
On ω-categorical groups and rings with NIP

Krzysztof Krupiński∗

Abstract

We show that ω-categorical rings with NIP are nilpotent-by-finite. We
prove that an ω-categorical group with NIP and fsg is nilpotent-by-finite. We
also notice that an ω-categorical group with at least one strongly regular type
is abelian. Moreover, we get that each ω-categorical, characteristically simple
p-group with NIP has an infinite, definable abelian subgroup. Assuming addi-
tionally the existence of a non-algebraic, generically stable over ∅ type, such a
group is abelian.

0 Introduction

Recall that a first order structure M in a countable language is said to be ω-
categorical if, up to isomorphism, Th(M) has at most one model of cardinality ℵ0.
There is a long history of results describing the structure of ω-categorical groups and
rings. However, many questions in this area are still wide open. It follows easily that
each countable, ω-categorical group has a finite series of characteristic subgroups
in which all successive quotients are characteristically simple groups. On the other
hand, Wilson (see [19, 1]) proved

Fact 0.1 For each countably infinite, ω-categorical, characteristically simple group
H, one of the following holds.

1. H is an elementary abelian p-group for some prime p.

2. H ∼= B(F ) or H ∼= B−1(F ) for some non-abelian, finite, simple group F ,
where B(F ) is the group of all continuous functions from the Cantor set C to
F , and B−(F ) is the subgroup of B(F ) consisting of the functions f such that
f(x0) = e for a fixed element x0 ∈ C.

3. H is a perfect p-group.
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Moreover, it is conjectured that (iii) is not realized.
As to ω-categorical rings in general, we know that their Jacobson radical is

nilpotent (see [3, Lemma 1.3] and [4]). However, there are examples of infinite,
ω-categorical rings which are semisimple (i.e. with trivial Jacobson radical) and so
not nilpotent-by-finite [3].

Interesting questions arise when one imposes additional model-theoretic restric-
tions (e.g. stability or simplicity) on our ω-categorical group or ring. In the su-
perstable [or, more generally, supersimple] ω-categorical context, everything is clear:
groups are [(finite central)-by-]abelian-by-finite [17, 6]; rigs are [(finite null)-by-]null-
by-finite [12]. In the stable [or, more generally, NSOP] situation, we only know
that ω-categorical groups are nilpotent-by-finite [14], and ω-categorical rings are
nilpotent-by-finite [3, 11], too. It is an open question whether ω-categorical stable
groups are abelian-by-finite and whether ω-categorical stable rings are null-by-finite.

Our motivating problem is to describe the structure of ω-categorical groups and
rings satisfying NIP. Reasonable conjectures seems to be:

Conjecture 0.2 Each ω-categorical group with NIP is nilpotent-by-finite.

Conjecture 0.3 Each ω-categorical ring with NIP is nilpotent-by-finite.

In this paper, we prove Conjecture 0.3. As to Conjecture 0.2, we prove it under
the additional assumption that the group has fsg (finitely satisfiable generics).

One of the ingredients of our proof of Conjecture 0.2 is the result saying that each
ω-categorical, characteristically simple p-group with NIP and having a non-algebraic,
generically stable over ∅ type is abelian (so, under all these assumptions, (iii) of Fact
0.1 cannot happen).

We also show that each infinite, ω-categorical, characteristically simple p-group
with NIP has an infinite, definable abelian subgroup. Recall that the existence of an
infinite, abelian subgroup is known for all infinite, ω-categorical groups (use the fact
that such groups are locally finite together with [12, Corollary 2.5]). However, Plotkin
[16] found examples of infinite, ω-categorical p-groups with no infinite, definable,
abelian subgroup.

At the end of the paper, we observe that an ω-categorical group having at lest
one strongly regular type is abelian.

I am grateful to Dugald Macpherson for interesting discussions and suggestions.

1 Preliminaries

Recall that we say that a group G is solvable-by-finite [nilpotent-by-finite or abelian-
by-finite] if it has a finite index (normal) subgroup which is solvable [nilpotent or
abelian, respectively]. It is standard (see e.g. [11, Remark 2.5]) that if G is nilpotent-
by-finite [abelian-by-finite], then it has a definable normal subgroup of finite index
which is nilpotent [abelian, respectively]. If G is solvable-by-finite, it is not clear
whether it has a definable, solvable subgroup of finite index (it has such a subgroup
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if we additionally assume either icc on centralizers for all definable quotients of
definable subgroups [10, Remark 3.3] or ω-categoricity).

Recall some basic notions from ring theory. In this paper, rings are associative,
but they are not assumed to contain 1 or to be commutative. An element r of a
ring R is nilpotent of nilexponent n if rn = 0, and n is the smallest number with
this property. The ring is nil [of nilexponent n] if every element is nilpotent [of
nilexponent ≤ n, and there is an element of nilexponent n]. The ring is nilpotent of
class n if r1 · · · rn = 0 for all r1, . . . , rn ∈ R, and n is the smallest number with this
property. An element r is null if rR = Rr = {0}. The ring is null if all its elements
are.

We say that a ring R is nilpotent-by-finite [null-by-finite] if it has a finite index
ideal (equivalently subring by [13]) which is nilpotent [null, respectively]. By virtue
of [11, Remark 2.7], this ideal can be chosen definable.

The Jacobson radical of a ring R is the collection of all elements of R satisfying
the formula ϕ(x) = ∀y∃z(yx+z+zyx = 0). The ring R is semisimple if J(R) = {0}.
It is always the case that R/J(R) is semisimple.

Recall that a ring R is a subdirect product of rings Ri, i ∈ I, if there is a
monomorphism of R into

∏
i∈I Ri whose image projects onto each Ri. The following

is [3, Corollary 1].

Fact 1.1 If R is a semisimple, ω-categorical ring, then R is a subdirect product of
complete matrix rings over finite fields. Moreover, only finitely many different matrix
rings occur as subdirect factors.

By [3, Lemma 1.3] and [4] we have

Fact 1.2 If R is an ω-categorical ring, then J(R) is nilpotent.

So, in order to prove that an ω-categorical ring R satisfying some extra assump-
tions is nilpotent-by-finite, it is enough to show that the semisimple ring R/J(R) is
finite (here Fact 1.1 may be very helpful). We will use this approach in the proof of
Theorem 2.1.

We will also use [11, Theorem 3.15].

Fact 1.3 Suppose G is a solvable, ω-categorical group such that each ring inter-
pretable in it is nilpotent-by-finite and each group H definable in it has a definable
connected component H0 (i.e. the smallest definable subgroup of finite index). Then
G is nilpotent-by-finite.

Now, we recall the relevant notions from model theory. Let T be a first order
theory. We work in a monster model C of T .

Definition 1.4 We say that T has the NIP if there is no formula ϕ(x, y) and se-
quence (ai)i<ω such that for every w ⊆ ω, there is bw such that |= ϕ(ai, bw) iff i ∈ w.

The next fact is Theorem 1.0.5 of [18].
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Fact 1.5 If G is a group defined in a theory with NIP, then for each ϕ, there is
some N such that the intersection of any finite family of ϕ-definable subgroups of G
is an intersection of at most N members of the family.

Let p ∈ S(C) be invariant over A ⊂ C. We say that (ai)i∈ω is a Morley sequence
in p over A if an |= p|Aa<n for all n. It turns out that Morley sequences in p
over A are indiscernible over A and they have the same type over A. If C′ � C is a
bigger monster model, then the defining scheme of p determines a unique A-invariant
extension p̃ ∈ S(C′) of p. By a Morley sequence in p we mean a Morley sequence
in p̃ over C. Finally, p(k) (where k ∈ ω ∪ {ω}) denotes the type over C of a Morley
sequence in p of length k

Recall from [15] that a global type p ∈ S(C) is said to be generically stable if, for
some small A, it is A-invariant and for each Morley sequence (ai : i ∈ ω) in p over
A and each formula ϕ(x) (with parameters from C), the set {i :|= ϕ(ai)} is either
finite or co-finite. This definition does not depend on the choice of A over which
p is invariant. We will say that p is generically stable over A to express that p is
invariant over A and generically stable. Assuming NIP, there are various equivalent
definitions of generic-stability (see [8, Proposition 3.2]). For us, one of them will be
particularly important.

Fact 1.6 Assume T has NIP, and p ∈ S(C) is A-invariant. Then, p is generically
stable iff every/some Morley sequence in p over A is an indiscernible set over A.

Now, we will briefly discuss fsg and generic stability. For more details on these
and related notions see [7, 8].

Definition 1.7 Let G be a group definable in C by a formula G(x).
(i) G has fsg (finitely satisfiable generics) if there is a global type p containing G(x)
and a model M ≺ C, of cardinality less than the degree of saturation of C, such that
for all g, gp is finitely satisfiable in M .
(ii) G is generically stable if G has fsg and some global generic type of G is generically
stable.

We say that a group definable in a non-saturated model has one of the above
properties if the group defined by the same formula in a monster model has it.

In general. generic stability ofG is a strictly stronger notion than fsg, but it is easy
to check that these notions agree when G00 (the smallest type-definable subgroup of
bounded index) is definable and T has NIP (see [8, Section 6]). In the ω-categorical,
NIP context, G00 is definable, and thus we get

Remark 1.8 Assume G is a group definable in an ω-categorical structure with NIP.
Then, it has fsg iff it is generically stable.

At the end, we recall the notion of a strongly regular type from [15]. The geo-
metric meaning of this notion is explained in [15].

Definition 1.9 Let p(x) ∈ S(C) be non-algebraic. We say that p(x) is strongly
regular if, for some small A, it is A-invariant and for all B ⊇ A and a from the sort
of x, either a |= p|B or p|B ` p|Ba.
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2 ω-categorical rings with NIP

In this section, we prove Conjecture 0.3.

Theorem 2.1 Each ω-categorical ring with NIP is nilpotent-by-finite.

Proof. By Fact 1.2, everything boils down to showing that a semisimple, ω-categorical
ring R with NIP is finite. Suppose for a contradiction that R is infinite.

By ω-categoricity, the two sided ideals RrR, r ∈ R, are uniformly definable
(because ω-categoricity implies that there is K such that every element of any RrR
is the sum of at most K elements of the form r1rr2 for r1, r2 ∈ R). Thus, by NIP
and Fact 1.5, there is N ≥ 1 such that for all n ∈ ω and r0, . . . , rn ∈ R, there are
i1, . . . , iN ∈ {0, . . . , n} such that Rr0R ∩ · · · ∩RrnR = Rri1R ∩ · · · ∩RriNR.

Fact 1.1 tells us that R can be treated as a subring of the product
∏

i∈I Ri of
finite rings Ri with identity, which projects onto each Ri, and where there are only
finitely many pairwise distinct rings among the Ri’s, i ∈ I. Let πi be the projection
onto the ith coordinate. For i0, . . . , in ∈ I and rj ∈ Rij , we introduce the set

Rr0,...,rn
i0,...,in

=

{
r ∈ R :

n∧
j=0

πij(r) = rj

}
.

Using the assumption that R is infinite and Ri’s are finite, we see that for any
i0, . . . , in ∈ I,

R0,...,0
i0,...,in

is an infinite ideal of R. (∗)
Claim 1 There are pairwise distinct i0, i1, · · · ∈ I, non-nilpotent elements rj ∈ Rij ,
and elements ηj ∈ R such that for all n ∈ ω,

ηn ∈ R0,...,0,rn
i0,...,in

.

Proof of Claim 1. Suppose i0, . . . , in, r0, . . . , rn and η0, . . . , ηn have been chosen. Since
R is semisimple, it has no non-trivial nil ideals. Thus, by (*), R0,...,0

i0,...,in
contains a non-

nilpotent element ηn+1. As there are only finitely many different Ri’s and they are all
finite, we can find in+1 different from i0, . . . , in such that rn+1 := πin+1(ηn+1) ∈ Rin+1

is non-nilpotent. �

Claim 2 There are natural numbers n(0) < · · · < n(N) such that the sets

R
rn(0),0,...,0

in(0),...,in(N)
, R

0,rn(1),0,...,0

in(0),...,in(N)
, . . . , R

0,...,0,rn(N)

in(0),...,in(N)

are non-empty.

Before proving Claim 2, let us notice that it leads to a contradiction. Choose

a0, . . . , aN from R
rn(0),0,...,0

in(0),...,in(N)
, . . . , R

0,...,0,rn(N)

in(0),...,in(N)
, respectively. Put bk =

∑
l 6=k al for

k = 0, . . . , N . Then,

πin(j)
[Rb0R ∩ · · · ∩RbNR] = {0} for j = 0, . . . , N. (∗∗)
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On the other hand,
∏

k 6=j bk ∈
⋂
k 6=j RbkR for j = 0, . . . , N . We also have that

πin(j)
[
∏

k 6=j bk] = rNn(j) 6= 0 as rn(j) is non-nilpotent. So,

πin(j)
[
⋂
k 6=j

RbkR] 6= {0} for j = 0, . . . , N. (∗ ∗ ∗)

By (∗∗) and (∗ ∗ ∗), Rb0R ∩ · · · ∩RbNR 6=
⋂
k 6=j RbkR for all j = 0, . . . , N . This is a

contradiction with the choice of N .

Proof of Claim 2. Let c = maxi∈I |Ri|. Define recursively:

LN = c+ 1,
LN−k = cLN+···+LN−k+1+1 + 1 for k = 1, . . . , N − 1.

Put L0 = 0.
Consider any k ∈ {0, . . . , N−1}. Suppose each natural number α from the closed

interval [LN−k−1 + · · ·+ L0, LN−k + · · ·+ L0 − 1] has color

(πiLN−k+···+L1
(ηα), . . . , πiLN+···+L1

(ηα)) ∈
LN+···+L1∏

j=LN−k+···+L1

Rij .

In this way, the natural numbers from the interval [LN−k−1 + · · · + L0, LN−k +
· · · + L0 − 1] have been colored with at most cLN+···+LN−k+1+1 = LN−k − 1 colors.
Since there are LN−k such numbers, we can find natural numbers n(N − k − 1) <
n′(N − k − 1) from [LN−k−1 + · · · + L0, LN−k + · · · + L0 − 1] with the same color.
Put aN−k−1 = ηn(N−k−1) − ηn′(N−k−1). Then, πij(aN−k−1) = 0 for all j ∈ [LN + · · ·+
LN−k, LN + · · ·+L1]. Moreover, from the choice of ηn’s, we see that πij(aN−k−1) = 0
for all j < LN−k−1 + · · ·+ L0. Putting additionally n(N) = LN + · · ·+ L1, we get a
sequence n(0) < · · · < n(N) which satisfies the conclusion of the claim. �

3 ω-categorical groups with NIP

In this section, we investigate the structure of ω-categorical groups with NIP. First,
we make some observations on characteristically simple groups in this context. Then,
we prove Conjecture 0.2 under the additional assumptions of fsg or of the existence
of a strongly regular type.

As was mentioned in the introduction, each ω-categorical group is locally fi-
nite, and so, if it is infinite, it has an infinite, abelian subgroup [12, Corollary 2.5].
However, [16] yields examples of infinite, ω-categorical p-groups with no infinite,
definable, abelian subgroup.

Proposition 3.1 Let p be a prime number. Then every infinite, characteristically
simple, ω-categorical p-group G with NIP has an infinite, definable, abelian subgroup.
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Proof. For any x0, . . . , xn ∈ G, 〈x0, . . . , xn〉 is a finite p-group, and so C(x0) ∩ · · · ∩
C(xn) 6= {e}. Hence, if there were x0, . . . , xn ∈ G with C(x0)∩ · · · ∩C(xn) finite, we
would find xn+1, . . . , xm ∈ G such that Z(G) = C(x0) ∩ · · · ∩ C(xm) 6= {e}, which
would contradict the characteristic simplicity of G. So, we have proved the following

Claim For any n ∈ ω and x0, . . . , xn ∈ G, the intersection C(x0) ∩ · · · ∩ C(xn) is
infinite.

By the Claim, we can choose a sequence (xn)n∈ω of pairwise distinct elements of
G such that xn+1 ∈ C(x0)∩ · · · ∩C(xn) for all n ∈ ω. Put Gn = C(x0)∩ · · · ∩C(xn).
Then, x0, . . . , xn ∈ Z(Gn). Hence, |Z(Gn)| > n. On the other hand, by NIP and Fact
1.5, there is N such that for any y0, . . . , yn ∈ G, there are i1, . . . , iN ∈ {0, . . . , n} with
C(y0)∩· · ·∩C(yn) = C(yi1)∩· · ·∩C(yiN ). Thus, Gn = C(xin1 )∩· · ·∩C(xinN ) for some
in1 , . . . , i

n
N ∈ {0, . . . , n}. Since by ω-categoricity the set {tp(xin1 , . . . , xinN ) : n ∈ ω} is

finite, there is n ∈ ω such that Z(Gn) is infinite. �

The next proposition uses notation from Fact 0.1.

Proposition 3.2 For any non-abelian, finite, simple group F , neither B(F ) nor
B−(F ) have NIP.

Proof. Let C0, C1, . . . be disjoint clopen subsets of the Cantor set C not containing
x0. Choose g ∈ F \ Z(F ). Define a sequence (fi)i∈ω of elements of B−(F ) by:

fi(η) =

{
g if η ∈ Ci,
e if η /∈ Ci.

Now, suppose for a contradiction that B(F ) has NIP (the case when B−(F ) has
NIP is almost the same). Using NIP and Fact 1.5, and reordering Ci’s if necessary,
we can find N such that CB(F )(f0)∩· · ·∩CB(F )(fN) = CB(F )(f0)∩· · ·∩CB(F )(fN−1).

Take h ∈ F \ C(g) and define f ∈ B−(F ) by:

f(η) =

{
h if η ∈ CN ,
e if η /∈ CN .

Then, we see that f ∈ CB(F )(f0)∩ · · · ∩CB(F )(fN−1) \CB(F )(f0)∩ · · · ∩CB(F )(fN), a
contradiction. �

Proposition 3.3 Let p be a prime number. Let G be a characteristically simple p-
group interpretable over ∅ in an ω-categorical structure with NIP. Assume that G has
a global, non-algebraic type q which is generically stable over ∅. Then G is abelian.

Proof. Assume for simplicity that G is the ambient structure. Wlog G is a monster
model. Let (ai)i∈ω be a Morley sequence in q over ∅. By NIP and Fact 1.5, there
is N such that for any m, C(a0) ∩ · · · ∩ C(am) = C(ai1) ∩ · · · ∩ C(aiN ) for some
i1, . . . , iN ∈ {0, . . . ,m}. But, using Fact 1.6, (ai)i∈ω is an indiscernible set over
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∅. This implies that for any m ≥ N − 1 and 0 ≤ i1 < · · · < iN ≤ m, one has
C(a0) ∩ · · · ∩ C(am) = C(ai1) ∩ · · · ∩ C(aiN ).

Consider any (b0, b1, . . . ) |= q(ω)|∅. Then, there is a sequence (ci)i∈ω such that the
sequences (ai : i ∈ ω)_(ci : i ∈ ω) and (bi : i ∈ ω)_(ci : i ∈ ω) are indiscernible over
∅. Thus, by the last paragraph,

⋂
i∈ω C(ai) = C(c0) ∩ · · · ∩ C(cN−1) =

⋂
i∈ω C(bi).

But, 〈c0, . . . , cN−1〉 is a finite p-group, which implies that C(c0)∩· · ·∩C(cN−1) 6= {e}.
We conclude that

⋂
i∈ω C(ai) is a non-trivial, ∅-invariant (so ∅-definable) subgroup.

Since G is characteristically simple, we get
⋂
i∈ω C(ai) = G, which implies that

Z(G) 6= {e}, and so G = Z(G) once again by the characteristic simplicity of G. �

Theorem 3.4 Each ω-categorical group G with NIP and fsg is nilpotent-by-finite.

Proof. We can assume that G is infinite and it is a monster model. In fact, we
will work in a slightly more general context, where G is a group with fsg which is
interpretable (over ∅) in an ω-categorical monster model C = Ceq satisfying NIP.
Since G00 is ∅-invariant, it is ∅-definable by ω-categoricity. Thus, we can assume
that G = G00. Then, G has a unique global generic type [5, Proposition 0.26], which
must be ∅-invariant.

By ω-categoricty, there is a normal series {e} = G0 ≤ G1 ≤ · · · ≤ Gn = G of
∅-definable (in C) subgroups of G such that each Gi+1/Gi is characteristically simple
in the sense of (G,C), i.e. it does not have non-trivial, proper, subgroups normal in
G/Gi and invariant under Aut(C). In particular, each Gi+1/Gi is a characteristically
simple group. Indeed, it is clear that any characteristic subgroup of Gi+1/Gi is
invariant under Aut(C); the fact that such a subgroup is normal in G/Gi follows
from the fact that inner automorphisms of G induce automorphisms of Gi+1/Gi.

Our proof will be by induction on n (where n is a number for which there exists
a sequence as in the last paragraph). Consider the case n = 1. Then, G = G1 is
an infinite, characteristically simple group. Proposition 3.2 eliminates the possibility
that a countable elementary substructure of G is as in point (ii) of Fact 0.1. Propo-
sition 3.3 together with Remark 1.8 and the ∅-invariance of the unique generic type
of G eliminate the possibility from point (iii) of Fact 0.1. Thus, G must be abelian.

We turn to the induction step, where we assume that n ≥ 2. First, notice that
ω-categoricity implies that the upper central series Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ . . .
stabilizes after finitely many, say m, steps. So, replacing G by G/Zm(G), we can
assume that G is centerless. Such a replacement is possible, because the normal
series G0Zm(G)/Zm(G) ≤ G1Zm(G)/Zm(G) ≤ · · · ≤ GnZm(G)/Zm(G) = G/Zm(G)
consists of groups which are ∅-definable in C, and it is easy to check that each quotient
(Gi+1Zm(G)/Zm(G))/(GiZm(G)/Zm(G)) is characteristically simple in the sense of
(G/Zm(G),C).

Since n ≥ 2, by the induction hypothesis, we can assume that G1 is a non-trivial,
proper subgroup of G. Since G/G1 also has fsg, using the induction hypothesis, we
get that G/G1 is nilpotent-by-finite (notice that since we consider ∅-definability in
C, the normal series G1/G1 ≤ G2/G1 ≤ · · · ≤ Gn/G1 = G/G1 allows us to use the
induction hypothesis). So, it is nilpotent, because the Fitting subgroup of G/G1 is a
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nilpotent subgroup of finite index which is ∅-definable and so equal to G/G1 by the
connectedness of G/G1.

Let q be the unique global generic type of G, and (gi)i∈ω be a Morley sequence
in q over ∅. Since G/G1 is nilpotent, there is a minimal k such that the iterated
commutator [gk−1, [gk−2, . . . , [g1, g0] . . . ]] ∈ G1. Since g0 is generic over ∅ and G/G1

is infinite, we see that k ≥ 2. Define

hi = [gik+k−1, [gik+k−2, . . . , [gik+1, gik] . . . ]]

for i ∈ ω. Let (g′i)i∈ω be a Morley sequence in q over C. Put

h′i = [g′ik+k−1, [g
′
ik+k−2, . . . , [g

′
ik+1, g

′
ik] . . . ]]

for i ∈ ω. Since tp(g′k−1, . . . , g
′
0/C) = q(k) is invariant over ∅, the type r := tp(h′0/C)

is also invariant over ∅. Moreover, (hi)i∈ω is a Morley sequence in r over ∅. By the
generic stability of q and Fact 1.6, the sequence (gi)i∈ω is an indiscernible set, and so
(hi)i∈ω is an indiscernible set as well. We conclude that r is generically stable over
∅.

We claim that r is non-algebraic. To see this, let us define

aj := [g′k−1+j, [g
′
k−2, . . . , [g

′
1, g
′
0] . . . ]]

for j ∈ ω. We see that aj |= r. Moreover, aj1 6= aj2 whenever j1 < j2. Indeed,
if this is not the case, then for some j1 < j2, we have that g′j2g

′−1
j1
∈ C(h), where

h = [g′k−2, . . . , [g
′
1, g
′
0] . . . ]. By the minimality of k, h 6= e. But, g′j2 is generic over

g′j1 , h, and so g′j2g
′−1
j1

is generic over h. Thus, [G(C′) : C(h)] < ω, where C′ is a monster
model containing C and (g′i)i∈ω. This implies h ∈ Z(G(C′)) = {e}, a contradiction.

We have proved that r is a global, non-algebraic type of G1 which is generically
stable over ∅ (in particular, G1 is infinite). So, by Proposition 3.3 together with
Proposition 3.2 and Fact 0.1, G1 is abelian. Hence, G is solvable.

By Theorem 2.1 and Fact 1.3, we conclude that G is nilpotent-by-finite. �

Dugald Macpherson told me an alternative ending of the above proof, i.e. an
alternative proof of the fact that a solvable, ω-categorical group with NIP is nilpotent-
by-finite. Namely, by [2], we know that each countable, solvable, ω-categorical group
which is not nilpotent-by-finite interprets the countable, atomless Boolean algebra.
So, it remains to show that this algebra does not have NIP, which is an easy exercise.

Now, we will drop the NIP and fsg assumption, and instead we will assume the
existence of a strongly regular type. Recall the following question from [15].

Question 3.5 Suppose G is a group with at least one strongly regular type. Does it
imply that G is abelian?

Proposition 3.6 If G is any group with at least one strongly regular type, then all
non-central elements of G are conjugated.
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Proof. Taking an elementary extension of G, we can assume that there is a global
type p whose strong regularity is witnessed over G. Consider any non-central element
a ∈ G. Take b |= p|G.

Notice that if ab |= p|G, then the formula defining the conjugacy class of a belongs
to p|G. Thus, all elements a ∈ G for which ab |= p|G are in one conjugacy class. So,
it remains to show that the assumption ab 6|= p|G leads to contradiction.

This assumption and the strog regularity of p over G imply that tp(b/G) `
tp(b/ab, G). Thus, there is a formula ϕ(x, y) (without parameters) and g ∈ Gn

such that b |= ϕ(x, g) and |= (ϕ(x, g) → ax = ab). So, there is c ∈ G such that
ac = ab, and hence b ∈ C(a)c. This means that p|G ` ’x ∈ C(a)c’.

Consider two distinct realizations g1 and g2 of p|G (they exist because p is non-
algebraic).
Case 1 c ∈ C(a).
Then, p|G ` ’x ∈ C(a)’, so g1 ∈ C(a). Take h /∈ C(a). Then, hg1 /∈ C(a). Thus, by
the strong regularity of p over G, we conclude that tp(g1/G, h, hg1) = p|G, h, hg1 =
tp(g2/G, h, hg1). But, the formula x = h−1hg1 belongs to tp(g1/G, h, hg1) and does
not belong to tp(g2/G, h, hg1), a contradiction.
Case 2 c /∈ C(a).
Since g1 ∈ C(a)c, we have g1c

−1 ∈ C(a), and so g1c
−1 /∈ C(a)c. Hence, by the strong

regularity of p, we get tp(g1/G, g1c
−1) = p|G, g1c−1 = tp(g2/G, g1c

−1). But, the
formula x = g1c

−1c belongs to tp(g1/G, g1c
−1) and does not belong to tp(g2/G, g1c

−1),
a contradiction. �

Corollary 3.7 If G is a group with at least one strongly regular type, then all non-
central elements of G have infinite order. In particular, an ω-categorical group with
at least one strongly regular type is abelian.

Proof. This is a standard argument. We can assume that G 6= Z(G). Suppose
for a contradiction that there is a non-central element of finite order. By the last
proposition, G/Z(G) has one non-trivial conjugacy class. So, all non-trivial elements
of G/Z(G) have the same order, which must be a prime number p. If p = 2, then
G/Z(G) is abelian, so [G : Z(G)] ≤ 2, which implies G = Z(G), a contradiction.
Now, we assume that p is odd. Take a nontrivial g ∈ G/Z(G). Then, there is
h ∈ G/Z(G) such that h−1gh = g−1. So, g ∈ C(h2) \ C(h). Finally we get

C(h) = C(h2
p−1

) ) C(h2
p−2

) ) · · · ) C(h2) ) C(h),

which is impossible. �
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Instytut Matematyczny Uniwersytetu Wroc lawskiego
pl. Grunwaldzki 2/4, 50-384 Wroc law, Poland.
e-mail: kkrup@math.uni.wroc.pl

12


