
EXPONENTIATIONS OVER THE QUANTUM ALGEBRA Uq(sl2(C))

Abstract. We define and compare, by model-theoretical methods, some exponentiations
over the quantum algebra Uq(sl2(C)), for any parameter q. We discuss two cases, according
to whether the parameter q is a root of unity.

1. Introduction

Quantum algebras are very interesting objects which are beginning to be investigated
under a model theoretic point of view. This is witnessed, for instance, by [10], where
one attempts to associate with a quantum algebra whose parameter of deformation is a
root of unity a geometrical object, namely a Zariski geometry [3] (we will see this in more
details below) , and by [2], where a model theoretic investigation of simple representations
of quantum algebras is developed when the deformation parameter is not a root of unity.

In this paper we will construct exponential maps on the quantum algebra Uq(sl2(C)) for
any parameter q, adopting the same method as in [8] for the universal enveloping U(sl2(C))
of the Lie algebra sl2(C) of 2x2 traceless matrices with complex entries.

The model theory of exponentiation has been considered not only in the classical frame-
works of the real and complex field, but also over larger settings such as Lie algebras.
Macintyre’s paper [9] sketches a general picture of exponentiations over finite dimensional
Lie algebras over both the real and the complex field. This led in [8] to the idea of approach-
ing exponentiation over an infinite dimensional algebra, namely the universal enveloping
U(sl2(C)).

The quantum algebras have occurred in the work of Boris Zilber in two ways. First, as
new examples of Zariski geometries which are not interpretable in an algebraically closed
field and second in the attempt to associate with a quantum algebra a geometrical object.
There are one-dimensional Zariski geometries ([3]) which are finite coverings of algebraic
curves but not algebraic curves (and whose automorphism group contains a subgroup gen-
erated by two elements τ1, τ2 whose commutator [τ1, τ2]

n = 1. Boris Zilber in [10] calls
such object a non classical Zariski geometry and explores a method which associates a
geometrical object, a Zariski geometry, to a typical quantum algebra (when the parameter
of deformation is a root of unity). He begins with the simplest algebra, namely Uq(sl2(C))

to which he associates a many-sorted structure Ṽ (Uq(sl2(C))) consisting of a base field F ,
a variety V and a bundle of Uq(sl2(C))-modules of fixed finite dimension (the order of the
root of unity) parametrized by V . He shows the theory of finite-dimensional Uq(sl2(C))-

modules is ℵ1-categorical and model-complete. Moreover, he shows that Ṽ (Uq(sl2(C))) is
a Zariski geometry and that it is not definable in an algebraically closed field.

In this paper, we will consider the full algebra structure of Uq(sl2(C)), where q is arbitrary
but q2 6= 1, and construct, using its finite-dimensional representations, an exponentiation
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function. When q is a root of unity, we will show that U embeds in a non-principal
ultraproduct of the Uq` , where the order ` of the root of unity increases.

We will discuss two cases, according to whether the parameter q is a root of unity, or
not. When q is not a root of unity, it is known that all finite dimensional representations of
Uq(sl2(C)) are semisimple, the simple ones are classified in terms of highest weight and so
are very similar to those of the classical case. Consequently various exponentiations over
Uq(sl2(C)) can be defined just by strategies similar to the ones used in the classical case in
[8]. We consider the Lie algebra Mλ+1(C) of (λ+ 1)× (λ+ 1) matrices with entries in the
complex field (λ a positive integer) and the relative matrix exponential map, introduced in
terms of infinite power series from Mλ+1(C) to the linear group GLλ+1(C). By connecting
these exponentials to the simple finite dimensional Uq(sl2(C))-modules Vλ,ε (where ε = ±1),
we first define exponential maps indexed by λ, ε from Uq(sl2(C)) to GLλ+1(C). By using the
same technique as in the classical case, we will describe some properties of these maps and
show that Uq(sl2(C)) embeds into any non-principal ultraproduct of the Mλ+1(C). Then,
we will define an exponential map EXP from Uq(sl2(C)) to any non-principal ultraproduct
of the groups GLλ+1(C) and we will investigate some of its properties.

What is more interesting is the other case, when the parameter q is a root of unity. In
fact the finite-dimensional representations of Uq(sl2(C)) are not semisimple and there are
further finite-dimensional representations in addition to the highest weight ones. Anyway,
using the characterization of its simple finite dimensional Uq(sl2(C))-modules, we will define
exponential maps from Uq(sl2(C)) to certain ultrapowers of the linear group GL`(C), where
` is the order of the root q. In this case, we have to carefully choose appropriate ultrafilters.

2. Preliminaries.

Let k be a field; recall that the universal enveloping algebra U of sl2(k) can be presented
as the associative algebra generated by X,Y,H, subject to the relations: X.Y − Y.X = H.
It also be viewed as an iterated skew polynomial ring. Namely, set A0 = k[H], let σ1 be an
automorphism of A0 which is the identity on k and which sends H to H + 2.

Then let A1 be the skew polynomial ring A0[Y ; σ1] and σ2 be an automorphism of A1

sending Y to Y and H to H − 2. Then U is isomorphic to A2 := A1[X; σ2, δ], where δ is a
σ2-derivation sending H to 0 and Y to H.

Fix an element q ∈ k − {0} such that q2 6= 1. Now we want to present the quantum
algebra Uq(sl2(k)) in a similar way. Namely, Uq(sl2(k)) is the associative k-algebra with
generators K, K−1, E, F and relations:

(1) KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
.

The relations (1) imply by induction for every integers s and t, s, t ≥ 2, the formulas:

(2) [E,F t] = [t]F t−1
Kq1−t −K−1qt−1

q − q−1
,

(3) [Es, F ] = [s]Es−1
Kqs−1 −K−1q1−s

q − q−1
,

where [a] denotes the q-number that is defined for every a ∈ Z as:

[a] :=
qa − q−a

q − q−1
.
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When q is not a root of unity, the representation theory of Uq(sl2(k)) has similar prop-

erties as that of U , the universal enveloping algebra of sl2(k). If q is a primitive pth root of
unity, then the representation theory of Uq(sl2(k)) looks like the representation theory of
sl2(k) over an algebraically closed field of characteristic p.

Another (useful) way to present the algebra Uq := Uq(sl2(k)), for any q, is to con-
struct it as an iterated skew polynomial ring ([6]). Namely, let A0 := k[K,K−1] with the
automorphism α1 sending K to q2.K, then A1 := A0[F ;α1] with the commutation rule
a.F = F.aα1 with a ∈ A0. Then extend α1 to A1 by α1(F

j .K`) = q2.`.F j .K` and define an

α1-derivation on A1 by δ(F ) := K−K−1

q−q−1 , δ(K) = 0 (see Lemma VI.1.5 in [6]). Finally, set

A2 := A1[E;α1, δ] with the commutation rule a.E = E.aα1 + δ(a) with a ∈ A1. Then A2 is
isomorphic to Uq and the set {Ei.F j .Kz : i, j ∈ N; z ∈ Z} is a basis of Uq over k ([6] proof
of Proposition VI.1.4, [5] Theorem 1.5).

Lemma 2.1. ([1] Theorem 1.12) A0 is a Euclidean commutative ring, A1 (respectively A2)
is right and left Noetherian (and so right and left Ore with no zero-divisors). 2

The algebra Uq is a Z-graded k-algebra with grading deg(E) = 1, deg(F ) = −1 and
deg(K) = deg(K−1) = 0. (Note that the relations (1) preserve that grading.)

Let Uq,` be the k-vector subspace generated by {Ei.Kz.F j : i− j = `, i, j ∈ N, z ∈ Z}.

Lemma 2.2. Uq = ⊕m∈ZUq,m.

Proof: let L1, L2 be two disjoint subsets of integers, then
∑

m∈L1

∑
i,z αi,z.E

i.F i+m.Kz =∑
m′∈L2

∑
j,z′ βj,z′ .E

j .F j+m
′
.Kz′ implies that

∑
m∈L1

∑
i,z αi,z.E

i.F i+m.Kz = 0 and 0 =∑
m′∈L2

∑
j,z αj,z.E

i.F i+m
′
.Kz. It suffices to note that if Ei.F i+m1 , m1 ∈ L1, occurs in

the right hand side with a nontrivial coefficient, then it doesn’t occur in the left hand side.
Indeed assume that for some m2 ∈ L2, E

j .F j+m2 = Ei.F i+m2 , then i = j and so m1 = m2

a contradiction.

For u ∈ Uq,i, we have (see [5], 1.9):

(4) K.u.K−1 = q2i.u.

So, if q is not a root of unity, then Uq,0 is equal to the centralizer of K.
In the general case, we have the following Lemma. Let

(5) Cq :=
q−1.K + q.K−1

(q − q−1)2
+ E.F = F.E +

q.K + q−1.K−1

(q − q−1)2

be the quantized Casimir element of Uq.

Lemma 2.3. ([6] Proposition VI.4.1, Lemma VI.4.2) For any q, Uq,0 is equal to the
polynomial ring k[Cq,K,K

−1].

Proof: The fact that Cq commutes with K follows from the above relation. Further, using
relations (1), we show that Cq belongs to the center of Uq.

First, by relation (4), Ei.Kn.F i=Ei.Kn.F i.K−n.Kn = q2.n.i.Ei.F i.Kn. Then one pro-
ceeds by induction on i, to show that Ei.F i ∈ k[Cq,K,K

−1]. This holds for i = 1.
If u ∈ k[Cq,K,K

−1], it remains to show that E.u.F ∈ k[Cq,K,K
−1]. By definition

of Cq, this holds for E.F . Now, note that any element of k[Cq,K,K
−1] can be repre-

sented as K−d.p[Cq,K] with p[x1, x2] ∈ k[x1, x2] and d ∈ ω. If u = Kn, n ∈ Z, then
E.Kn.F = q2.n.E.F.Kn. 2
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We will use later the fact that any element of Uq,m, for any q, can be written as Em.u,
for m ≥ 0, and u.F−m, for m < 0, with u ∈ Uq,0 and also that for any u ∈ Uq,0, there exist
u′, u′′ ∈ Uq,0 such that E.u = u′.E (respectively F.u = u′′.F ).

If q is not a root of unity, then the center of Uq has dimension 1 over k and is generated
by Cq (see Proposition 2.18 in [5], or Theorem VI.4.8 in [6]).

If q is a `th root of unity, the center of Uq is generated by E`, F `, K`, K−` and Cq (see
Proposition 2.20 in [5]).

3. Finite-dimensional representations of Uq, for q not a root of unity.

In this section q is not a root of unity, and k is an algebraically closed field of characteristic
different from 2.

Every finite-dimensional representation of Uq admits a direct sum decomposition by
simple Uq-modules ([5] Theorem 2.9 and Proposition 2.3). For every positive integer λ,
there exist (up to isomorphism) exactly two simple modules of dimension λ+ 1 as k-vector
spaces. They will be denoted by Vε,λ, where ε ∈ {−1, 1}. First, let us describe the Uq-
module V1,λ; it has a basis {v0, v1, . . . , vλ} for which the actions of the generators E, F, K
can be described as follows:
(6)

Evj =

{
[n− j + 1]vj−1, if j = 1, . . . , λ
0, if j = 0,

Fmj =

{
[j + 1]vj+1, if j = 0, . . . , λ− 1,
0, if j = λ,

(7) K vj = qλ−2j vj j = 0, . . . , λ.

In particular, E annihilates v0 and F the vector vλ, and up to the scalar multiplication
these are the only vectors with these properties. So, V1,λ is an irreducible representation of
Uq. Furthermore, on V1,λ, the quantized Casimir element Cq acts by scalar multiplication

of qλ−1+q1−λ

(q−q−1)2
.

The other simple representation V−1, λ of dimension λ+ 1 is obtained by composing the
action of Uq on V1, λ with the automorphism σ (see [5, §5.2]) of Uq determined by

σ(E) = −E, σ(F ) = F, σ(K) = −K.
Furthermore, σ maps Cq to −Cq. We will also refer to the module V−1, λ as V σ

1,λ. Denote

by Vε,λ (for every ε = ±1), any simple representation of Uq (of dimension λ + 1) and by

V j
ε,λ the eigenspace of K with eigenvalue εqλ−2j , namely {v ∈ Vε,λ : Kv = εqλ−2jv}. So,

we have that Vε,λ = ⊕0≤j≤λV
j
ε,λ. For every ε = ±1, the actions of the generators E, F, K

and the central element Cq, according to the representation map Θε,λ : Uq → End(Vε,λ+1),
are described by the matrices denoted respectively as Eε,λ := Θε,λ(E), Fε,λ := Θε,λ(F ),
Kε,λ := Θε,λ(K) and Cq,ε,λ := Θε,λ(Cq):

(8) Eε,λ = ε


0 [λ] 0 . . . 0
0 0 [λ− 1] . . . 0
...

... [1]
0 0 0 . . . 0

 , Fε,λ =


0 0 . . . 0
1 0 . . . 0
0 [2] 0

...
0

...
0 [λ] 0



Kε,λ = εdiag(qλ, qλ−2, . . . , q−λ+2q−λ), Cq,ε,λ = ε diag
(qλ−1 + q1−λ

(q − q−1)2
, . . . ,

qλ−1 + q1−λ

(q − q−1)2
)
.
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In the next proposition, we translate in our notations the property that for any r ∈ Uq,0,
the formula φ(v) := r.v = 0 is uniformly bounded as defined in ([2] Lemma 4.2).

Proposition 3.1. Let r ∈ Uq,0, then the dimension of the kernel of Θε,λ(r) in Vε,λ is
bounded independently of λ.

Proof: We have that r = K−n.p(Cq,K) with p(x1, x2) ∈ k[x1, x2] and n ∈ N. Let v ∈ V i
ε,λ

with λ ∈ N− {0}, then r.vi = ε−n.q−n.(λ−2.i).p( q
−1(ε.qλ)+q.(ε.qλ)−1

(q−q−1)2
, ε.qλ−2.i).vi. Now r.vi = 0

iff p( q
−1(ε.qλ)+q.(ε.qλ)−1

(q−q−1)2
, ε.qλ−2.i) = 0.

We write p(x1, x2) =
∑m

j=0 pj(x1).x
j
2. Since q is not a root of unity, for all n ∈ N −

{0} qn 6= 1 and the map sending n to qn is a monomorphism from (Z,+, 0) to (k−{0}, ., 1).

We write q−1(ε.qλ)+q.(ε.qλ)−1

(q−q−1)2
= q−1.ε.qλ. (1+q

−2λ)
(q−q−1)2

. Suppose that we have that more than

deg(pj) values of λ such that pj(
q−1(ε.qλ)+q.(ε.qλ)−1

(q−q−1)2
) = 0. This entails that

q−1.ε.qλ1 .
(1 + q−2λ1)

(q − q−1)2
= q−1.ε.qλ2 .

(1 + q−2λ2)

(q − q−1)2
.

Therefore, (qλ1 + q−λ1) = (qλ2 + q−λ2), so qλ1+λ2(qλ1 − qλ2) = (qλ1 − qλ2). So, qλ1+λ2 = 1,
which implies that λ1+λ2 = 0 and since these are positive numbers, a contradiction. Denote

by Zj the (finite) set of values of λ such that pj(
q−1(ε.qλ)+q.(ε.qλ)−1

(q−q−1)2
) = 0. Suppose that

λ /∈
⋂m
j=0 Zj , then there are finitely many i ≤ m such that p( q

−1(ε.qλ)+q.(ε.qλ)
(q−q−1)2

, ε.qλ−2.i) = 0.
2

A uniform way of presenting these representations is to introduce the quantum plane
([2]).

The quantum plane k[x1, x2]q is the quotient of the free k-algebra generated by x1 and x2
by the ideal generated by x1.x2−q.x2.x1. A basis is {xi1.x

j
2}i,j∈N with the commutation rela-

tion xj2.x
i
1 = qi.j .xi1.x

j
2. Let k[x1, x2]q,λ be the k-vector space generated by the homogeneous

elements of degree λ. (We have k[x1, x2]q = ⊕λ∈Nk[x1, x2]q,λ.) It is an Uq-module with the

actions of E, F and K defined as follows: K.xi1.x
j
2 = qi−j .xi1.x

j
2, E.x

i
1.x

j
2 = [i].xi−11 .xj+1

2 ,

F.xi1.x − 2j = [j].xi+1
1 .xj−12 . We could also have defined the action of Uq as follows: first

send Uq to σ(Uq) and then let it act on k[x1, x2]q as before. In the second case, we will
denote the quantum plane by k[x1, x2]q,σ.

The simple finite dimensional modules Vε,λ are, as Uq-modules, either isomorphic to
k[x1, x2]q,λ (ε = 1) or k[x1, x2]q,σ (ε = −1).

4. The exponential maps on Uq, q not a root of unity.

In this section we set k = C (in fact we just need a field endowed with a norm and
complete for the induced topology). We endow M`(C) with the Hermitian sesquilinear
form (·, ·), defined by (A,B) := tr(B∗ ·A) =

∑
i,j Aij · B̄ij , where A, B ∈M`(C) and B∗ is

the conjugate of the transpose of B. Let ‖ · ‖` be the norm induced by this form (usually
called the Frobenius norm) hence for every A, we have ‖A‖2` := (A,A).

We denote by exp the matrix exponential map from the algebra of matrices Mλ+1(C) to
the algebra of invertible matrices GLλ+1(C), which sends any matrix A ∈Mλ+1(C) to the
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matrix exponential exp(A), defined as the power series

(9) exp(A) =

∞∑
n=0

An

n!
.

If A is a 1× 1 matrix, that is, a scalar a of the field C), then exp(A) = ea where ea denotes
the ordinary exponential of the element a ∈ C.

Actually, there exists a q-variant of the exponential map defined as an element of the
formal power series ring C[[X]](see [6], pag. 76). The q-exponential is defined as the formal
series

eq(X) =

∞∑
n=0

Xn

[n]!
,

where [n]! = [1] . . . [n], (note that [n]! for q = 1 is equal to the usual factorial n!). Observe
that the series is well-defined (provides q is not a root of unity).The q-exponential is any
invertible series, but in contrast with the ordinary exponential (that is, for q = 1), we
have eq(X)−1 6= eq(−X). Anyway, for any variable X and Y such that XY = qY X, the
fundamental property of the exponentials eq(X + Y ) = eq(X)eq(Y ) is satisfied.

Anyway, we will work with the matrix exponential defined by (9) in order to introduce
a new exponential map over Uq by using its representation theory. We will compose this
map with Θε,λ in order to get exponential maps from Uq to GLλ+1(C). Since for each λ,
the kernels of these maps Θε,λ are non-trivial, we will consider non-principal ultraproducts
of the GLλ+1(C).

In [8] (see Definition 4.1), we defined the notion of (non-commutative) exponential rings
(respectively non-commutative exponential C-algebras).

For each λ, we define the exponential map EXPε,λ on Uq as follows. Let u ∈ Uq, then

EXPε,λ(u) := exp(Θε,λ(u)), for ε = ±1.

For instance,

(1) EXPε,λ(E) = exp(Θε,λ(E))=exp(Eε,λ),
(2) EXPε,λ(F ) = exp(Θε,λ(F )) = exp(Fλ),

(3) EXPε,λ(K) = exp(Θε,λ(K)) = diag
(
eε.q

λ
, eε.q

λ−2
, . . . , eε.q

−λ+2
, eε.q

−λ
)
.,

(4) EXPε,λ(Cq) = exp(Θε,λ(Cq)) = e
q−1(ε.qλ)+q.(ε.qλ)−1

(q−q−1)2 .1λ+1.

We get a transfer of the properties of the classical matrix exponential to this new expo-
nential map, as follows.

Proposition 4.1. If u, v ∈ Uq and a, b ∈ C, then ∀λ ∈ N− {0}:
(i) EXPε,λ (0Uq) = Iλ, where 0Uq denotes the identity element (with respect to the

addition) in Uq and Iλ is the identity matrix in GLλ+1(C).
(ii) EXPε,λ (a.u).EXPε,λ (b.u) = EXPε,λ ((a+ b).u);
(iii) EXPε,λ (u).EXPε,λ (−u) = Iλ;
(iv) for u and v commuting, EXPε,λ (u+ v) = EXPε,λ (u).EXPε,λ (v);

(v) for an invertible element v in Uq, EXPε,λ (vuv−1) = Θε,λ(v).EXPε,λ (u).Θε,λ(v)−1;

So, (Uq,C,EXPε,λ, GLλ+1(C)) is an exponential C-algebra.

As in [8] Proposition 7.2, we obtain the following result.

Proposition 4.2. ∀λ ∈ N− {0}, the map EXPε,λ is surjective.
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Proof. Since exp is surjective from Mλ+1(C) to GLλ+1(C), it suffices to prove that
Θε,λ : Uq → Mλ+1(C) is surjective. The latter is deduced directly by Jacobson density
theorem [4, Section 2.2]. 2

Let U be a non principal ultrafilter on ω. Recall that the ring (
∏
UMλ+1(C), exp,

∏
U GLλ+1(C))

is an exponential ring ([8] Proposition 5.1). We will view Uq as an exponential sub-ring of
that ring.

Proposition 4.3. For every non-principal ultrafilter U on ω, the map [Θε,λ] is injective
from Uq to

∏
UMλ+1(C).

Proof: We proceed as in [8], using Proposition 3.1. Any element u of Uq can be written

as, with m ≥ 0,
∑−1

z=−m F
−z.uz +

∑m
z=0 uz.E

z. Then, for λ ≥ m, whenever Θε,λ(uz) 6= 0,
for some z, Θε,λ(u) 6= 0. Then, by Proposition 3.1, if uz 6= 0, for all λ but finitely many of
them, Θε,λ(uz) 6= 0. 2

Define EXP from Uq to
∏
U GLλ+1(C) by

EXP (u) = [EXPε,λ(u)],

(for ε± 1).
It follows by  Los theorem that (Uq, EXP,

∏
U GLλ+1(C)) is an exponential C-algebra.

5. Finite-dimensional representations of Uq, for q a root of unity.

In this section, we will assume that q is a primitive `th root of unity for ` ≥ 3 and that k
is algebraically closed. In this case, the dimension of a finite-dimensional simple Uq-module
is bounded by `; in dimension `, there are more simple Uq-modules (than for q not a root
of unity).

First a simple Uq-module of dimension λ < ` is isomorphic to a module of the form V±, λ
(see Proposition VI.5.1 in [6]). Then there are no simple finite-dimensional Uq-module of
dimension > ` (see Proposition VI.5.2 in [6]).

Now let us describe the module Va,b,c(`) of dimension `, a, b, c ∈ k, c 6= 0.

For ease of notation, we will set ei := a.b+ [i]. c.q
−i+1−c−1.qi−1

q−q−1 , 1 ≤ i ≤ `− 1, e` := a and

e =
∏`
i=1 ei. Note that the ei’s and e depend on a, b, c, and when we want to stress it, we

denote ei (respectively e) by ei(a, b, c) (respectively e(a, b, c)). Also, we will always assume
that c2 6= 1.

For z ∈ C, let z̄ be the complex conjugate of z, since qi = q`−i, we have that [i] = [`− i].
The actions of E, F and K are represented by the following three `× ` matrices Ea,b,c,

Fb,c, Kc:

(10) Ea,b,c =


0 e1 0 . . . 0
0 0 e2 . . . 0
...

... e`−1
e` 0 0 . . . 0

 ,

(11) Fb =


0 0 . . . b
1 0 . . . 0
0 1 0

...
0

...
0 1 0

 ,
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Kc = c.diag
(
1, q−2, . . . , q−2.`+4, q−2`+2

)
,

Ca,b,c = diag
(
ab+ c.q+c−1.q−1

(q−q−1)2

)
.

Note that the actions of respectively E, F , K and C on an `-dimensional space that
these matrices represent either are cyclic permutations of one-dimensional subspaces, or
leave these subspaces invariant.

We will denote by Θa,b,c the maps from Uq to M`(k) sending E to Ea,b,c, F to Fb and K
to Kc.

Now let us describe the module Ṽd,f (`), d, f ∈ k, d, f 6= 0, it is a `-dimensional k-vector
space.

For ease of notation, we will set fi := [i].f
−1.q−i+1−f.qi−1

q−q−1 and we will always assume that

f2 6= 1. The actions of E, F and K are represented by the following three ` × ` matrices
Ed, Ff , Kf :

Ff =


0 f1 0 . . . 0
0 0 f2 . . . 0
...

... f`−1
0 0 0 . . . 0

 ,

(12) Ed =


0 0 . . . d
1 0 . . . 0
0 1 0

...
0

...
0 1 0

 ,

Kf = f.diag
(
1, q2, . . . , q2.`−4, q2.`−2

)
.

Cq,f = diag
(
f.q−1+f−1.q
(q−q−1)2

)
.

Note that the action of Ed on an `-dimensional space is a cyclic permutation of one-
dimensional subspaces, whereas the action of Ff is nilpotent.

We will denote by Θd,f the maps from Uq to M`(k) sending E to Ed,f , F to Ff and K
to Kf .

Any simple Uq-module of dimension ` is isomorphic to a module of the form (see Theorem
VI.5.5 in [6]): (c 6= 0)

(1) Va,b,c(`) with b 6= 0,

(2) Va,0,c(`), whenever c /∈ {±1,±q, · · · ,±q`−2} or

(3) Ṽd,±q1−j (`), for j ∈ {1, · · · , `− 1} and d 6= 0.

In the following we will use on one hand the family of representations Θa,b,c := Θ`,a,b,c with
a, b, c all non-zero and the family Θf,d := Θ`,f,d with f, d all non-zero.
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6. The exponential maps on Uq, q a root of unity.

Let k = C, let q be a primitive `th-root of unity. We denote by R+ the set of strictly
positive real numbers and by N+ the set of strictly positive natural numbers.

We denote by exp the matrix exponential map from M`(C) to GL`(C). As in section 4,

we will compose this map with Θa,b,c (respectively Θ̃d,f ) in order to get exponential maps
from Uq to GL`(C).

For each (a, b, c) (respectively (d, f)), we define the exponential map EXP(a,b,c) (respec-
tively EXP(c,d)) on Uq as follows. Let u ∈ Uq, then EXP(a,b,c)(u) := exp(Θ(a,b,c)(u))
(respectively EXP(d,f)(u) := exp(Θ(d,f)(u)).)

Similarly to Proposition 4.1, we obtain that (Uq,C, EXP(a,b,c), GL`(C)) (respectively
(Uq,C, EXP(d,f), GL`(C))) are exponential C-algebras. Moreover, if the parameters (a, b, c)
(respectively (d, f)) are chosen such that the corresponding module Va,b,c(`) (respectively

Ṽd,f (`)) is simple, then the map EXP(a,b,c) (respectively EXP(d,f)) is surjective (the argu-
ment is the same as the one used in Proposition 4.2).

Now, we will vary these maps along certain non principal ultrafilters W on ω2 in order
to embed Uq in the corresponding non-principal ultraproduct of the M`(C).

We want to find necessary conditions on a domain of variation for a, b, c (respectively
d, f) in order to get for u 6= 0 that Θa,b,c(u) 6= 0 (respectively Θd, f (u) 6= 0), for sufficiently
many a, b c (respectively d, f).

First let us consider the case of an element u ∈ Uq,0. So, u is of the form K−n.p(Cq,K)

with p(x1, x2) ∈ C[x1, x2] and n ∈ N. Let us write p(x1, x2) =
∑d

j=0 sj(x1).x
j
2 and we may

further assume that s0(x1) ∈ C[x1]− {0}, varying n ∈ Z.
For ease of notation, let us denote in both representations Θa,b,c and Θd,f the coefficients

occurring in the matrix representation of the Casimir element by the same letter c(q) (even
though, it varies according to the chosen representation).

So if u ∈ Uq,0, we have that both matrices Θd,f (u) and Θa,b,c(u) are diagonal ma-

trices whose (i + 1)th entry on the diagonal, with 0 ≤ i ≤ ` − 1, either is equal to

f−n.q−2.n.ip(c(q), f.q2.i) or to c−n.q2.n.ip(c(q), c.q−2.i)) and p(c(q), f.q2.i) =
∑d

j=0 sjc(q).(f.q
2.i)

j
,

respectively p(c(q), c.q−2.i) =
∑d

j=0 sj(c(q)).(c.q
−2.i)

j
.

Let us first consider a very special case where u = p(Cq,K) with s0 ∈ C[X]− {0}.
Assume that all these entries of Θd,f (u) (respectively Θa,b,c(u)) are zero, taking their sum,

we get that for each j > 0,
∑`−1

i=0 sj(c(q)).f
j .q2i.j = 0, respectively

∑`−1
i=0 sj(c(q)).c

j .q−2.i.j =

0. But,
∑`−1

i=0 q
2.j.i = 0, for any j 6= 0. So, what remains is the case when j = 0, and we

get in both cases that `.s0(c(q)) = 0. So, s0(c(q)) = 0, which cannot happen for infinitely
many values of c(q) since s0 is a non-zero polynomial.

In the general case, we have to proceed as follows. We first consider the representation
Θd,f .

We will assume that the elements f are chosen such that:
f.q−1 + f−1.q = f.q−1 + f−1.q, so f̄ .q + f̄−1.q−1 = f.q−1 + f−1.q, or equivalently (f̄ −
f−1).q = (f−f̄−1).q−1. Multiplying both sides by f.f̄ , we get f̄ .(f.f̄−1).q = f.(f̄ .f−1).q−1.
So, the above condition is equivalent to f̄ .q = f.q−1, or to f̄ = f.q−2.

Let u = K−n.p(Cq,K), n ∈ N+, where p(x1, x2) =
∑d

j=0 sj(x1).x
j
2, sj(x1) ∈ C[x1].

Further we may assume that s0 ∈ C[x1]− {0}, letting n ∈ Z.
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First assume that p(x1, x2) /∈ R[x1, x2] and that for all 0 ≤ i ≤ `−1, p(f.q
−1+f−1.q

(q−q−1)2
, f.q2i) =

0. This implies that p̄(f.q
−1+f−1.q

(q−q−1)2
, f.q2i) = 0. By assumption on f , f̄ = f.q−2 and so

p̄(f.q
−1+f−1.q

(q−q−1)2
, f.q−2i−2) = 0.

In other words, if Θf,d(u) = 0, then we found a common root of p(x1, x2) and p̄(x1, x2).
Second, assume that p(x1, x2) and p̄(x1, x2) have no common irreducible factors, then by

Bezout theorem, they have finitely many common zeroes.
Thirdly, assume that p(x1, x2) and p̄(x1, x2) have a common irreducible factor. Therefore,

we get that p(x1, x2) has a factor with real coefficients.

Let us assume that p(x1, x2) ∈ R[x1, x2] and that p(f.q
−1+f−1.q

(q−q−1)2
, f.q2i) = 0. Since the

squares of the roots of a polynomial with real coefficients belong to R and if for some j,

sj(
f.q−1+f−1.q
(q−q−1)2

) 6= 0, then f.q2i ∈ R, or f2.q4i ∈ R. Suppose f.q2i ∈ R, then since f.q−2 = f̄

and f̄ .q−2i ∈ R, we get that f.q−2.q−2i.q4i+2 ∈ R, so q4i+2 ∈ R, which implies that ` divides
4i + 2. Suppose f2.q4i ∈ R, then f.f.q−2.q4i+2 ∈ R i.e. ` divides 4i + 2 i.e. i = (` − 1)/2.
So, at most one entry of the matrix is equal to zero.

Now let us consider the representation Θa,b,c.
We will assume that the coefficients a, b, c satisfy the following conditions: a.b ∈ R, and

c.q + c−1.q−1 = c.q + c−1.q−1, equivalently c−1 = c−1.q−2, or c̄ = c.q2.

So, [i]. c.q
−i+1−c−1.qi−1

q−q−1 = [`− i]. c.q
−`+i−1−c−1.q`−i+1

q−q−1

Note that if a.b ∈ R, then ēi = e`−i, 1 ≤ i ≤ `− 1, and so e =
∏`−1
i=1 ei.a =

∏ `
2
i=1 |ei|2.a ∈

R. So, e ∈ R iff a ∈ R.
As for the other representation, we make the following case distinctions.

First assume that p(X,Y ) /∈ R[X,Y ] and for 0 ≤ i ≤ `− 1, p(a.b+ c.q+c−1.q−1

(q−q−1)2
, c.q−2i) = 0.

This implies that p̄(a.b + c.q+c−1.q−1

(q−q−1)2
, c.q2i) = 0. By assumption on c, c̄ = c.q2 and so

p̄(a.b+ c.q+c−1.q
(q−q−1)2

, c.q−2i+2) = 0.

In other words, if Θa,b,c(u) = 0, then we found a common root of p(x1, x2) and p̄(x1, x2).
Second, assume that p(x1, x2) and p̄(x1, x2) have no common irreducible factors, then by

Bezout theorem, they have finitely many common zeroes.
Thirdly, assume that p(x1, x2) and p̄(x1, x2) have a common irreducible factor. Therefore,

we get that p(x1, x2) has a factor with real coefficients.

Let us assume that p(x1, x2) ∈ R[x1, x2] and that p(a.b + c.q+c−1.q−1

(q−q−1)2
, c.q−2i) = 0. Since

the squares of the roots of a polynomial with real coefficients belong to R and if for some

j, sj(a.b+ c.q+c−1.q−1

(q−q−1)2
) 6= 0, then c.q−2i ∈ R, or c2.q−4i ∈ R. Suppose c.q−2i ∈ R, then since

c.q2 = c̄ and c̄.q2i ∈ R, we get that c.q2.q2i ∈ R, so q4i+2 ∈ R, which implies that ` divides
2(2i+ 1). Suppose c2.q−4i ∈ R, then c2.q4.q4i ∈ R i.e. ` divides 4(2i+ 1) i.e. i = (`− 1)/2.
So, at most one entry of the matrix is equal to zero.

Now we will show that under some conditions on where the elements f vary in C (re-
spectively a, b, c), we get that the coefficients c(q) take infinitely many values.

Let us check when different values of f give us the same values for f.q−1+f−1.q
(q−q−1)2

. Assume

that f.q−1+f−1.q
(q−q−1)2

= g.q−1+g−1.q
(q−q−1)2

, so g.f = q2, in particular |f | = |g|−1. So, it suffices to let

f vary over an infinite subset of elements of C of modulus bigger than 1, to get infinitely
may different values for the coefficients c(q).
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Now let us do the same reasoning for the other representation. For sake of simplicity, we

will assume that the product a.b is constant and belongs to R. So, now if a′.b′+ c′.q+(c′.q)−1

(q−q−1)2
=

a.b+ c.q+(c.q)−1

(q−q−1)2
, then c′.q+(c′.q)−1

(q−q−1)2
= c.q+(c.q)−1

(q−q−1)2
, equivalently c.c′ = q−2, whenever c 6= c′. So,

it suffices to let c vary over a subset of C of elements of modulus strictly bigger than 1, to
get infinitely may different values for the coefficients c(q).

Notation 6.1. Let {fm : m ∈ ω} (respectively {cm : m ∈ ω}) be a countable subset of C of
modulus strictly bigger than 1, let {dn : n ∈ ω} (respectively {an : n ∈ ω}, {bn : n ∈ ω}) be
countable sets of distinct complexes of bounded modulus and assume that an.bn a constant
real number with modulus strictly bigger than 1 and each |an| > 1 and that e(m,n) (where

e(n,m) = an.
∏`
i=1 ei,m,n), which depends on an, bn and cm, has modulus strictly bigger

than 1.
LetW be a non-principal ultrafilter on ω2. Such ultrafilter will index subsets of complex

numbers of the form (dn, fm) with |fm| > 1, or (bn, cm) with an.bn a real constant and
|cm| > 1. The ultrafilterW will either contain subsets of the form {(dn, fm) : m > m0 n /∈
Im, |Im| < C}, or of the form {(bn, cm) : m > m0 n /∈ Im, |Im| < C} where Im is a finite
subset of ω and C ∈ ω+.

For u ∈ Uq, we denote by Θ̃n,m(u) := Θdn,fm(u) and Θn,m(u) := Θan,bn,cm(u).

From the above discussion, we deduce the following.

Lemma 6.1. Let W and the elements dn, fm (respectively an, bn, cm) be chosen as above.

Then for any u ∈ Uq,0, [Θ̃n,m(u)]W 6= 0 (respectively [Θn,m(u)]W 6= 0) and its norm is
bounded by an element of R+. 2

Now we want to examine the general case.
Any element u of Uq can be written as a finite sum of the form

∑
z∈N+ F z.u−z +∑m

z∈N uz.E
z with uz ∈ Uq,0.

Note that we have that F `f = 0, and for n ∈ N+ and 0 ≤ j ≤ `− 1 that En.`+jd = dn.Ejd,

Fn.`+jb = bn.F jb and En.`+ja,b,c = en.Eja,b,c.

Moreover, E`−ia,b,c ∼ Fb, for 0 ≤ i ≤ `, where ∼ means both matrices induce the same

permutation of the one-dimensional subspaces.
Re-write the element u as a finite sum of the form

(13)
`−1∑
j=0

∑
z∈(j+`.N+)

F z.u−z +
`−1∑
j=0

∑
z∈(j+`.N)

Ez.uz,

where uz ∈ Uq,0.
First we examine the representation Θ̃n,m. As we already noted, we have, for m ∈ N+

and 0 ≤ j ≤ `− 1, that Θ̃n,m(Ej+`.t) = Ej+`.tdn
= dtn.E

j
dn

, and Θ̃n,m(F j+`.t) = 0 if t 6= 0.

Let u ∈ Uq − {0} and calculate Θ̃n,m(u). It is of the form:

V−`+1.Θ̃n,m(F `−1)+· · ·+V−1.Θ̃n,m(F )+(V0+V`.dn+· · ·+V`.i.din)+Θ̃n,m(E).(V1+V1+`.dn+

· · ·+V1+i.`.din)+· · ·+Θ̃n,m(E`−1).(V`−1+V`−1+`.dn+· · ·+V`−1+i.`.din), where Vz = Θ̃n,m(uz)
(see (13)).

Either there is t ∈ N such that the tth component ut is nonzero and so in order to show
that Θ̃n,m(u) 6= 0, it suffices to examine the lower triangular part of the matrix. So, it

suffices to show that (V0 +V`.dn+ · · ·+V`.i.d
i
n) + Θ̃n,m(E).(V1 +V1+`.dn+ · · ·+V1+i.`.d

i
n) +

· · · + Θ̃n,m(E`−1).(V`−1 + V`−1+`.dn + · · · + V`−1+i.`.d
i
n) 6= 0. Then by the same reasoning
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as for Uq,0, we get that in the above expression the coefficients of the polynomial in dn are
non zero for cofinitely many values of fm and for such coefficients, the polynomial in dn is
nonzero for cofinitely many values of dn.

Or, all the positive components of u are zero and there is one negative component u−t 6= 0
with 1 ≤ t ≤ `− 1. Otherwise, if t ≥ `, we have Θ̃n,m(u) = 0.

So we will only consider the case of u ∈ Uq,≥0 = ⊕m≥0Uq,m. Let W be as in Notation
6.1.

Proposition 6.2. For any u ∈ Uq,≥0−{0}, there exists Wu ∈ W such that for all (n,m) ∈
Wu we have Θ̃n,m(u) 6= 0. So, the map [Θ̃n,m]W : Uq,≥0 →

∏
WM`(C) is injective. 2

Then, we examine the other representation Θm,n := Θam,bm,cn , with (m,n) ∈ ω2. In that
case, we get an analogous result, but for the whole algebra Uq.

Proposition 6.3. Let Θn,m andW be as above. For any u ∈ Uq−{0}, there exists Wu ∈ W
such that for all (n,m) ∈Wu we have Θn,m(u) 6= 0. So, the map [Θn,m]W : Uq →

∏
WMl(C)

is injective.

Proof:
We decompose u ∈ Uq as in (13). Note that for t ∈ ω and 0 ≤ j ≤ `− 1, Θm,n(Ej+`.t) =

etm,n.E
j
am,bm,cn

, Θm,n(F j+`.t) = F j+`.tbm
= btm.F

j
bm

and Θm,n(Ej+`.t) ∼ Θm,n(F `−j+`.t
′
), for

0 ≤ j ≤ `, t, t′ ∈ ω.
Denote Θm,n(ut) := K−stcn .pt(Cq,am,bm,cn ,Kcn) by Vt,m,n ∈ Diag`(C).

Now, calculate Θm,n(u). It is of the form: (Θm,n(F `−1)+Θm,n(E)).[(V`−1,m,n+V`−1+`,m,n.bn+
· · · + V`−1+i.`,m,n.b

i
n) + (V1,m,n + V1+`,m,n.em,n + · · · + V1+i.`,m,n.e

i
m,n)] + · · · + (Θm,n(F ) +

Θm,n(E`−1)).(V1+V1+`.bn+· · ·+V1+i.`,m,n.bin)+(V`−1,m,n+V`−1+`,m,n.em,n+· · ·+V`−1+i.`,m,n.eim,n)]+

(V0,m,n + V−`,m,n.bn + · · ·+ V−`.i,m,n.b
i
n + V`,m,n.em,n + · · ·+ V`.i,m,n.e

i
m,n),

Let us show that if u 6= 0, then there exists an element Wu ofW such that if (n,m) ∈Wu,
then Θm,n(u) 6= 0.

Either u`.t 6= 0 for some t ∈ ω, so first for all but finitely many cm, Θ(u`.t) 6= 0, then
we fix such a cm we get a bound on the norm of the matrix V`,m,n.em,n + · · ·+ V`.i,m,n.e

i
m,n

and then for all but finitely bn of modulus bigger than 1, we get a non zero sum V0,m,n +
V−`,m,n.bn + · · ·+ V−`.i,m,n.b

i
n + (V`,m,n.em,n + · · ·+ V`.i,m,n.e

i
m,n).

Or u`.t = 0 for all t ∈ Z, and for some z < 0, z /∈ `.Z and uz 6= 0 and the reasoning is
similar, or for all z < 0, uz = 0, but for some z > 0, z /∈ `.Z and uz 6= 0 and so we choose
am of modulus strictly bigger than 1 and we apply the above reasoning with am playing
the role of bm. 2

Choose an ultrafilter W on ω2 as in Notation 6.1. First, we define a map Exp from∏
WM`(C) to

∏
W GL`(C), simply as Exp([Ai]W) := [exp(Ai)]W , where Ai ∈ M`(C),

i ∈ ω2. Note that
∏
WM`(C) ∼= M`(Cω

2
/W) (respectively

∏
W GL`(C) ∼= GL`(Cω

2
/W)),

so Exp also defines a map from M`(Cω
2
/W) to GL`(Cω

2
/W).

Note that if the norm ‖.‖` of (Ai)i∈ω2 is bounded on an element of W, then Exp([Ai]) =

[exp(Ai)] = [
∑∞

n=0
Ani
n! ] can be viewed as a limit up to an infinitesimal element of M`(C) of

the sequence (
∑m

n=0
[Ai]

n

n! )m∈ω.

Indeed, the sequence in M`(Cω
2
/W) of matrices ([

∑m
n=0

Ani
n! ])m∈ω is bounded and Cauchy.

Indeed, the norm ‖
∑m1

n=0
Ani
n! ‖ ≤

∑m
n=0

‖Ai‖n
n! ≤ e‖Ai‖ and for any ε ∈ R+, there exists
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m ∈ N+ such that for any m1 > m2 > m, ‖
∑m1

n=0
[Ai]

n

n! −
∑m2

n=0
[Ai]

n

n! ‖ ≤
∑m1−1

n=m2+1
[Ai]

n

n! ≤
‖Ai‖m2+1

(m2+1)! .e
‖Ai‖ ≤ ‖Ai‖

m+1

(m+1)! .e
‖Ai‖.

Finally ‖[
∑m

n=0
Ani
n! ]−[exp(Ai)]‖ = [‖

∑m
n=0

Ani
n! −exp(Ai)‖] = [‖

∑∞
n=m+1

Ani
n! ‖] ≤ [‖Ai‖

m+1

(m+1)! .e
‖Ai‖].

Let Ai ∈ M`(C). Following the discussion of [9] Theorem 3.1, we calculate exp(Ai)
(for the reader convenience, we reproduce it below). We use the Jordan form of Ai,
Ai can be written uniquely as a sum Bi + Ci, where Bi is diagonalizable and Ci is
nilpotent of class ≤ ` − 1 and Bi commutes with Ci. So, we can explicitely calculate

exp(Ai) = exp(Bi).exp(Ci) = exp(Bi).(I + Ci + · · · + C`−1
i

(`−1)!). Since Bi is diagonalizable,

there exists an invertible matrix Di such that D−1i .Bi.Di = (bi1, · · · , bi`), where bij ∈ C,

1 ≤ j ≤ `, are the eigenvalues of Bi. So, exp(Bi) = Di.(e
bi1 , · · · , ebi`).D−1i . Now, [exp(Ai)] =

[Di].(e
[bi1], · · · , e[bi`]).[Di]

−1.(I+[Ci]+· · ·+ [Ci]
`−1

(`−1)! ). In particular, (M`(Cω
2
/W), Exp,GL`(Cω

2
/W))

is interpretable in the structure (Cω2
/W, ex).

As previously, we define EXP from Uq to
∏
W GL`(C)) by

EXP (u) = [exp ◦Θa,b,c(u)]W

and similarly by
˜EXP (u) := [exp ◦ Θ̃d,f (u)]W .

Then (Uq, EXP,GL`(Cω
2
/W)) (respectively (Uq, ˜EXP,GL`(Cω

2
/W))) is an exponential

C-algebra and as such embeds in (M`(Cω
2
/W), Exp,GL`(Cω

2
/W)).

On the image of Uq in M`(Cω
2
/W, we can say the following. Note that the trace of

Kc (respectively Kf ) is equal to c.(1 + q−2 + · · · + q−2`+2) = c.1−q
−2.`

1−q−2 = 0 (respectively

f.(1 + q2 + · · ·+ q2`−2) = f.1−q
2.`

1−q2 = 0) and so the image of K by exp ◦Θa,b,c (respectively

exp ◦Θd,f ) will belong to SL`(C), as well as the images of Ei, F j , for i, j ∈ Z− `.Z.

7. Approximation

In this section, using ultraproducts and the representations of Uq, we will relate U and
the quantum algebras Uq, for q a root of unity.

One known way to view U as a limit of the Uq’s is to use another presentation of Uq by

adding one more generator, which will allow us to set q = 1. Let Ũq be this new isomorphic

presentation of Uq and then one gets U as a quotient of Ũ1/ < K − 1 > (see [7] page 58
and [6] chapter VI.2.2).

For k = C, a heuristic way to see U as the limit of Uq for q → 1, is to proceed as follows
([7] pages 6, 57). Recall that U as an associative C-algebra is generated by X,Y,H and
defining relations [H,X] = 2X, [H,Y ] = −2Y , [X,Y ] = H.

Formally write q = eθ with θ ∈ C, make the change of variables K := eθH with H a
new variable. Consider the limit θ → 0. First, differentiate with respect to θ the relation
[K,E] = K.E − E.K = (K.E.K−1 − E).K = (q2 − 1).E.K. We get 2.eθ.E.eθ.H + (e2θ −
1).E.H.eθ.H and take the value at θ = 0. We obtain 2.E on one hand; on the hand this is
also equal to [H,E] since H is equal to the derivative of K with respect to θ, evaluated at
θ = 0. The calculation is similar for [H,F ] = −2F . Then, if we take the value at θ = 0 of
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the relation [E,F ] = K−K−1

q−q−1 , using L’Hospital rule, we get the relation [E,F ] = H. These

are the relations of U .

Let us consider q` = eθ` , where θ` = 2π.i
` and a non-principal ultraproduct of Uq` , ` ∈ ω,

over a non principal ultrafilter U over ω. Denote the generators of Uq` by E`, F` and K`.
Consider the C-algebra homomorphism τ` from U to Uq` sending X to E`, Y to F` (and so

H to
K`−K−1

`

q`−q−1
`

). Define the map τ := [τ`]U from U to
∏
U Uq` .

Proposition 7.1. The map τ : U →
∏
U Uq` is injective.

Proof: It is useful to remind that U , as a Z-graded algebra, can be written as a infinite
sum of m-homogenous components, m ∈ Z, namely U =

∑
m∈Z Um; furthermore note that

if m is positive Um = Xm.U0, if m is negative Um = Y m.U0, and the 0-component U0

coincides with the ring of polynomials C[C,H] where C is the (classical) Casimir element
C = 2XY + 2Y X +H2 (which generates the center of U).

Recall that we defined, for each root of unity q`, representations maps Θa,b,c from Uq to
M`(C), where ` is the order of q.

We will compose the map τ with the representation maps [Θa,b,c]U from
∏
U Uq to∏

UM`(C) and we will show that we can choose a, b, c ∈ C such that this composition
is injective on U .

First, we will assume that u ∈ U0.
Let u = p(C,H) be a nonzero element of U0, where p(x1, x2) ∈ C[x1, x2] − {0}. Write

p(x1, x2) =
∑d

j=0 sj(x1).x
j
2, where sj ∈ C[x1]. So the image τ(p(C,H)) = p(τ(C), τ(H)) =∑d

j=0 sj(τ(C)).τ(H)j in the ultraproduct is a polynomial in the image of H and its co-

efficients are polynomials in the image of C. We evaluate the polynomials sj(x1) at

[2E`F` + 2F`E` + (
K`−K−1

`

q`−q−1
`

)
2

]U on one hand and the polynomial
∑d

j=0 sj([2E`F` + 2F`E` +

K`−K−1
`

q`−q−1
`

2

]U ).xj2 at [
K`−K−1

`

q`−q−1
`

]U on the other hand.

Now, let us show that if p(C,H) 6= 0, then [Θa,b,c]U (p([τ(C)]U , [τ(H)]U )) 6= 0. So, we
will have that τ(p(C,H)) = p([τ(C)]U , [τ(H)]U ) 6= 0.
Let [Θa,b,c]U (τ(p(C,H)))=

= [Θa,b,c(τ`(p(C,H)))]U =

=

[
Θa,b,c

(
p

(
2E`.F` + 2F`.E` +

(K` −K−1` )2

(q` − q−1` )2
,
K` −K−1`
q` − q−1`

))]
U

0

=
[
p
(

2Θa,b,c(E`).Θa,b,c(F`) + 2Θa,b,c(F`).Θa,b,c(E`) +

+
(Θa,b,c(K` −K−1` ))2

(q` − q−1` ))2
,
Θa,b,c(K` −K−1` )

q` − q−1`

)]
U

Now if we fix `, the entries of the diagonal matrix Θa,b,c(τ`(p(C,H))) are of the form

p

2(es+1 + es) +

(
cq−2s` − c−1q2s`

q` − q−1`

)2

,
cq−2s` − c−1q2s`

q` − q−1`

 =
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d∑
j=0

sl

2(es+1 + es) +

(
cq−2s` − c−1q2s`

q` − q−1`

)2
 .

(
cq−2s` − c−1q2s`

q` − q−1`

)j
,

with 0 ≤ s ≤ `− 1, setting that e0 = e` = a.b. In order to ensure that for cofinitely many
values of `, the entries of this matrix is non-zero, we will choose a, b, c in a certain way.

First assume that p(x1, x2) and its complex conjugate p̄ have no irreducible factors in
common. Then, as the proof of Proposition 6.1, in order to get a contradiction, it suffices
to show that p and p̄ have infinitely many common distinct roots. We will use the fact that
if c ∈ i.R, then c̄ = −c. If s = 0, then the first diagonal entry of the matrix is of the form

p(2.(e1 + ab) + ( c−c
−1

q`−q−1
`

)2, c−c
−1

q`−q−1
`

) and e1 = ab + c−1−c
q`−q−1

`

(since [1] = 1). So c−c−1

q`−q−1
`

∈ R and

2.(e1 + ab) + ( c−c
−1

q`−q−1
`

)2 belongs to R, whenever ab ∈ R. So we have a common root of p

and p̄. Varying q` over a set of primitive roots of unity with distinct imaginary parts and
assuming that c ∈ iR and (c−1 − c)−1 /∈ { 1

q`1−q
−1
`1

+ 1
q`2−q

−1
`2

: `1 6= `2}, we get infinitely

many distinct common roots.
Now suppose that p(x1, x2) and its complex conjugate p̄ have an irreducible factor in

common. So, they have a common factor with real coefficients.
Assume that p(x1, x2) has real coefficients. We write it now as a polynomial in x1 with

as coefficients polynomials in x2. So if we choose c ∈ iR, its coefficients belong to R. Set

r := 2. c
−1−c

q`−q−1
`

+ ( c−c
−1

q`−q−1
`

)2 (note that r ∈ R) and if we choose a.b such that (r + 4a.b)2 /∈ R

(equivalently r.ab + 2.(ab)2 /∈ R), we arrive to a contradiction. Again, we get that a.b has
to avoid a certain subset depending on q`; for instance, we can choose ab ∈ iR.

Suppose now that u /∈ U0. So there exists m 6= 0 such that um 6= 0. Let m be maximal in
absolute value such that um 6= 0. If m > 0, write um = Xm.pm(C,H) and if m < 0, write
um = Y m.pm(C,H), with pm(C,H) ∈ U0−{0}. Set Θa,b,c(F`) = Fb and Θa,b,c(E`) = Ea,b,c).
Then for ` > 2m, we have that Fmb and Ema,b,c have no entries in common.

If u has a non-zero components um with m > 0 (respectively m < 0), then we consider
the product of the two matrices Ema,b,c and pm(Θa,b,c(C),Θa,b,c(H)) (respectively Fmb and

pm(Θa,b,c(C),Θa,b,c(H))). The non-zeroes entries of the corresponding permutation ma-

trix are of the form es. · · · .es+m.p(2(es+1 + es) + (
cq−2s
` −c−1q2s`
q`−q−1

`

)2,
cq−2s
` −c−1q2s`
q`−q−1

`

) (respectively

b.p(2(es+1 + es) + (
cq−2s
` −c−1q2s`
q`−q−1

`

)2,
cq−2s
` −c−1q2s`
q`−q−1

`

)) with pm(x1, x2) ∈ C[x1, x2] and 1 ≤ s ≤ `

with the convention that `+ s is calculated modulo `. So, it suffices to evaluate the coeffi-
cient corresponding to the case when s = `. 2

Note that by composing the map τ with the exponential maps on Uq` , we get possibly
new exponential maps on U .
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