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1. Introduction

Consider the Lie algebra M2(C) and the Lie (sub)algebra sl2(C) of all 2 × 2 trace zero
matrices with complex entries. Recall that a standard basis of sl2(C) (as C-vectorspace) is

given by: x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
= diag(1,−1). The generators

x, y, h satisfy the relations: [h, x] = 2x, [h, y] = −2y, [x, y] = h, where [u, v] is the usual
commutator of u and v .

For each positive integer λ, we consider the finite-dimensional simple sl2(C)-module Vλ
of dimension λ + 1 and the (matrix) Lie algebra Mλ+1(C) (the endomorphism ring of Vλ,
viewed as a C-vectorspace) and take the exponential maps from Mλ+1(C) into the linear
group GLλ+1(C). (In section 3, we recall some properties of these exponential maps.)

We connect these exponentials to the universal enveloping algebra U of sl2(C) (whose
definition and algebraic properties are described in Section 4). We will use some basic
facts on the representation theory of this associative algebra (and its analogue over any
algebraically closed field of characteristic 0). It has been studied from a model theoretical
point of view by [11] and then by [12, 16, 17].

Using on one hand the concrete exponential maps defined on the matrix rings Mλ+1(C)
and on the other hand the universal property of U , we define a sequence of exponential
maps indexed by λ from U to GLλ+1(C). We describe some of the properties of these
maps, which we have formalized (in section 2) by defining the notion of a non-commutative
exponential ring (generalizing the commutative case) and we explicitly calculate elements
lying in their kernels (respectively images). Then, we show that U embeds into any non-
principal ultraproduct

∏
VMλ+1(C) and we define an exponential map EXP from U to

any non-principal ultraproduct
∏
V GLλ+1(C) of the groups GLλ+1(C), where V is a non

principal ultrafilter on ω. We show that (U,EXP ) is a non-commutative exponential ring,
and we explicitly calculate a part of the kernel of EXP . Note that a formal exponential
map exp was previously defined in the completion Û of U ([22]), on the ideal on Û generated
by the generators of U ; in section 7, we will compare the two approaches.
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We go on to endow U with a topology using a norm in
∏
VMλ+1(C) which takes its

values in a non-standard ultrapower of R, and we show that the exponential map EXP is
continuous and that the subgroup generated by EXP (U) is a topological group.

Finally, by considering another norm on each Mλ+1(C), and the asymptotic cone relative
to these norms and a non-principal ultrafilter V on ω, we embed U in a complete metric
space and show that U has a faithful continuous action on that space.

2. Preliminaries on formalism

Let us set up the languages we need.
Let Lg := {·, 1} be the language of groups. Let L := {+,−, ·, 0, 1} be the language of

(associative) rings, and let Ll := {+,−, [·, ·], 0} be the language of Lie rings. For a ring R,
let Lm,R := {+,−, 0, ·r; r ∈ R} be the language of right R-modules.

For the language of R-algebras, where R is a commutative ring, we will choose the
expansion LAlg of L, a two-sorted language with a sort for a ring R, a sort for an algebra
A (associative or not) and a scalar multiplication map from A×R to A, where A is either
a L-structure or a Ll-structure and R is a L-structure.

For the language of Lie K-algebras, where K is a field, we will choose either LLie :=
Ll ∪ Lm,K or the two-sorted language LAlg. Note that for the former we omit reference
to K when it is understood. We will assume that K is a field of characteristic 0 and is
complete with respect to a nontrivial absolute value.

Let TK be the theory of K-vector spaces in Lm,K .
Let TL be the theory of Lie K-algebras in the language LLie, namely

(1) TK ,
(2) [·, ·] is a K-bilinear map from L× L to L,
(3) ∀x1 [x1, x1] = 0,
(4) ∀x1, ∀x2 ∀x3 ( [[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2] = 0 ).

3. Axioms for semisimple Lie algebras

We will translate, into model-theoretic terms, the basic results on existence and unique-
ness of a semi-simple Lie K-algebra with a given reduced abstract root system Φ ([13],
chapter 18.2).This is not essential for the present paper, but may be of interest in future
generalizations.

Recall that Φ is a subset of an Euclidean space E endowed with a positive definite

symmetric bilinear form (., .). Denote by < β,α >:= 2. (β,α)
(α,α) . For a root system Φ these

values are integers.
For x ∈ L, let ad x be the linear transformation of L sending y ∈ L to [x, y].

Proposition 3.1. The theory of any semi-simple Lie algebra L with given reduced root
system Φ( and inner product on it) is axiomatisable in LAlg by the set TΦ of axioms below.
Moreover each TΦ is ℵ1-categorical.

(1) TAlg the theory of K-algebras in LAlg over some field K;
(2) The scheme of axioms expressing that K is an algebraically closed field of charac-

teristic 0;
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(3) (the αj are the elements of the root system) ∃h1 · · · ∃h` ∃e1 · · · ∃e`∃e−1 · · · ∃e−`
[
∧

1≤i,j≤`[hi, hj ] = 0∧
1≤i≤`[ei, e−i] = hi &

∧
1≤i 6=j≤`[ei, ej ] = 0∧

1≤i,j≤`[hi, ej ] =< αj , αi > ·ej &
∧

1≤i,j≤`[hi, e−j ] = − < αj , αi > ·e−j∧
1≤i 6=j≤`(ad ei)

−<αj ,αi>+1(ej) = 0∧
1≤i 6=j≤`(ad e−i)

−<αj ,αi>+1(e−j) = 0

& ∀x ∃k1 ∈ K · · · ∃k3` ∈ K x =
∑

1≤i≤` ki.hi +
∑

1≤i≤` k`+j .ej +
∑

1≤j≤` k2`+j .e−j ].

Proof: Serre’s work tells us that given a root system Φ and a field of characteristic 0, there
exists a unique Lie algebra L that can be presented by these relations and that it is semi-
simple. The second statement follows from the fact that if L is a model of these axioms of
cardinality ℵ1, then it is a Lie algebra over an algebraically closed field F of characteristic
0 of cardinality ℵ1. 2

Question 3.1. Is the theory of any semi-simple Lie C-algebra L with given root system Φ
finitely axiomatisable in LLie modulo TC?

Let Axiom (3’) be got from Axiom (3) by deleting the last part where we quantify over
x. Let L be a model of (1),(2) and (3’), and let L0 be the Lie subalgebra generated by the
elements hi, ej , e−j satisfying the above relations. Then, Serre’s theorem tells us that L0

is a semi-simple finite-dimensional Lie algebra with root system Φ and Cartan subalgebra
generated by hi, 1 ≤ i ≤ `. Then can we add an axiom that forces L to be equal to L0?

We could have also worked in the language Ll since any semi-simple Lie algebra has a
basis with integral structure constants (a Chevalley basis). We do not pursue this matter
here.

4. Exponential rings

Let LE := L ∪ {E} (respectively LAlg,E := LAlg ∪ {E}) where E is a unary function
symbol. We will introduce the notion of (non commutative) exponential ring generalizing
the commutative case (see for instance [7]).

Definition 4.1. Let (R,E,G) be a two-sorted structure with R an L-structure, G a Lg-
structure and E a map from R to G. We will say that (R,E,G) is an exponential ring if
R is an associative ring with 1, G a (multiplicative) group and if E : R → G satisfies the
following axioms:

(1) E(0) = 1,
(2) ∀x E(x).E(−x) = 1,
(3) ∀x ∀y (x.y = y.x → E(x+ y) = E(x).E(y)).

If in addition R is a K-algebra, then (R,K,E,G) is an exponential K-algebra if (R,K)
is a LAlg-structure such that the reduct (R,E,G) is an exponential ring, the LAlg-reduct
(R,K) a K-algebra and

∀k1, k2 ∈ K ∀x ∈ R E(k1.x).E(k2.x) = E((k1 + k2).x).

Note that this last axiom together with (1) implies (2) above.

One recovers the classical case by taking G the group of units of R, by assuming that
R is a commutative ring and then we revert to the one-sorted LE-structure (R,E). In the
case we deal with an exponential K-algebra, we will get that (K,E) is an exponential field.
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5. A natural exponential map over Mλ+1(C)

Consider the field C of complex numbers and, for a fixed natural number λ, the associative
C-algebra Mλ+1(C) of all (λ+ 1)× (λ+ 1) matrices with coefficients in C (with the matrix
multiplication · as the underlying operation). It is also a Lie C-algebra with the bracket
[A,B] := A ·B −B · A (see [8, 13]). For A ∈Mλ+1(C), denote by A∗ the conjugate of the
transpose of A, by tr(A) the trace of A , and finally by det(A) its determinant.

We will denote byDiagλ+1(C) (respectively UTλ+1(C)) the subset of all diagonal matrices
(respectively upper triangular matrices) in Mλ+1(C).

Recall that on the Lie algebra Mλ+1(C), we have a Hermitian sesquilinear form (·, ·)λ+1

defined by (A,B)λ+1 := tr(B∗ · A) =
∑

i,j Aij · B̄ij , where A, B ∈ Mλ+1(C), its values are

in C ([21] page 9). The Frobenius norm (denoted by F -norm) associated with it, is defined
as follows: ‖A‖2F,λ+1 := (A,A)λ+1. We use this norm systematically later.

In addition to the triangle inequality and submultiplicativity (from which multiplication
is continuous for the norm topology) the F - norm satisfies the Cauchy-Schwartz inequality
([21] page 10). Note that for diagonizable matrices, the F - norm is the square root of the
sum of the squares of the norms of the eigenvalues of the matrix.

There are many norms on Cλ+1, all giving the same topology. For example, on C we
have the usual norm | · |, inducing on Cλ+1 the norm (”the 2-norm”) whose value is the
square root of the sum of the squares of the absolute values of the entries. This norm,
and the Frobenius norm , are both instances of Schatten 2-norms. When we refer later to
norms, it will be to such norms, unless we deal explicitly with operator norms.

We consider the elements of Mλ+1(C) as linear operators φ from (Cλ+1, ‖·‖1) to (Cλ+1, ‖·
‖2). Then, for any ordered pair of norms on Cλ+1 there is a corresponding operator norm
on Mλ+1(C). Later, when we consider ultraproducts of the Mλ+1(C) we will return to
discussion of such norms. We will use operator norms only with reference to Schatten
2-norms.

From now on, we will assume that Mλ+1(C) is equipped with a fixed norm ‖ ·‖ satisfying
the Cauchy-Schwartz inequality. The topology on Mλ+1(C) is independent of the norm,
but in discussing convergence of series we will appeal to the fixed norm.

If A is any matrix in Mλ+1(C), one defines ([21] 1.1) the matrix exponential of A, denoted
by exp(A), as the power series:

(1) exp(A) =
∞∑
n=0

An

n!
= Iλ+1 +A+

A2

2
+
A3

3!
+ . . .

where Iλ+1 denotes the (λ+ 1)× (λ+ 1) identity matrix. This exponential series converges
in norm for all matrices, so the exponential of A is well-defined. If A is a 1×1 matrix, that
is, a scalar a of the field C), then exp(A) = ea where ea denotes the ordinary exponential
of the element a ∈ C.
Recall that the matrix exponential satisfies the following properties:

Proposition 5.1. Let A, B ∈Mλ+1(C) and a, b ∈ C we have:

(i) exp (0λ) = Iλ+1, where 0λ+1 denotes the zero matrix in Mλ+1(C);
(ii) exp (aA) · exp (bA) = exp ((a+ b)A);
(iii) exp (A) · exp (−A) = Iλ+1;
(iv) for A and B commuting, exp (A+B) = exp (A) · exp(B);
(v) for an invertible matrix B, exp (BAB−1) = Bexp (A)B−1;
(vi) det(exp (A)) = exp (tr(A)).
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(vii) If no two eigenvalues of A have a difference belonging to 2π.i.Z, then there exists
a neighbourhood of A on which exp is injective. The exponential is injective on the
ball of radius log(2) around the origin, for the Frobenius norm.

Proof. See [21] Proposition 1 (b), (c), (d), Proposition 3 in section 1.1 and Proposition
7 in section 1.2. See also [1, Chapter 3]. It remains to prove (vi).

By (v), in order to prove (vi)one may assume without loss of generality that A is in
Jordan normal form. So A can be written as a sum of a diagonal matrix D and a nilpotent
matrix N with N and D commuting. So, by (iv), exp(D+N) = exp(D)·exp(N). Therefore,
det(exp(A)) = det(exp(D)) · det(exp(N))=det(exp(D)). 2

For non commuting matrices A and B, the equality exp(A + B) = exp(A) · exp(B)
need not hold. In that case, the Baker-Campbell-Hausdorff formula can be used to express
exp(A) · exp(B) (see [21, Section 1.3]).

Now, using the matrix exponential, one defines the exponential map

exp : Mλ+1(C)→ GLλ+1(C) : A 7→ exp(A),

and rephrasing, (part of) Proposition 5.1, we get that (Mλ+1(C), exp,GLλ+1(C)) is an
exponential C-algebra. Moreover, the map exp is surjective from Mλ+1(C) to GLλ+1(C).
(Every invertible matrix can be written as the exponential of some other matrix ([21] page
21).)

For future use, we recall some methods for explicitly calculating matrix exponentials.

Diagonalizable case. If a matrix A ∈ Mλ+1(C) is diagonal A = diag(a1, a2, . . . aλ+1),
then its exponential can be obtained by just exponentiating every entry on the diago-
nal: exp(A) = diag(ea1 , ea2 , . . . , eaλ+1).
This also allows one to exponentiate any diagonalizable (so-called semisimple) matrix
S ∈ Mλ+1(C) . If S = BDB−1 where B is invertible and D is diagonal, then, accord-
ing to the property (v) in Proposition 5.1, we have that exp(S) = Bexp(D)B−1 and the
exponential of the matrix D is calculated as above.

Nilpotent case. Recall that a matrix N ∈Mλ+1(C) is nilpotent if N q = 0 for some positive
integer q ( without loss of generality ≤ λ+ 1).
In this case, the matrix exponential exp(N) can be computed directly from the series
expansion (expressed by (1)), as the series terminates after a finite number of terms:

exp(N) = Iλ+1 +N + N2

2 + . . .+ Nq−1

(q−1)! .

General Case. Since any matrix A ∈ Mλ+1(C) can be expressed uniquely as a sum
A = S + N where S is diagonalizable, N is nilpotent and S · N = N · S, then the ex-
ponential of A can be computed by using the property (iv) of Proposition 5.1 and by
reducing to the previous two cases, so:

exp(A) = exp(S +N) = exp(S) · exp(N) .

Note that this uniqueness easily translates, via quantifier elimination for algebraically closed
fields, into a constructible version in the sense of algebraic geometry.

We will need a more thorough description of Ker(exp). It is easy to see that the map exp
is not injective. For instance, consider a nonzero diagonal matrix Iλ+1 6= D ∈ Mλ+1(C),
D = diag(d1, d2, . . . dλ+1), with its matrix exponential, exp(D) = diag(ed1 , ed2 , . . . , edλ+1).
Then, exp(D) ∈ Ker(exp) if and only if the entries of D belong to the kernel of the standard
complex exponential map , so if and only if d1, d2, . . . dλ+1 ∈ 2πiZ.
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Lemma 5.2. If the matrix A ∈Mλ+1(C) belongs to the kernel of exp, then A is diagonal-
isable and its eigenvalues lie in the kernel of the exponential function e in C.

Proof: In order to determine whether A ∈ Ker(exp), by Proposition 5.1 (v), since exp(B−1 ·
A ·B) = B−1 · exp(A) ·B, we have that expA = Iλ+1 if and only if exp(B−1 ·A ·B) = Iλ+1,
for any invertible matrix B ∈ Mλ+1(C). Since C is algebraically closed, A is conjugated
to a matrix in Jordan normal form, which can be written as a sum of a diagonal matrix
D and a nilpotent matrix N with N and D commuting. So, by Proposition 5.1 (iv),
exp(D +N) = exp(D) · exp(N).Now exp(N) is unipotent. So if exp(D +N) = Iλ+1, then
exp(D) = exp(−N) , so the diagonal matrix exp(D) = Iλ+1 . Thus the eigenvalues of D are
periods of the exponential on the complex numbers. Also, exp(N) must be Iλ+1. Finally, a
simple calculation with the polynomial exp(N) (in N) gives N = 0λ+1. We conclude that
the kernel of exp consists of the diagonalizable matrices with complex periods as eigenvalues.

Proposition 5.3. Each associative Lie algebra (Mλ+1(C), exp) viewed as an LE- structure
is bi-interpretable with the exponential field (C, ex).

Proof: (See [18]). We embed Mλ+1(C) in the direct product C(λ+1)2 . Then since C is
algebraically closed, any matrix is conjugate to a matrix in Jordan normal form, namely
D + N where D and N commute, D is a diagonal matrix and N a nilpotent matrix
with Nλ+1 = 0. By Proposition 5.1, exp(D + N) = exp(D) · exp(N). Furthermore,
exp(N) = 1 +N + · · ·+Nλ. For the other direction of interpretability, see [18]. 2

However, note that the class of rings {Mλ+1(C); λ ∈ ω} is undecidable since the class
of their invertible elements {GLλ+1(C); λ ∈ ω} is undecidable (one interprets uniformly
in λ a class of finite models whose theory is undecidable) and this implies that the theory
of any non-principal ultraproduct of the Mλ+1(C) is undecidable. Moreover, note that one
may replace C by an arbitrary field, and the group GLλ+1(C) by other algebraic groups
like SLλ+1(C) (see [9]).

6. The universal enveloping algebra of sl2(C)

Recall that the universal enveloping algebra U of sl2(C) is an associative C-algebra
(hence, equipped by a Lie algebra structure) together with a canonical mapping σ which
is a Lie algebra homomorphism σ : sl2(C)→U such that, if R is any associative C-algebra
and f : sl2(C) →R is a Lie algebra homomorphism, then there exists a unique algebra
homomorphism Θ : U → R sending 1 to 1 and such f = Θ ◦ σ (see [6] chapter 2, sections
1, 2).

Diagram 6.1. Let us choose as R the Lie algebra M2(C) and as f the Lie algebra homo-
morphism f1 : sl2(C)→M2(C), so there exists a unique algebra homomorphism Θ1 : U →
M2(C) such that (according to what just said above) the following diagram commutes.

sl2(C) σ - U

f1

?

�
�
�

�
�
�	

Θ1

M2(C)
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Since the canonical mapping σ of sl2(C) into U is injective ([6] Proposition 2.1.9), from
now on we will identify every element of sl2(C) to its canonical image in U .

By using this universal property of U , we can construct an exponential map over U . Let
us define the exponential map from U to GL2(C) as follows:

EXP1 : U
Θ1 - M2(C) exp- GL2(C)

EXP1(α) = exp (Θ1(α)) ∀α ∈ U.
So, the values of EXP1(U) are in GL2(C) and the restriction of EXP1 to sl2(C) coincides
with the exponential map exp : sl2(C)→GL2(C) (viewing sl2(C) ⊂ M2(C)), previously
defined (see (1)). Note that the image of the restriction of exp to sl2(C) is included in
SL2(C) (see Proposition 5.1 (vi)). Clearly (U,EXP1, GL2(C)) is an exponential algebra.

Let c = 2x · y+ 2y · x+ h2 be the Casimir element of U , where x, y, h are the generators
of sl2(C). c generates the center of U . Let us calculate EXP1(c). First, let

Θ1(c) = Θ1(2x · y + 2y · x+ h2) = 2

(
0 1
0 0

)
·
(

0 0
1 0

)
+ 2

(
0 0
1 0

)
·
(

0 1
0 0

)
+

+ (diag(1,−1))2 = 2

(
1 0
0 0

)
+ 2

(
0 0
0 1

)
+ diag(1, 1) = diag (3, 3) .

By using the universal property of U , we have that EXP1(c) = exp (Θ1(c)) = diag(e3, e3).

Now we want to describe the map EXP1 on U . Recall that U is a Z-graded algebra with
grading gr(x) = 1, gr(y) := −1 and so gr(h) = 0; a m-homogeneous element u ∈ U is an
element such that gr(u) = m, m ∈ Z. So U decomposes as a direct sum of m-homogeneous
components Um consisting of m-homogeneous elements, m ∈ Z,

U = ⊕m∈ZUm.

Furthermore, every m-homogeneous component satisfies the following relation, depending
on whether m is positive or negative:

Um = xmU0 = U0x
m for every positive integer number m

Um = y|m|U0 = U0y
|m| for every negative integer numberm

where, as well-described in [11], the 0-homogeneous component U0 coincides with the ring
of polynomials C[h, c] with coefficients in C and variables the diagonal matrix h and the
Casimir element c. Let um be an element in Um for m a positive integer. So, um =
uo · xm = xm · v0, for some u0, v0 ∈ U0, and u2

m = (u0 · xm) · (xm · v0) = u0 · x2m · v0.
Applying Θ1 to um, we can see that Θ1(u2

m) = Θ1(u0 · x2m · v0) = Θ1(u0) · Θ1(x)2.m ·
Θ1(v0) = 0, (because Θ1(x)2 = 0). By similar calculations, we can see that, ∀u, v ∈ U
with every degree different from −1, 0, 1, Θ1(u · v) = 0. Now, we focus on U0, so pick an
element p = p(c, h) and calculate the corresponding value of EXP1. Since Θ1(p(c, h)) =
p(Θ1(c),Θ1(h)) = p(diag(3, 3),diag(1,−1)), we can deduce that ∀p ∈ U0, Θ1(p(c, h) = 0) if
and only if p(3, 1) = 0 and p(3,−1) = 0. Note that the corresponding ideal is not prime.
Anyway, Θ1(p(c, h)) is a diagonal matrix with its eigenvalues p(3, 1) and p(3,−1), and the

matrix EXP1(p) = diag(ep(3,1), ep(3,−1)) with determinant equal to ep(3,1)+p(3,−1).
By what sketched above, Θ1 acts as zero on U±2, U±3, . . . . So, we restrict our attention to
U−1, U0, U1. Let us pick up in U−1⊕U0⊕U1 an element γ = yp−1(c, h)+p0(c, h)+xp1(c, h)
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where the polynomials p(c, h), p0(c, h), p1(c, h) belong to U0. We want to calculate the
exponential value of γ, as follows:

EXP1(γ) = EXP1 ((yp−1(c, h)) + (p0(c, h)) + (xp0(c, h))) =

= exp (Θ1(yp−1(h, c)) + Θ1(p0(c, h)) + Θ1(xp1(c, h))) =

= exp (Θ1(y)Θ1(p−1(c, h)) + Θ1(p0(c, h))) + Θ1(x)Θ1(p1(c, h))) .

Since the value of Θ1 calculated on any element in U0 is represented by a diagonal matrix, so
Θ1(yp−1(c, h)), Θ1(p0(c, h)), Θ1(xp1(c, h)) can be respectively represented by the diagonal
matrices diag(a−1, b−1), diag(a0, b0), diag(a1, b1), where ai, bi ∈ C, with i = −1, 0, 1. So,
we have

EXP1(γ) = exp

((
0 0
1 0

)
· diag(a−1, b−1) + diag(a0, b0) +

(
0 1
0 0

)
· diag(a1, b1)

)
=

= exp

((
0 0
a−1 0

)
+ diag(a0, b0) +

(
0 b1
0 0

))
=

= exp

(
a0 b1
a−1 b0

)
.

Thanks to these calculations, we can easily find the EXP1 of xp1(h, c): indeed, EXP1(xp1(h, c)) =

exp(Θ1(xp1(h, c))) = exp

(
0 b1
0 0

)
= I2 +

(
0 b1
0 0

)
=

(
1 b1
0 1

)
, (because the square

of the matrix x, so of xp1(c, h) is null). So, EXP1(xp1(h, c)) = I2 + Θ1(xp1(h, c)). A
similar property holds for yp−1(c, h), in fact, EXP1(yp−1(c, h)) = exp(Θ1(yp−1(c, h))) =

exp

(
0 0
a−1 0

)
=

(
1 0
a−1 1

)
.

7. Other exponential maps

In this section, we define other exponential maps over U by using finite dimensional
representations of sl2(C), that is, finite dimensional sl2(C)-modules ([6] 1.2). (All our
modules will be left modules). First, recall that by Weyl’s theorem, any finite dimensional
representation of sl2(C) can be decomposed as a direct sum of simple sl2(C)-modules ([6]
1.8.5). For every positive integer λ, there exists a unique (up to isomorphism) simple sl2(C)-
module Vλ of dimension λ+1; Vλ can be described as the C-vectorspace of all homogeneous
polynomials of degree λ with coefficients in C and variables X and Y (see [8, Chapter
5]). We decompose Vλ with respect to the basis of monomials Xλ, Xλ−1Y, . . . ,XY λ−1, Y λ,
Vλ = ⊕λi=0C[Xλ−iY i]. The representation fλ of sl2(C) can be described as follows:

x acts as X
∂

∂Y

y acts as Y
∂

∂X
,

h acts as X
∂

∂X
− Y

∂

∂Y
.

So, for 0 < i ≤ λ, the basis element Xλ−iY i is shifted to the left, by the action of x, sent
to i ·X(λ−i)+1Y i−1 and for i = 0, Xλ is sent by x to 0. For 0 ≤ i < λ, the basis element
Xλ−iY i is shifted to the right, by the action of y, sent to (λ− i)X(λ−i)−1Y i+1 and for i = λ,
Y λ is sent by y to 0. Each subspace generated by Xλ−iY i is left invariant by the action
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of h: Xλ−iY i is mapped to (λ − 2)Xλ−iY i (so the corresponding eigenvalue is equal to
λ− 2.i).

The C-vectorspace End(Vλ) coincides with the C-vectorspace Mλ+1(C) of all (λ + 1) ×
(λ+ 1) matrices written with respect to a basis of eigenvectors for h.

More precisely, through the representation fλ, the actions of x, y and h are represented
respectively the following three (λ+ 1)× (λ+ 1) matrices Xλ+1, Yλ+1, Hλ+1, λ ∈ ω − {0}:

(2) Xλ+1 =


0 1 0 . . . 0
0 0 2 . . . 0
...

... λ
0 0 0 . . . 0

 , Yλ+1 =


0 0 . . . 0
λ 0 . . . 0
0 λ− 1 0

...
0

...
0 1 0

 ,

Hλ+1 = diag (λ, λ− 2, . . . ,−λ+ 2,−λ) .

Note that the operator norm of Xλ+1 (respectively Yλ+1) is equal to |λ|, as is the operator
norm of Hλ + 1. The norm of Θλ(c) is equal to |λ2 + 2λ|.

On the other hand the F -norm of Xλ+1 is equal to λ(λ+ 1)/2.

For every positive integer λ, we have the following diagram.

Diagram 7.1. For any simple representation Vλ of sl2(C) of dimension λ + 1 (with λ ∈
ω − {0}), let us consider the representation map fλ : sl2(C)→Mλ+1(C), and the following
(commutative) diagram determined by the universal property of U :

sl2(C) σ - U

fλ

?

�
�
�

�
�
�	

Θλ

Mλ+1(C)

where σ is the canonical mapping (which is a Lie-algebra homomorphism) from sl2(C) to U
and Θλ is the (unique) algebra homomorphism from U to Mλ+1(C) sending 1 to 1 making
the diagram commutes.

Using the commutativity of the above diagram, we obtain that the images of x, y, h by
the representation map Θλ : U →Mλ+1(C) coincide with their images by the representation
map fλ, and so are equal to the matrices Xλ+1, Yλ+1, Hλ+1, (see (2)).

The image by Θλ of the Casimir element c in U is given by the following calculation.

Θλ(c) = Θλ(2x · y + 2y · x+ h2) = 2Θλ(x) ·Θλ(y) + 2Θλ(y) ·Θλ(x) + (Θλ(h))2 =

= 2Xλ+1 · Yλ+1 + 2Yλ+1 ·Xλ+1 +H2
λ+1 =

= diag
(
λ2 + 2λ, . . . , λ2 + 2λ

)
.(3)

By the technique used for defining the exponential map EXP1 from U to GL2(C), we
can define the exponential map EXPλ for every positive integer λ, as follows.
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Definition 7.1. Let λ ∈ ω − {0}. The exponential map EXPλ over U is obtained by
composing Θλ with the natural exponential map exp from Mλ+1(C) to GLλ+1(C) (see
section 5):

EXPλ(u) = exp (Θλ(u)) ∀u ∈ U.

Proposition 7.2. ∀λ ∈ N− {0}, the map EXPλ is surjective.

Proof. Since exp is surjective from Mλ+1(C) to GLλ+1(C), it suffices to prove that
Θλ : U → Mλ+1(C) is surjective. The latter is deduced directly by Jacobson density
theorem [14, Section 2.2]. For convenience of the reader, we indicate below the proof.

Let Vλ be the irreducible representation of sl2(C) of dimension λ+ 1. As representation
of U , we know by Schur’s lemma, that EndU (Vλ) ∼= C. Consider φ ∈ EndC(Vλ) (=
Mλ+1(C)). Then by Jacobson density theorem we get that, for each finite subset of elements
v1, . . . , vλ+1 ∈ Vλ, that there exists u ∈ U such that

∧m
i=1 ( φ(vi) = Θλ(u).vi) . �

We can easily calculate (as matrices in GLλ+1(C)) the values by EXPλ of x, y, h, c, using
on one hand that Θλ(x),Θλ(y) are nilpotent matrices (in Mλ+1(C))), and on the other
hand that Θλ(h),Θλ(c) are diagonal matrices.

EXPλ(x) = exp(Θλ(x)) = exp(Xλ+1) = Iλ+1 +Xλ+1 +
X2
λ+1

2 + . . .+
Xλ
λ+1

λ! ;

EXPλ(y) = exp(Θλ(y)) = exp(Yλ+1) = Iλ+1 + Yλ+1 +
Y 2
λ+1

2 + . . .+
Y λλ+1

λ! ,

EXPλ(h) = exp(Θλ(h)) = exp(Hλ+1) = diag(eλ, eλ−2, . . . , e−λ+2, e−λ);

EXPλ(c) = exp(Θλ(c)) = exp(diag(λ2 + 2λ, . . . , λ2 + 2λ)) = diag(eλ
2+2λ, . . . , eλ

2+2λ).

Furthermore, we easily see that EXPλ satisfies the properties properties of the matrix
exponential exp described by Proposition 5.1.

Proposition 7.3. Let λ ∈ N − {0}. Then (U,EXPλ, GLλ+1(C)) is an exponential C-
algebra. More precisely, we have the following properties. Let u, v ∈ U and let a, b ∈ C,
then :

(i) EXPλ (0U ) = Iλ+1, where 0U denotes the identity element (with respect to the ad-
dition) in U .

(ii) EXPλ (a · u) · EXPλ (b · u) = EXPλ ((a+ b) · u);
(iii) EXPλ (u) · EXPλ (−u) = Iλ+1;
(iv) for u and v commuting, EXPλ (u+ v) = EXPλ (u) · exp(v);

(v) for an invertible element v in U , EXPλ (vuv−1) = Θλ(v)EXPλ (u)Θλ(v)−1;

Proof. (i) By definition of EXPλ, EXPλ (0U ) = exp(Θλ(0U )) = exp(0λ) = Iλ+1 (see
Proposition 5.1(i)).
(ii) EXPλ (au) · EXPλ (bu) = exp(Θλ (au)) · exp(Θλ (bu)) = exp(aΘλ (u)) · exp(bΘλ (u)).
Since Θλ(u) ∈ Mλ+1(C) and Proposition 5.1, (ii) can be applied, then exp(aΘλ (u)) ·
exp(bΘλ(u)) = exp((a+ b)Θλ(u)) = exp(Θλ((a+ b)u)) = EXPλ((a+ b)u).
(iii) This follows immediately from the corresponding property for the matrix exponential.
(iv) First, note that if u and v commute in U , then Θλ(u) and Θλ(v) commute also
(for Θλ is a homomorphism from U to Mλ+1(C) for every λ). Thus, by using Proposi-
tion 5.1 (iv) and the fact that Θλ is a homomorphism, we have: EXPλ(u) · EXPλ(v) =
exp(Θλ(u)) · exp(Θλ(v)) = exp(Θλ(u) + Θλ(v)) = exp(Θλ(u+ v)) = EXPλ (u+ v).
(v) The map Θλ is a morphism of associative rings, so if an element v ∈ U is invertible, then
so is Θλ(v).The result follows immediately by the corresponding property for the matrix
exponential. �
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Note that since the Casimir element is central in U , its image Θλ(c) is central in
Θλ(U) ⊆Mλ+1(C), so for any u ∈ U , we get by Proposition 5.1 that exp(Θλ(c) + Θλ(u)) =
exp(Θλ(c)) · exp(Θλ(u)). So, EXPλ(c+ u) = EXPλ(c) · EXPλ(u).

As a direct consequence of the definition of the map EXPλ, we observe that u ∈
Ker(EXPλ) if and only if Θλ(u) ∈ Ker(exp). So in order to describe Ker(EXPλ), we
should say as much as possible about Θλ(u) for u ∈ U .

Proposition 7.4. Decompose U = ⊕m∈ZUm. The representation map Θλ sends:

(i) an element u0 of U0 onto a diagonal matrix,
(ii) an element um ∈ Um, m > 0, onto an upper triangular matrix if 0 < m ≤ λ,

otherwise (when m ≥ λ+ 1) Θλ(um) = 0λ+1.
(iii) an element um ∈ Um, m < 0, is mapped to a lower triangular matrix, if −λ ≤ m ≤

−1 and, otherwise, for m ≤ −λ− 1, to the zero matrix 0λ+1.

Proof. (i) Let u0 ∈ U0−{0}; so u0 is of the form p(c, h) with p(x1, x2) ∈ C[x1, x2], where
x1 and x2 are two commuting variables. We know that Θλ(p(c, h)) = p(Θλ(c),Θλ(h)),
where Θλ(c) and Θλ(h) are the diagonal matrices described respectively by 3 and 2. Since
any algebraic operation on diagonal matrices concerns just their diagonal entries, then for
any polynomial p(x1, x2) ∈ C[x1, x2], we have that:

(4) Θλ(p(c, h)) = diag
(
p
(
λ2 + 2λ, λ

)
, . . . , p

(
λ2 + 2λ,−λ

))
(∈Mλ+1(C))

(ii) For the positive integer m, let um be an element in Um of the form um = xm · u0 where
the 0-component u0 = p(c, h) as above. On one hand, suppose that m ≤ λ. By using
the fact that Θλ is a homomorphism and the values of Θλ(x) and Θλ(p(c, h)) (described
by (2) and (4) respectively) we have that Θλ(um) = Θλ(xm · u0) = Θλ(x)m · Θλ(u0) =
Xm
λ+1 · diag

(
p
(
λ2 + 2λ, λ

)
, . . . , p

(
λ2 + 2λ,−λ

))
, so Θ(um) is represented by the strictly

upper triangular matrix with ?l ∈ C, 1 ≤ l ≤ (λ+ 1)−m.

(5)


0 0 ?1 0 . . . 0
0 0 0 ?2 . . . 0
...

... 0 ?m
...

... 0 0
0 0 . . . 0 0


On the other hand, assume that m ≥ λ+1. Since Θλ(x) is a nilpotent matrix, we can easily
see: Θλ(um) = Θλ(x)m ·Θλ(u0) = 0.

(iii) Similarly, we can repeat the same argument for any element um, with m < 0, of the
form ym · u0. So, for −λ ≤ m ≤ −1 the image by Θλ of um, is a lower triangular matrix of
the form

(6)



0 0 0 0 . . . 0
0 0 0 0 . . . 0
?1 0 0 0 . . . 0
0 ?2 0 0 . . .
...

... 0
0 . . . 0 ?−m . . .


If m ≤ −(λ+ 1). we have Θλ(um) = Θλ(ym · α0) = 0. �
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Remark 1. An element u0 ∈ U0 belongs to the kernel of EXPλ if and only if

(7)
∧

0≤j≤λ
p
(
λ2 + 2λ, λ− 2j

)
∈ 2πiZ

In fact, for u0 = p(c, h) the diagonal matrix Θλp(c, h) belongs to Ker(exp) if and only if
their diagonal entries described by (4) belongs to Ker(e) = 2πiZ.

Proposition 7.5. EXPλ maps an element u of U into SLλ+1(C) whenever

(8) tr(Θλ(u)) ∈ 2πiZ.
In particular, if u ∈ ⊕m 6=0Um, then its image by EXPλ lies always in SLλ+1(C).

Proof. For the first statement, it is enough to apply property (vi) of Proposition 5.1, so
for any u ∈ U , the determinant of exp(Θλ(u)) equals 1 if the trace of Θλ(u) belongs to
Ker(e) = 2πiZ.
As to the second claim, first we can note that the map EXPλ maps x, y and their powers
into SLλ+1(C), because their images by Θλ are matrices of trace 0. We get the same results
with xm (respectively ym). Since the subalgebra U0 is sent to the subalgebra of diagonal
matrices in Mλ+1(C), the image of an element αm = xm · α0 in Um by Θλ is a matrix of
trace 0 (as illustrated by (5)) and so its matrix exponential has determinant 1. The same
argument holds where αm = ym · α0 (for negative m). Since the sum of matrices of trace 0
has trace 0, an element of ⊕m 6=0Um is sent by EXPλ to SLλ+1(C). �

When we restrict Proposition 7.5 to any element u0 of U0, where u0 = p(c, h) (for some
polynomial p(x1, x2) ∈ C[x1, x2]) the condition (8) means that the sum of eigenvalues of
Θλ(u),

∑
0≤j≤λ p(λ

2 + 2λ, λ− 2j), has to belong to 2πiZ.

Put p(x1, x2) =
∑d

l=0 ql(x1)xl2, then
∑

0≤j≤λ
∑bd/2c

l=0 ql(λ
2 + 2λ)(λ− 2j)2l =∑bd/2c

l=0 qj(λ
2 + 2λ)[

∑
0≤j≤λ(λ− 2j)2l].

Now, let us assume that u0 is in the kernel of
⋂
λ∈Z; λ>λ0

EXPλ, for some λ0. Then,

p(λ2 + 2λ, λ− j) ∈ 2πiZ, for all |λ| > λ0 and 0 ≤ j ≤ λ.

In the remainder of this section, we will give a partial answer to the question of which
elements u of U are such that Θλ(u) ∈ suλ+1

Recall that suλ+1 := {A ∈ Mλ+1(C) : A∗ = −A, tr(A) = 0}, and SUλ+1 := {X ∈
GLλ+1(C) : X ·X∗ = Iλ+1, det(X) = 1}, where X∗ denotes the conjugate transpose of X;
it is a compact Lie group.

Coming back first to the case λ = 1, it is well-known that the exponential map exp
(defined in M2(C)) restricted to sl2(C) does not map it surjectively to its Lie group SL2(C)
([21] page 38). However if we restrict to the R-subalgebra su2, exp is surjective onto the
(compact) Lie group SU2(C) (see Lemma 2.a in section 2 of [21]). We have the following
decomposition: SL2(C) = SU2(C).B, where B is the subgroup of triangular matrices with
determinant 1 and positive real diagonal entries ([21] page 39).

The surjectivity property of exp holds if one replaces su2 with suλ+1 and SU2 by SUλ+1

(see Corollary 2 in [21]).
Let u ∈ U0, so u = p(c, h). So, Θλ(u) ∈ suλ+1, if

∑
j p(λ

2 + λ, λ − 2j) = 0 and for all

−λ ≤ j ≤ λ, p(λ2 +λ, λ− 2j) = −p̄(λ2 +λ, λ− 2j). The last condition occurs, for instance
if p(x1, x2) is the multiple by the complex number i of a polynomial with real coefficients.

Now consider elements u ∈ ⊕m6=0Um, namely u =
∑

`>0(p`(c, h) · x` + y` · q`(c, h)) with

p`, q` ∈ C[h, c]. Then the condition under which Θλ(u) ∈ suλ+1 is that (λ − j) · q`(λ2 +
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λ, λ− 2j) = (−λ+ j) · p`(λ2 +λ, λ− 2j), for all −λ ≤ j ≤ λ. Given a polynomial p`, we can
always find a polynomial q` (of degree ≤ λ− 1) meeting these λ conditions, using Lagrange
interpolation theorem.

So, given u ∈ ⊕m>0Um, there exists u′ ∈ ⊕m<0Um such that Θλ(u+ u′) ∈ suλ+1.

8. Exponentiations and ultraproducts

We will be considering a non principal ultraproduct of the Lie algebras Mλ+1(C), λ ∈ ω.
Namely, let V be a non-principal ultrafilter on ω and consider the corresponding ultraprod-
ucts

∏
VMλ+1(C) and

∏
V GLλ+1(C).

By  Los’s theorem, the structure (
∏
VMλ+1(C),+,−, 0, [·, ·]) is a Lie algebra over C or

over C∗ :=
∏
V C, which is infinite-dimensional.

We first observe the following.

Proposition 8.1. (i) If u0 is any element of U0 − {0}, then there exists λ0 such that
for all λ ≥ λ0, we have Θλ(u0) 6= 0.

(ii) For any u ∈ U − {0}, there exists λ0 such that for all λ ≥ λ0 we have Θλ(u) 6= 0.

Proof. (i) Let u0 ∈ U0−{0}; so u0 is of the form p(c, h) with p(x1, x2) ∈ C[x1, x2], where
x1 and x2 are two commuting variables.

The claim can be deduced directly from [11, Lemma 19]. For convenience of the reader,
we repeat the argument here. We argue by contradiction.

Assume that
∧

0≤j≤λ p(λ
2+2λ, λ−2j) = 0. First, we choose λ such that p(λ2+2λ, x2) 6= 0,

so as a polynomial in j, p(λ2 + 2λ, λ − 2j) is non-trivial of degree k and so the number
of roots is bounded by k. So, if we choose λ big enough, we will always find j such that
p(λ2 + 2λ, λ− 2j) 6= 0. Therefore, Θλ(p(c, h)) 6= 0 for some λ.

(ii) Let u ∈ U − {0}, then there exists m ∈ Z such that its mth component um 6= 0.
Assume that m ≥ 0 and that m is minimal such. Let um = xmu0, where u0 ∈ U0. Let

p(x1, x2) ∈ C[x1, x2] be such that u0 = p(c, h). Write p(x1, x2) =
∑d

l=0 qi(x1)xl2. We can
find (explicitly) an interval [−r; r] in R such that all the roots of the polynomial qd(x1)
are in that interval. Let r′ = max{r, d}. Then if λ > r′, then qd(λ

2 + 2λ) 6= 0 and so the

polynomial
∑d

l=0 ql(λ
2 + 2λ)xl2 has less than d roots and among the λ+ 1 elements of the

form (λ−2j) where 0 ≤ j ≤ λ, we have such j with the property that p(λ2+2λ, (λ−2j)) 6= 0.
Since the images of any homogeneous components Um with −λ ≤ m ≤ λ are in direct

sum and Θλ(um) 6= 0, then we have Θλ(u) 6= 0. 2

Define the obvious Θ := [Θλ] from U to the ultraproduct of the Mλ+1(C), over any
non-principal ultrafilter V on ω. By Proposition 8.1, the map Θ is an associative ring
monomorphism. So, we get the following corollary.

Corollary 8.2. For any non-principal ultrafilter V on ω, U embeds in the associative Lie
algebra

∏
VMλ+1(C). 2

Recall that U is a left and right Ore domain, so it has a left and right field of fractions
which embeds in the ring U ′ of definable scalars of U . This ring U ′ has been shown to
be von Neumann regular by I. Herzog ([11]), equivalently every left (right) principal ideal
is generated by an idempotent. Moreover, since any Vλ is also a U ′-module, we can send
r ∈ U ′ in the direct product

∏
λ∈ωMλ+1(C) by sending it in each factor to the element of

Mλ+1(C), representing its action on each Vλ.
Then, [16] explicitly identifies certain idempotents of U ′ of the form eu, u ∈ U , cor-

responding to the projections on ker(Θλ(u)) on Vλ, λ ∈ ω. For instance ex is the pro-
jection on the highest weight space of Vλ. When u ∈ U0, so of the form p(c, h), with
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p(x1, x2) ∈ C[x1, x2], they call p standard if there are only finitely many λ such that
p(λ2 + 2λ, λ − 2.j) = 0 for some 0 ≤ j ≤ λ (and non-standard otherwise). Note that if
u = p(c, h) with p standard, then [Θλ(u)]V is invertible in

∏
VMλ+1(C). (Note that the

converse holds if [Θλ(u)]U is invertible with respect to any non-principal ultrafilter U).
Let now u = p(c, h) ∈ U0 be such that p is non-standard, so for some non-principal

ultrafilter V the action of eu in the ultraproduct
∏
V Vλ will be a non invertible element of

the form [(diag(0, . . . , 1, . . . , 0, 1, . . . , 0)] 6= 0, where the number of possible 0’s is bounded
by the degree of p with respect to the second variable.

We know that Θ is a surjection from
∏
V U to

∏
VMλ+1(C) (see the proof of Proposition

7.2). Then, we will compose with the map

Exp :
∏
V
Mλ+1(C)→

∏
V
GLλ+1(C) : [Aλ]V → [exp(Aλ)]V .

So, by composing with [Θλ]V , we get a map EXP ∗ = Exp[Θλ]V from
∏
V U to

∏
V GLλ+1(C),

which is surjective. The kernel of that map is in bijection with the kernel of Exp on∏
VMλ+1(C).

Definition 8.1. Let EXP from U to
∏
V GLλ+1(C) be defined as follows:

EXP : U →
∏
V
GLλ+1(C) : u→ [EXP λ(u)]V .

Proposition 8.3. Both (U,EXP,
∏
V GLλ+1(C)) and (U0,EXP,

∏
V Diagλ+1(C)) are expo-

nential C-algebras. Moreover we have that EXP (⊕m 6=0Um) ⊂
∏
V SLλ+1(C), EXP (⊕m≥0Um) ⊂∏

V UTλ+1(C), and EXP (U0) ⊂
∏
V Diagλ+1(C).

Proof: A direct application of  Los Theorem shows that EXP satisfies the properties stated
for each EXPλ in Proposition 7.3. 2

Note that the above properties are independent of the non-principal ultrafilter V on ω.

Question 8.1. What is the kernel of EXP?

It is the set of elements u such that for a subset of λ belonging to V, exp(Θλ(u)) = 1. So,
the eigenvalues of Θλ(u) belong to 2πi·Z; does it translate into an independently interesting
property of u ∈ U? For u0 ∈ U0, we have the following answer. Let p(x1, x2) ∈ C[x1, x2]
such that u0 = p(c, h). Then, for almost all λ and all 0 ≤ j ≤ λ, we have p(λ2 +λ, λ−2j) ∈
2πi · Z.

Proposition 8.4. Let u := p(c, h) ∈ U0, with p(x1, x2) ∈ C[x1, x2]. Write p(x1, x2) in the
form 2πi · q(x1, x2). Then, if u ∈ ker(EXP), then q(x1, x2) ∈ Q[x1, x2].

Proof: Let q(x1, x2) =
∑d

k=0 qk(x1) · xk2 and assume that q(c, h) ∈ ker(EXP ). Then, the
set {λ ∈ ω :

∧
0≤j≤λ q(λ2 + 2λ, λ− 2j) ∈ 2πi · Z} ∈ V (?).

Set ck := qk(λ
2 + 2λ) and consider the following system of linear equations, with z` ∈ Z,

0 ≤ ` ≤ n:
1 y0 y2

0 · · · yd0
1 y1 y2

1 · · · yd1
...

1 yn y2
n · · · ydn

 .


c0

c1
...
cn

 =


z0

z1
...
zn

 .
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When n = d, the determinant of the (square) matrix


1 y0 y2

0 · · · yd0
1 y1 y2

1 · · · yd1
...

1 yd y2
d · · · ydd


is equal to

∏
0≤n1<n2≤d(yn1 − yn2). So it is a non zero integer whenever the yi’s are d

pairwise distinct integers and so in that case, the coefficients ck are rational numbers.
So, it suffices to express hypothesis (?) for λ > d.

Now, write each qk(x
2
1 + 2x1) as q′k(x1) =

∑dk
h=0 fh · x

h
1 and again write the system of

equations expressing that each qk(λ
2 + 2λ) ∈ Q, for λ ∈ ω. Let qj ∈ Q, 0 ≤ j ≤ n.

1 x0 x2
0 · · · xdk0

1 x1 x2
1 · · · xdk1

...
1 xn x2

n · · · xdkn

 .


f0

f1
...
fn

 =


q0

q1
...
qn

 .

Then, again when n = dk, the determinant of the (square) matrix


1 x0 x2

0 · · · xdk0

1 x1 x2
1 · · · xdk1

...

1 xdk x2
dk
· · · xdkdk


is equal to

∏
0≤n1<n2≤dk(xn1 − xn2). So it is a non zero integer whenever the xi’s are dk

pairwise distinct integers and so in that case, the coefficients fk are rational numbers. So,
it suffices to express hypothesis (?) for dk + 1 values of λ’s, as soon as λ > d. 2

Remark 2. We have a partial converse to the above proposition. Namely, let q(x1, x2) =∑d
k=0 qk(x1) ·xk2, where each qk(x1) ∈ Q[x1], so can be written as 1/nk ·

∑dk
h=1 zh ·x

h
1 + q0,k,

where nk ∈ N− {0}, zh ∈ Z and q0,k ∈ Q.
If, we assume in addition that each q0,k ∈ Z, then for some ultrafilter V, 2πi · q(c, h) ∈

ker(EXP). Indeed, let n = lcm{nk : 0 ≤ k ≤ d}. Then we choose an ultrafilter V containing
2n · ω.

So, if λ = 2n ·m, for some m ∈ ω, qk(λ
2 + 2λ) = n/nk ·

∑dk
h=1 zh · (2n ·m2 + 2m)h + q0,k,

then qk(λ
2 + 2λ) ∈ Z and so {λ ∈ ω :

∧
0≤j≤λ q(λ2 + 2λ, λ− 2j) ∈ 2πi · Z} ∈ V.

Corollary 8.5. Let u := p(c, h) ∈ U0, with p(x1, x2) ∈ C[x1, x2]. Write p(x1, x2) in the

form 2πi · q(x1, x2). Write q(x1, x2) =
∑d

k=0 qk(x1) · xk2, with qk(x) ∈ Q[x1].
Then, u ∈ ker(EXP ) for all non-principal ultrafilters on ω, if and only if q(x1, x2) ∈

Q[x1, x2] and for each 0 ≤ k ≤ d, qk(0) ∈ Z. 2

Proposition 8.6. Let u := p(c, h) ∈ U0, with p(x1, x2) ∈ C[x1, x2]. Write p(x1, x2) in the
form 2πi · q(x1, x2). Then, if EXP(u) ∈

∏
SLλ+1(C), then q(x1, x2) ∈ Q[x1, x2].

Proof: Let q(x1, x2) =
∑d

k=0 qk(x1) · xk2 and assume that the set {λ ∈ ω : EXPλ(q(c, h)) ∈
SLλ+1(C)} ∈ V. Equivalently, {λ ∈ ω : [

∑bd/2c
`=0 q`(λ

2+2λ)·
∑

0≤j≤λ(λ−2j)2·`] ∈ 2πi·Z} ∈ V
(?).

Set ck := qk(x1) and consider the following system of linear equations, with z` ∈ Z,
0 ≤ ` ≤ n:
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1 y0 y2

0 · · · yd0
1 y1 y2

1 · · · yd1
...

1 yn y2
n · · · ydn

 .


c0

c1
...
cn

 =


z0

z1
...
zn

 .

When n = d, the determinant of the (square) matrix


1 y0 y2

0 · · · yd0
1 y1 y2

1 · · · yd1
...

1 yd y2
d · · · ydd


is equal to

∏
0≤n1<n2≤d(yn1 − yn2). So it is a non zero integer whenever the yi’s are d

pairwise distinct integers and so in that case, the coefficients ck are rational numbers.
So, it suffices to express hypothesis (?) for λ > d and show that

∑
0≤j≤λ(λ − 2j)2·` are

pairwise distinct.
The rest of the proof is similar to the previous one. 2

9. Comparison with Serre’s definition of an exponential map.

Recall that the completion Û of U ([22]) is defined as the infinite product Π∞n=0U
n, where

Un denotes the component of degree n of U (generated by all products of length ≤ n of

generators x, y of U); an element f ∈ Û can be represented as
∑∞

n=0 fn, where fn ∈ Un
(see [22] Part 1, chapter 4, paragraph 6). (Note that Un differs in general from Un.)

Denote by M the ideal of U generated by x, y and let M̂ be the ideal of Û generated
by M. For f ∈ M̂, J.-P. Serre defines expS by the usual formula expS(f) :=

∑
n
fn

n! . exp

takes M̂ to 1 +M̂ (see [22] Part 1, chapter 4, paragraph 7). (Similarly, one can define logS
from 1 + M̂ to M̂ by logS(1 + x) :=

∑∞
n=1(−1)n+1 xn

n , obtaining that expS ◦ logS = 1 =
logS ◦ expS (see Theorem 7.2, Chapter 4, Part 1 in [22].)

Let f :=
∑∞

n=0 fn ∈ Û and assume that
∑∞

n=0 Θλ(fn) belongs to Mλ+1(C). Then, define

Θ̂(f) := [
∑∞

n=0 Θλ(fn)]V . Since, if u ∈ U , there exists a bound on the number of non-zero
components, this map is always well-defined on the elements of U .

Proposition 9.1. For any u ∈M, Θ̂(expS(u)) = EXP (u).

Proof: Now, let u ∈ M with u =
∑k

j=1 uj , where uj ∈ U j , then un := (
∑k

j=1 uj)
n. So, for

each m, the m-component of expS(u) is a finite sum. Therefore Θ̂(expS(u)) is well-defined

and Θ̂(expS(u)) = [
∑

n Θλ(u
n

n! )]V = EXP (u). 2

10. A ?-norm on the universal enveloping algebra of sl2(C).

Now, we would like to put a natural topology on U in such a way that EXP is continuous.
As in the previous section, we fix a non-principal ultrafilter V on ω; let C∗ :=

∏
V C be

a non principal ultrapower of the field (C,+, ·,−, 0). We equip C∗ with the ultrapower
of the standard complex conjugation, and in addition consider the ultraproduct of the
various Frobenius norms. This takes values in the corresponding ultrapower of the reals,
and satisfies the obvious modification of the norm axioms. By functoriality this norm comes
formally from the ultraproduct of the hermitian sesquilinear forms.

Finally,by taking ultraproducts of normed algebras we get a natural notion of a ?-normed
algebra, satisfying a natural version of the Cauchy-Schwartz inequality if the component
algebras do. Since ‖ · ‖λ+1 is a norm on each Mλ+1(C), by the usual properties of an
ultraproduct, we get a natural ?-norm ‖ · ‖ on

∏
VMλ+1(C)
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This in turn, by 5.6 induces a star norm on U .
In the next proposition, we will give an estimate of the norm of u ∈ U in terms of a

polynomial in λ, with coefficients in R.

Lemma 10.1. For each u ∈ U , there exist non-zero polynomials q1(.), q2(.) with coefficients
in R such that for λ sufficiently big, we have q1(λ) ≤ ‖Θλ(u)‖2F ≤ q2(λ) and so q1([λ]V) ≤
‖u‖ ≤ q([λ]V).

Proof: Let us examine the norm of Θλ(u) for any element of U . Let u =
∑

m∈Z um
(where um ∈ Um and m ∈ Z). Moreover, for each m ≥ 0, each um = xm · pm(c, h), and
u−m = ym · p−m(c, h), where pm(x1, x2), p−m(x1, x2) ∈ C[x1, x2]. Assume that for some
k ∈ N, we have u =

∑
−k≤m≤k um, then we estimate ‖Θλ(u)‖ as follows. Assume λ ≥ k,

then

||Θλ(u)||2F = ||Θλ(
∑
m∈Z

um)||2F = ||
∑
m∈Z

Θλ(um)||2F

= ||
−1∑

m=−k
Θλ(um) + Θλ(u0) +

k∑
m=1

Θλ(um)||2F

=

−1∑
m=−k

||Θλ(um)||2F + ||Θλ(u0)||2F +
k∑

m=1

||Θλ(um)||2F

=
−1∑

m=−k
||Θλ(y|m|p−m(c, h))||2F + ||Θλ(p0(c, h))||2F +

k∑
m=1

||Θλ(xmpm(c, h))||2F

=
−1∑

m=−k
||Θλ(y)|m| · p−m(Θλ(c),Θλ(h))||2F + ||p0(Θλ(c),Θλ(h))||2F

+

k∑
m=1

||Θλ(x)m · pm(Θλ(c),Θλ(h))||2F .

Then, we make the following estimate. Write pm(x1, x2) =
∑dm

j=0 qj(x1).xj2. Let fj(x1) =
qj(x1)
qdm (x1) and write the roots of

∑dm
j=0 fj(x1).xj2 as α1(x1), · · · , αdm(x1). Note that these roots

are all in a ball of radius Mm(λ) := 1+
∑dm−1

j=0 |fj(λ2+2λ)|; let Rm(λ) :=
∑dm

j=0 |qj(λ2+2λ)|.
Then pm(x1, x2) = qdm(x1).

∏dm
j=1(x2−αj(x1)). We have |pm(λ2 + 2.λ, λ− 2i)| = |qdm(λ2 +

2λ)|.
∏
j |((λ − 2i) − αj(λ

2 + 2.λ)|. Since the number of roots of pm(λ2 + 2λ, x2) is at

most dm, there is at least one integer in the interval [−λ;λ] at distance bigger than b λdm c
of all of these roots. So, |qdm(λ2 + 2λ)|2.b λdm c

2dm ≤
∑
−λ≤i≤λ |pm(λ2 + 2.λ, λ − 2i)|2 ≤
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Rm(λ)2.(2.λ2dm+1 + 1) ≤ Rm(λ)2.(3λ2dm+1). So we get on one hand,

||Θλ(u)||2F ≤
−1∑

m=−k
λ2.|m| ·

∑
−λ≤i≤λ

|p−m(λ2 + 2λ, λ− 2i)|2 +
∑
−λ≤i≤λ

|p0(λ2 + 2λ, λ− 2i)|2

+
k∑

m=1

λ2m ·
∑
−λ≤i≤λ

|pm(λ2 + 2λ, λ− 2i)|2

≤
−1∑

m=−k
λ2.|m| ·Rm(λ)2.(3λ2dm+1) +R0(λ)2.(3λ2d0+1) +

k∑
m=1

λ2m ·Rm(λ)2.(3λ2dm+1).

and on the other hand,

||Θλ(u)||2F ≥
−1∑

m=−k
(λ− k)2.|m|.

∑
−λ≤i≤λ

|p−m(λ2 + 2λ, λ− 2i)|2 +
∑
−λ≤i≤λ

|pd0(λ2 + 2λ, λ− 2i)|2 +

k∑
m=1

(λ− k)2m.
∑
−λ≤i≤λ

|pm(λ2 + 2λ, λ− 2i)|2

≥
−1∑

m=−k
(λ− k)2.|m|.|qdm(λ2 + 2λ)|2.b λ

dm
c

2dm

+ |qd0(λ2 + 2λ)|2.b λ
d0
c

2d0

+

k∑
m=1

(λ− k)2m.|qdm(λ2 + 2λ)|2.b λ
dm
c

2dm

.

We can give an estimate of the degrees of q1 and q2. Namely, the degree of q2 is equal to
max−k≤m≤k{2.deg(Rm)+2|m|+2.dm+1} and the degree q1 is equal tomax−k≤m≤k{4.deg(qdm)+
2|m|+ 2.dm}. (Note that 2.deg(qdm) ≤ deg(Rm).)

2

The ultraproduct of the norms induces a topology both on
∏
VMλ+1(C) (under which

+ and . are continuous) and on the U . A basis of neighbourhoods Oε of 0 (in U) is given
by Oε := {u ∈ U : ‖u‖ ≤ ε}, where ε ∈ R∗,+ − {0}. When we just consider them as
topological spaces, we will call them ?-normed spaces.

Then, we will consider the following topological subspaces
∏
V GLλ+1(C) (dense in

∏
VMλ+1(C))

and
∏
V SLλ+1(C) which is a closed subspace of

∏
VMλ+1(C)).

Lemma 10.2. (See [19] Corollary 6.2.32.) Let A, B ∈ Mλ(C), then ||exp(A + B) −
exp(A)||λ ≤ ||B||λexp(||B||λ)exp(||A||λ). So, the exponential map is continuous on Mλ(C)
and Lipschitz continuous on each compact subset of Mλ(C). 2

Proposition 10.3. Consider the ?-normed spaces (U, ‖ · ‖) and (
∏
VMλ+1(C), ‖ · ‖λ+1).

The map EXP : U →
∏
V GLλ+1(C) is continuous and maps bounded sets to bounded

sets. The image EXP (U0) is an abelian subgroup of
∏
V GLλ+1(C) and EXP (⊕m6=0Um)

is included in
∏
V SLλ+1(C).

Proof: The continuity is clear from  Los and the preceding lemma.
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Note that if the sequence Aλ+1 ∈Mλ+1(C) is bounded, namely the sequence ‖Aλ+1‖λ+1

is bounded, then the corresponding sequence ‖exp(Aλ+1)‖λ+1 is bounded. Indeed, by

definition, exp(Aλ+1) =
∑∞

k=0

Akλ+1

(k)! , so the norm ‖exp(Aλ+1)‖λ+1 ≤ e‖Aλ+1‖λ+1 .

The last statement follows from Proposition 7.5. 2

Note that a priori, EXP(U) is not a subgroup of
∏
V GLλ+1(C); we will denote by

< EXP(U) > the subgroup generated by EXP(U) in
∏
V GLλ+1(C). The Campbell-Baker-

Hausdorff formula which expresses for two matrices A, B, exp(A) · exp(B) as exp(C) where
C is expressed as an infinite series in commutators in A and B, can be translated back with
u and v in place of A and B to express EXP(u) ·EXP(v) in terms of an infinite series in u,
v ([21] section 1.3).

Does < EXP(U) > have finite width with respect to EXP(U), namely does there exist a
finite number k such that every element of < EXP(U) > can be written as a product of k
elements of EXP(U)?

We consider the field R := (R,+, ., 0, 1, ex), and we denote by R∗ a non principal ultra-
power of R with respect to the ultrafilter V on ω. We will extend the exponential map EXP
to U ⊗ R∗ as follows. Let u ∈ U and s := [rλ]V ∈ R∗ with rλ ∈ R, then EXP (u ⊗ s) :=
Exp[rλ.θλ(u)]V = Exp[θλ(rλ.u)]V and EXP (

∑
i ui ⊗ si) := Exp[θλ(

∑
i ui.ri,λ)]V , where

si := [ri,λ]V . Note that
∑

i ui.ri,λ ∈ U . This is well defined.
We will say that a topological group G is ?-path connected if given any two elements

h0, h1 ∈ G, there is a continuous map g from [0; 1]∗ := R∗ ∩ [0; 1] to G with g(0) = h0 and
g(1) = h1.

Proposition 10.4. The subgroups < EXP(U) > and EXP(U0) of
∏
V GLλ+1(C) (re-

spectively < EXP(U ⊗ R∗) > and EXP(U0 ⊗ R∗) are topological groups. Moreover, <
EXP(U ⊗ R∗) > and EXP(U0 ⊗ R∗) are ?-path connected.

Proof: First note that
∏
V GLλ+1(C) is a topological group as an ultraproduct of topological

groups. So, the subgroups < EXP(U) >, EXP(U0), < EXP(U ⊗R∗) > and EXP(U0 ⊗R∗)
are topological subgroups.

The groups < EXP(U ⊗ R∗) > and EXP(U0 ⊗ R∗) are ?-path connected. We only
prove that < EXP(U ⊗ R∗) > is ?-path connected. Let g0, g1 ∈< EXP(U ⊗ R∗) >.
Then we can write g1 = EXP(u1) · . . . · EXP(un) and g0 = EXP(v1) · . . . · EXP(vm),
where u1, · · · , un, v1, · · · , vm ∈ U ⊗ R∗. So, g1 = g0 · EXP(y1) · . . . · EXP(yk), for some
y1, · · · , yk ∈ U ⊗ R∗. Let t ∈ [0; 1]∗ and set g(t) = g0 · EXP(t · y1) · . . . · EXP(t · yk), so
g(0) = g0 and g(1) = g1. Let us denote the set {g ∈< EXP(U) > : ∃t ∈ [0; 1]∗ g =
EXP (ty1) · . . . · EXP(t · yk)} by Cg0,g1 .

First, let us check that the map from [0; 1]∗ to EXP(U), sending t to EXP(tu) is contin-
uous at t1 ∈ [0; 1]∗.

Let ε ∈ [0; 1]∗, then we have to find η such that if |t0 − t1| < η, then ‖EXP(t0 · u) −
EXP(t1 ·u)‖ ≤ ε. We have EXP(t0 ·u)−EXP(t1 ·u) = EXP(t1 ·u) · [EXP((t0− t1) ·u)− 1].
So, ‖EXP(t0 ·u)−EXP(t1 ·u)‖ ≤ ‖EXP(t1 ·u)‖ · ‖EXP((t0− t1) ·u)−1]‖. Now, ‖EXP((t0−
t1) · u)− 1]‖ ≤ |(t0 − t1)| · ‖u‖ · e‖((t0−t1)·u)‖.

Then we use the fact that the product (possibly non commutative) of two continuous
functions is continuous (∗). So, by induction on n, we may deduce that the map sending t
to EXP(t · y1) · EXP(t · y2) · . . . · EXP(t · yk) is also continuous.

Now suppose < EXP(U) > is the disjoint union of two open sets U1 and U2. Denote the
intersection of U1 (respectively U2) with Cg0,g1 by O1 (respectively O2). The inverse image
of O1 and O2 gives rise to a partition of [0; 1]∗, which is a contradiction.
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For convenience of the reader, let us prove (∗). Let f(t), g(t) be two continuous maps
on the interval [0; 1]∗ and assume one of them is bounded. Then consider the map sending
t to the product f(t) · g(t); let us show it is continuous at t1, assuming that f is bounded.
Estimate the difference: f(t) ·g(t)−f(t1) ·g(t1) = (f(t)−f(t1)) ·g(t1) +f(t) · (g(t)−g(t1)).
So, ‖f(t) ·g(t)−f(t1) ·g(t1)‖ ≤ ‖(f(t)−f(t1))‖ ·‖g(t1)‖+‖f(t)‖.‖(g(t)−g(t1))‖. Note that

the map sending t to EXP (tu) is bounded. Indeed, ‖EXP (tu)‖ ≤ e‖t·u‖ ≤ e|t|·‖u‖ ≤ e‖u‖.
2

11. The asymptotic cone

In the previous section, we embedded U in a ?-normed space, namely
∏
VMλ+1(C).

Here, we will embed U into a complete metric space (with an R-valued metric) which will
be the asymptotic cone associated with the family of normed algebras Mλ+1(C), λ ∈ ω,
and a non-principal ultrafilter V on ω. We will first endow each Mλ+1(C) with a new norm
scaled down by λ; this norm differs from the norms we previously introduced in the fact
that the norms of Θλ(x),Θλ(y),Θλ(c),Θλ(h) will be a multiple of λ (see Proposition 11.2).

Even though they didn’t name it asymptotic cone, it was introduced by L. van den Dries
and A. Wilkie when they revisited Gromov’s proof that a finitely generated group of poly-
nomial growth is nilpotent-by-finite. Given a group of polynomial growth, M. Gromov
associated a converging sequence of discrete metric spaces scaled down by a sequence of
well-chosen natural numbers. Then, van den Dries and Wilkie associated with any finitely
generated group G a limited ultraproduct of discrete metric spaces quotiented out by in-
finitesimals. This space is usually denoted by Cone(X,V), where X is a metric space
associated with G and V a non principal ultrafilter on ω, note that Cone(X,V) may de-
pend on V (see for instance [15], [5]). The advantage of using an ultraproduct construction
is that one can easily transfer certain properties from the factors.

First, we introduce the map φ from Mλ+1(C) to N, sending A ∈Mλ+1(C) to the number
of non-zero coefficients of A. Of course, φ(A) = 0 iff A = 0.

Let us check that

(1) φ(A+B) ≤ φ(A) + φ(B),
(2) φ(A ·B) ≤ φ(A) · φ(B)

We denote the ij coefficient of A+B by (A+B)ij . We have that if (A+B)ij 6= 0, then
either Aij 6= 0 or Bij 6= 0.

Let C := A ·B, then Cij =
∑

k Aik ·Bkj and so Cij 6= 0 implies that for some k, Aik 6= 0
and Bkj 6= 0. We prove the second claim by induction on the number φ(C). For φ(C) = 1,
it is clear. By induction suppose that for any 1 ≤ n ≤ m, if φ(C) = n, then for some
2-tuple (k1, k2) with k1 ≥ 1, k2 ≥ 1, such that φ(A) ≥ k1 and φ(B) ≥ k2 and n ≤ k1 · k2.

Assume now that φ(C) = m+1, so there are m+1 tuples (i, j) with Cij 6= 0. For each of
these tuples, there are two tuples (i, k), (k, j) such that Aik 6= 0 and Bkj 6= 0. By induction
corresponding to the first m non-zero tuples, we know that there are k1 (respectively k2)
non-zero coefficients of the matrix A (respectively of the matrix B) which are non-zero and
such that m ≤ k1.k2. Corresponding to the m + 1 non-zero coefficient of C, there exists
another non-zero coefficient of either A or B and so either φ(A) ≥ k1 + 1, or φ(B) ≥ k2 + 1,
so m+ 1 ≤ min{(k1 + 1) · k2, k1 · (k2 + 1)}.

So, this map φ defines a norm on Mλ+1(C), that we will denote by ‖ · ‖c,λ+1.

In the ultraproduct
∏
V(Mλ+1(C),

‖·‖c,λ+1

λ ), we consider the set
∏∗
V(Mλ+1(C),

‖·‖c,λ+1

λ ) of
elements [aλ] such that for some natural number N , we have {λ ∈ ω : ‖aλ‖c,λ ≤ N ·λ} ∈ V.
Then we quotient out this set by the equivalence relation ∼ defined by [aλ]V ∼ [bλ]V if
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(
‖aλ−bλ‖c,λ

λ ) →V 0. Let us denote the equivalence class of an element by [aλ]∼ and by st
the standard part of an element of

∏
V R whose absolute value is bounded by some natural

number.
On XV :=

∏∗
V(Mλ+1(C),

‖·‖c,λ+1

λ )/ ∼, we define the following distance with values in

R≥0.
Let a := [aλ]∼ and b := [bλ]∼, then d(a, b) := st([

‖aλ−bλ‖c,λ
λ ]).

Lemma 11.1. The space (XV(C), d) is an infinite-dimensional complete metric space.

Proof: The only thing which remains to be checked is the completeness of the space, but
this follows from the countable saturation of the ultraproduct. 2

We will say that (XV(C), d) is the asymptotic cone associated with {(Mλ+1(C),
‖·‖c,λ+1

λ );λ ∈
N} and V.

Proposition 11.2. The universal enveloping Lie algebra U of sl2(C) embeds in (XV(C), d)
via its embedding in the ultraproduct of the matrix rings.

Proof: We proceed in two steps.

Firstly, we show that for any u ∈ U , [Θλ(u)] belongs to
∏∗
V(Mλ+1(C),

‖·‖c,λ+1

λ ). This is
direct by inspection of the proof of 5.4.

Secondly, let u ∈ ⊕|j|≤mUj , then there exist d0, d1, . . . , dm, d−1, . . . , d−m such that for all

λ ∈ N, φ(Θλ(u)) = (λ−d0)+
∑m

j=1((λ−i)−di) = λ.m−(m(m+1))/2−
∑m

i=1 di−
∑−m

i=−1 d−i.
Again, this is seen by inspection of the proof of 5.4.

So if [Θλ(u)] ∼ 0, then [Θλ(u)] = 0. 2

We will denote the image of U in (XV(C), d) by U∼.

Definition 11.1. A matrix (aij) in Mλ+1(C) is called a m-band matrix if there exists m
such that for any 1 ≤ i, j ≤ λ+ 1, we have aij 6= 0 implies that |i− j| ≤ m. (Namely, the
non-zero entries of a m-band matrix are confined to a diagonal band comprising the main
diagonal and the adjacent m diagonals on either side. The band-width is equal to 2.m+ 1.

Proposition 11.3. Every element of U acts by left multiplication on the image U∼ of U in
(XV(C), d), in a continuous way. More generally, any element [aλ]V ∈

∏
VMλ+1(C) acts

by right multiplication on (XV(C), d), whenever there exists m independently of λ such that
aλ is a m-band matrix.

Proof: Let u, v ∈ U. Let us show that [Θλ(u)].[Θλ(v)]∼ is well-defined. Namely, if [ελ] ∈∏
V(Mλ+1(C) with [ελ] ∼ 0, then Θλ(u) · ελ ∼ 0. Assume that u ∈ ⊕|j|≤mUj , so Θλ(u) is a

band matrix of width ≤ m. Namely Θλ(u)ij = 0 unless |i− j| ≤ m. So, if we denote by c

the matrix in Mλ+1(C) which is the product Θλ(u) · ελ, then cij =
∑λ+1

k=1 Θλ(u)ik · εkj . If we
fix the matrix element εkj , then there are at most 2m indices i such that cij 6= 0. Now since

[ελ] ∼ 0, limφ(ελ)
λ = 0. We have that φ(c) ≤ φ(ελ) · 2m, so limφ(c)

λ ≤ lim
φ(ελ)
λ · 2m = 0.

This action is continuous. Let ε > 0, choose η := ε.λ
φ(Θλ(u)) . Then for v1, v2 ∈ U∼, if

d(v1, v2) ≤ η, then d(u.v1, u.v2) ≤ ε. Indeed, we have ‖Θλ(u).Θλ(v1)−Θλ(u).Θλ(v2)‖c,λ =
φ(Θλ(u).Θλ(v1) − Θλ(u).Θλ(v2)) = φ(Θλ(u).(Θλ(v1) − Θλ(v2))) ≤ φ(Θλ(u)).φ(Θλ(v1) −
Θλ(v2)). 2
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