]), and, using similar methods, that G is divisible. Thus G has
no proper subgroups of finite index, and is connected. Moreover every element has
a unique nth root for every n ∈ N∗.

The following elementary lemma will be useful. It will allow us to ignore the
divisible torsion subgroups in the Fitting subgroup of an ambient soluble group.
This is crucial for the use of the Maltsev correspondence in Section 3.

Lemma 2.2. Let G be a connected group of finite Morley rank and N a defin-
able nilpotent normal subgroup with divisible torsion subgroup. Then the group
N/CN (G) is torsion-free.

Proof. Since the torsion subgroup T of N is divisible, it lies in the centre Y of
N (for example from [17, Chapter 4]; see also [4, Corollary 6.12]) and moreover
it has only finitely many elements of each finite order (from [4, §5.1, Exercise 7]).
Therefore the centralizer of each element of T has finite index in G, and so equals
G because G is connected. ¤
Fitting subgroup and Carter subgroups. Every group G of finite Morley rank has a
Fitting subgroup F , its unique maximal nilpotent normal subgroup. By results of
Belegradek and Nesin, F is a definable subgroup (see [4, Theorem 7.3]). By results
of Zil’ber and Nesin, if G is connected and soluble, then both G/F and G/F ◦ are
divisible abelian groups (see [4, Theorem 9.21]).

An important ingredient in the analysis of groups of finite Morley rank is the
notion of a Carter subgroup, a definable, connected, nilpotent subgroup of finite
index in its normalizer. In this paper, we only need the existence and conjugacy
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of Carter subgroups in soluble groups of finite Morley rank, first proven in [16].
A consequence of their conjugacy is the following covering property: if G is a
connected soluble group of finite Morley rank and N a definable, normal subgroup
such that G/N is nilpotent, then G = NC where C is any Carter subgroup of G.

The following lemma is an easy consequence of some work of Frécon using Carter
subgroups, more precisely of [8, Proposition 3.26]:

Lemma 2.3. Let G be a connected solvable group of finite Morley rank with no
infinite subgroups of finite exponent. Then the derived subgroup G′ is torsion-free.

Commutative rings of finite Morley rank. These rings will play an important role.
The following fact, proven in [2], is a consequence of results in [5], [6] and [18].

Fact 2.4 ([2, Lemma 2.2]). Let Λ be a connected commutative local ring of finite
Morley rank, with maximal ideal J . Then Λ/J is an algebraically closed field. If
Λ/J has characteristic 0 then there is a field K ≤ Λ such that Λ = J + K and
J ∩ K = {0}. Moreover Λ is finite-dimensional, regarded as a vector space over K.

The maximal ideal J in the statement is the Jacobson radical. It is a definable
ideal in the ring language, being the set of non-invertible elements. On the other
hand, the field K is not necessarily a definable subset of R; it is only interpretable,
i.e. definable modulo a definable equivalence relation. This absence of definable
splitting is at the heart of the difficulties to be overcome in Section 4.

The Maltsev correspondence. The linear structures that we need in order to con-
struct linear representations will be provided by the Maltsev correspondence, which
associates nilpotent Lie algebras to certain nilpotent groups. Various accounts of
this correspondence exist in the literature; we will use the version in [15], since it is
well adapted for definability questions. Indeed, the model-theoretic essence of Fact
2.5 below is that is that the Lie algebra structure and the nilpotent group to which
this algebra is associated are biinterpretable through the identity map.

The Maltsev correspondence associates with each torsion-free divisible nilpotent
group N a nilpotent Lie algebra L(N) over the field Q. Since elements of a divisible
torsion-free nilpotent group N have unique sth roots for all integers s 6= 0, for g ∈ N
and λ ∈ Q the power gλ can be uniquely defined by the equation (gλ)s = gr, where
λ = r/s with r, s ∈ Z and s 6= 0. In general, a torsion-free nilpotent group of
finite Morley rank is divisible with unique roots. As a result, torsion-free nilpotent
groups of finite Morley rank form a natural setting for the Maltsev correspondence.

For the rest of Section 2 we fix an integer c ≥ 1 and restrict attention to torsion-
free divisible nilpotent groups of class at most c, and nilpotent Lie algebras over Q
of class at most c. In Stewart [15] it is shown that there are words σc(x, y), πc(x, y)
in the free group on x, y, such that if N is one of our groups, then sum and Lie
bracket operations can be defined in N by u + v = σc(u, v) and [u, v] = πc(u, v)
for all u, v ∈ N , and multiplication by λ ∈ Q by λu = uλ, in such a way that the
set N acquires the structure of a Lie algebra over Q. Thus from N , regarded as
a pure group structure in the sense of model theory—an LG-structure where LG is
the language of groups—we obtain a Lie algebra L(N)—an LLie-structure where
LLie = {δλ (λ ∈ Q), [ , ], +}—with the same underlying set. (Because we are
working with groups of bounded class we do not need to consider the ‘extended
words’ σ, π constructed in [15].) Thus the identity map defines in N a nilpotent
Q-Lie algebra structure L(N) with underlying set that of the group N .
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Similarly, there is a word µc(x, y) in the free Lie algebra on x, y such that, if L
is a Lie algebra L (over Q, nilpotent of class at most c), that is, a structure in the
language LLie satisfying the necessary identities, then products and inverses can be
defined in L by uv = µc(u, v) and u−1 = −u in such a way that the set L becomes a
torsion-free divisible nilpotent group G(L). Again the defining map is the identity.
This yields the following main result in [15]:

Fact 2.5 ([15, Theorem 2.4.2]). Let G and H be divisible nilpotent torsion-free
groups; let L be a nilpotent Lie algebra over Q. Then

(a) G(L(G)) = G, L(G(L)) = L.
(b) H is a subgroup of G if and only if L(H) is a subalgebra of L(G).
(c) H is a normal subgroup of G if and only if L(H) is an ideal of L(G).
(d) ϕ : G → H is a group homomorphism if and only if ϕ : L(G) → L(H) is is

a Lie homomorphism. The kernel of ϕ is the same in both cases.
(e) If H is normal subgroup of G, then L(G/H) = L(G)/L(H).

Using (a), one can rewrite (b)–(e) starting from L and applying G.

We note in particular that, as pointed out in [2, Lemma 2.3 (c)], since N , L(N)
have exactly the same definable sets they have the same Morley rank.

Lemma 2.6. Let m ≥ 2, let K be a field of characteristic 0 and L a Lie subalgebra
(of class at most c) of the algebra of m×m zero-triangular matrices over K. Then
G(L) is isomorphic to the image of L under the exponential map, given by x 7→∑m−1

j=0 (1/j!)xj.

Proof. For each u ∈ L write u] = exp u. The word µc(x, y) is in fact the word arising
in the Baker–Campbell–Hausdorff formula (but terminated after commmutators
of weight c); see [15, p. 302]. From the basic property of this formula we have
log(u]v]) = µc(u, v) for all u, v ∈ L; see [15, Lemma 2.1.1]. Thus u]v] = (uv)]

for all u, v; in other words, the map x 7→ x] is a group isomorphism. (A similar
argument shows that this is an isomorphism of K-groups, as defined below.) ¤

K-groups. Suppose that K is any field of characteristic 0. If L is a Lie algebra
over K and N = G(L), then for all u in N and λ in K we may define the power
gλ in N to be the multiple λg in L. The map N × K → N defined in this way
satisfies the axioms characterizing K-groups (or K-powered groups), described for
example in Warfield [17, Chapters 10–12]. The formal definition of a K-group is
given in Warfield [17, p. 86]: such a group is a nilpotent group with a power map
N × K → N satisfying the identities

g1 = g, gλ1+λ2 = gλ1gλ2 , gλ1λ2 = (gλ1)λ2 , for all λ1, λ2 ∈ K, g ∈ N,

(gλ)h = (gh)λ for all λ ∈ K, g, h ∈ N,

and the Hall–Petresco identities. An important example is the group Um(K) of all
m × m unitriangular matrices over K, for each integer m ≥ 2; see [17, Corollary
10.25]. Quillen [13] proved that the Maltsev correspondence establishes a full bi-
jection between nilpotent Lie algebras over K and nilpotent K-groups; the results
are stated in [17, Chapter 12]. For the reader’s convenience we prove the only fact
that we need:



6 TUNA ALTINEL AND JOHN S. WILSON

Lemma 2.7. Let K be a field of characteristic 0 and L a finite-dimensional Lie
algebra over K. Then G(L) has the natural structure of a finitely generated K-
group, with power operations defined from the Lie algebra structure of L by gλ = λg.
Moreover G(L) is isomorphic as a K-group to a subgroup of Um(K) for some m ≥ 2.

Proof. We need to check that the map G(L) × K → G(L) satisfies the identities
defining K-groups. By Ado’s theorem (see [1] or [10, pp. 202–203]), for some m
there is an isomorphism θ from L to a subalgebra L̄ of the algebra of m × m
zero-triangular matrices over K. Let θ̄ be the composite of θ and the exponential
map. By Lemma 2.6 the group G(L̄) is isomorphic (as a group) to im θ̄, which
is a subgroup of Um(K) and is evidently closed under the power operations since
(exp l̄)λ = exp λl̄. Because im θ̄ satisfies all identities holding in the K-group Um(K),
it is a K-group. For l ∈ L, λ ∈ K we have

(θ̄l)λ = (exp θ(l))λ = exp(λθ(l)) = exp θ(λl) = θ̄(λl),

so that θ̄ is an isomorphism of groups with power maps, and any identity holding
in its image holds in its domain. Therefore G(L) is a K-group.

Let X be a set spanning L̄ as vector space and let N1 be the smallest K-subgroup
of im θ̄ containing exp X. Then X ⊆ log N1, a Lie subalgebra of L̄, and so we have
log N1 = L̄ and N1 = exp L̄ = im θ̄. The result now follows. ¤
Lemma 2.8. Let K be a field of characteristic 0 and N a nilpotent group such
that L(N) has the structure of a finitely generated Lie algebra over K. Suppose
that G = N o T and that the action of T on L(N) induced by conjugation in G is
K-linear. Then G has a K-linear representation with kernel CT (N).

Proof. Fix an integer m > 0. By Lemma 2.7, N = G(L(N)) is naturally a finitely
generated K-group. Let ∆ be the augmentation ideal of the group algebra KN , and
let I be the ideal of KN generated by ∆m+1 and all elements

uλ − (
1 + λ(u− 1) + · · ·+

(
λ

m

)
(u− 1)m

)
with u ∈ N, λ ∈ K; (∗)

here (
λ

j

)
=

λ(λ− 1) . . . (λ− (j − 1))
j!

for λ ∈ K and each integer j > 0. By [17, Lemma 11.3], KN/I is finite-dimensional.
Moreover if m is large enough then the obvious map from N to KN/I is an embed-
ding. This follows from the proof of [17, Lemma 11.4]. We sketch a direct proof.
Since N is isomorphic to a K-subgroup of Um(K) for some m by Lemma 2.7, it
will suffice to prove the result for the special case when N = Um(K). Let M be
the ring M of m ×m matrices over K and ϕ : KN → M the map induced by the
identity on N . It is easy to check that ϕ maps all elements (u1 − 1) . . . (um − 1)
with u1, . . . , um ∈ N and all elements (∗) to zero, and so ϕ factors through KN/I.
Since the composite of the map N → KN/I and the map KN/I → V has trivial
kernel, so does the map N → KN/I.

Now let N act on KN by right multiplication and T by conjugation; it is well
known that these actions give an action of G on KN , defined by x.(nt) = (xn)t for
x, n ∈ N , t ∈ T . Here is the verification that this is a group action: for x, n1, n2 ∈ N
and t1, t2 ∈ T we have

x.((n1t1)(n2t2)) = x.(n1n
t−1
1

2 t1t2) = (xn1n
t−1
1

2 )t1t2

= ((xn1)t1n2)t2 = (x.(n1t1)).(n2t2),
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as required. Since the ideal I is invariant under both the action by N and the
action by T , the action of G on KN induces an action on KN/I. If nt is in the
kernel, with n ∈ N , t ∈ T , then for all x ∈ N we have

x + I = (x + I).nt = (xn)t + I.

First taking x = 1 we see that n = 1, and then we conclude that x + I = xt + I for
all x ∈ N and hence that t ∈ CT (N). ¤

3. Interpretable rings: the Aston Theorem

In this section, we prove a ring interpretation theorem and a linearity corollary
that seem of wider interest. The residue fields of the interpretable local rings
obtained in this section will be the underlying fields for the linear representations
constructed in the paper. Our methods have their origins in [18] and make use of
the Maltsev correspondence in a way reminiscent of [2]. However we need to utilize
effectively the actions of groups on nilpotent normal subgroups and Lie algebras.

Theorem 3 (Aston Theorem). Let G be a connected (not necessarily soluble) group
of finite Morley rank and N a definable normal torsion-free nilpotent subgroup.
Suppose that N 6≤ Z(G) and write D = CN (G).

(a) There exists a commutative ring R interpretable in G such that L(N/D) has
the structure of a finitely generated R-module with R-bilinear Lie bracket,
on which the action of G induced by conjugation in G is R-linear.

(b) There are definable normal subgroups P1, . . . , Pn of G contained in N with⋂
Pi = D, and commutative local rings Ri interpretable in G with R =⊕n
i=1 Ri, such that L(N/Pi) is a finitely generated Ri-module with Ri-

bilinear Lie bracket on which the induced action of G is Ri-linear.

Proof. Since both N and D are torsion-free groups of finite Morley rank they are
divisible, and so the Lie algebras L(N), L(D) and L(N/D) may be defined.

Let L = L(N/D) and E be the ring of group endomorphisms of L. We aim to
construct a subring R of E that is interpretable in G.

The action of G on N by conjugation induces an action on L(N) (by Fact
2.5 (d)), and so we may regard L(N) as a G-module. For any ascending chain
M1 < M2 < · · · of definable subgroups of L(N) the quotients Mi+1/Mi are infinite
divisible abelian groups; therefore the chain has length at most the Morley rank
d of L(N), and there are elements m1, . . . , md of L(N) such that the definable
hull of 〈m1, . . . , md〉 equals L(N). We apply Lemma 2.1 for L(N) and the set
{m1, . . . , md}; let n be the number given by Lemma 2.1 and let U be the set of
elements of ZG that are sums of at most n elements of type g − 1.

By the chain condition on centralizers there exist k ∈ N and elements s1, . . . , sk ∈
G such that D = CN (G) = CN (s1, . . . , sk). For each k-tuple u = (u1, . . . , uk) ∈
U (k) let Φ(u, x, y) be the first-order formula

k∧

i=1

xui = y(si − 1).

We consider the following set:

Λ = {u ∈ U (k) | (∀x ∈ N)(∃y ∈ N)Φ(u, x, y)}.
Thus Λ is interpretable in G. If x1, x2 are congruent modulo D, then by Fact
2.5 (e), they are also congruent modulo L(D). Thus, (x1 − x2)(g − 1) = 0 for all
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g ∈ G, and hence Φ(u, x1, y) holds if and only if Φ(u, x2, y) holds. Moreover if y1,
y2 ∈ N and Φ(u, x, y1), Φ(u, x, y2) both hold then we have y1(si − 1) = y2(si − 1)
for each i, so that y1− y2 is centralized by s1, . . . , sk and hence is in L(D); thus y1

and y2 are congruent modulo D. It follows that each u in Λ induces a well-defined
map u : L → L, and evidently u ∈ E. We set Λ1 = {u | u ∈ Λ}.
Claim 1. Λ1 is a subgroup of E.

Proof of Claim 1. The set Λ1 is non-empty since Λ contains the k-tuples (0, . . . , 0)
and (s1 − 1, . . . , sk − 1) which represent the zero and identity maps. Let u and v
be in Λ; we want to show that u− v ∈ Λ1. Fix i ∈ {1, . . . , k}. By the choice of n,
there is an element wi ∈ U such that mjwi = mjui −mjvi for j = 1, . . . , d. The
set {x ∈ L(N) | xwi = xui − xvi} is a definable subgroup containing {m1, . . . , md}
and so equals L(N). Therefore w = (w1, . . . , wk) ∈ Λ and w = u− v. ¤

We define

Λ2 = {u ∈ Λ1 | (∀v ∈ Λ1) (u v ∈ Λ1)}, Λ3 = {u ∈ Λ2 | (∀v ∈ Λ2) (u v = v u)},
R = {u ∈ Λ3 | (∀x, y ∈ L)(∀g ∈ G) ((u(x))g = u(xg)) ∧ (u([x, y]) = [u(x), y])}.

Claim 2. R is a commutative subring of E and it is interpretable in G (so has
finite Morley rank). The Lie bracket in L is R-bilinear and the elements of G induce
R-linear maps from L to L.

Proof of Claim 2. Clearly each of the sets Λ2, Λ3, R is an additive subgroup of Λ1

containing the identity map. The conditions imposed above ensure that R is closed
for products, that its elements commute with each other, that the Lie bracket is
R-bilinear, and that its elements of commute with the action of G. Clearly R is
interpretable in G and so has finite Morley rank. ¤

Since finitely generated R-submodules are definable connected subgroups, any
chain of such submodules has length at most the Morley rank of (G,L). Hence L
is a finitely generated R-module. This completes the proof of assertion (a).

Since R is a commutative ring of finite Morley rank, it is the direct sum of local
rings R1, . . . , Rn, from [5, Theorem 2.6]. The ideals Ri are definable in R as the sets
eiR, where e1, . . . , en are the idempotents that yield the direct sum decomposition.
For each i let Mi be the largest R-submodule of L that is annihilated by Ri. Thus
each Mi is definable, and it is easy to see that the map from L to

⊕
L/Mi is an

R-module isomorphism; in particular
⋂

Mi is zero since it is annihilated by each
Ri and hence by R. For each i let Pi/D be the normal subgroup of N/D associated
with Mi by the Maltsev correspondence. Since G maps Mi to itself, each Pi is a
normal subgroup of G by Fact 2.5 (d). Since

⋂
Mi is the zero submodule of L we

have
⋂

Pi = D, and assertion (b) now follows. ¤

Corollary 3.1. Let G be a connected group of finite Morley rank and N a definable
torsion-free nilpotent normal subgroup. Let D = CN (G) and E = CG(N/D). Then
G/E has a faithful linear representation.

Proof. We use the notation of the proof of the Aston Theorem. For each i, the
group G acts on L/Mi as a group of Ri-linear maps; by Fact 2.4, Ri is a finite-
dimensional space over a field Ki, and so the image of G is a linear group over Ki.
The kernel of the action of G on Li is equal to the kernel of the action on N/Pi,
by Fact 2.5 (d) and so equals CG(N/Pi). Since

⋂
i≤n CG(N/Pi) = CG(N/D) = E
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it follows that G/E is linear over any field containing isomorphic images of all of
the fields Ki. ¤

4. Abelian supplements

Our object in this section is to prove Theorem 2. We shall deduce it from a
theorem concerning groups with structure like that of the groups G/Pi given by
the Aston theorem.

Assume that G is a connected soluble group of finite Morley rank having no
infinite subgroups of finite exponent, that N is a definable normal torsion-free
nilpotent subgroup, and moreover that G = NC with C a definable connected
nilpotent subgroup. We let L = L(N) and we assume that there is a commutative
local ring R with (G,R) of finite Morley rank such that L is a finitely generated
R-module with R-bilinear Lie bracket on which the action of G (induced from the
conjugation action on N) is R-linear. We shall prove the following result.

Theorem 4. There is a group G̃, interpretable in (G,R), with Fitting subgroup Ñ ,
and with the following properties:

(a) G ≤ G̃ and N ≤ Ñ ;
(b) G̃ has no infinite subgroups of finite exponent;
(c) G̃ has a definable divisible abelian subgroup T̃ such that G̃ = Ñ T̃ .

We approach the proof through a series of lemmas. The quest for structures
interpretable in (G,R) will lead us to introduce the notion of a definable weight
space, and after Lemma 4.7 to use a construction related to the semisimple splitting
construction explained in Segal [14, Chapter 7].

We shall consider the structure of L as an RC-module. By a composition factor,
we will mean a section M1/M2, with M1, M2 definable RC-submodules of L, such
that M1 is minimal with respect to strictly containing M2. We write J for the
Jacobson radical of R and K for the field R/J .

Lemma 4.1. Let X be a composition factor of L, regarded as an RC-module. The
following assertions hold.

(a) C ′ acts trivially on X.
(b) Each element of RC acts on X like multiplication by an element of K.

Proof. The upper central series of N corresponds under the Maltsev correspondence
to a series 0 < L1 < · · · < Lc = L of definable QG-submodules of L. Since
R commutes with the action of G, each Li is an RG-submodule. Since N acts
trivially on each factor Li/Li−1 by Fact 2.5 (d), (e), and G/N is abelian, C ′ acts
trivially on each Li/Li−1. By the Jordan–Hölder theorem X is isomorphic to a
composition factor of some Li/Li−1, and (a) follows.

(b) Because X is a composition factor, the ring K1 of endomorphisms of X as an
RC-module is a field by Schur’s Lemma. Thus, R being local, the kernel of the map
from R to K1 must be the prime ideal J , and so the image of R in K1 is a field K̄
isomorphic to K. Since (X, R) has finite Morley rank, X must have finite dimension
over K̄. Therefore K1 is a finite field extension of K̄. Since K is algebraically closed
we conclude that K̄ = K1, and (b) follows. ¤

Definition 4.2. Let X be a composition factor of L, regarded as an RC-module.
By Lemma 4.1 (b), we have a homomorphism λX : C → K∗ defined by xc = λX(c)x
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for all x ∈ X, c ∈ C. We call λX the weight of the module X, and denote it by
wt(X). We call λ a weight of L if L has a composition factor with weight λ.

Our next task is to introduce the weight spaces L(λ) of L.

Lemma 4.3. If F is a field and D is a nilpotent subgroup of upper triangular
matrices in GL2(F ) containing a non-scalar diagonal matrix, then D consists of
diagonal matrices.

Proof. Suppose that D contains the elements

g =
(

λ 0
0 µ

)
and h0 =

(
α β
0 γ

)

where λ 6= µ, and define hi+1 = [hi, g] for all i ≥ 0. An easy calculation shows that

hn =
(

1 α−1β(λ−1µ− 1)n

0 1

)

for all n ≥ 1, and so since D is nilpotent we have β = 0. ¤
Lemma 4.4. The RC-module L has only finitely many weights. For each weight
λ there is a submodule L(λ) of L such that all composition factors of L(λ) and no
composition factors of L/L(λ) have weight λ. Moreover L is the direct sum of these
RC-submodules.

Proof. Chains of finitely generated RC-submodules have length bounded by the
Morley rank of (G,R); thus L has finite composition length and only finitely many
weights.

Next suppose that Y is an RC-module section of L of composition length 2, with
simple submodule X, and that X, Y/X have different weights µ, λ. We claim that
Y has an RC-module W with Y = X ⊕W .

From Fact 2.4, the ring R contains a field K0 (not necessarily definable) with
R = J+K0, J∩K0 = {0} and hence K0

∼= R/J = K; thus Y is a 2-dimensional vector
space over K0. Choose c ∈ C with µ(c) 6= λ(c). The elements λ̄, µ̄ of K0 that map
to λ(c), µ(c) are the eigenvalues of the map c̄ induced by c in Y . With respect to a
basis of eigenvectors, the maps induced by the elements of C have upper triangular
matrices, as the eigenspace for µ̄ must be X, and so by Lemma 4.3 the matrices
are diagonal. Hence Y is a direct sum of two simple K0C-submodules. Since the
elements of R induce K0C-module endomorphisms, the two non-isomorphic simple
K0C-submodules are mapped to themselves by R and so are RC-submodules.

The rest of the proof is a standard argument. Among the composition series
0 = M0 < · · · < Mn = L of L as an RC-module, choose one for which the sum of the
indices i with wt(Mi/Mi−1) = λ is minimal. If for some i we have wt(Mi+1/Mi) =
λ and wt(Mi/Mi−1) 6= λ then from the previous paragraph Mi+1/Mi−1 has a
submodule W/Mi−1 with weight λ, and consideration of the composition series
obtained by replacing Mi by W gives a contradiction. Thus some term of the series
(Mi) has the property required of L(λ). The second assertion now follows easily. ¤
Lemma 4.5. If µ, ν are weights then [L(µ), L(ν)] ≤ L(µν).

Proof. Of course we interpret L(µν) as zero if µν is not a weight of L. Let (Mi)m
i=0,

(Nj)n
j=0 be composition series of L(µ), L(ν) and define Wk =

∑
i+j=k [Mi, Nj ] for

0 ≤ k ≤ m + n. Since J annihilates each composition factor and the Lie bracket is
R-bilinear, J annihilates each quotient Wk/Wk−1. Let c ∈ C, and choose r, s ∈ R
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with r+J = µ(c), s+J = ν(c). For i, j > 0 and m ∈ Mi, n ∈ Nj we have mc ≡ rm
mod Mi−1, nc ≡ sn mod Nj−1 and so

[m,n]c ≡ [mc, nc] ≡ [rm, sn] ≡ rs[m,n] mod Wi+j−1.

Thus if k ≥ 1 and w ∈ Wk then wc ≡ (rs)w mod Wk−1. Hence c acts as multi-
plication by rs + J = µ(c)ν(c) on any composition factor U/V with Wk−1 ≤ V ≤
U ≤ Wk. The result follows. ¤

Now let c ∈ C, and define cs to be the family of R-linear maps t : L → L with
the following properties:
• t maps each L(λ) to itself;
• t|L(λ) is multiplication by some element rλ ∈ R with rλ + J = λ(c);
• if µ, ν and µν are weights then rµν = rµrν ;
• t|L(1) is the identity map.

Let S be the family 1s corresponding to the identity element of C. Thus S is a
group of automorphisms and in particular its elements act as multiplications by
elements of 1+J on each L(λ) and as the identity on L(1). Clearly each cs is a coset
of S. Let T =

⋃{cs | c ∈ C}. Then T is an abelian group, and the map c 7→ cs is a
surjective homomorphism from C to T/S.

Lemma 4.6. (a) If t ∈ T then t is a Lie algebra homomorphism of L.
(b) If t ∈ cs then ct−1 acts as the identity on each composition factor of L as

an RC-module.
(c) The group T is isomorphic to a subgroup of (R∗)n, where n is the number

of distinct weights of L (and R∗ denotes the group of units of R). Moreover
all subgroups of T of finite exponent are finite.

Proof. (a) Since L is the sum of the weight spaces it will suffice to prove that if µ,
ν are weights and m ∈ L(µ), n ∈ L(ν) then [m,n]t = [mt, nt]. Suppose that t acts
as multiplication by rµ on L(µ) and by rν on L(ν); then it acts as multiplication
by rµrν on [L(µ), L(ν)] by Lemma 4.5 and the definition of t, and so for m ∈ L(µ),
n ∈ L(ν) we have [m,n]t = rµrν [m, n] = [rµm, rνn] = [mt, nt], as required.

(b) It suffices to note that if X is a composition factor of L(λ) then both c, t act
on X by multiplication by λ(c).

(c) To prove the first assertion, we list the weights as λ1, . . . , λn and consider
the map from T defined by t 7→ (r1, . . . , rn), where ri is the element of R such that
t acts on L(λi) as multiplication by ri. By the definition of T , ri belongs to a coset
of 1 + J , thus lies in R \ J . Since R is local, ri ∈ R∗.

We note that the multiplicative group 1+J is torsion-free. Indeed, if j ∈ Jd\Jd+1

then for all n ∈ Z\{0} we have (1+ j)n ≡ 1+nj modulo Jd+1, and so (1+ j)n 6= 1
since Jd/Jd+1 has the structure of a vector space over R/J and hence is a torsion-
free additive group. Thus the kernel of the map R∗ → K∗ is torsion-free, and the
second assertion in (b) follows since finite subgroups of K∗ are cyclic. ¤
Lemma 4.7. The image of C∩N in L (under the map N → L given by the Maltsev
correspondence) lies in L(1) and so is acted on trivially by T .

Proof. Let (Ci)k
i=0 be any central series of C. Then C acts trivially on each factor

(Ci ∩N)/(Ci−1 ∩N) and so acts trivially on each factor Di/Di−1, where Di is the
Q-subalgebra of L corresponding to Ci ∩ N in the Maltsev correspondence. Let
Ei be the RC-submodule generated by Di. Since G induces R-linear maps and C
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acts trivially on (Ei−1 + Di)/Ei−1 it follows that C acts trivially on each Ei/Ei−1.
Hence all RC-composition factors of Ek have weight 1, and Dk ≤ Ek ≤ L(1). ¤

The action of T as Lie algebra automorphisms on L induces an action as group
automorphisms of N by Fact 2.5 (d). For t ∈ T we write t∗ for the map G → G
defined by

(ac)t∗ = atc for all a ∈ N, c ∈ C.

Let T ∗ = {t∗ | t ∈ T}.
Lemma 4.8. (a) t∗ is well-defined.

(b) t∗ commutes with the action of C by conjugation on N .
(c) t∗ : G → G is a homomorphism.
(d) T ∗ is a subgroup of the automorphism group of G and the map t 7→ t∗

defines a group isomorphism from T to T ∗.

Proof. (a) If a1c1 = a2c2 with obvious notation then c1c
−1
2 = a−1

1 a2 ∈ N ∩ C, so
that t acts trivially on N ∩ C by Lemma 4.7; therefore

(a−1
1 )tat

2 = (a−1
1 a2)t = a−1

1 a2 = c1c
−1
2 and at

1c1 = at
2c2.

(b) The elements of C induce automorphisms of L taking each L(λ) to itself and
the elements of T act as multiplications by elements of R on each L(λ); hence t∗

commutes with the automorphisms of L induced by C and so commutes with the
action of C on N .

(c) Let a1c1, a2c2 ∈ G with obvious notation. By (b) we have (ac−1
1

2 )t = (at
2)

c−1
1

and so

((a1c1)(a2c2))t∗ = (a1a
c−1
1

2 c1c2)t∗ = at
1(a

c−1
1

2 )tc1c2

= at
1(a

t
2)

c−1
1 c1c2 = (at

1c1)(at
1c2) = (a1c1)t∗(a2c2)t∗ .

(d) The definition gives (t1t2)∗ = t∗1t
∗
2 for all t1, t2 ∈ T and (d) follows. ¤

We now set G̃ = Go T ∗ and address the definability issues for this group.

Lemma 4.9. (a) The group T as a group of automorphisms of L is inter-
pretable in (G,R). The action of T on L is interpretable (G,R).

(b) The group T as a group of automorphisms of N is interpretable in (G,R).
The action of T on N is interpretable (G,R).

(c) The group T ∗ and its action on G are definable in (G,R). The isomorphism
between T and T ∗ defined in Lemma 4.8 (d) is interpretable in (G,R).

(d) The group G̃ is interpretable in (G,R).

Proof. (a) The RC-module L is the direct sum of finitely many weight spaces
L(λ1), . . . , L(λn). Let Ω be the set of triples (i, j, k) of indices with λiλj = λk. We
first verify that the cosets cs form a uniformly definable family. Indeed, each coset
cs is an interpretable subset of L × L defined by the formula coset(x, y, c) where
coset(x, y, z) is

∃rλ1 , . . . , rλn ∈ R




n∧

i=1

(rλi + J = λi(z) ↔ (x ∈ L(λi) ∧ y = rλix)) ∧
∧

(i,j,k)∈Ω

rλirλj = rλiλj


 .

Now T is defined as {(x, y) ∈ L× L | ∃c ∈ C coset(x, y, c)}.
The action of T on L =

⊕
L(λi) is also interpretable in (G,R). In other words,

the group action map from T × L to L is interpretable in (G, R).
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(b) This point follows from (a) and Lemma 4.6 (a) using Fact 2.5 (d). Indeed,
the nilpotent group N has the same underlying set as the Lie algebra L, and the
graphs of the automorphisms of N and L induced by elements of T are identical.
The second statement holds for the same reason.

(c) This follows from (b) and the definition of T ∗ and its action on G.
(d) This follows from points (b) and (c). ¤

Let Ñ be the Fitting subgroup of G̃. Since the normalizer of N contains G, T ∗

we have N ≤ Ñ . Moreover since T ∗ ∼= T , by Lemma 4.6 (b) all subgroups of G̃ of
finite exponent are finite. To complete the proof of Theorem 4, it remains only to
prove assertion (c).

Define
U = 〈ct∗−1 | c ∈ C, t ∈ cs〉.

Lemma 4.10. The subgroup NU is nilpotent and normal in G̃.

Proof. Let m be the maximum of the composition lengths of the weight spaces L(λ).
Since T ∗ centralizes C, the inclusion U ≤ CT ∗ holds and the group U is nilpotent.

Therefore since N is nilpotent and N/G̃, to prove that NU is nilpotent it will suffice
to prove that for all u1, . . . , um ∈ U we have [a, u1, . . . , um] = 1 for all a ∈ N . This
requirement translates via Fact 2.5 (d) to the requirement that (u1−1) . . . (um−1)
acts as the zero map on L, and this in turn follows from the definition of the elements
t∗ and Lemma 4.6 (a). Finally, since [U, T ∗] = 1, it follows that NU / G̃. ¤

Proof of Theorem 4. We must establish assertion (c). From Lemma 4.10 we have
NU ≤ Ñ and hence G̃ = ÑT ∗. The group G̃, being interpretable in (G, R), is of
finite Morley rank. By construction, it is connected. Indeed, by Lemma 4.6 (b)
and the structure of abelian groups of finite Morley rank (Macintyre [11]; cf. [4,
Theorem 6.7]), T is a divisible abelian group, thus T ∗ is a divisible abelian group
that is also interpretable in (G,R).

Now we restrict our attention to G̃ as a pure group of finite Morley rank in which
G embeds, not necessarily as a subgroup definable in G̃. Let T̃ be the definable
hull of T with respect to the pure group structure G̃; then T̃ too is divisible and
abelian, and hence is connected. Finally, G̃ = Ñ T̃ since G̃ = ÑT ∗. ¤

Proof of Theorem 2. Let G satisfy the hypotheses of Theorem 2. Write D = CN (G)
and let R, P1, . . . , Pn, R1, . . . , Rn be as given by the Aston Theorem. Thus each pair
(G/Pi, Ri) is interpretable in G, and satisfies the hypotheses of Theorem 4. We may
take for C any Carter subgroup of G. Therefore each G/Pi can be embedded in a
group G̃i with Fitting subgroup Ñi and with a definable divisible abelian subgroup
T̃i with the properties given by Theorem 4. Since D =

⋂
Pi, the group G/D embeds

in the product G̃ =
∏

i≤n G̃i. Evidently G̃ and the subgroups Ñ =
∏

i≤n Ñi,
T̃ =

∏
i≤n T̃i have the properties required in Theorem 2. ¤

5. Proof of Theorem 1

Before proving Theorem 1, the main linearity result of this paper, we note the
following lemma which shows how to obtain definable kernels of maps to linear
groups from arbitrary kernels.
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Proposition 5.1. Let G be a connected group of finite Morley rank and let H be
the kernel of a linear representation θ over a field K. Define Y by Y/H = Z(G/H).
Then

(a) Y is also the kernel of a linear representation of G over K, and
(b) Y is definable.

Proof. (a) Since Y is the kernel of the action of G on G/H induced by conjugation,
it is the kernel of an action on im θ, and on the finite-dimensional vector space over
K spanned by im θ.

(b) Let K be the largest connected definable soluble subgroup contained in H.
Since the image of Z(G/K) under the natural map G/K → G/H lies in Z(G/H)
we have Z(G/K) ≤ Y/K. But [G,Y ] is a connected definable subgroup by Zil’ber
indecomposability (see [4, Theorem 5.26]) and is contained in H; hence Y/K ≤
Z(G/K). Thus Y/K = Z(G/K) and Y is definable. ¤

Proposition 5.2. Let G be a connected soluble group of finite Morley rank and
N a definable torsion-free nilpotent normal subgroup, and suppose that G has a
definable divisible abelian subgroup A such that G = NA. Then G has a linear
representation with kernel K satisfying K ∩N ≤ Z(G).

Proof. Write D = CN (G). By assertion (b) of the Aston Theorem, we can find
definable normal subgroups Pi with intersection D and commutative local rings Ri

interpretable in G such that the Lie algebra Li = L(N/Pi) is an Ri-module with Ri-
bilinear Lie bracket, and G acts Ri-linearly on Li for each i. By Lemma 2.4, Ri is a
finite-dimensional vector space over a subfield Ki, and so Li is a finite-dimensional
Lie algebra over Ki.

Fix an index i. Now G/Pi is the product of the definable torsion-free subgroup
N/Pi and the definable abelian subgroup APi/Pi, and the intersection Wi/Pi =
N/Pi ∩ APi/Pi of these subgroups is definable and hence divisible. By the in-
jective property of divisible abelian groups, there exists a (not necessarily de-
finable) subgroup Bi/Pi such that APi/Pi = Wi/Pi × Bi/Pi. Hence we have
G/Pi = N/Pi o Bi/Pi. From Lemma 2.8 this group has a linear representation
over Ki whose kernel Ki/Pi satisfies Ki ∩ N ≤ Pi. Thus G has a linear represen-
tation with kernel K =

⋂
Ki over any field containing copies of all fields Ki, and

K ∩N ≤ ⋂
Pi = D, as required. ¤

Proof of Theorem 1. Suppose that G satisfies the hypotheses of Theorem 1. Let
N = G′. By [4, Corollary 9.9], G′ is definable, connected and nilpotent, and from
Lemma 2.3, N is torsion-free. Therefore by Theorem 4 we can embed G/CN (G) in
a group of the form G̃ = Ñ T̃ , with the properties and notation of that theorem.
Let E = CÑ (G̃). By Lemma 2.2, Ñ/E is torsion-free and so G̃/E satisfies the
hypotheses of Proposition 5.2; thus G̃ has a linear representation whose kernel H0

satisfies H0 ∩ Ñ ≤ M where M/E = CÑ/E(G̃/E). Hence [H0, G̃] ≤ E ≤ Z(G̃) and

H0 ≤ Z2(G̃). Write H/CN (G) = H0 ∩G/CN (G). Then H is the kernel of a linear
representation of G and H ≤ Z3(G). ¤
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