
Fields interpretable in superrosy groups with NIP(the non-solvable 
ase)Krzysztof Krupi«ski∗Abstra
tLet G be a group de�nable in a monster model C of a rosy theory sat-isfying NIP. Assume that G has hereditarily �nitely satis�able generi
s and
1 < Uþ(G) < ∞. We prove that if G a
ts de�nably on a de�nable set ofUþ-rank 1, then, under some general assumption about this a
tion, there is anin�nite �eld interpretable in C. We 
on
lude that if G is not solvable-by-�niteand it a
ts faithfully and de�nably on a de�nable set of Uþ-rank 1, then there isan in�nite �eld interpretable in C. As an immediate 
onsequen
e, we get that if
G has a de�nable subgroup H su
h that Uþ(G) = Uþ(H) + 1 and G/

⋂
g∈G Hgis not solvable-by-�nite, then an in�nite �eld interpretable in C also exists.0 Introdu
tionThe paper is in some sense a 
ontinuation of [7℄. But now we 
on
entrate mainly onthe existen
e of �elds interpretable in groups. The general motivating question isQuestion 1 For a given in�nite, pure group 〈G, ·〉 (say of �nite dimension, whateverthe dimension means), does there exist an in�nite �eld interpretable in 〈G, ·〉?In this paper, the notion of dimension will be Uþ-rank, and so G will be rosy.Re
all that in the stable (�nite Morley rank) 
ontext Uþ-rank 
oin
ides with Las
arU-rank, and in the o-minimal 
ontext it 
oin
ides with the o-minimal dimension.Noti
e that in order to have a positive answer to the above question, G 
annot beabelian-by-�nite. Indeed, otherwise 〈G, ·〉 would be 1-based of �nite Las
ar U-rank,so it would not interpret an in�nite �eld (to see this, one should use the fa
t thatabelian groups are 1-based together with some fa
ts from [11, Chapters 2, 4℄, e.g.[11, Proposition 6.4℄).Assuming that G is not abelian-by-�nite, one has three 
ases to 
onsider:
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(1) G is not solvable-by-�nite,(2) G is solvable-by-�nite but not nilpotent-by-�nite,(3) G is nilpotent-by-�nite but not abelian-by-�nite.[10, Corollary 5.1℄ tells us that the answer to Question 1 is positive whenever Gis a non-abelian-by-�nite group de�nable in an o-minimal stru
ture.When G is of �nite Morley rank, the answer to Question 1 in Case (2) is positive.In Case (1), it is open, but there are some partial results (assuming that G is not abad group). Finally, in Case 3 the answer is negative by [3℄, but there are also somepositive partial answers, e.g. in [14, 6℄. For example, [6, Theorem 2.3℄ tells us thatthe answer is positive if the 
ommutator subgroup of G is torsion-free.A general goal is to answer Question 1 in a more general 
ontext than �niteMorley rank or o-minimal stru
tures, namely for G being dependent and of �niteUþ-rank. For some te
hni
al reason, in this paper, we will additionally assume that
G has hereditarily fsg. This still 
overs the situations when G is superstable of �niteU-rank and when G is a de�nably 
ompa
t group de�nable in an o-minimal expansionof a real 
losed �eld. The de�nitions of rosiness, NIP, fsg, and other relevant notionsare given in Se
tion 1.The main result of [7℄ says that if G is a dependent group of �nite Uþ-rank, thenQuestion 1 has a positive answer in Case (2).Of 
ourse, Baudis
h's theorem (see [3℄) implies that the answer in Case (3) isnegative for the 
lass of dependent groups of �nite Uþ-rank. However, a tiny modi�-
ation of the proof of [6, Theorem 2.3℄ yields a positive answer under the additionalassumption that the 
ommutator subgroup of G is torsion-free. In fa
t, even moreis true: every lo
ally nilpotent, non-abelian group with i

 on 
entralizers and withtorsion-free 
ommutator subgroup interprets an in�nite �eld. Indeed, the proof of [6,Theorem 2.3℄ produ
es an integral domain F interpretable in 〈G, ·〉 whose additivegroup is a subgroup of G′. So, the �eld of fra
tions of F is also interpretable in 〈G, ·〉,and sin
e G′ is torsion-free, this �eld is of 
hara
teristi
 0 and so in�nite.In this paper, we 
on
entrate on the existen
e of a �eld both in Case (1) andalso in the presen
e of a de�nable a
tion of a de�nable group on a de�nable set ofUþ-rank 1.For the next three results, we work in C

eq where C is a monster model of a (rosy)theory T satisfying NIP.One of the main 
on
lusions of this paper is the following theorem 
on
erning Case(1) and generalizing the part of Cherlin's result (see [12, Corollary 3.28℄) 
on
erningthe existen
e of a �eld (we do not generalize the part yielding the des
ription of G).Theorem 2 Suppose T is rosy with NIP, and G is a de�nable group having hered-itarily fsg and with Uþ(G) = n + 1 < ∞. Assume that G has a de�nable subgroup
H of Uþ-rank n, and G/

⋂
g∈G Hg is not solvable-by-�nite. Then there is an in�nite�eld interpretable in C [in 〈G, ·〉, if H is de�nable in 〈G, ·〉℄.2



As in [12℄, in order to prove the above theorem, we investigate de�nable a
tions ofde�nable groups on sets of Uþ-rank 1. However, in the �nite Morley rank situation,it was su�
ient to 
onsider a
tions on strongly minimal sets, whereas in our 
ase, weneed to work with sets of Uþ-rank 1. This and the fa
t that we do not have de�nable
onne
ted 
omponents makes our situation more 
ompli
ated and 
alls for di�erentarguments.The main e�ort is put into proving the following theorem, generalizing the partof the Hrushovski's result (see [12, Theorem 3.27℄) 
on
erning the existen
e of a �eld(we do not generalize the part yielding the des
ription of permutation groups). Asimilar result has also been proved for o-minimal stru
tures in [8, Theorem 1.5℄. Inthe whole paper, if G is a group a
ting on a set S and R ⊆ S, then GR denotes thepointwise stabilizer of R; if R = {s}, then Gs := GR.Theorem 3 Assume T is rosy with NIP, and let G be a de�nable group havinghereditarily fsg and with 1 < Uþ(G) < ∞. Assume that G a
ts de�nably on ade�nable set S of Uþ-rank 1 so that there is s ∈ S for whi
h no �nite index, de�nablesubgroup of Gs has normalizer of �nite index in G. Then there is an in�nite �eldinterpretable in C; in fa
t, it is interpretable in the two-sorted stru
ture with sorts Gand S equipped with the group operation on G and the a
tion of G on S.In parti
ular, assuming the �rst senten
e of the theorem, if G a
ts de�nably ona de�nable set S of Uþ-rank 1 so that at least one orbit is in�nite, and G does nothave a de�nable subgroup H with Uþ(H) = Uþ(G) − 1 and whose normalizer is of�nite index in G, then an in�nite interpretable �eld exists.From Theorem 3, we will get the following 
orollary, whi
h implies Theorem 2.Theorem 4 Assume T has NIP. Let G be a de�nable group having hereditarily fsgand with Uþ(G) < ∞. Assume that G a
ts faithfully and de�nably on a de�nableset S of Uþ-rank 1. If G is not solvable-by-�nite, then there is an in�nite �eldinterpretable in C; in fa
t, it is interpretable in the two-sorted stru
ture with sorts Gand S equipped with the group operation on G and the a
tion of G on S. Moreover,if T is rosy, then Uþ(G) < ω.It is worth mentioning that in the proofs of the above three theorems, the onlypla
es where the fsg assumption is used are the appli
ations of [4, Theorem 2℄ sayingthat any dependent group of Uþ-rank 2 and satisfying hereditarily fsg is solvable-by-�nite. So, if one was able to remove the fsg assumption from [4, Theorem 2℄, then it
ould be automati
ally removed from all the results of this paper.On the other hand, keeping the fsg assumption in the above theorems and an-alyzing our proofs, one 
an 
he
k that the NIP assumption 
an be repla
ed by the
ondition that G has i

.1 De�nitions and basi
 observationsIn this se
tion, we work in Ceq where C is a monster model of a theory T in a language
L. 3



First we re
all some things about rosy theories. For details on rosy theories, thereader is referred to [1, 5, 9℄, and on rosy groups to [4℄.
T is rosy if there is a ternary relation |⌣

∗ on small subsets of Ceq satisfyingall the basi
 properties of forking independen
e in simple theories ex
ept for theIndependen
e Theorem. Su
h a relation will be 
alled an independen
e relation.A formula δ(x, a) strongly divides over A if the formula is not almost over A and
{δ(x, a′)}a′|=tp(a/A) is k-in
onsistent for some k ∈ N.We say that δ(x, a) þ-divides over A if we 
an �nd some tuple c su
h that δ(x, a)strongly divides over Ac.A formula þ-forks over A if it implies a (�nite) disjun
tion of formulas whi
hþ-divide over A.We say that the type p(x) þ-divides over A if there is a formula in p(x) whi
hþ-divides over A; þ-forking is similarly de�ned. We say that a is þ-independent from
b over A, denoted a |⌣

þ
A

b, if tp (a/Ab) does not þ-fork over A.In rosy theories, þ-independen
e is the weakest independen
e relation in the sensethat a |⌣
∗

C
b implies a |⌣

þ
C

b for any independen
e relation |⌣
∗.In [5℄, the following has been noti
ed.Fa
t 1.1 T is rosy i� |⌣

þ has lo
al 
hara
ter.We de�ne Uþ-rank by means of |⌣
þ in the same way as Las
ar U-rank is de�nedin terms of |⌣. In rosy theories, this rank shares many ni
e properties of U-rank instable theories. In parti
ular, it satis�es Las
ar Inequalities.If D is A-de�nable, we put Uþ(D) = sup{Uþ(d/A) : d ∈ D}. If T is rosy, thisde�nition, not depending on A, provides a good, general notion of dimension of ade�nable set. Without rosiness, it is not 
lear whether it depends on A (be
ause it isnot 
lear whether Uþ-rank is preserved under taking non-þ-forking extensions). So,whenever Uþ(D) is 
onsidered without rosiness, we assume that the set A over whi
h

D is de�ned is distinguished. Sometimes A is 
lear from the 
ontext, e.g. 
omputingUþ(C), we have A = ∅. If C is many-sorted, then Uþ(C) is the supremum of theUþ-ranks of all sorts. In parti
ular, Uþ(C) < ∞ means that the Uþ-rank of every sortis less than ∞.Some ni
e properties of Uþ-rank in rosy theories are listed in Se
tion 1 of [7℄. Buteven without rosiness, we still have some good properties. For example, analyzingthe proof of Las
ar Inequalities [13, Theorem 5.1.6℄ and using [9, Lemma 2.1.6℄, weget that Uþ(ab/A) ≤ Uþ(a/bA)⊕Uþ(b/A) holds in any theory. Also, it follows easilythat if a ∈ acl(Ab), then Uþ(b/A) ≥ Uþ(a/A).Below we prove two basi
 fa
ts, whi
h are not written down expli
itly anywhere.They are a pie
e of folklore that has already been used in [4℄ and [7℄, and will beused in this paper in order to skip the assumption of rosiness of the theory T insome results. The �rst remark is pretty obvious. The proof of the se
ond one,however, turns out to be a bit more 
ompli
ated and it leads to some basi
 questionsformulated right below it.Remark 1.2 Any theory with Uþ(C) < ∞ is rosy.4



Proof. By assumption, Uþ(a) < ∞ for every a ∈ C. Thus, we get Uþ(a/A) < ∞ forany a ∈ C and A ⊆ Ceq. We know that Uþ(ab/A) ≤ Uþ(a/bA)⊕Uþ(b/A) holds in anytheory (without rosiness). Therefore, for any �nite tuple a in C and any A ⊆ Ceq, wehave Uþ(a/A) < ∞.Now if a = [a0]E is imaginary (a0 is a real tuple), then a ∈ acleq(a0). So,Uþ(a/A) ≤ Uþ(a0/A) for any A ⊆ C
eq.We have proved that every type in Ceq has an ordinal Uþ-rank. This implies thatthere is no in�nite sequen
e p0 ⊆ p1 ⊆ . . . of þ-forking extensions, and so |⌣

þ haslo
al 
hara
ter. We �nish using Fa
t 1.1. �The theories of ordinal Uþ-rank (i.e. with Uþ(C) < ∞) are 
alled superrosy. Wesay that T is of Uþ-rank α if Uþ(C) = α.It has been noti
ed in [2℄ that rosiness is preserved under taking redu
ts. Ourse
ond remark is related to this observation.Remark 1.3 Assume M with the universe M is interpretable in C. Let L′ be thesignature of M. Working in the language L′, we will use the subs
ript L′. Otherwisewe work in the language L. Uþ
M stands for Uþ-rank 
omputed in M.(i) If T is (super)rosy, so is ThL′(M).(ii) Assume T is rosy. Consider any m ∈ Meq and A ⊆ Meq. If Uþ

M(tpL′(m/A)) =
n < ω, then there is a 
ompletion p of tpL′(m/A) over A in the sense of C su
h thatUþ(p) ≥ n. In parti
ular, if T ′ is a redu
t of T and T is of Uþ-rank n < ω, then T ′is of Uþ-rank at most n.(iii) The 
on
lusion of (ii) holds with the assumption that T is rosy repla
ed byUþ(M) < ∞.(iv) If Uþ(M) < ∞, then ThL′(M) is superrosy.Proof. Assume for simpli
ity that M is interpretable in C over ∅. Of 
ourse, Meq isalso interpretable in C over ∅.Claim Let a, A, B be from Meq and suppose that tpL′(a/AB) þ-divides over A in thesense of M. Then there are a′ and B′ in Meq su
h that tpL′(a′B′/A) = tpL′(aB/A),and for any realization a′′ of tpL′(a′/AB′) one has that tpL(a′′/AB′) þ-divides over
A in the sense of C.Proof of Claim. By the assumption, there is a formula ϕ(x, y) ∈ L′ and b ∈ Meq su
hthat ϕ(x, b) ∈ tpL′(a/AB) and ϕ(x, b) þ-divides over A in the sense of M. Thus,there is c ∈ Meq su
h that tpL′(b/Ac) is non-algebrai
 and {ϕ(x, b′) : b′ |= tpL′(b/Ac)}is k-in
onsistent for some k. Hen
e, there is b′ |= tpL′(b/Ac) su
h that tpL(b′/Ac) isnon-algebrai
. We 
on
lude that ϕ(x, b′) þ-divides over A in the sense of C.To �nish, 
hoose any automorphism f of M �xing A pointwisely and mapping bto b′, and put a′ = f(a), B′ = f [B]. �We argue that under the assumption of (ii) or (iii), ThL′(M) is rosy. The 
asewhen T is rosy follows easily using lo
al þ-ranks (see [2, Corollary 5.3℄). Now 
onsider5



the 
ase when T is not ne
essarily rosy, but Uþ(M) < ∞. Then the Uþ-rank of Mequipped with the indu
ed stru
ture (i.e. with predi
ates for the tra
es of all ∅-de�nable subsets of the appropriate sorts of C) is also less than ∞, and hen
e byRemark 1.2, M with the indu
ed stru
ture is rosy. Thus, by [2, Corollary 5.3℄,
ThL′(M) is rosy.Now we give an indu
tive, with respe
t to n, proof of (ii) and (iii). The 
ase
n = 0 is obvious. For the indu
tion step, assume Uþ

M(tpL′(a/A)) ≥ n + 1 for some
a, A in Meq and n ∈ ω. Then there is B ⊇ A su
h that a is þ-dependent on B over
A in the sense of M and Uþ

M(tpL′(a/B)) ≥ n. Extending B and using rosiness of
ThL′(M) (in order to have that taking non-þ-forking extensions preserves Uþ-rank),we 
an assume that tpL′(a/B) þ-divides over A in the sense of M. By the Claim, weget that there are a′B′ |= tpL′(aB/A) su
h that for any a′′ |= tpL′(a′/B′), tpL(a′′/B′)þ-divides, and hen
e þ-forks over A in the sense of C. So, by the indu
tive hypothesis,Uþ(tpL(a′′/A)) ≥ n + 1 for some a′′ |= tpL′(a′/B′).The proof of (i) is similar. As in [2℄, using lo
al þ-ranks, we get that ThL′(M)is rosy. Now, suppose for a 
ontradi
tion that T is superrosy, but ThL′(M) is notsuperrosy. Using rosiness of ThL′(M), we get an in�nite sequen
e {∅} = B0 ⊆ B1 ⊆
B2 ⊆ · · · ⊆ Meq and a ∈ M su
h that tpL′(a/Bi+1) þ-divides over Bi in the senseof M. Using re
ursively the Claim, we �nd ai, i ∈ ω, and an in
reasing sequen
e ofsets B′

i, i ∈ ω, in Meq so that:(a) a0 = a,(b) aiB
′
i |= tpL′(aBi),(
) tpL′(ai/B

′
i) ⊆ tpL′(ai+1/B

′
i+1),(d) for every a′

i+1 |= tpL′(ai+1/B
′
i+1), tpL(a′

i+1/B
′
i+1) þ-divides, and hen
e þ-forksover B′

i in the sense of C.By 
ompa
tness and (
), there is a′ ∈ M realizing all types tpL′(ai/B
′
i), i ∈ ω.Thus, by (d), Uþ(a′) = ∞, a 
ontradi
tion with superrosiness of C.The proof of (iv) is almost the same as the proof of (i) �It is not 
lear, however, whether the above remark holds when n is an in�niteordinal (in parti
ular, whether taking redu
ts always de
reases Uþ-rank, even forin�nite ordinal ranks). A similar remark 
an also be proved for SU-rank in simpletheories, and one 
an also ask whether taking redu
ts ne
essarily de
reases SU-rank(even for in�nite ordinal ranks).In Se
tion 2, T will be assumed to have the non independen
e property (NIP).De�nition 1.4 We say that T has the NIP if there is no formula ϕ(x, y) and se-quen
e 〈ai〉i<ω su
h that for every w ⊆ ω, there is bw su
h that |= ϕ(ai, bw) i� i ∈ w.In the paper, whenever H and G are groups, then H < G means that H is a (notne
essarily proper) subgroup of G. 6



Re
all that we say that a de�nable group G has i

 (the uniform 
hain 
onditionon interse
tions of uniformly de�nable subgroups) if for every formula ϕ, there is
nϕ ∈ ω su
h that any 
hain of interse
tions of ϕ-de�nable subgroups of G has lengthat most nϕ.Re
all that the 
entralizer 
onne
ted 
omponent of a de�nable group G is theinterse
tion of all 
entralizers C(g), g ∈ G, of �nite index in G. The group G is saidto be 
entralizer 
onne
ted if it is equal to its 
entralizer 
onne
ted 
omponent. Ifwe have i

 (or only i

 on 
entralizers), then the 
entralizer 
onne
ted 
omponentis a de�nable, �nite index subgroup of G. In the proof of Theorem 2.1, we will needan easy fa
t that if G is 
entralizer 
onne
ted and Z(G) is �nite, then G/Z(G) is
enterless.For this paper, an important 
onsequen
e of NIP and rosiness is [4, Proposition1.7℄:Fa
t 1.5 Suppose T is rosy and has NIP. Then any de�nable group G has i

.We will also use [7, Theorem 3℄:Fa
t 1.6 Assume T has NIP and G is a de�nable group of �nite Uþ-rank. Assumethat G is solvable-by-�nite but not nilpotent-by-�nite. Then there is an in�nite �eldinterpretable in 〈G, ·〉.In [7, Theorem 3℄, rosiness of T was additionally assumed, but we see, using Remark1.3, that it is not ne
essary.One more property that we are going to assume is fsg (�nitely satis�able gener-i
s). As was mentioned at the end of the introdu
tion, we do not use this propertyanywhere in our proofs ex
ept for the appli
ations of [4, Theorem 2℄. That is why,in this paper, we restri
t ourselves only to giving the de�nition of fsg and re
alling[4, Theorem 2℄.De�nition 1.7 A de�nable group G de�ned by a formula G(x) has �nitely satis�ablegeneri
s (or fsg) if there is a global type p 
ontaining G(x) and a model M ≺ C of
ardinality less than the degree of saturation of C, su
h that for all g, gp is �nitelysatis�able in M (i.e. ea
h formula in gp de�nes a set whi
h interse
ts M). We saythat G has hereditarily fsg if every de�nable subgroup of G also has fsg.It is easy to 
he
k that if G has fsg and N is a de�nable, normal subgroup of G,then G/N also has fsg.Fa
t 1.8 Assume T has NIP and G is a de�nable group satisfying hereditarily fsg.If Uþ(G) = 2, then G is solvable-by-�nite.

7



2 Getting �eldsIn this se
tion, TTT is a theory with NIP, and we work in Ceq where C is a monstermodel of T . Whenever we have a de�nable group G a
ting de�nably on a de�nableset S, M will denote the two-sorted stru
ture with sorts G and S equipped with thegroup operation on G and the a
tion of G on S.First we will show a variant of Theorem 3, whi
h will allow us to prove all threetheorems from the introdu
tion.Theorem 2.1 Assume T is rosy, and let G be a de�nable group having hereditarilyfsg and with 1 < Uþ(G) < ∞. Assume that G a
ts de�nably on a de�nable set
S of Uþ-rank 1 so that there is s ∈ S for whi
h no in�nite, de�nable subgroup Hof Gs of �nite index in the interse
tion of stabilizers of some points in S and withUþ(G/H) ≤ 2 has normalizer of �nite index in G. Then there is an in�nite �eldinterpretable in C.The following strengthening of Theorem 2.1 
an be proved in almost the sameway as Theorem 2.1 is proved below.Theorem 2.2 Assume T is rosy, and let G be a de�nable group having hereditarilyfsg and with 1 < Uþ(G) < ∞. Assume that G a
ts de�nably on a de�nable set S ofUþ-rank 1 so that there is s ∈ S for whi
h no in�nite, de�nable in Meq subgroup Hof Gs of �nite index in the interse
tion of stabilizers of some points in S and withUþ(G/H) ≤ 2 has normalizer of �nite index in G. Then there is an in�nite �eldinterpretable in M.Proof of Theorem 2.1. The proof is by indu
tion on Uþ(G). First 
onsider the
ase Uþ(G) = 2. By Fa
t 1.8, G is solvable-by-�nite (this is the only pla
e in theproof where the fsg assumption is used). So, using Fa
t 1.6, either we get a �eldinterpretable in the pure group G and we are done, or else G is nilpotent-by-�nite.Sin
e by rosiness and NIP we have i

 on 
entralizers, using [7, Corollary 3.3(ii)℄and repla
ing G by a de�nable subgroup of �nite index, we 
an assume that G isnilpotent and 
entralizer 
onne
ted. Then Z(G) is in�nite (otherwise G/Z(G) wouldbe 
enterless, a 
ontradi
tion). Sin
e Uþ(G) = 2 > Uþ(S), Gs is in�nite. So, byassumption, [G : Gs] must be also in�nite, and so Gs is in�nite. Repla
ing S by
Gs, the a
tion be
omes transitive. Sin
e GS �G, by assumption, GS is �nite. Thus,repla
ing G by G/GS, we 
an assume that the a
tion is additionally faithful.Noti
e that there is no non-trivial z ∈ Z(G) and x ∈ S with zx = x. Otherwise
z(gx) = (zg)x = (gz)x = g(zx) = gx for every g ∈ G, and so z ∈ GS by transitivityof the a
tion. This is a 
ontradi
tion with faithfulness.We have proved that Gs ∩ Z(G) = {e}. But N(Gs) ⊇ 〈Gs, Z(G)〉 and both Gsand Z(G) are in�nite, whi
h implies that Uþ(N(Gs)) = 2. Thus, [G : N(Gs)] is�nite, a 
ontradi
tion.Now assume that Uþ(G) ≥ 3 and the theorem holds for groups of smaller Uþ-rank.8



As in the base step, we see that Gs is in�nite. So, repla
ing S by Gs, we
an assume that the a
tion is transitive. Sin
e GS � G, by assumption, we getUþ(G/GS) ≥ 3. So, repla
ing G by G/GS, we 
an assume that the a
tion of G on Sis also faithful. This gives us easily that for any in�nite de�nable subgroup H of G,there is t ∈ S with Ht in�nite. Indeed, otherwise by i

, {e} = HS =
⋂

t∈S Ht is aninterse
tion of �nitely many subgroups Ht, all of �nite index in H . So, H is �nite, a
ontradi
tion.Claim 1 Uþ(G) < ω.Proof of Claim 1. Suppose for a 
ontradi
tion that Uþ(G) ≥ ω. We have that
[G : Gs] is in�nite, so Uþ(Gs) = 1, and hen
e Uþ(G/Gs) = Uþ(Gs) = 1. Thus,Uþ(Gs) + 1 = Uþ(Gs) + Uþ(G/Gs) ≤ Uþ(G) ≤ Uþ(Gs) ⊕ Uþ(G/Gs) = Uþ(Gs) + 1.So, we get Uþ(G) = Uþ(Gs) + 1. Therefore,Uþ(G) > Uþ(Gs) ≥ ω.Sin
e Gs is in�nite, there is s1 ∈ S with Gss1 in�nite and so of Uþ-rank 1. Asabove, we get Uþ(Gs) > Uþ(Gss1

) ≥ ω.We 
ontinue this pro
edure and obtain si ∈ S, i ≥ 1, so thatUþ(G) > Uþ(Gs) > Uþ(Gss1
) > Uþ(Gss1s2

) > . . . ,a 
ontradi
tion. �Let H be the 
olle
tion of all de�nable, �nite index subgroups H of Gs with theproperty that for any g ∈ G, if [H : H ∩ Hg] < ω, then H = Hg.Claim 2 H is nonempty.Proof of Claim 2. By i

, the interse
tion of all Gg
s su
h that [Gs : Gs ∩ Gg

s] < ωis a de�nable, �nite index subgroup of Gs. Denote this subgroup by H . We seethat if [H : H ∩ Hg] < ω, then H = H ∩ Hg, and so H < Hg. This implies
Hg−1

< H . On the other hand, Uþ(Hg−1

) = Uþ(H), so by Las
ar Inequalities forgroups, [H : Hg−1

] < ω. Thus, Hg−1

= H , so H = Hg. We have seen that H ∈ H.
� Consider any H ∈ H. It is in�nite, so there is t ∈ S with Ht in�nite. Sin
eUþ(S) = 1, there are only �nitely many in�nite orbits on S under H ; denote themby o0, . . . , on. For i = 0, . . . , n, put

Hi = Hoi
� Hand

δ(H) = min
0≤i≤n

Uþ(Hi).9



From now on, we 
hoose H ∈ H with maximal possible δ(H) (we 
an do it byClaims 1 and 2).Claim 3 Assume δ(H) ≤ Uþ(H) − 2. Then there is i su
h that H/Hi a
ting on oisatis�es the assumptions of the theorem. Thus, sin
e Uþ(H/Hi) ≤ Uþ(H) < Uþ(G),by the indu
tive hypothesis, there is an in�nite, interpretable �eld.Proof of Claim 3. Let Hi1 , . . . , Hik be all Hi's for whi
h Uþ(Hi) = δ(H). Supposethat for every j = 1, . . . , k, H/Hij a
ting on oij does not satisfy the assumption of thetheorem (it is enough to show that this leads to a 
ontradi
tion). Then for every j =
1, . . . , k, there is a nonempty Sj ⊆ oij and an in�nite, de�nable, �nite index subgroup
Kj/Hij of (H/Hij)Sj

= HSj
/Hij su
h that [H/Hij : NH/Hij

(Kj/Hij )] is �nite. Thisimplies [H : NH(Kj)] < ω. So, by an argument similar to the proof of Claim 2, we
an �nd L ∈ H su
h that L <
⋂k

j=1 NH(Kj) (namely, de�ne L as the interse
tion ofall (⋂k
j=1 NH(Kj))

g su
h that [
⋂k

j=1 NH(Kj) :
⋂k

j=1 NH(Kj)∩(
⋂k

j=1 NH(Kj))
g] < ω.).By the de�nition of H, L � H .We will be done if we prove that δ(L) > δ(H) be
ause this will be a 
ontradi
tionwith maximality of δ(H).Sin
e [H : L] < ω, ea
h oi is a union of �nitely many in�nite orbits oi

0 ∪ · · · ∪ oi
niunder L. For i = 0, . . . , n and j = 0, . . . , ni, de�ne

Li
j = Loi

j
.We need to prove that for any i ∈ {0, . . . , n} and j ∈ {0, . . . , ni}, Uþ(Li

j) > δ(H).So, 
onsider any i, j as above.Case 1 i /∈ {i1, . . . , ik}.Put H i
j = Hoi

j
. Then H > H i

j > Hi. Sin
e [H : L] < ω, we also have that L∩H i
j = Li

jhas �nite index in H i
j. Thus, Uþ(Li

j) ≥ Uþ(Hi) > δ(H) (the last inequality is truebe
ause of the assumption of Case 1).Case 2 i = il for some l ∈ {1, . . . , k}.Then δ(H) = Uþ(Hi), so it is enough to show that Uþ(Li
j) > Uþ(Hi).Take any x ∈ Sl. Then x ∈ oi

m for some m ∈ {0, . . . , ni}.Sub
laim Uþ(Li
m) > Uþ(Hi).Proof of Sub
laim. By the 
hoi
e of Kj 's, [Kl : Hi] ≥ ω. On the other hand, sin
e

[H : L] < ω and Kl < H , we have [Kl : L ∩ Kl] < ω. From these two observations,we obtain
(∗) Uþ(L ∩ Kl) > Uþ(Hi).As L normalizes Kl, L∩Kl �L. We also know that L∩Kl stabilizes x. Therefore,for any h1 ∈ L and h2 ∈ L∩Kl, we have h2h1x = h1h

′
2x = h1x for some h′

2 ∈ L∩Kl.Moreover, Lx = oi
m. Hen
e, L∩Kl < Li

m. In virtue of (∗), the proof of the Sub
laimis 
ompleted. �10



There is h ∈ H su
h that hoi
m ∩ oi

j 6= ∅. Sin
e L�H , we easily get hoi
m = oi

j. So,for any g ∈ L, we have the following equivalen
es:
g ∈ Li

m ⇐⇒ (∀y ∈ oi
m)(hgy = hy) ⇐⇒ (∀z ∈ oi

j)(g
hz = z) ⇐⇒ gh ∈ Li

j .This means that (Li
m)h = Li

j . Hen
e, by the Sub
laim, Uþ(Li
j) = Uþ(Li

m) > Uþ(Hi),whi
h 
ompletes the proof of Claim 3. �By Claim 3, in order to �nish the proof of the theorem, it remains to show that the
ondition δ(H) = Uþ(H)−1 leads to a 
ontradi
tion. So, assume δ(H) = Uþ(H)−1.Then Uþ(Hi) = Uþ(H) − 1 = Uþ(G) − 2 for every i = 0, . . . , n.Claim 4 There are in�nite, de�nable normal subgroups Li of H for i = 0, . . . , n su
hthat:(i) Li is a �nite index subgroup of Hi,(ii) for any g ∈ G, Lg
i a
ts trivially on goi,(iii) for any i, j ∈ {0, . . . , n} and g ∈ G, if [Li : Li ∩ Lg

j ] < ω, then Li = Lg
j .Proof of Claim 4. We de�ne Li as the interse
tion of all groups Hg

j for whi
h [Hi :
Hi∩Hg

j ] is �nite. By i

, ea
h Li is de�nable and of �nite index in Hi. Sin
e Hi �H ,we see that Li � H . Thus, (i) and so (ii) holds.To see (iii), 
onsider any i, j ∈ {0, . . . , n} and g ∈ G su
h that [Li : Li ∩Lg
j ] < ω.Then the property [Hi : Li] < ω implies [Hi : Li∩Lg

j ] < ω. We also know that Li∩Lg
jis an interse
tion of groups of the form Ha

k . Therefore, Li = Li ∩ Lg
j , i.e. Li < Lg

j .Thus, Lg−1

i < Lj . Sin
e Uþ(Lg−1

i ) = Uþ(Li) = Uþ(Hi) = Uþ(H) − 1 = Uþ(Lj), weget [Lj : Lg−1

i ] < ω. On the other hand, Lg−1

i is an interse
tion of groups of the form
Ha

k . Hen
e, Lj = Lg−1

i , i.e. Li = Lg
j . �By transitivity of the a
tion of G on S, we 
an 
hoose g ∈ G so that gs ∈ o0.Sin
e o0 is an in�nite orbit under H and Hs = {s}, we see that g /∈ N(H). But

H ∈ H, so we 
on
lude that [H : H ∩ Hg] is in�nite.Now we will show that for every i ∈ {0, . . . , n},
(!) [L0 : L0 ∩ Lg

i ] ≥ ω and [Lg
i : L0 ∩ Lg

i ] ≥ ω.If any of the above 
onditions is false, then [L0 : L0∩Lg
i ] < ω or [Li : Li∩Lg−1

0 ] <
ω. Thus, by Claim 4, L0 = Lg

i . It follows that 〈H, Hg〉 < N(L0). Sin
e [H :
H ∩ Hg] ≥ ω, we get [N(L0) : Hg] ≥ ω. Hen
e, Uþ(N(L0)) ≥ Uþ(Hg) + 1 = Uþ(G).So,

[G : N(L0)] < ω.On the other hand, the fa
t that H0 = G{s}∪o0
∩ H has �nite index in G{s}∪o0

and
[H0 : L0] < ω implies that

[G{s}∪o0
: L0] < ω.Moreover, Uþ(L0) = Uþ(G) − 2 ≥ 1, soUþ(G/L0) = 2 and L0 is in�nite.11



All these three observations together give us a 
ontradi
tion with the assumption ofthe theorem. So, (!) has been proved.Noti
e that there are only �nitely many orbits on S under H . We know thatthere are �nitely many in�nite orbits, so we need to 
he
k that there are �nitelymany �nite orbits. For any a ∈ G, we have Gas = Ga
s . Thus, we see that Has being�nite is equivalent to any of the following:

[H : H ∩ Ga
s ] < ω ⇐⇒ [H : H ∩ Ha] < ω ⇐⇒ H = Ha ⇐⇒ a ∈ N(H),and the last 
ondition implies as ∈ N(H)s. By the assumption of the theorem,

[G : N(H)] ≥ ω. But also Uþ(H) = Uþ(G)− 1. Thus, [N(H) : H ] < ω. So, from theprevious 
omputation, there are only �nitely elements in S with �nite orbits under
H . By the above observation, we 
an 
hoose i ∈ {0, . . . , n} so that o0 ∩ goi 6= ∅.Choose an element g1s ∈ o0 ∩ goi.Re
all that two subgroups G1 and G2 of a given group are said to be 
ommen-surable (symboli
ally G1 ∼ G2) if [G1 : G1 ∩ G2] and [G2 : G1 ∩ G2] are �nite. ∼ isalways an equivalen
e relation.Sin
e gs ∈ o0, L0 < Gg

s. Also, Hg is a �nite index subgroup of Gg
s. Hen
e,

(!!) L0 ∼ L0 ∩ Hg.Sin
e g1s ∈ o0, L0 < Gg1

s . So, as above
(!!!) L0 ∼ L0 ∩ Hg1.Sin
e g1s ∈ goi and Lg

i a
ts trivially on goi, we get Lg
i < Gg1

s . Therefore,
(!!!!) Lg

i ∼ Lg
i ∩ Hg1.We know that Lg1

0 � Hg1. So, 〈L0 ∩ Hg1, Lg
i ∩ Hg1〉 < N(Lg1

0 ). In parti
ular,by (!!!!), Lg
i ∼ Lg

i ∩ Hg1 < N(Lg1

0 ) ∩ Hg. Similarly, by (!!) and (!!!), L0 ∼ L0 ∩
Hg1 ∩ Hg < N(Lg1

0 ) ∩ Hg. Using the last two observations together with (!), weget [N(Lg1

0 ) ∩ Hg : L0 ∩ Hg1 ∩ Hg] ≥ ω. On the other hand, Uþ(L0 ∩ Hg1 ∩ Hg) =Uþ(L0) = Uþ(H) − 1 = Uþ(Hg) − 1. So, we 
on
lude that
(⋄) [Hg : N(Lg1

0 ) ∩ Hg] < ω.We 
laim that
(⋄⋄) [Hg : Hg ∩ Hg1] ≥ ω.Suppose it is not true. Then [H : H ∩ Hg−1g1 ] < ω. So, H = Hg−1g1, whi
h implies

Hg = Hg1. Hen
e, Hg(g1s) = g1Hs = {g1s}. But g1s ∈ goi, so there is t ∈ oi su
hthat g1s = gt, and so Hg(g1s) = gHt = goi is in�nite. This is a 
ontradi
tion.Of 
ourse, we have Hg1 ∪ (N(Lg1

0 ) ∩ Hg)) ⊆ N(Lg1

0 ). So, by (⋄) and (⋄⋄), we get
[N(Lg1

0 ) : Hg1] ≥ ω, and so [N(L0) : H ] ≥ ω. Sin
e Uþ(H) = Uþ(G)− 1, we see that
[G : N(L0)] < ω. It was shown in the proof of (!) that this gives us a 
ontradi
tion12



with the assumption of the theorem. So, the proof of the theorem is 
ompleted. �Proof of Theorem 2.2. The proof is almost the same as the proof of Theorem 2.1.The only di�eren
e is that we have to work with obje
ts de�nable in Meq (whereasUþ-ranks should still be 
omputed in C). �Before we turn to further results, let us make a few 
omments 
on
erning Theorem2.1.Noti
e that, using only i

 instead of the full NIP assumption, the above indu
tiveproof always redu
es the situation to a smaller Uþ-rank, and �nally leads to the 
aseUþ(G) = 2. Then we get a �eld via Fa
t 1.6 or even [4, Theorem 4.5℄. Sin
e in [4,Theorem 4.5℄, it is enough to assume i

 instead of NIP, we see that in Theorems2.1 and 2.2, NIP 
an be also repla
ed by i

. Looking at the proofs that follows, thiswill easily imply that in Theorems 2, 3, 4, one 
an also repla
e NIP by i

 (keepingthe fsg assumption).Noti
e that if we strengthen the assumption of Theorem 2.1 by dropping the
ondition Uþ(G/H) ≤ 2, then the existen
e of an in�nite �eld interpretable in Mfollows easily from this theorem and Remark 1.3. To see this, it is enough to showthat G a
ting on S 
onsidered in M satis�es the assumptions of the theorem. ByRemark 1.3, it is 
lear that M is rosy with NIP, and working in M, we have thatUþ
M(G) < ∞, Uþ

M(S) = 1, G has hereditarily fsg, the a
tion of G on S is de�nable,and no in�nite, de�nable subgroup H of Gs of �nite index in the interse
tion ofstabilizers of some points in S has normalizer of �nite index in G. The only remainingassumption is that Uþ
M(G) > 1. However, sin
e by the assumption of the theorem

Gs is in�nite (otherwise 1 = Uþ(S) ≥ Uþ(Gs) = Uþ(G/Gs) ≥ 2, a 
ontradi
tion)and [G : Gs] ≥ ω, we get Uþ
M(G) ≥ Uþ

M(Gs) + Uþ
M(G/Gs) ≥ 2.Now we will apply Theorem 2.2 to get Theorem 3. In fa
t, we will use the weakerversion of Theorem 2.2 in whi
h the 
ondition Uþ(G/H) ≤ 2 is dropped, and we willprove the following strengthening of Theorem 3.Theorem 2.3 Assume T is rosy, and let G be a de�nable group having hereditarilyfsg and with 1 < Uþ(G) < ∞. Assume that G a
ts de�nably on a de�nable set S ofUþ-rank 1 so that there is s ∈ S for whi
h no �nite index, de�nable in Meq subgroupof Gs has normalizer of �nite index in G. Then there is an in�nite �eld interpretablein M.Proof. By the assumption of the theorem, [G : Gs] ≥ ω. So, Gs is in�nite. Hen
e,repla
ing S by Gs, we 
an assume that the a
tion of G on S is transitive. Also by theassumption, Uþ(G/GS) > 1. Indeed, if Uþ(G/GS) = 1, then [Gs : GS] < ω, whi
htogether with GS �G 
ontradi
ts the assumption. So, repla
ing G by G/GS, we 
anassume that G a
ts faithfully on S. As in the proof of Theorem 2.1, this implies thatUþ(G) < ∞.Let G be the 
olle
tion of all �nite index subgroups of G whi
h are de�nable in

Meq. 13



Consider any H ∈ G. Sin
e [G : H ] < ω, Hs is in�nite. By the assumption thatUþ(S) = 1, there are only �nitely many in�nite orbits under H ; denote them by
o0, . . . , on. For i = 0, . . . , n, put

Hi = Hoi
� Hand

∆(H) = max
0≤i≤n

Uþ(Hi).From now on, we 
hoose H ∈ G with maximal possible ∆(H). Take i with
∆(H) = Uþ(Hi).By the assumption of the theorem, ∆(H) < Uþ(H) − 1. Indeed, sin
e G a
tstransitively on S, there is g ∈ G su
h that s ∈ goi. As Gs > Hg

i � Hg and [G :
Hg] < ω, by the assumption of the theorem, we get [Gs : Hg

i ] ≥ ω, and so ∆(H) =Uþ(Hi) = Uþ(Hg
i ) < Uþ(G) − 1 = Uþ(H) − 1.Sin
e H/Hi and the a
tion of H/Hi on S are de�nable in Meq, the following
laim will �nish the proof.Claim H/Hi a
ting on oi satis�es the assumption of Theorem 2.2.Proof of Claim. Of 
ourse, Uþ(H/Hi) ≤ Uþ(H) = Uþ(G) < ω and Uþ(H/Hi) =Uþ(H) − Uþ(Hi) = Uþ(H) − ∆(H) > 1. Moreover, Uþ(oi) = 1. Thus, if theassumption of Theorem 2.2 fails, there is a nonempty Si ⊆ oi and an in�nite, de�nablein Meq, �nite index subgroup Ki/Hi of (H/Hi)Si

= HSi
/Hi su
h that [H/Hi :

NH/Hi
(Ki/Hi)] is �nite. This implies [H : NH(Ki)] < ω. Put N = NH(Ki). We seethat N ∈ G.We will be done if we prove that ∆(N) > ∆(H) be
ause this will be a 
ontradi
-tion with maximality of ∆(H).Sin
e [H : N ] < ω, we have that oi is the union of �nitely many in�nite orbits

oi
0 ∪ · · · ∪ oi

ni
under N . Take any si ∈ Si. Then si ∈ oi

j for some j. Put N i
j = Noi

j
.We have that Ki�N and Ki stabilizes si. Hen
e, Ki stabilizes oi

j, and so Ki < N i
j .On the other hand, [Ki : Hi] ≥ ω. So, Uþ(N i

j) > Uþ(Hi). Thus, we 
on
lude that
∆(N) > ∆(H). �Observe that in the above proof, one 
an use Theorem 2.1 (even with the strongerassumption obtained by dropping the 
ondition Uþ(G/H) ≤ 2) instead of Theorem2.2. Indeed, it is 
lear be
ause applying Remark 1.3 at the beginning of the aboveproof, we 
an assume that C = M.Now, we will show that if one 
onsiders the assumption Uþ(G) > 1 in a strongersense, namely that for every (not only for some) set A of parameters over whi
h
G is de�ned, there is g ∈ G with Uþ(g/A) > 1, then the assumption that T isrosy 
an be eliminated from Theorem 2.3. Indeed, by Remark 1.3, M is rosy, andworking in M, all assumptions of Theorem 2.3 ex
ept for Uþ

M(G) > 1 are 
learlysatis�ed. So, it remains to show that Uþ
M(G) > 1. By the assumption of the theorem,

[G : Gs] is in�nite. Moreover, there is a de�nable bije
tion between G/Gs and o(s).So, 
omputing Uþ-rank over a set of parameters over whi
h everything is de�ned,14



Uþ(G/Gs) = 1. Thus, Gs is in�nite be
ause otherwise, 
omputing Uþ-rank over someset of parameters, Uþ(G) = 1, a 
ontradi
tion. So, working in M, G has an in�nite,de�nable subgroup of in�nite index (namely Gs). Therefore, Uþ
M(G) ≥ 2.Now, using Theorem 3, we will prove Theorem 4.Proof of Theorem 4. By Remark 1.3, we see that M is superrosy and Uþ

M(S) = 1.So, it is enough to prove Theorem 4 under the assumption that T is rosy.To see that Uþ(G) < ω, we use i

 and faithfullness of the a
tion in the same wayas in the proof of Theorem 2.1.In order to get the existen
e of a �eld, we argue by indu
tion on Uþ(G). Supposethe theorem is true for groups of Uþ-rank smaller than Uþ(G). By Remark 1.3, we
an assume that C = M (but even without this redu
tion, the argument below worksusing Theorem 2.3 insead of Theorem 3). Consider two 
ases.Case 1 There is a de�nable (inMeq) subgroup H of G su
h that Uþ(G) = Uþ(H)+1and [G : N(H)] < ω.If H is solvable-by-�nite, then using i

 and [7, Remark 3.3(i)℄, H has a de�nablein 〈H, ·〉, normal subgroup H0 of �nite index whi
h is solvable. By i

, H1 :=⋂
g∈N(H) Hg

0 is a �nite index, de�nable (in Meq) subgroup of H0 whose normalizer
ontains N(H). So, repla
ing H by H1, we 
an assume that H is solvable. ButUþ(N(H)/H) = 1, so N(H)/H is solvable-by-�nite in virtue of Fa
t 1.8 (in fa
t, itis even abelian-by-�nite by [4, Theorem 1℄). Thus, G is solvable-by-�nite, a 
ontra-di
tion.We have proved that H is not solvable-by-�nite, and so H a
ting on S satis�esthe assumptions of the theorem. On the other hand, Uþ(H) < Uþ(G). So, by theindu
tive hypothesis, we get an in�nite �eld interpretable in M.Case 2 Case 1 does not hold.Sin
e G is not solvable-by-�nite, Uþ(G) > 1. By faithfullness and i

, there is s ∈ Sfor whi
h Gs is in�nite, i.e. [G : Gs] ≥ ω. Then s witnesses that G a
ting on S sat-is�es the assumption of Theorem 3. So, we get an in�nite �eld interpretable inM. �In fa
t, even Theorem 2.1 is strong enough to get Theorem 4. To see this, oneshould repeat the above proof of Theorem 4 modifying Case 1 in the following way:There is an in�nite, de�nable subgroup H of G su
h that 1 ≤ Uþ(G) − Uþ(H) ≤ 2and [G : N(H)] < ω.Proof of Theorem 2. Put Z =
⋂

g∈G Hg. It is 
lear that G/Z a
ting on G/H by
(aZ) · (gH) = agH satis�es the assumption of Theorem 4. �It was mentioned in the introdu
tion that some of our theorems generalize theappropriate results about the �nite Morley rank 
ase. Now, we will explain why.We 
laim that Theorem 3 generalizes the part of [12, Theorem 3.27℄ 
on
erningthe existen
e of a �eld. More pre
isely, we will show that the assumption of [12,15



Theorem 3.27℄ implies the assumption of Theorem 3.Re
all that in [12, Theorem 3.27℄, T is stable and G is a de�nable, transitivegroup of permutations of a strongly minimal set S. It is 
he
ked right before [12,Theorem 3.27℄ that the Morley rank of G is �nite. Thus, Uþ(G) < ω. In order toget a �eld, it is also assumed in [12℄ that the Morley rank of G is at least 2. Chooseany s ∈ S. Then Gs must be in�nite. On the other hand, [G : Gs] is also in�nite.Hen
e, Uþ(G) ≥ 2. So, in order to show that in this situation, the assumption ofTheorem 3 is satis�ed, it is enough to prove that there is no de�nable subgroup Hof Gs su
h that [G : N(H)] < ω. Suppose for a 
ontradi
tion that su
h an H exists.By transitivity of the a
tion, strong minimality of S and the fa
t that [G : G0] < ω,we get that G0 a
ts transitively on S. Thus, N(H) also a
ts transitively on S. Takeany non-trivial h ∈ H . Then for any g ∈ N(H), we have h(gs) = g(hg−1

s) = gs as
hg−1

∈ Gs. So, h ∈ GS = {e}, a 
ontradi
tion.Another remark from the introdu
tion says that Theorem 2 generalizes the partof [12, Corollary 3.28℄ 
on
erning the existen
e of a �eld. Indeed, in [12, Corollary3.28℄, one has a simple group G of �nite Morley rank n > 0 with a de�nable subgroup
H of rank n − 1. Then G/H is strongly minimal. So, Uþ(G/H) = 1, and hen
eUþ(G) = Uþ(H) + 1 < ω. Moreover, Z :=

⋂
g∈G Hg is normal in G, so it is trivial as

G is simple. Thus, G/Z = G. Simpli
ity of G also implies that G is not solvable-by-�nite, and we see that the assumption of Theorem 2 is satis�ed.We �nish the paper with some open questions 
on
erning the stru
ture of groupsand their possible Uþ-ranks.[12, Theorem 3.27℄ in the �nite Morley rank 
ase and [8, Theorem 1.5℄ in theo-minimal 
ase des
ribe the stru
ture of the permutation groups in terms of aninterpretable �eld. Noti
e that by the argument from the base indu
tion step ofthe proof of Theorem 2.1, if Uþ(G) = 2 in Theorem 3, then G is not nilpotent-by-�nite. So, by [4, Theorem 4.5℄, after passing to a de�nable subgroup of �niteindex and quotienting by its �nite 
enter, G is de�nably the semidire
t produ
t ofthe additive and multipli
ative groups of an algebrai
ally 
losed �eld interpretablein C, and moreover G = G00. However, a des
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