
Fields interpretable in superrosy groups with NIP(the non-solvable ase)Krzysztof Krupi«ski∗AbstratLet G be a group de�nable in a monster model C of a rosy theory sat-isfying NIP. Assume that G has hereditarily �nitely satis�able generis and
1 < Uþ(G) < ∞. We prove that if G ats de�nably on a de�nable set ofUþ-rank 1, then, under some general assumption about this ation, there is anin�nite �eld interpretable in C. We onlude that if G is not solvable-by-�niteand it ats faithfully and de�nably on a de�nable set of Uþ-rank 1, then there isan in�nite �eld interpretable in C. As an immediate onsequene, we get that if
G has a de�nable subgroup H suh that Uþ(G) = Uþ(H) + 1 and G/

⋂
g∈G Hgis not solvable-by-�nite, then an in�nite �eld interpretable in C also exists.0 IntrodutionThe paper is in some sense a ontinuation of [7℄. But now we onentrate mainly onthe existene of �elds interpretable in groups. The general motivating question isQuestion 1 For a given in�nite, pure group 〈G, ·〉 (say of �nite dimension, whateverthe dimension means), does there exist an in�nite �eld interpretable in 〈G, ·〉?In this paper, the notion of dimension will be Uþ-rank, and so G will be rosy.Reall that in the stable (�nite Morley rank) ontext Uþ-rank oinides with LasarU-rank, and in the o-minimal ontext it oinides with the o-minimal dimension.Notie that in order to have a positive answer to the above question, G annot beabelian-by-�nite. Indeed, otherwise 〈G, ·〉 would be 1-based of �nite Lasar U-rank,so it would not interpret an in�nite �eld (to see this, one should use the fat thatabelian groups are 1-based together with some fats from [11, Chapters 2, 4℄, e.g.[11, Proposition 6.4℄).Assuming that G is not abelian-by-�nite, one has three ases to onsider:
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(1) G is not solvable-by-�nite,(2) G is solvable-by-�nite but not nilpotent-by-�nite,(3) G is nilpotent-by-�nite but not abelian-by-�nite.[10, Corollary 5.1℄ tells us that the answer to Question 1 is positive whenever Gis a non-abelian-by-�nite group de�nable in an o-minimal struture.When G is of �nite Morley rank, the answer to Question 1 in Case (2) is positive.In Case (1), it is open, but there are some partial results (assuming that G is not abad group). Finally, in Case 3 the answer is negative by [3℄, but there are also somepositive partial answers, e.g. in [14, 6℄. For example, [6, Theorem 2.3℄ tells us thatthe answer is positive if the ommutator subgroup of G is torsion-free.A general goal is to answer Question 1 in a more general ontext than �niteMorley rank or o-minimal strutures, namely for G being dependent and of �niteUþ-rank. For some tehnial reason, in this paper, we will additionally assume that
G has hereditarily fsg. This still overs the situations when G is superstable of �niteU-rank and when G is a de�nably ompat group de�nable in an o-minimal expansionof a real losed �eld. The de�nitions of rosiness, NIP, fsg, and other relevant notionsare given in Setion 1.The main result of [7℄ says that if G is a dependent group of �nite Uþ-rank, thenQuestion 1 has a positive answer in Case (2).Of ourse, Baudish's theorem (see [3℄) implies that the answer in Case (3) isnegative for the lass of dependent groups of �nite Uþ-rank. However, a tiny modi�-ation of the proof of [6, Theorem 2.3℄ yields a positive answer under the additionalassumption that the ommutator subgroup of G is torsion-free. In fat, even moreis true: every loally nilpotent, non-abelian group with i on entralizers and withtorsion-free ommutator subgroup interprets an in�nite �eld. Indeed, the proof of [6,Theorem 2.3℄ produes an integral domain F interpretable in 〈G, ·〉 whose additivegroup is a subgroup of G′. So, the �eld of frations of F is also interpretable in 〈G, ·〉,and sine G′ is torsion-free, this �eld is of harateristi 0 and so in�nite.In this paper, we onentrate on the existene of a �eld both in Case (1) andalso in the presene of a de�nable ation of a de�nable group on a de�nable set ofUþ-rank 1.For the next three results, we work in C

eq where C is a monster model of a (rosy)theory T satisfying NIP.One of the main onlusions of this paper is the following theorem onerning Case(1) and generalizing the part of Cherlin's result (see [12, Corollary 3.28℄) onerningthe existene of a �eld (we do not generalize the part yielding the desription of G).Theorem 2 Suppose T is rosy with NIP, and G is a de�nable group having hered-itarily fsg and with Uþ(G) = n + 1 < ∞. Assume that G has a de�nable subgroup
H of Uþ-rank n, and G/

⋂
g∈G Hg is not solvable-by-�nite. Then there is an in�nite�eld interpretable in C [in 〈G, ·〉, if H is de�nable in 〈G, ·〉℄.2



As in [12℄, in order to prove the above theorem, we investigate de�nable ations ofde�nable groups on sets of Uþ-rank 1. However, in the �nite Morley rank situation,it was su�ient to onsider ations on strongly minimal sets, whereas in our ase, weneed to work with sets of Uþ-rank 1. This and the fat that we do not have de�nableonneted omponents makes our situation more ompliated and alls for di�erentarguments.The main e�ort is put into proving the following theorem, generalizing the partof the Hrushovski's result (see [12, Theorem 3.27℄) onerning the existene of a �eld(we do not generalize the part yielding the desription of permutation groups). Asimilar result has also been proved for o-minimal strutures in [8, Theorem 1.5℄. Inthe whole paper, if G is a group ating on a set S and R ⊆ S, then GR denotes thepointwise stabilizer of R; if R = {s}, then Gs := GR.Theorem 3 Assume T is rosy with NIP, and let G be a de�nable group havinghereditarily fsg and with 1 < Uþ(G) < ∞. Assume that G ats de�nably on ade�nable set S of Uþ-rank 1 so that there is s ∈ S for whih no �nite index, de�nablesubgroup of Gs has normalizer of �nite index in G. Then there is an in�nite �eldinterpretable in C; in fat, it is interpretable in the two-sorted struture with sorts Gand S equipped with the group operation on G and the ation of G on S.In partiular, assuming the �rst sentene of the theorem, if G ats de�nably ona de�nable set S of Uþ-rank 1 so that at least one orbit is in�nite, and G does nothave a de�nable subgroup H with Uþ(H) = Uþ(G) − 1 and whose normalizer is of�nite index in G, then an in�nite interpretable �eld exists.From Theorem 3, we will get the following orollary, whih implies Theorem 2.Theorem 4 Assume T has NIP. Let G be a de�nable group having hereditarily fsgand with Uþ(G) < ∞. Assume that G ats faithfully and de�nably on a de�nableset S of Uþ-rank 1. If G is not solvable-by-�nite, then there is an in�nite �eldinterpretable in C; in fat, it is interpretable in the two-sorted struture with sorts Gand S equipped with the group operation on G and the ation of G on S. Moreover,if T is rosy, then Uþ(G) < ω.It is worth mentioning that in the proofs of the above three theorems, the onlyplaes where the fsg assumption is used are the appliations of [4, Theorem 2℄ sayingthat any dependent group of Uþ-rank 2 and satisfying hereditarily fsg is solvable-by-�nite. So, if one was able to remove the fsg assumption from [4, Theorem 2℄, then itould be automatially removed from all the results of this paper.On the other hand, keeping the fsg assumption in the above theorems and an-alyzing our proofs, one an hek that the NIP assumption an be replaed by theondition that G has i.1 De�nitions and basi observationsIn this setion, we work in Ceq where C is a monster model of a theory T in a language
L. 3



First we reall some things about rosy theories. For details on rosy theories, thereader is referred to [1, 5, 9℄, and on rosy groups to [4℄.
T is rosy if there is a ternary relation |⌣

∗ on small subsets of Ceq satisfyingall the basi properties of forking independene in simple theories exept for theIndependene Theorem. Suh a relation will be alled an independene relation.A formula δ(x, a) strongly divides over A if the formula is not almost over A and
{δ(x, a′)}a′|=tp(a/A) is k-inonsistent for some k ∈ N.We say that δ(x, a) þ-divides over A if we an �nd some tuple c suh that δ(x, a)strongly divides over Ac.A formula þ-forks over A if it implies a (�nite) disjuntion of formulas whihþ-divide over A.We say that the type p(x) þ-divides over A if there is a formula in p(x) whihþ-divides over A; þ-forking is similarly de�ned. We say that a is þ-independent from
b over A, denoted a |⌣

þ
A

b, if tp (a/Ab) does not þ-fork over A.In rosy theories, þ-independene is the weakest independene relation in the sensethat a |⌣
∗

C
b implies a |⌣

þ
C

b for any independene relation |⌣
∗.In [5℄, the following has been notied.Fat 1.1 T is rosy i� |⌣

þ has loal harater.We de�ne Uþ-rank by means of |⌣
þ in the same way as Lasar U-rank is de�nedin terms of |⌣. In rosy theories, this rank shares many nie properties of U-rank instable theories. In partiular, it satis�es Lasar Inequalities.If D is A-de�nable, we put Uþ(D) = sup{Uþ(d/A) : d ∈ D}. If T is rosy, thisde�nition, not depending on A, provides a good, general notion of dimension of ade�nable set. Without rosiness, it is not lear whether it depends on A (beause it isnot lear whether Uþ-rank is preserved under taking non-þ-forking extensions). So,whenever Uþ(D) is onsidered without rosiness, we assume that the set A over whih

D is de�ned is distinguished. Sometimes A is lear from the ontext, e.g. omputingUþ(C), we have A = ∅. If C is many-sorted, then Uþ(C) is the supremum of theUþ-ranks of all sorts. In partiular, Uþ(C) < ∞ means that the Uþ-rank of every sortis less than ∞.Some nie properties of Uþ-rank in rosy theories are listed in Setion 1 of [7℄. Buteven without rosiness, we still have some good properties. For example, analyzingthe proof of Lasar Inequalities [13, Theorem 5.1.6℄ and using [9, Lemma 2.1.6℄, weget that Uþ(ab/A) ≤ Uþ(a/bA)⊕Uþ(b/A) holds in any theory. Also, it follows easilythat if a ∈ acl(Ab), then Uþ(b/A) ≥ Uþ(a/A).Below we prove two basi fats, whih are not written down expliitly anywhere.They are a piee of folklore that has already been used in [4℄ and [7℄, and will beused in this paper in order to skip the assumption of rosiness of the theory T insome results. The �rst remark is pretty obvious. The proof of the seond one,however, turns out to be a bit more ompliated and it leads to some basi questionsformulated right below it.Remark 1.2 Any theory with Uþ(C) < ∞ is rosy.4



Proof. By assumption, Uþ(a) < ∞ for every a ∈ C. Thus, we get Uþ(a/A) < ∞ forany a ∈ C and A ⊆ Ceq. We know that Uþ(ab/A) ≤ Uþ(a/bA)⊕Uþ(b/A) holds in anytheory (without rosiness). Therefore, for any �nite tuple a in C and any A ⊆ Ceq, wehave Uþ(a/A) < ∞.Now if a = [a0]E is imaginary (a0 is a real tuple), then a ∈ acleq(a0). So,Uþ(a/A) ≤ Uþ(a0/A) for any A ⊆ C
eq.We have proved that every type in Ceq has an ordinal Uþ-rank. This implies thatthere is no in�nite sequene p0 ⊆ p1 ⊆ . . . of þ-forking extensions, and so |⌣

þ hasloal harater. We �nish using Fat 1.1. �The theories of ordinal Uþ-rank (i.e. with Uþ(C) < ∞) are alled superrosy. Wesay that T is of Uþ-rank α if Uþ(C) = α.It has been notied in [2℄ that rosiness is preserved under taking reduts. Ourseond remark is related to this observation.Remark 1.3 Assume M with the universe M is interpretable in C. Let L′ be thesignature of M. Working in the language L′, we will use the subsript L′. Otherwisewe work in the language L. Uþ
M stands for Uþ-rank omputed in M.(i) If T is (super)rosy, so is ThL′(M).(ii) Assume T is rosy. Consider any m ∈ Meq and A ⊆ Meq. If Uþ

M(tpL′(m/A)) =
n < ω, then there is a ompletion p of tpL′(m/A) over A in the sense of C suh thatUþ(p) ≥ n. In partiular, if T ′ is a redut of T and T is of Uþ-rank n < ω, then T ′is of Uþ-rank at most n.(iii) The onlusion of (ii) holds with the assumption that T is rosy replaed byUþ(M) < ∞.(iv) If Uþ(M) < ∞, then ThL′(M) is superrosy.Proof. Assume for simpliity that M is interpretable in C over ∅. Of ourse, Meq isalso interpretable in C over ∅.Claim Let a, A, B be from Meq and suppose that tpL′(a/AB) þ-divides over A in thesense of M. Then there are a′ and B′ in Meq suh that tpL′(a′B′/A) = tpL′(aB/A),and for any realization a′′ of tpL′(a′/AB′) one has that tpL(a′′/AB′) þ-divides over
A in the sense of C.Proof of Claim. By the assumption, there is a formula ϕ(x, y) ∈ L′ and b ∈ Meq suhthat ϕ(x, b) ∈ tpL′(a/AB) and ϕ(x, b) þ-divides over A in the sense of M. Thus,there is c ∈ Meq suh that tpL′(b/Ac) is non-algebrai and {ϕ(x, b′) : b′ |= tpL′(b/Ac)}is k-inonsistent for some k. Hene, there is b′ |= tpL′(b/Ac) suh that tpL(b′/Ac) isnon-algebrai. We onlude that ϕ(x, b′) þ-divides over A in the sense of C.To �nish, hoose any automorphism f of M �xing A pointwisely and mapping bto b′, and put a′ = f(a), B′ = f [B]. �We argue that under the assumption of (ii) or (iii), ThL′(M) is rosy. The asewhen T is rosy follows easily using loal þ-ranks (see [2, Corollary 5.3℄). Now onsider5



the ase when T is not neessarily rosy, but Uþ(M) < ∞. Then the Uþ-rank of Mequipped with the indued struture (i.e. with prediates for the traes of all ∅-de�nable subsets of the appropriate sorts of C) is also less than ∞, and hene byRemark 1.2, M with the indued struture is rosy. Thus, by [2, Corollary 5.3℄,
ThL′(M) is rosy.Now we give an indutive, with respet to n, proof of (ii) and (iii). The ase
n = 0 is obvious. For the indution step, assume Uþ

M(tpL′(a/A)) ≥ n + 1 for some
a, A in Meq and n ∈ ω. Then there is B ⊇ A suh that a is þ-dependent on B over
A in the sense of M and Uþ

M(tpL′(a/B)) ≥ n. Extending B and using rosiness of
ThL′(M) (in order to have that taking non-þ-forking extensions preserves Uþ-rank),we an assume that tpL′(a/B) þ-divides over A in the sense of M. By the Claim, weget that there are a′B′ |= tpL′(aB/A) suh that for any a′′ |= tpL′(a′/B′), tpL(a′′/B′)þ-divides, and hene þ-forks over A in the sense of C. So, by the indutive hypothesis,Uþ(tpL(a′′/A)) ≥ n + 1 for some a′′ |= tpL′(a′/B′).The proof of (i) is similar. As in [2℄, using loal þ-ranks, we get that ThL′(M)is rosy. Now, suppose for a ontradition that T is superrosy, but ThL′(M) is notsuperrosy. Using rosiness of ThL′(M), we get an in�nite sequene {∅} = B0 ⊆ B1 ⊆
B2 ⊆ · · · ⊆ Meq and a ∈ M suh that tpL′(a/Bi+1) þ-divides over Bi in the senseof M. Using reursively the Claim, we �nd ai, i ∈ ω, and an inreasing sequene ofsets B′

i, i ∈ ω, in Meq so that:(a) a0 = a,(b) aiB
′
i |= tpL′(aBi),() tpL′(ai/B

′
i) ⊆ tpL′(ai+1/B

′
i+1),(d) for every a′

i+1 |= tpL′(ai+1/B
′
i+1), tpL(a′

i+1/B
′
i+1) þ-divides, and hene þ-forksover B′

i in the sense of C.By ompatness and (), there is a′ ∈ M realizing all types tpL′(ai/B
′
i), i ∈ ω.Thus, by (d), Uþ(a′) = ∞, a ontradition with superrosiness of C.The proof of (iv) is almost the same as the proof of (i) �It is not lear, however, whether the above remark holds when n is an in�niteordinal (in partiular, whether taking reduts always dereases Uþ-rank, even forin�nite ordinal ranks). A similar remark an also be proved for SU-rank in simpletheories, and one an also ask whether taking reduts neessarily dereases SU-rank(even for in�nite ordinal ranks).In Setion 2, T will be assumed to have the non independene property (NIP).De�nition 1.4 We say that T has the NIP if there is no formula ϕ(x, y) and se-quene 〈ai〉i<ω suh that for every w ⊆ ω, there is bw suh that |= ϕ(ai, bw) i� i ∈ w.In the paper, whenever H and G are groups, then H < G means that H is a (notneessarily proper) subgroup of G. 6



Reall that we say that a de�nable group G has i (the uniform hain onditionon intersetions of uniformly de�nable subgroups) if for every formula ϕ, there is
nϕ ∈ ω suh that any hain of intersetions of ϕ-de�nable subgroups of G has lengthat most nϕ.Reall that the entralizer onneted omponent of a de�nable group G is theintersetion of all entralizers C(g), g ∈ G, of �nite index in G. The group G is saidto be entralizer onneted if it is equal to its entralizer onneted omponent. Ifwe have i (or only i on entralizers), then the entralizer onneted omponentis a de�nable, �nite index subgroup of G. In the proof of Theorem 2.1, we will needan easy fat that if G is entralizer onneted and Z(G) is �nite, then G/Z(G) isenterless.For this paper, an important onsequene of NIP and rosiness is [4, Proposition1.7℄:Fat 1.5 Suppose T is rosy and has NIP. Then any de�nable group G has i.We will also use [7, Theorem 3℄:Fat 1.6 Assume T has NIP and G is a de�nable group of �nite Uþ-rank. Assumethat G is solvable-by-�nite but not nilpotent-by-�nite. Then there is an in�nite �eldinterpretable in 〈G, ·〉.In [7, Theorem 3℄, rosiness of T was additionally assumed, but we see, using Remark1.3, that it is not neessary.One more property that we are going to assume is fsg (�nitely satis�able gener-is). As was mentioned at the end of the introdution, we do not use this propertyanywhere in our proofs exept for the appliations of [4, Theorem 2℄. That is why,in this paper, we restrit ourselves only to giving the de�nition of fsg and realling[4, Theorem 2℄.De�nition 1.7 A de�nable group G de�ned by a formula G(x) has �nitely satis�ablegeneris (or fsg) if there is a global type p ontaining G(x) and a model M ≺ C ofardinality less than the degree of saturation of C, suh that for all g, gp is �nitelysatis�able in M (i.e. eah formula in gp de�nes a set whih intersets M). We saythat G has hereditarily fsg if every de�nable subgroup of G also has fsg.It is easy to hek that if G has fsg and N is a de�nable, normal subgroup of G,then G/N also has fsg.Fat 1.8 Assume T has NIP and G is a de�nable group satisfying hereditarily fsg.If Uþ(G) = 2, then G is solvable-by-�nite.
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2 Getting �eldsIn this setion, TTT is a theory with NIP, and we work in Ceq where C is a monstermodel of T . Whenever we have a de�nable group G ating de�nably on a de�nableset S, M will denote the two-sorted struture with sorts G and S equipped with thegroup operation on G and the ation of G on S.First we will show a variant of Theorem 3, whih will allow us to prove all threetheorems from the introdution.Theorem 2.1 Assume T is rosy, and let G be a de�nable group having hereditarilyfsg and with 1 < Uþ(G) < ∞. Assume that G ats de�nably on a de�nable set
S of Uþ-rank 1 so that there is s ∈ S for whih no in�nite, de�nable subgroup Hof Gs of �nite index in the intersetion of stabilizers of some points in S and withUþ(G/H) ≤ 2 has normalizer of �nite index in G. Then there is an in�nite �eldinterpretable in C.The following strengthening of Theorem 2.1 an be proved in almost the sameway as Theorem 2.1 is proved below.Theorem 2.2 Assume T is rosy, and let G be a de�nable group having hereditarilyfsg and with 1 < Uþ(G) < ∞. Assume that G ats de�nably on a de�nable set S ofUþ-rank 1 so that there is s ∈ S for whih no in�nite, de�nable in Meq subgroup Hof Gs of �nite index in the intersetion of stabilizers of some points in S and withUþ(G/H) ≤ 2 has normalizer of �nite index in G. Then there is an in�nite �eldinterpretable in M.Proof of Theorem 2.1. The proof is by indution on Uþ(G). First onsider thease Uþ(G) = 2. By Fat 1.8, G is solvable-by-�nite (this is the only plae in theproof where the fsg assumption is used). So, using Fat 1.6, either we get a �eldinterpretable in the pure group G and we are done, or else G is nilpotent-by-�nite.Sine by rosiness and NIP we have i on entralizers, using [7, Corollary 3.3(ii)℄and replaing G by a de�nable subgroup of �nite index, we an assume that G isnilpotent and entralizer onneted. Then Z(G) is in�nite (otherwise G/Z(G) wouldbe enterless, a ontradition). Sine Uþ(G) = 2 > Uþ(S), Gs is in�nite. So, byassumption, [G : Gs] must be also in�nite, and so Gs is in�nite. Replaing S by
Gs, the ation beomes transitive. Sine GS �G, by assumption, GS is �nite. Thus,replaing G by G/GS, we an assume that the ation is additionally faithful.Notie that there is no non-trivial z ∈ Z(G) and x ∈ S with zx = x. Otherwise
z(gx) = (zg)x = (gz)x = g(zx) = gx for every g ∈ G, and so z ∈ GS by transitivityof the ation. This is a ontradition with faithfulness.We have proved that Gs ∩ Z(G) = {e}. But N(Gs) ⊇ 〈Gs, Z(G)〉 and both Gsand Z(G) are in�nite, whih implies that Uþ(N(Gs)) = 2. Thus, [G : N(Gs)] is�nite, a ontradition.Now assume that Uþ(G) ≥ 3 and the theorem holds for groups of smaller Uþ-rank.8



As in the base step, we see that Gs is in�nite. So, replaing S by Gs, wean assume that the ation is transitive. Sine GS � G, by assumption, we getUþ(G/GS) ≥ 3. So, replaing G by G/GS, we an assume that the ation of G on Sis also faithful. This gives us easily that for any in�nite de�nable subgroup H of G,there is t ∈ S with Ht in�nite. Indeed, otherwise by i, {e} = HS =
⋂

t∈S Ht is anintersetion of �nitely many subgroups Ht, all of �nite index in H . So, H is �nite, aontradition.Claim 1 Uþ(G) < ω.Proof of Claim 1. Suppose for a ontradition that Uþ(G) ≥ ω. We have that
[G : Gs] is in�nite, so Uþ(Gs) = 1, and hene Uþ(G/Gs) = Uþ(Gs) = 1. Thus,Uþ(Gs) + 1 = Uþ(Gs) + Uþ(G/Gs) ≤ Uþ(G) ≤ Uþ(Gs) ⊕ Uþ(G/Gs) = Uþ(Gs) + 1.So, we get Uþ(G) = Uþ(Gs) + 1. Therefore,Uþ(G) > Uþ(Gs) ≥ ω.Sine Gs is in�nite, there is s1 ∈ S with Gss1 in�nite and so of Uþ-rank 1. Asabove, we get Uþ(Gs) > Uþ(Gss1

) ≥ ω.We ontinue this proedure and obtain si ∈ S, i ≥ 1, so thatUþ(G) > Uþ(Gs) > Uþ(Gss1
) > Uþ(Gss1s2

) > . . . ,a ontradition. �Let H be the olletion of all de�nable, �nite index subgroups H of Gs with theproperty that for any g ∈ G, if [H : H ∩ Hg] < ω, then H = Hg.Claim 2 H is nonempty.Proof of Claim 2. By i, the intersetion of all Gg
s suh that [Gs : Gs ∩ Gg

s] < ωis a de�nable, �nite index subgroup of Gs. Denote this subgroup by H . We seethat if [H : H ∩ Hg] < ω, then H = H ∩ Hg, and so H < Hg. This implies
Hg−1

< H . On the other hand, Uþ(Hg−1

) = Uþ(H), so by Lasar Inequalities forgroups, [H : Hg−1

] < ω. Thus, Hg−1

= H , so H = Hg. We have seen that H ∈ H.
� Consider any H ∈ H. It is in�nite, so there is t ∈ S with Ht in�nite. SineUþ(S) = 1, there are only �nitely many in�nite orbits on S under H ; denote themby o0, . . . , on. For i = 0, . . . , n, put

Hi = Hoi
� Hand

δ(H) = min
0≤i≤n

Uþ(Hi).9



From now on, we hoose H ∈ H with maximal possible δ(H) (we an do it byClaims 1 and 2).Claim 3 Assume δ(H) ≤ Uþ(H) − 2. Then there is i suh that H/Hi ating on oisatis�es the assumptions of the theorem. Thus, sine Uþ(H/Hi) ≤ Uþ(H) < Uþ(G),by the indutive hypothesis, there is an in�nite, interpretable �eld.Proof of Claim 3. Let Hi1 , . . . , Hik be all Hi's for whih Uþ(Hi) = δ(H). Supposethat for every j = 1, . . . , k, H/Hij ating on oij does not satisfy the assumption of thetheorem (it is enough to show that this leads to a ontradition). Then for every j =
1, . . . , k, there is a nonempty Sj ⊆ oij and an in�nite, de�nable, �nite index subgroup
Kj/Hij of (H/Hij)Sj

= HSj
/Hij suh that [H/Hij : NH/Hij

(Kj/Hij )] is �nite. Thisimplies [H : NH(Kj)] < ω. So, by an argument similar to the proof of Claim 2, wean �nd L ∈ H suh that L <
⋂k

j=1 NH(Kj) (namely, de�ne L as the intersetion ofall (⋂k
j=1 NH(Kj))

g suh that [
⋂k

j=1 NH(Kj) :
⋂k

j=1 NH(Kj)∩(
⋂k

j=1 NH(Kj))
g] < ω.).By the de�nition of H, L � H .We will be done if we prove that δ(L) > δ(H) beause this will be a ontraditionwith maximality of δ(H).Sine [H : L] < ω, eah oi is a union of �nitely many in�nite orbits oi

0 ∪ · · · ∪ oi
niunder L. For i = 0, . . . , n and j = 0, . . . , ni, de�ne

Li
j = Loi

j
.We need to prove that for any i ∈ {0, . . . , n} and j ∈ {0, . . . , ni}, Uþ(Li

j) > δ(H).So, onsider any i, j as above.Case 1 i /∈ {i1, . . . , ik}.Put H i
j = Hoi

j
. Then H > H i

j > Hi. Sine [H : L] < ω, we also have that L∩H i
j = Li

jhas �nite index in H i
j. Thus, Uþ(Li

j) ≥ Uþ(Hi) > δ(H) (the last inequality is truebeause of the assumption of Case 1).Case 2 i = il for some l ∈ {1, . . . , k}.Then δ(H) = Uþ(Hi), so it is enough to show that Uþ(Li
j) > Uþ(Hi).Take any x ∈ Sl. Then x ∈ oi

m for some m ∈ {0, . . . , ni}.Sublaim Uþ(Li
m) > Uþ(Hi).Proof of Sublaim. By the hoie of Kj 's, [Kl : Hi] ≥ ω. On the other hand, sine

[H : L] < ω and Kl < H , we have [Kl : L ∩ Kl] < ω. From these two observations,we obtain
(∗) Uþ(L ∩ Kl) > Uþ(Hi).As L normalizes Kl, L∩Kl �L. We also know that L∩Kl stabilizes x. Therefore,for any h1 ∈ L and h2 ∈ L∩Kl, we have h2h1x = h1h

′
2x = h1x for some h′

2 ∈ L∩Kl.Moreover, Lx = oi
m. Hene, L∩Kl < Li

m. In virtue of (∗), the proof of the Sublaimis ompleted. �10



There is h ∈ H suh that hoi
m ∩ oi

j 6= ∅. Sine L�H , we easily get hoi
m = oi

j. So,for any g ∈ L, we have the following equivalenes:
g ∈ Li

m ⇐⇒ (∀y ∈ oi
m)(hgy = hy) ⇐⇒ (∀z ∈ oi

j)(g
hz = z) ⇐⇒ gh ∈ Li

j .This means that (Li
m)h = Li

j . Hene, by the Sublaim, Uþ(Li
j) = Uþ(Li

m) > Uþ(Hi),whih ompletes the proof of Claim 3. �By Claim 3, in order to �nish the proof of the theorem, it remains to show that theondition δ(H) = Uþ(H)−1 leads to a ontradition. So, assume δ(H) = Uþ(H)−1.Then Uþ(Hi) = Uþ(H) − 1 = Uþ(G) − 2 for every i = 0, . . . , n.Claim 4 There are in�nite, de�nable normal subgroups Li of H for i = 0, . . . , n suhthat:(i) Li is a �nite index subgroup of Hi,(ii) for any g ∈ G, Lg
i ats trivially on goi,(iii) for any i, j ∈ {0, . . . , n} and g ∈ G, if [Li : Li ∩ Lg

j ] < ω, then Li = Lg
j .Proof of Claim 4. We de�ne Li as the intersetion of all groups Hg

j for whih [Hi :
Hi∩Hg

j ] is �nite. By i, eah Li is de�nable and of �nite index in Hi. Sine Hi �H ,we see that Li � H . Thus, (i) and so (ii) holds.To see (iii), onsider any i, j ∈ {0, . . . , n} and g ∈ G suh that [Li : Li ∩Lg
j ] < ω.Then the property [Hi : Li] < ω implies [Hi : Li∩Lg

j ] < ω. We also know that Li∩Lg
jis an intersetion of groups of the form Ha

k . Therefore, Li = Li ∩ Lg
j , i.e. Li < Lg

j .Thus, Lg−1

i < Lj . Sine Uþ(Lg−1

i ) = Uþ(Li) = Uþ(Hi) = Uþ(H) − 1 = Uþ(Lj), weget [Lj : Lg−1

i ] < ω. On the other hand, Lg−1

i is an intersetion of groups of the form
Ha

k . Hene, Lj = Lg−1

i , i.e. Li = Lg
j . �By transitivity of the ation of G on S, we an hoose g ∈ G so that gs ∈ o0.Sine o0 is an in�nite orbit under H and Hs = {s}, we see that g /∈ N(H). But

H ∈ H, so we onlude that [H : H ∩ Hg] is in�nite.Now we will show that for every i ∈ {0, . . . , n},
(!) [L0 : L0 ∩ Lg

i ] ≥ ω and [Lg
i : L0 ∩ Lg

i ] ≥ ω.If any of the above onditions is false, then [L0 : L0∩Lg
i ] < ω or [Li : Li∩Lg−1

0 ] <
ω. Thus, by Claim 4, L0 = Lg

i . It follows that 〈H, Hg〉 < N(L0). Sine [H :
H ∩ Hg] ≥ ω, we get [N(L0) : Hg] ≥ ω. Hene, Uþ(N(L0)) ≥ Uþ(Hg) + 1 = Uþ(G).So,

[G : N(L0)] < ω.On the other hand, the fat that H0 = G{s}∪o0
∩ H has �nite index in G{s}∪o0

and
[H0 : L0] < ω implies that

[G{s}∪o0
: L0] < ω.Moreover, Uþ(L0) = Uþ(G) − 2 ≥ 1, soUþ(G/L0) = 2 and L0 is in�nite.11



All these three observations together give us a ontradition with the assumption ofthe theorem. So, (!) has been proved.Notie that there are only �nitely many orbits on S under H . We know thatthere are �nitely many in�nite orbits, so we need to hek that there are �nitelymany �nite orbits. For any a ∈ G, we have Gas = Ga
s . Thus, we see that Has being�nite is equivalent to any of the following:

[H : H ∩ Ga
s ] < ω ⇐⇒ [H : H ∩ Ha] < ω ⇐⇒ H = Ha ⇐⇒ a ∈ N(H),and the last ondition implies as ∈ N(H)s. By the assumption of the theorem,

[G : N(H)] ≥ ω. But also Uþ(H) = Uþ(G)− 1. Thus, [N(H) : H ] < ω. So, from theprevious omputation, there are only �nitely elements in S with �nite orbits under
H . By the above observation, we an hoose i ∈ {0, . . . , n} so that o0 ∩ goi 6= ∅.Choose an element g1s ∈ o0 ∩ goi.Reall that two subgroups G1 and G2 of a given group are said to be ommen-surable (symbolially G1 ∼ G2) if [G1 : G1 ∩ G2] and [G2 : G1 ∩ G2] are �nite. ∼ isalways an equivalene relation.Sine gs ∈ o0, L0 < Gg

s. Also, Hg is a �nite index subgroup of Gg
s. Hene,

(!!) L0 ∼ L0 ∩ Hg.Sine g1s ∈ o0, L0 < Gg1

s . So, as above
(!!!) L0 ∼ L0 ∩ Hg1.Sine g1s ∈ goi and Lg

i ats trivially on goi, we get Lg
i < Gg1

s . Therefore,
(!!!!) Lg

i ∼ Lg
i ∩ Hg1.We know that Lg1

0 � Hg1. So, 〈L0 ∩ Hg1, Lg
i ∩ Hg1〉 < N(Lg1

0 ). In partiular,by (!!!!), Lg
i ∼ Lg

i ∩ Hg1 < N(Lg1

0 ) ∩ Hg. Similarly, by (!!) and (!!!), L0 ∼ L0 ∩
Hg1 ∩ Hg < N(Lg1

0 ) ∩ Hg. Using the last two observations together with (!), weget [N(Lg1

0 ) ∩ Hg : L0 ∩ Hg1 ∩ Hg] ≥ ω. On the other hand, Uþ(L0 ∩ Hg1 ∩ Hg) =Uþ(L0) = Uþ(H) − 1 = Uþ(Hg) − 1. So, we onlude that
(⋄) [Hg : N(Lg1

0 ) ∩ Hg] < ω.We laim that
(⋄⋄) [Hg : Hg ∩ Hg1] ≥ ω.Suppose it is not true. Then [H : H ∩ Hg−1g1 ] < ω. So, H = Hg−1g1, whih implies

Hg = Hg1. Hene, Hg(g1s) = g1Hs = {g1s}. But g1s ∈ goi, so there is t ∈ oi suhthat g1s = gt, and so Hg(g1s) = gHt = goi is in�nite. This is a ontradition.Of ourse, we have Hg1 ∪ (N(Lg1

0 ) ∩ Hg)) ⊆ N(Lg1

0 ). So, by (⋄) and (⋄⋄), we get
[N(Lg1

0 ) : Hg1] ≥ ω, and so [N(L0) : H ] ≥ ω. Sine Uþ(H) = Uþ(G)− 1, we see that
[G : N(L0)] < ω. It was shown in the proof of (!) that this gives us a ontradition12



with the assumption of the theorem. So, the proof of the theorem is ompleted. �Proof of Theorem 2.2. The proof is almost the same as the proof of Theorem 2.1.The only di�erene is that we have to work with objets de�nable in Meq (whereasUþ-ranks should still be omputed in C). �Before we turn to further results, let us make a few omments onerning Theorem2.1.Notie that, using only i instead of the full NIP assumption, the above indutiveproof always redues the situation to a smaller Uþ-rank, and �nally leads to the aseUþ(G) = 2. Then we get a �eld via Fat 1.6 or even [4, Theorem 4.5℄. Sine in [4,Theorem 4.5℄, it is enough to assume i instead of NIP, we see that in Theorems2.1 and 2.2, NIP an be also replaed by i. Looking at the proofs that follows, thiswill easily imply that in Theorems 2, 3, 4, one an also replae NIP by i (keepingthe fsg assumption).Notie that if we strengthen the assumption of Theorem 2.1 by dropping theondition Uþ(G/H) ≤ 2, then the existene of an in�nite �eld interpretable in Mfollows easily from this theorem and Remark 1.3. To see this, it is enough to showthat G ating on S onsidered in M satis�es the assumptions of the theorem. ByRemark 1.3, it is lear that M is rosy with NIP, and working in M, we have thatUþ
M(G) < ∞, Uþ

M(S) = 1, G has hereditarily fsg, the ation of G on S is de�nable,and no in�nite, de�nable subgroup H of Gs of �nite index in the intersetion ofstabilizers of some points in S has normalizer of �nite index in G. The only remainingassumption is that Uþ
M(G) > 1. However, sine by the assumption of the theorem

Gs is in�nite (otherwise 1 = Uþ(S) ≥ Uþ(Gs) = Uþ(G/Gs) ≥ 2, a ontradition)and [G : Gs] ≥ ω, we get Uþ
M(G) ≥ Uþ

M(Gs) + Uþ
M(G/Gs) ≥ 2.Now we will apply Theorem 2.2 to get Theorem 3. In fat, we will use the weakerversion of Theorem 2.2 in whih the ondition Uþ(G/H) ≤ 2 is dropped, and we willprove the following strengthening of Theorem 3.Theorem 2.3 Assume T is rosy, and let G be a de�nable group having hereditarilyfsg and with 1 < Uþ(G) < ∞. Assume that G ats de�nably on a de�nable set S ofUþ-rank 1 so that there is s ∈ S for whih no �nite index, de�nable in Meq subgroupof Gs has normalizer of �nite index in G. Then there is an in�nite �eld interpretablein M.Proof. By the assumption of the theorem, [G : Gs] ≥ ω. So, Gs is in�nite. Hene,replaing S by Gs, we an assume that the ation of G on S is transitive. Also by theassumption, Uþ(G/GS) > 1. Indeed, if Uþ(G/GS) = 1, then [Gs : GS] < ω, whihtogether with GS �G ontradits the assumption. So, replaing G by G/GS, we anassume that G ats faithfully on S. As in the proof of Theorem 2.1, this implies thatUþ(G) < ∞.Let G be the olletion of all �nite index subgroups of G whih are de�nable in

Meq. 13



Consider any H ∈ G. Sine [G : H ] < ω, Hs is in�nite. By the assumption thatUþ(S) = 1, there are only �nitely many in�nite orbits under H ; denote them by
o0, . . . , on. For i = 0, . . . , n, put

Hi = Hoi
� Hand

∆(H) = max
0≤i≤n

Uþ(Hi).From now on, we hoose H ∈ G with maximal possible ∆(H). Take i with
∆(H) = Uþ(Hi).By the assumption of the theorem, ∆(H) < Uþ(H) − 1. Indeed, sine G atstransitively on S, there is g ∈ G suh that s ∈ goi. As Gs > Hg

i � Hg and [G :
Hg] < ω, by the assumption of the theorem, we get [Gs : Hg

i ] ≥ ω, and so ∆(H) =Uþ(Hi) = Uþ(Hg
i ) < Uþ(G) − 1 = Uþ(H) − 1.Sine H/Hi and the ation of H/Hi on S are de�nable in Meq, the followinglaim will �nish the proof.Claim H/Hi ating on oi satis�es the assumption of Theorem 2.2.Proof of Claim. Of ourse, Uþ(H/Hi) ≤ Uþ(H) = Uþ(G) < ω and Uþ(H/Hi) =Uþ(H) − Uþ(Hi) = Uþ(H) − ∆(H) > 1. Moreover, Uþ(oi) = 1. Thus, if theassumption of Theorem 2.2 fails, there is a nonempty Si ⊆ oi and an in�nite, de�nablein Meq, �nite index subgroup Ki/Hi of (H/Hi)Si

= HSi
/Hi suh that [H/Hi :

NH/Hi
(Ki/Hi)] is �nite. This implies [H : NH(Ki)] < ω. Put N = NH(Ki). We seethat N ∈ G.We will be done if we prove that ∆(N) > ∆(H) beause this will be a ontradi-tion with maximality of ∆(H).Sine [H : N ] < ω, we have that oi is the union of �nitely many in�nite orbits

oi
0 ∪ · · · ∪ oi

ni
under N . Take any si ∈ Si. Then si ∈ oi

j for some j. Put N i
j = Noi

j
.We have that Ki�N and Ki stabilizes si. Hene, Ki stabilizes oi

j, and so Ki < N i
j .On the other hand, [Ki : Hi] ≥ ω. So, Uþ(N i

j) > Uþ(Hi). Thus, we onlude that
∆(N) > ∆(H). �Observe that in the above proof, one an use Theorem 2.1 (even with the strongerassumption obtained by dropping the ondition Uþ(G/H) ≤ 2) instead of Theorem2.2. Indeed, it is lear beause applying Remark 1.3 at the beginning of the aboveproof, we an assume that C = M.Now, we will show that if one onsiders the assumption Uþ(G) > 1 in a strongersense, namely that for every (not only for some) set A of parameters over whih
G is de�ned, there is g ∈ G with Uþ(g/A) > 1, then the assumption that T isrosy an be eliminated from Theorem 2.3. Indeed, by Remark 1.3, M is rosy, andworking in M, all assumptions of Theorem 2.3 exept for Uþ

M(G) > 1 are learlysatis�ed. So, it remains to show that Uþ
M(G) > 1. By the assumption of the theorem,

[G : Gs] is in�nite. Moreover, there is a de�nable bijetion between G/Gs and o(s).So, omputing Uþ-rank over a set of parameters over whih everything is de�ned,14



Uþ(G/Gs) = 1. Thus, Gs is in�nite beause otherwise, omputing Uþ-rank over someset of parameters, Uþ(G) = 1, a ontradition. So, working in M, G has an in�nite,de�nable subgroup of in�nite index (namely Gs). Therefore, Uþ
M(G) ≥ 2.Now, using Theorem 3, we will prove Theorem 4.Proof of Theorem 4. By Remark 1.3, we see that M is superrosy and Uþ

M(S) = 1.So, it is enough to prove Theorem 4 under the assumption that T is rosy.To see that Uþ(G) < ω, we use i and faithfullness of the ation in the same wayas in the proof of Theorem 2.1.In order to get the existene of a �eld, we argue by indution on Uþ(G). Supposethe theorem is true for groups of Uþ-rank smaller than Uþ(G). By Remark 1.3, wean assume that C = M (but even without this redution, the argument below worksusing Theorem 2.3 insead of Theorem 3). Consider two ases.Case 1 There is a de�nable (inMeq) subgroup H of G suh that Uþ(G) = Uþ(H)+1and [G : N(H)] < ω.If H is solvable-by-�nite, then using i and [7, Remark 3.3(i)℄, H has a de�nablein 〈H, ·〉, normal subgroup H0 of �nite index whih is solvable. By i, H1 :=⋂
g∈N(H) Hg

0 is a �nite index, de�nable (in Meq) subgroup of H0 whose normalizerontains N(H). So, replaing H by H1, we an assume that H is solvable. ButUþ(N(H)/H) = 1, so N(H)/H is solvable-by-�nite in virtue of Fat 1.8 (in fat, itis even abelian-by-�nite by [4, Theorem 1℄). Thus, G is solvable-by-�nite, a ontra-dition.We have proved that H is not solvable-by-�nite, and so H ating on S satis�esthe assumptions of the theorem. On the other hand, Uþ(H) < Uþ(G). So, by theindutive hypothesis, we get an in�nite �eld interpretable in M.Case 2 Case 1 does not hold.Sine G is not solvable-by-�nite, Uþ(G) > 1. By faithfullness and i, there is s ∈ Sfor whih Gs is in�nite, i.e. [G : Gs] ≥ ω. Then s witnesses that G ating on S sat-is�es the assumption of Theorem 3. So, we get an in�nite �eld interpretable inM. �In fat, even Theorem 2.1 is strong enough to get Theorem 4. To see this, oneshould repeat the above proof of Theorem 4 modifying Case 1 in the following way:There is an in�nite, de�nable subgroup H of G suh that 1 ≤ Uþ(G) − Uþ(H) ≤ 2and [G : N(H)] < ω.Proof of Theorem 2. Put Z =
⋂

g∈G Hg. It is lear that G/Z ating on G/H by
(aZ) · (gH) = agH satis�es the assumption of Theorem 4. �It was mentioned in the introdution that some of our theorems generalize theappropriate results about the �nite Morley rank ase. Now, we will explain why.We laim that Theorem 3 generalizes the part of [12, Theorem 3.27℄ onerningthe existene of a �eld. More preisely, we will show that the assumption of [12,15



Theorem 3.27℄ implies the assumption of Theorem 3.Reall that in [12, Theorem 3.27℄, T is stable and G is a de�nable, transitivegroup of permutations of a strongly minimal set S. It is heked right before [12,Theorem 3.27℄ that the Morley rank of G is �nite. Thus, Uþ(G) < ω. In order toget a �eld, it is also assumed in [12℄ that the Morley rank of G is at least 2. Chooseany s ∈ S. Then Gs must be in�nite. On the other hand, [G : Gs] is also in�nite.Hene, Uþ(G) ≥ 2. So, in order to show that in this situation, the assumption ofTheorem 3 is satis�ed, it is enough to prove that there is no de�nable subgroup Hof Gs suh that [G : N(H)] < ω. Suppose for a ontradition that suh an H exists.By transitivity of the ation, strong minimality of S and the fat that [G : G0] < ω,we get that G0 ats transitively on S. Thus, N(H) also ats transitively on S. Takeany non-trivial h ∈ H . Then for any g ∈ N(H), we have h(gs) = g(hg−1

s) = gs as
hg−1

∈ Gs. So, h ∈ GS = {e}, a ontradition.Another remark from the introdution says that Theorem 2 generalizes the partof [12, Corollary 3.28℄ onerning the existene of a �eld. Indeed, in [12, Corollary3.28℄, one has a simple group G of �nite Morley rank n > 0 with a de�nable subgroup
H of rank n − 1. Then G/H is strongly minimal. So, Uþ(G/H) = 1, and heneUþ(G) = Uþ(H) + 1 < ω. Moreover, Z :=

⋂
g∈G Hg is normal in G, so it is trivial as

G is simple. Thus, G/Z = G. Simpliity of G also implies that G is not solvable-by-�nite, and we see that the assumption of Theorem 2 is satis�ed.We �nish the paper with some open questions onerning the struture of groupsand their possible Uþ-ranks.[12, Theorem 3.27℄ in the �nite Morley rank ase and [8, Theorem 1.5℄ in theo-minimal ase desribe the struture of the permutation groups in terms of aninterpretable �eld. Notie that by the argument from the base indution step ofthe proof of Theorem 2.1, if Uþ(G) = 2 in Theorem 3, then G is not nilpotent-by-�nite. So, by [4, Theorem 4.5℄, after passing to a de�nable subgroup of �niteindex and quotienting by its �nite enter, G is de�nably the semidiret produt ofthe additive and multipliative groups of an algebraially losed �eld interpretablein C, and moreover G = G00. However, a desription of G in Theorem 3 in the aseUþ(G) = 3 remains an open problem.The assumptions of Theorem 2 or 4 imply that Uþ(G) ≥ 3, and the struture of
G in both these theorems is also unknown.Moreover, as in the �nite Morley rank or o-minimal ase, one ould try to provethat the assumption of Theorem 3 together with transitivity and faithfulness ofthe ation imply that Uþ(G) = 2 or Uþ(G) = 3. Similarly, in Theorem 4, and inTheorem 2 with the stronger assumption that G is simple, one ould try to provethat Uþ(G) = 3.Referenes[1℄ H. Adler. A geometri introdution to forking and thorn-forking, preprint.[2℄ H. Adler. Thorn-forking as loal forking, preprint.16
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