Fields interpretable in superrosy groups with NIP
(the non-solvable case)
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Abstract

Let G be a group definable in a monster model € of a rosy theory sat-
isfying NIP. Assume that G has hereditarily finitely satisfiable generics and
1 < UPG) < oo. We prove that if G acts definably on a definable set of
UP-rank 1, then, under some general assumption about this action, there is an
infinite field interpretable in €. We conclude that if G is not solvable-by-finite
and it acts faithfully and definably on a definable set of UP-rank 1, then there is
an infinite field interpretable in €. As an immediate consequence, we get that if
G has a definable subgroup H such that UP(G) = UP(H) +1 and G/ Nyec HY
is not solvable-by-finite, then an infinite field interpretable in € also exists.

0 Introduction

The paper is in some sense a continuation of [7]. But now we concentrate mainly on
the existence of fields interpretable in groups. The general motivating question is

Question 1 For a given infinite, pure group (G, -) (say of finite dimension, whatever
the dimension means), does there exist an infinite field interpretable in (G, -) ¢

In this paper, the notion of dimension will be UP-rank, and so G will be rosy.
Recall that in the stable (finite Morley rank) context UP-rank coincides with Lascar
U-rank, and in the o-minimal context it coincides with the o-minimal dimension.

Notice that in order to have a positive answer to the above question, G cannot be
abelian-by-finite. Indeed, otherwise (G, -) would be 1-based of finite Lascar U-rank,
so it would not interpret an infinite field (to see this, one should use the fact that
abelian groups are 1-based together with some facts from [11, Chapters 2, 4|, e.g.
[11, Proposition 6.4]).

Assuming that GG is not abelian-by-finite, one has three cases to consider:
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(1) G is not solvable-by-finite,
(2) G is solvable-by-finite but not nilpotent-by-finite,

(3) G is nilpotent-by-finite but not abelian-by-finite.

[10, Corollary 5.1] tells us that the answer to Question 1 is positive whenever G
is a non-abelian-by-finite group definable in an o-minimal structure.

When G is of finite Morley rank, the answer to Question 1 in Case (2) is positive.
In Case (1), it is open, but there are some partial results (assuming that G is not a
bad group). Finally, in Case 3 the answer is negative by 3|, but there are also some
positive partial answers, e.g. in [14, 6]. For example, [6, Theorem 2.3| tells us that
the answer is positive if the commutator subgroup of G is torsion-free.

A general goal is to answer Question 1 in a more general context than finite
Morley rank or o-minimal structures, namely for G being dependent and of finite
UP-rank. For some technical reason, in this paper, we will additionally assume that
G has hereditarily fsg. This still covers the situations when G is superstable of finite
U-rank and when G is a definably compact group definable in an o-minimal expansion
of a real closed field. The definitions of rosiness, NIP, fsg, and other relevant notions
are given in Section 1.

The main result of |7] says that if G is a dependent group of finite UP-rank, then
Question 1 has a positive answer in Case (2).

Of course, Baudisch’s theorem (see [3]) implies that the answer in Case (3) is
negative for the class of dependent groups of finite UP-rank. However, a tiny modifi-
cation of the proof of [6, Theorem 2.3| yields a positive answer under the additional
assumption that the commutator subgroup of G is torsion-free. In fact, even more
is true: every locally nilpotent, non-abelian group with icc on centralizers and with
torsion-free commutator subgroup interprets an infinite field. Indeed, the proof of |6,
Theorem 2.3] produces an integral domain F' interpretable in (G, -) whose additive
group is a subgroup of G'. So, the field of fractions of F' is also interpretable in (G, ),
and since G’ is torsion-free, this field is of characteristic 0 and so infinite.

In this paper, we concentrate on the existence of a field both in Case (1) and
also in the presence of a definable action of a definable group on a definable set of
UP-rank 1.

For the next three results, we work in €°? where € is a monster model of a (rosy)
theory T satisfying NIP.

One of the main conclusions of this paper is the following theorem concerning Case
(1) and generalizing the part of Cherlin’s result (see [12, Corollary 3.28|) concerning
the existence of a field (we do not generalize the part yielding the description of G).

Theorem 2 Suppose T is rosy with NIP, and G is a definable group having hered-
itarily fsg and with Ul’(G) =n+1 < oco. Assume that G has a definable subgroup
H of UP-rank n, and G/ ﬂgeG HY is not solvable-by-finite. Then there is an infinite
field interpretable in € [in (G, ), if H is definable in (G,-)].



As in [12], in order to prove the above theorem, we investigate definable actions of
definable groups on sets of UP-rank 1. However, in the finite Morley rank situation,
it was sufficient to consider actions on strongly minimal sets, whereas in our case, we
need to work with sets of UP-rank 1. This and the fact that we do not have definable
connected components makes our situation more complicated and calls for different
arguments.

The main effort is put into proving the following theorem, generalizing the part
of the Hrushovski’s result (see [12, Theorem 3.27]) concerning the existence of a field
(we do not generalize the part yielding the description of permutation groups). A
similar result has also been proved for o-minimal structures in [8, Theorem 1.5]. In
the whole paper, if G is a group acting on a set S and R C S, then G denotes the
pointwise stabilizer of R; if R = {s}, then G5 := Gpg.

Theorem 3 Assume T 1is rosy with NIP, and let G be a definable group having
hereditarily fsqg and with 1 < Ub(G) < 00. Assume that G acts definably on a
definable set S of UP-rank 1 so that there is s € S for which no finite index, definable
subgroup of G has normalizer of finite index in GG. Then there is an infinite field
interpretable in €; in fact, it is interpretable in the two-sorted structure with sorts G
and S equipped with the group operation on G and the action of G on S.

In particular, assuming the first sentence of the theorem, if G acts definably on
a definable set S of UP-rank 1 so that at least one orbit is infinite, and G does not
have a definable subgroup H with UP(H) = UP(G) — 1 and whose normalizer is of
finite index in G, then an infinite interpretable field exists.

From Theorem 3, we will get the following corollary, which implies Theorem 2.

Theorem 4 Assume T has NIP. Let G be a definable group having hereditarily fsg
and with Ub(G) < 00. Assume that G acts faithfully and definably on a definable
set S of UP-rank 1. If G is not solvable-by-finite, then there is an infinite field
interpretable in €; in fact, it is interpretable in the two-sorted structure with sorts G
and S equipped with the group operation on G and the action of G on S. Moreover,
if T is rosy, then UP(G) < w.

It is worth mentioning that in the proofs of the above three theorems, the only
places where the fsg assumption is used are the applications of |4, Theorem 2| saying
that any dependent group of UP-rank 2 and satisfying hereditarily fsg is solvable-by-
finite. So, if one was able to remove the fsg assumption from [4, Theorem 2|, then it
could be automatically removed from all the results of this paper.

On the other hand, keeping the fsg assumption in the above theorems and an-
alyzing our proofs, one can check that the NIP assumption can be replaced by the
condition that G has icc.

1 Definitions and basic observations

In this section, we work in €°¢ where € is a monster model of a theory 7" in a language

L.



First we recall some things about rosy theories. For details on rosy theories, the
reader is referred to |1, 5, 9], and on rosy groups to |4].

T is rosy if there is a ternary relation | ™ on small subsets of €% satisfying
all the basic properties of forking independence in simple theories except for the
Independence Theorem. Such a relation will be called an independence relation.

A formula §(x, a) strongly divides over A if the formula is not almost over A and
{0(z,a') }a/mtp(asa) is k-inconsistent for some k € N.

We say that 0(z,a) b-divides over A if we can find some tuple ¢ such that §(x, a)
strongly divides over Ac.

A formula b-forks over A if it implies a (finite) disjunction of formulas which
b-divide over A.

We say that the type p(x) b-divides over A if there is a formula in p(x) which
p-divides over A; p-forking is similarly defined. We say that a is p-independent from
b over A, denoted a Li b, if tp (a/Ab) does not b-fork over A.

In rosy theories, p-independence is the weakest independence relation in the sense
that a L*C b implies a J/g b for any independence relation | ™.

In [5], the following has been noticed.

Fact 1.1 T s rosy iff \Lb has local character.

We define UP-rank by means of Lb in the same way as Lascar U-rank is defined
in terms of | . In rosy theories, this rank shares many nice properties of U-rank in
stable theories. In particular, it satisfies Lascar Inequalities.

If D is A-definable, we put UP(D) = sup{UP(d/A) : d € D}. If T is rosy, this
definition, not depending on A, provides a good, general notion of dimension of a
definable set. Without rosiness, it is not clear whether it depends on A (because it is
not clear whether UP-rank is preserved under taking non-p-forking extensions). So,
whenever UP(D) is considered without rosiness, we assume that the set A over which
D is defined is distinguished. Sometimes A is clear from the context, e.g. computing
UP(€), we have A = (. If € is many-sorted, then UP(€) is the supremum of the
UP-ranks of all sorts. In particular, UP(€) < oo means that the UP-rank of every sort
is less than oo.

Some nice properties of UP-rank in rosy theories are listed in Section 1 of [7]. But
even without rosiness, we still have some good properties. For example, analyzing
the proof of Lascar Inequalities [13, Theorem 5.1.6] and using [9, Lemma 2.1.6], we
get that UP(ab/A) < UP(a/bA) ® UP(b/A) holds in any theory. Also, it follows easily
that if a € acl(Ab), then UP(b/A) > UP(a/A).

Below we prove two basic facts, which are not written down explicitly anywhere.
They are a piece of folklore that has already been used in |4]| and |7], and will be
used in this paper in order to skip the assumption of rosiness of the theory T in
some results. The first remark is pretty obvious. The proof of the second one,
however, turns out to be a bit more complicated and it leads to some basic questions
formulated right below it.

Remark 1.2 Any theory with UP(€) < oo is rosy.
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Proof. By assumption, UP(a) < oo for every a € €. Thus, we get UP(a/A) < oo for
any a € € and A C €%, We know that UP(ab/A) < UP(a/bA)®UP(b/A) holds in any
theory (without rosiness). Therefore, for any finite tuple a in € and any A C €%, we
have UP(a/A) < co.

Now if a = [ag]g is imaginary (ag is a real tuple), then a € acl®(ag). So,
UP(a/A) < UP(ag/A) for any A C €.

We have proved that every type in €°¢ has an ordinal UP-rank. This implies that
there is no infinite sequence pg C p; C ... of p-forking extensions, and so J/b has
local character. We finish using Fact 1.1. |

The theories of ordinal UP-rank (i.e. with UP(€) < oo) are called superrosy. We
say that T is of UP-rank « if UP(€) = a.

It has been noticed in |2| that rosiness is preserved under taking reducts. Our
second remark is related to this observation.

Remark 1.3 Assume M with the universe M 1is interpretable in €. Let L' be the
signature of M. Working in the language L', we will use the subscript L. Otherwise
we work in the language L. vat stands for UP-rank computed in M.

(i) If T is (super)rosy, so is The(M).

(ii) Assume T is rosy. Consider any m € M and A C M. If Uh (tpe(m/A)) =
n < w, then there is a completion p of tps/(m/A) over A in the sense of € such that
U (p) > n. In particular, if T' is a reduct of T and T is of UP-rank n < w, then T’
is of UP-rank at most n.

(iii) The conclusion of (ii) holds with the assumption that T is rosy replaced by
UP(M) < oo.

(iv) If UN(M) < oo, then The/(M) is superrosy.

Proof. Assume for simplicity that M is interpretable in € over (). Of course, M*®? is
also interpretable in € over ().

Claim Let a, A, B be from M and suppose that tp./(a/AB) b-divides over A in the
sense of M. Then there are o’ and B’ in M*“? such that tp./(a’B'/A) = tpp/(aB/A),
and for any realization a” of tp/(a’/AB') one has that tps(a”/AB’) b-divides over
A in the sense of €.

Proof of Claim. By the assumption, there is a formula ¢(x,y) € £ and b € M*®? such
that ¢(x,b) € tpe(a/AB) and ¢(x,b) b-divides over A in the sense of M. Thus,
there is ¢ € M such that tp.(b/Ac) is non-algebraic and {¢(z, V) : V' |= tpe(b/Ac)}
is k-inconsistent for some k. Hence, there is b' = tpy/(b/Ac) such that tp,(b'/Ac) is
non-algebraic. We conclude that ¢(z, ') b-divides over A in the sense of €.

To finish, choose any automorphism f of M fixing A pointwisely and mapping b
to O, and put o’ = f(a), B' = f[B]. O

We argue that under the assumption of (ii) or (iii), Thg (M) is rosy. The case
when T is rosy follows easily using local b-ranks (see |2, Corollary 5.3]). Now consider



the case when T' is not necessarily rosy, but Ub(M) < 0. Then the UP-rank of M
equipped with the induced structure (i.e. with predicates for the traces of all ()-
definable subsets of the appropriate sorts of €) is also less than oo, and hence by
Remark 1.2, M with the induced structure is rosy. Thus, by [2, Corollary 5.3,
Thy (M) is rosy.

Now we give an inductive, with respect to n, proof of (ii) and (iii). The case
n = 0 is obvious. For the induction step, assume UY (tpe(a/A)) > n + 1 for some
a,Ain M and n € w. Then there is B O A such that a is p-dependent on B over
A in the sense of M and U (tpe(a/B)) > n. Extending B and using rosiness of
Thz (M) (in order to have that taking non-p-forking extensions preserves UP-rank),
we can assume that ¢p/(a/B) b-divides over A in the sense of M. By the Claim, we
get that there are o’ B’ = tpp/(aB/A) such that for any o” = tpe(a’'/B'), tpe(a”/B')
p-divides, and hence p-forks over A in the sense of €. So, by the inductive hypothesis,
UP(tpe(a”/A)) > n + 1 for some a” = tpp(a'/B').

The proof of (i) is similar. As in [2], using local b-ranks, we get that Th. (M)
is rosy. Now, suppose for a contradiction that T is superrosy, but Thz(M) is not
superrosy. Using rosiness of Thy (M), we get an infinite sequence {0} = By C By C
By C--- C M and a € M such that tpy/(a/B;y1) b-divides over B; in the sense
of M. Using recursively the Claim, we find «a;, ¢ € w, and an increasing sequence of
sets B!, i € w, in M°? so that:

) ap =

) B/ ): tp[;/(&B )

(¢) tper(aif Bi) € tper(aiva/Biy,y),
)

(d) for every a},, |= tpe(aiv1/Bl,,), tpe(al,,/Bj,,) b-divides, and hence p-forks
over B! in the sense of €.

(a
(b

By compactness and (c), there is ' € M realizing all types tpg(a;/B)), i € w.
Thus, by (d), UP(a’) = oo, a contradiction with superrosiness of €.
The proof of (iv) is almost the same as the proof of (i) |

It is not clear, however, whether the above remark holds when n is an infinite
ordinal (in particular, whether taking reducts always decreases UP-rank, even for
infinite ordinal ranks). A similar remark can also be proved for SU-rank in simple
theories, and one can also ask whether taking reducts necessarily decreases SU-rank
(even for infinite ordinal ranks).

In Section 2, T" will be assumed to have the non independence property (NIP).

Definition 1.4 We say that T has the NIP if there is no formula ¢(z,y) and se-
quence (a;)i<, such that for every w C w, there is b, such that = ¢(a;, by) iff i € w.

In the paper, whenever H and G are groups, then H < GG means that H is a (not
necessarily proper) subgroup of G.



Recall that we say that a definable group G has icc (the uniform chain condition
on intersections of uniformly definable subgroups) if for every formula ¢, there is
ny, € w such that any chain of intersections of ¢-definable subgroups of G has length
at most n,,.

Recall that the centralizer connected component of a definable group G is the
intersection of all centralizers C'(g), g € G, of finite index in G. The group G is said
to be centralizer connected if it is equal to its centralizer connected component. If
we have icc (or only icc on centralizers), then the centralizer connected component
is a definable, finite index subgroup of G. In the proof of Theorem 2.1, we will need
an easy fact that if G is centralizer connected and Z(G) is finite, then G/Z(G) is
centerless.

For this paper, an important consequence of NIP and rosiness is |4, Proposition
1.7|:

Fact 1.5 Suppose T is rosy and has NIP. Then any definable group G has icc.
We will also use |7, Theorem 3]:

Fact 1.6 Assume T has NIP and G is a definable group of finite UP-rank. Assume
that G is solvable-by-finite but not nilpotent-by-finite. Then there is an infinite field
interpretable in (G, -).

In |7, Theorem 3|, rosiness of T" was additionally assumed, but we see, using Remark
1.3, that it is not necessary.

One more property that we are going to assume is fsg (finitely satisfiable gener-
ics). As was mentioned at the end of the introduction, we do not use this property
anywhere in our proofs except for the applications of |4, Theorem 2|. That is why,
in this paper, we restrict ourselves only to giving the definition of fsg and recalling
[4, Theorem 2.

Definition 1.7 A definable group G defined by a formula G(x) has finitely satisfiable
generics (or fsg) if there is a global type p containing G(x) and a model M < € of
cardinality less than the degree of saturation of €, such that for all g, gp is finitely
satisfiable in M (i.e. each formula in gp defines a set which intersects M ). We say
that G has hereditarily fsg if every definable subgroup of G also has fsg.

It is easy to check that if G has fsg and N is a definable, normal subgroup of G,
then G//N also has fsg.

Fact 1.8 Assume T has NIP and G is a definable group satisfying hereditarily fsg.
If UP(G) = 2, then G is solvable-by-finite.



2 Getting fields

In this section, T' is a theory with NIP, and we work in €°? where € is a monster
model of T. Whenever we have a definable group G acting definably on a definable
set S, M will denote the two-sorted structure with sorts G and S equipped with the
group operation on G and the action of G on S.

First we will show a variant of Theorem 3, which will allow us to prove all three
theorems from the introduction.

Theorem 2.1 Assume T is rosy, and let G be a definable group having hereditarily
fsg and with 1 < UI’(G) < 00. Assume that G acts definably on a definable set
S of UP-rank 1 so that there is s € S for which no infinite, definable subgroup H
of Gs of finite index in the intersection of stabilizers of some points in S and with
U'(G/H) < 2 has normalizer of finite index in G. Then there is an infinite field
interpretable in €.

The following strengthening of Theorem 2.1 can be proved in almost the same
way as Theorem 2.1 is proved below.

Theorem 2.2 Assume T is rosy, and let G be a definable group having hereditarily
fsg and with 1 < Ub(G) < o0. Assume that G acts definably on a definable set S of
UP-rank 1 so that there is s € S for which no infinite, definable in M9 subgroup H
of Gy of finite index in the intersection of stabilizers of some points in S and with
Ul’(G/H) < 2 has normalizer of finite index in GG. Then there is an infinite field
interpretable in M.

Proof of Theorem 2.1. The proof is by induction on Ub(G). First consider the
case UP(G) = 2. By Fact 1.8, G is solvable-by-finite (this is the only place in the
proof where the fsg assumption is used). So, using Fact 1.6, either we get a field
interpretable in the pure group G and we are done, or else G is nilpotent-by-finite.
Since by rosiness and NIP we have icc on centralizers, using |7, Corollary 3.3(ii)]
and replacing G by a definable subgroup of finite index, we can assume that G is
nilpotent and centralizer connected. Then Z(G) is infinite (otherwise G/Z(G) would
be centerless, a contradiction). Since UP(G) = 2 > UP(S), G, is infinite. So, by
assumption, [G : G4] must be also infinite, and so Gs is infinite. Replacing S by
('s, the action becomes transitive. Since Gg <1 G, by assumption, G is finite. Thus,
replacing G by G/Gg, we can assume that the action is additionally faithful.

Notice that there is no non-trivial z € Z(G) and x € S with zz = x. Otherwise
2(gx) = (z9)xr = (92)x = g(zx) = gx for every g € G, and so z € Gg by transitivity
of the action. This is a contradiction with faithfulness.

We have proved that G, N Z(G) = {e}. But N(G,) 2 (G, Z(G)) and both G,
and Z(G) are infinite, which implies that UP(N(G,)) = 2. Thus, [G : N(G,)] is
finite, a contradiction.

Now assume that UP(G) > 3 and the theorem holds for groups of smaller UP-rank.



As in the base step, we see that (s is infinite. So, replacing S by Gs, we
can assume that the action is transitive. Since Gg < G, by assumption, we get
UP(G/Gs) > 3. So, replacing G by G/G's, we can assume that the action of G on S
is also faithful. This gives us easily that for any infinite definable subgroup H of G,
there is ¢ € S with Ht infinite. Indeed, otherwise by icc, {e} = Hg = (),cq H: is an
intersection of finitely many subgroups Hy, all of finite index in H. So, H is finite, a
contradiction.

Claim 1 UP(G) < w.

Proof of Claim 1. Suppose for a contradiction that UP(G) > w. We have that
(G : G,] is infinite, so UP(Gs) = 1, and hence UP(G/G,) = UP(Gs) = 1. Thus,
UP(@,) +1 = UG, + UP(G/aG,) < UP(G) < UP(G,) @ UP(G/G,) = UP(G,) + 1.
So, we get UP(G) = UP(G,) + 1. Therefore,

UP(@) > UP(G,) > w.
Since (G is infinite, there is s; € S with G,s; infinite and so of UP-rank 1. As
above, we get
UP(G,) > UP(Gys,) > w.

We continue this procedure and obtain s; € S, 7 > 1, so that
UP(G) > UP(Gy) > UP(Gysy) > UP(Gissy) > - - -,

a contradiction. ]

Let H be the collection of all definable, finite index subgroups H of GG, with the
property that for any g € G, if [H : H N HY < w, then H = HY.

Claim 2 H is nonempty.

Proof of Claim 2. By ice, the intersection of all GY such that [Gs : Gs N GY] < w
is a definable, finite index subgroup of GG5. Denote this subgroup by H. We see
that if [H : HN HY < w, then H = HN HY and so H < HY9. This implies
H9' < H. On the other hand, UP(H9 ') = UP(H), so by Lascar Inequalities for
groups, [H : HY '] < w. Thus, H9 ' = H, so H = HY. We have seen that H € H.
O

Consider any H € H. It is infinite, so there is t € S with Ht infinite. Since
UP(S) = 1, there are only finitely many infinite orbits on S under H; denote them
by og,...,0,. Fori=20,...,n, put

H;=H, <H

and



From now on, we choose H € H with maximal possible §(H) (we can do it by
Claims 1 and 2).

Claim 3 Assume §(H) < UP(H) — 2. Then there is i such that H/H; acting on o;
satisfies the assumptions of the theorem. Thus, since UP(H/H;) < UP(H) < UP(@),
by the inductive hypothesis, there is an infinite, interpretable field.

Proof of Claim 3. Let H,,,..., H; be all H;’s for which Ub(HZ-) = 0(H). Suppose
that for every j = 1,..., k, H/H;, acting on o;, does not satisfy the assumption of the
theorem (it is enough to show that this leads to a contradiction). Then for every j =
1,...,k, there is a nonempty S; C o;; and an infinite, definable, finite index subgroup
K;/H;; of (H/H;,)s, = Hg,/H;, such that [H/H;; : NH/Hij(Kj/Hij)] is finite. This
implies [H : Ny(K;)] < w. So, by an argument similar to the proof of Claim 2, we
can find L € H such that L < ﬂ?zl Np(K;) (namely, define L as the intersection of
all (N, Nz (K;))? such that [V, Nur(K;) = (Vi N (KN (N2, Nur(K;))) < w.).
By the definition of H, L < H.

We will be done if we prove that §(L) > 06(H) because this will be a contradiction
with maximality of §(H).

Since [H : L] < w, each o; is a union of finitely many infinite orbits oy U---Uo

under L. For i =0,...,nand j =0,...,n;, define
L= L.

0j

7
4

We need to prove that for any i € {0,...,n} and j € {0,...,n;}, Ub(L;) > 0(H).
So, consider any ¢, 7 as above.
Case 1 ¢ {iy,...,i}.
Put H} = H,;. Then I > H} > H;. Since [H : L] < w, we also have that LNH} = L}
has finite index in H}. Thus, Ub(Lé-) > UP(H;) > 6(H) (the last inequality is true
because of the assumption of Case 1).

Case 2 i =, for some [ € {1,... ,k}.
Then §(H) = UP(H;), so it is enough to show that Ub(Lé-) > UP(H;).
Take any x € S;. Then x € 0!, for some m € {0,...,n;}.

Subclaim UP(L¢ ) > UP(H,).

Proof of Subclaim. By the choice of Kj’s, [K; : H;] > w. On the other hand, since
[H : L] < wand K; < H, we have [K; : LN K;] < w. From these two observations,
we obtain

(%) UP(L N K;) > UP(H,).

As L normalizes K;, LNK;<1L. We also know that LN K] stabilizes z. Therefore,
for any hy € L and hy € LN K, we have hohyx = hihix = hyx for some b}, € LN K.
Moreover, Lz = o,,. Hence, LN K; < L% . In virtue of (x), the proof of the Subclaim
is completed. O
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There is h € H such that hoj, No’ # (). Since L < H, we easily get hol, = 0. So,
for any g € L, we have the following equivalences:

ge L, < (Vyeo,)(hgy=hy) < (Vze€o)(¢d"z=2) < g¢" €Ll

This means that (L,)" = Li. Hence, by the Subclaim, Ub(Lé-) =UP(Li) > UP(HY),
which completes the proof of Claim 3. 0

By Claim 3, in order to finish the proof of the theorem, it remains to show that the
condition §(H) = UP(H)—1 leads to a contradiction. So, assume 6(H) = UP(H)—1.
Then UP(H;) = UP(H) — 1 = UP(G) — 2 for every i = 0, ..., n.

Claim 4 There are infinite, definable normal subgroups L; of H for: =0,...,n such
that:

(i) L; is a finite index subgroup of H;,

(ii) for any g € G, LY acts trivially on go;,

(iii) for any 4,j € {0,...,n} and g € G, if [L; : L; N L] < w, then L; = L.

Proof of Claim 4. We define L; as the intersection of all groups HJQ for which [H; :
HZ-OH]‘»’] is finite. By icc, each L; is definable and of finite index in H;. Since H; < H,
we see that L; << H. Thus, (i) and so (ii) holds.

To see (iii), consider any i,j € {0,...,n} and g € G such that [L; : L; N LY] < w.
Then the property [H; : L;] < w implies [H; : L;NLJ] < w. We also know that L; L]
is an intersection of groups of the form H}. Therefore, L; = L; N L?, ie. [; < L?.
Thus, LY < L;. Since UP(LY ) = UP(L;) = UP(H,) = UP(H) — 1 = UP(L;), we
get [L; : L;‘-’_l] < w. On the other hand, Lf_l is an intersection of groups of the form
Hp. Hence, L; = LY, ie. L = LY. 0

By transitivity of the action of G on S, we can choose g € G so that gs € oy.
Since op is an infinite orbit under H and Hs = {s}, we see that ¢ ¢ N(H). But
H € H, so we conclude that [H : H N HY| is infinite.

Now we will show that for every i € {0,...,n},

(" [Lo: LoNLY] >wand [LY : LyN LY] > w.

If any of the above conditions is false, then [Lo : LyN L] < w or [L; : L, ﬂL(g)fl] <

w. Thus, by Claim 4, Ly = L{. It follows that (H, H9) < N(Lg). Since [H :
H N HY > w, we get [N(Lg) : H9] > w. Hence, UP(N(Ly)) > UP(HY) + 1 = UP(Q).
So,

|G : N(Lp)] < w.
On the other hand, the fact that Hy = G500, N H has finite index in G40, and
[Ho : Lo] < w implies that

[G{S}UOO : LO] < w.

Moreover, UP(Ly) = UP(G) —2 > 1, so
UP(G/Ly) = 2 and Ly is infinite.
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All these three observations together give us a contradiction with the assumption of
the theorem. So, (!) has been proved.

Notice that there are only finitely many orbits on S under H. We know that
there are finitely many infinite orbits, so we need to check that there are finitely
many finite orbits. For any a € G, we have G,5 = G%. Thus, we see that Has being
finite is equivalent to any of the following:

[H-HNGY <w < [H:HNH | <w < H=H" <= a€ N(H),

and the last condition implies as € N(H)s. By the assumption of the theorem,
[G: N(H)] > w. But also UP(H) = UP(G) — 1. Thus, [N(H) : H] < w. So, from the
previous computation, there are only finitely elements in S with finite orbits under
H.

By the above observation, we can choose i € {0,...,n} so that oy N go; # 0.
Choose an element g5 € 09 N go;.

Recall that two subgroups GG; and G5 of a given group are said to be commen-
surable (symbolically G ~ Gs) if [G1 : G1 N Gs] and [G : G1 N Gy are finite. ~ is
always an equivalence relation.

Since gs € 0y, Ly < GY. Also, HY is a finite index subgroup of GJ. Hence,

(M Lo~ LyN HY.

Since ¢15 € 09, Ly < G9*. So, as above
(" Lo~ Lo H.

Since g1s € go; and LY acts trivially on go;, we get LY < G9'. Therefore,
(mn LY~ LINH

We know that LI < H%. So, (Lo N H9, LY N H") < N(L{'). In particular,
by (M), LY ~ LY N H < N(L') N HY. Similarly, by (!I) and (), Ly ~ Lo N
H9" N H9 < N(L{') N H9. Using the last two observations together with (!), we
get [N(L§") N HY : Ly N H% N H9 > w. On the other hand, UP(LyN H9 N HY) =
UP(Ly) = UP(H) — 1 = UP(HY9) — 1. So, we conclude that

(o) [H®: N(L) N HY] < w.

We claim that
(00) [H?: HYNH"] > w.

Suppose it is not true. Then [H : H N Hg_lgl] < w. So, H= H9 9, which implies
HY = H9'. Hence, H(g1s) = g1Hs = {g1s}. But gi1s € go;, so there is t € o; such
that g1s = gt, and so H9(¢g18) = gHt = go; is infinite. This is a contradiction.

Of course, we have H9 U (N(LJ') N HY)) C N(L§'). So, by (¢) and (¢0), we get
[N(LZ) : H9] > w, and so [N(Lg) : H] > w. Since UP(H) = UP(G) — 1, we see that
|G : N(Lp)] < w. It was shown in the proof of (!) that this gives us a contradiction
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with the assumption of the theorem. So, the proof of the theorem is completed. W

Proof of Theorem 2.2. The proof is almost the same as the proof of Theorem 2.1.
The only difference is that we have to work with objects definable in M (whereas
UP-ranks should still be computed in @). |

Before we turn to further results, let us make a few comments concerning Theorem
2.1.

Notice that, using only icc instead of the full NIP assumption, the above inductive
proof always reduces the situation to a smaller UP-rank, and finally leads to the case
UP(G) = 2. Then we get a field via Fact 1.6 or even [4, Theorem 4.5|. Since in [4,
Theorem 4.5], it is enough to assume icc instead of NIP, we see that in Theorems
2.1 and 2.2, NIP can be also replaced by icc. Looking at the proofs that follows, this
will easily imply that in Theorems 2, 3, 4, one can also replace NIP by icc (keeping
the fsg assumption).

Notice that if we strengthen the assumption of Theorem 2.1 by dropping the
condition UP(G/H) < 2, then the existence of an infinite field interpretable in M
follows easily from this theorem and Remark 1.3. To see this, it is enough to show
that G acting on S considered in M satisfies the assumptions of the theorem. By
Remark 1.3, it is clear that M is rosy with NIP, and working in M, we have that
URA(G) < 00, UB’M(S) = 1, G has hereditarily fsg, the action of G on S is definable,
and no infinite, definable subgroup H of G, of finite index in the intersection of
stabilizers of some points in S has normalizer of finite index in G. The only remaining
assumption is that Ulj’Vl(G) > 1. However, since by the assumption of the theorem
G, is infinite (otherwise 1 = UP(S) > UP(Gs) = UP(G/G,) > 2, a contradiction)
and [G : G,] > w, we get UL (@) > UR(G,) + Uh (G/G,) > 2.

Now we will apply Theorem 2.2 to get Theorem 3. In fact, we will use the weaker
version of Theorem 2.2 in which the condition UP(G/H) < 2 is dropped, and we will
prove the following strengthening of Theorem 3.

Theorem 2.3 Assume T is rosy, and let G be a definable group having hereditarily
fsg and with 1 < Ul’(G) < 00. Assume that G acts definably on a definable set S of
UP-rank 1 so that there is s € S for which no finite indez, definable in M9 subgroup
of G has normalizer of finite index in G. Then there is an infinite field interpretable

Proof. By the assumption of the theorem, [G : G4] > w. So, Gs is infinite. Hence,
replacing S by G's, we can assume that the action of G on S is transitive. Also by the
assumption, UP(G/Gg) > 1. Indeed, if UP(G/Gg) = 1, then [G, : Gs] < w, which
together with Gg <G contradicts the assumption. So, replacing G by G/Gg, we can
assume that G acts faithfully on S. As in the proof of Theorem 2.1, this implies that
UM(@) < 0.

Let G be the collection of all finite index subgroups of G which are definable in
M.
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Consider any H € G. Since [G : H] < w, Hs is infinite. By the assumption that
Ub(S) = 1, there are only finitely many infinite orbits under H; denote them by
0g,...,0,. Fori=0,...,n, put

Hi=H, <H

and
A(H) = max UP(H,).

0<i<n

From now on, we choose H € G with maximal possible A(H). Take i with
A(H) = UP(H,).

By the assumption of the theorem, A(H) < Ub(H) — 1. Indeed, since G acts
transitively on S, there is ¢ € G such that s € go;. As G, > H? < HY and [G :
HY] < w, by the assumption of the theorem, we get [G : HY] > w, and so A(H) =
UP(H) = UP(H?) < UP(G) — 1 =UP(H) — 1.

Since H/H; and the action of H/H; on S are definable in M*®?, the following
claim will finish the proof.

Claim H/H; acting on o; satisfies the assumption of Theorem 2.2.

Proof of Claim. Of course, UP(H/H;) < UP(H) = UP(G) < w and UP(H/H,) =
UP(H) — UP(H;) = UP(H) — A(H) > 1. Moreover, UP(0;) = 1. Thus, if the
assumption of Theorem 2.2 fails, there is a nonempty S; C o0; and an infinite, definable
in M*, finite index subgroup K;/H; of (H/H;)s, = Hg,/H,; such that [H/H,
Ny/u,(K;/H;)] is finite. This implies [H : Ny(K;)] < w. Put N = Ny (K;). We see
that N € G.

We will be done if we prove that A(N) > A(H) because this will be a contradic-
tion with maximality of A(H).

Since [H : N] < w, we have that o; is the union of finitely many infinite orbits
oy U-- U0}, under N. Take any s; € S;. Then s; € o} for some j. Put NZ = NO .

We have that K; <N and K; stabilizes s;,. Hence, K stabilizes 0 , and so I; < NZ
On the other hand, [K; : H;] > w. So, Ub(N;) > Ub(Hi). Thus, we conclude tha’r
A(N)>A(H). &

Observe that in the above proof, one can use Theorem 2.1 (even with the stronger
assumption obtained by dropping the condition Ub(G/H) < 2) instead of Theorem
2.2. Indeed, it is clear because applying Remark 1.3 at the beginning of the above
proof, we can assume that € = M.

Now, we will show that if one considers the assumption UP(G) > 1 in a stronger
sense, namely that for every (not only for some) set A of parameters over which
G is defined, there is ¢ € G with UP(g/A) > 1, then the assumption that T is
rosy can be eliminated from Theorem 2.3. Indeed, by Remark 1.3, M is rosy, and
working in M, all assumptions of Theorem 2.3 except for ub M(G) > 1 are clearly
satisfied. So, it remains to show that U, (G) > 1. By the assumption of the theorem,
|G : G] is infinite. Moreover, there is a definable bijection between G /G and o(s).
So, computing UP-rank over a set of parameters over which everything is defined,
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Ub(G/Gs) — 1. Thus, G, is infinite because otherwise, computing UP-rank over some
set of parameters, Ub(G) = 1, a contradiction. So, working in M, GG has an infinite,
definable subgroup of infinite index (namely Gy). Therefore, UE’\A(G) > 2.

Now, using Theorem 3, we will prove Theorem 4.

Proof of Theorem 4. By Remark 1.3, we see that M is superrosy and URA(S) =1.
So, it is enough to prove Theorem 4 under the assumption that T is rosy.

To see that UP(G) < w, we use icc and faithfullness of the action in the same way
as in the proof of Theorem 2.1.

In order to get the existence of a field, we argue by induction on UP(G). Suppose
the theorem is true for groups of UP-rank smaller than UP(G). By Remark 1.3, we
can assume that € = M (but even without this reduction, the argument below works
using Theorem 2.3 insead of Theorem 3). Consider two cases.

Case 1 There is a definable (in M®9) subgroup H of G such that UP(G) = UP(H)+1
and [G: N(H)] < w.
If H is solvable-by-finite, then using icc and |7, Remark 3.3(i)|, H has a definable
in (H,-), normal subgroup Hj of finite index which is solvable. By icc, H; :=
Nyenn Ho 18 a finite index, definable (in M) subgroup of Hy whose normalizer
contains N(H). So, replacing H by H;, we can assume that H is solvable. But
UP(N(H)/H) =1, so N(H)/H is solvable-by-finite in virtue of Fact 1.8 (in fact, it
is even abelian-by-finite by [4, Theorem 1|). Thus, G is solvable-by-finite, a contra-
diction.

We have proved that H is not solvable-by-finite, and so H acting on S satisfies
the assumptions of the theorem. On the other hand, UP(H) < UP(G). So, by the
inductive hypothesis, we get an infinite field interpretable in M.

Case 2 Case 1 does not hold.

Since G is not solvable-by-finite, UP(G) > 1. By faithfullness and icc, there is s € S
for which G's is infinite, i.e. [G : G5] > w. Then s witnesses that G acting on S sat-
isfies the assumption of Theorem 3. So, we get an infinite field interpretable in M. B

In fact, even Theorem 2.1 is strong enough to get Theorem 4. To see this, one
should repeat the above proof of Theorem 4 modifying Case 1 in the following way:
There is an infinite, definable subgroup H of G such that 1 < UP(G) — UP(H) < 2
and [G: N(H)] < w.

Proof of Theorem 2. Put Z = (.o HY. It is clear that G/Z acting on G/H by
(aZ) - (gH) = agH satisfies the assumption of Theorem 4. |

It was mentioned in the introduction that some of our theorems generalize the
appropriate results about the finite Morley rank case. Now, we will explain why.

We claim that Theorem 3 generalizes the part of [12, Theorem 3.27| concerning
the existence of a field. More precisely, we will show that the assumption of [12,
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Theorem 3.27| implies the assumption of Theorem 3.

Recall that in [12, Theorem 3.27|, T is stable and G is a definable, transitive
group of permutations of a strongly minimal set S. It is checked right before |12,
Theorem 3.27] that the Morley rank of G is finite. Thus, UP(G) < w. In order to
get a field, it is also assumed in [12] that the Morley rank of G is at least 2. Choose
any s € S. Then G, must be infinite. On the other hand, [G : G, is also infinite.
Hence, Ub(G) > 2. So, in order to show that in this situation, the assumption of
Theorem 3 is satisfied, it is enough to prove that there is no definable subgroup H
of G4 such that [G : N(H)] < w. Suppose for a contradiction that such an H exists.
By transitivity of the action, strong minimality of S and the fact that [G : G°] < w,
we get that G? acts transitively on S. Thus, N(H) also acts transitively on S. Take
any non-trivial h € H. Then for any g € N(H), we have h(gs) = g(hg_ls) = gs as
he™' € Gy. So, h € Gg = {e}, a contradiction,

Another remark from the introduction says that Theorem 2 generalizes the part
of [12, Corollary 3.28| concerning the existence of a field. Indeed, in [12, Corollary
3.28], one has a simple group G of finite Morley rank n > 0 with a definable subgroup
H of rank n — 1. Then G/H is strongly minimal. So, UP(G/H) = 1, and hence
UP(G) = UP(H) +1 < w. Moreover, Z := yeq H? is normal in G, so it is trivial as
G is simple. Thus, G/Z = G. Simplicity of G also implies that G is not solvable-by-
finite, and we see that the assumption of Theorem 2 is satisfied.

We finish the paper with some open questions concerning the structure of groups
and their possible UP-ranks.

[12, Theorem 3.27| in the finite Morley rank case and |8, Theorem 1.5] in the
o-minimal case describe the structure of the permutation groups in terms of an
interpretable field. Notice that by the argument from the base induction step of
the proof of Theorem 2.1, if UP(G) = 2 in Theorem 3, then G is not nilpotent-
by-finite. So, by [4, Theorem 4.5|, after passing to a definable subgroup of finite
index and quotienting by its finite center, GG is definably the semidirect product of
the additive and multiplicative groups of an algebraically closed field interpretable
in €, and moreover G = G°. However, a description of G in Theorem 3 in the case
UP(G@) = 3 remains an open problem.

The assumptions of Theorem 2 or 4 imply that Ub(G) > 3, and the structure of
G in both these theorems is also unknown.

Moreover, as in the finite Morley rank or o-minimal case, one could try to prove
that the assumption of Theorem 3 together with transitivity and faithfulness of
the action imply that UP(G) = 2 or UP(G) = 3. Similarly, in Theorem 4, and in
Theorem 2 with the stronger assumption that G is simple, one could try to prove
that UP(G) = 3.
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