
ALGEBRAIC GROUPS UP TO ABSTRACT ISOMORPHISM

OLIVIER FRÉCON

Abstract. With any connected affine algebraic group G over an algebraically
closed field K of characteristic zero, we associate another connected affine

algebraic group D over K and a finite central subgroup F of D such that, up
to isomorphism of algebraic groups, affine algebraic groups over K abstractly

isomorphic to G are precisely of the form D/α(F )×Ks
+, where α is an abstract

automorphism of D and s is an integer satisfying s = 0 when the derived
subgroup of G contains the identity component of the center of G.

It follows from the latter that any two abstractly isomorphic connected

algebraic groups over K have a common algebraic central extension.
The construction of D lies heavily on model theory and groups of finite

Morley rank. In particular, it needs to prove that, for any two connected

algebraic groups over K, the elementary equivalence of the pure groups implies
they are abstractly isomorphic.
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1. Introduction

1.1. Main theorem. The aim of this paper is to study the connections between
the abstract isomorphy and the algebraic isomorphy in the context of connected
affine algebraic groups over an algebraically closed field K of characteristic zero.
More precisely, we want to classify all connected affine algebraic groups over K
abstractly isomorphic to a fixed connected affine algebraic group over K. A feature
of this work is that no structural assumption on the groups is required. Thus the
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algebraic groups are just connected and affine, and even just connected for some
consequencies of the main result (see Corollary 1.2 and Theorem 1.5), but they are
not necessarily simple or solvable for example.

Some situations prevent the equivalence of the abstract isomorphy and isomor-
phy as algebraic groups. For example, for all the positive integers m and n, the
additive groups Km

+ and Kn
+ are abstractly isomorphic, but they are isomorphic as

algebraic groups only if m = n. Moreover, Remark 8.11 describes another prob-
lematic situation, where the group has finite center and is a central product of two
infinite closed subgroups with finite intersection. The main theorem of this paper,
Theorem 1.1 below, shows that these are the only pathological cases. More pre-
cisely, when we fix a connected affine algebraic group G, it determines all the other
connected affine algebraic groups H, abstractly isomorphic with it, up to isomor-
phism of algebraic groups. In this paper, we denote by G◦ the identity component
of any algebraic group G. Moreover, we denote by Z(G) the center of any group
G, and by G′ its derived subgroup.

Theorem 1.1. – For any connected affine algebraic group G over an algebraically
closed field K of characteristic zero, there is a connected affine algebraic group
D over K and a finite central subgroup F of D such that, up to isomorphism of
algebraic groups, affine algebraic groups over K abstractly isomorphic to G are
precisely of the form D/α(F )×Ks

+, where α is a quasi-standard automorphism of
D and s is an integer satisfying s = 0 when G′ contains Z(G)◦.

An isomorphism α : G → H between two algebraic groups over algebraically
closed fields K and L is said to be standard if it is the composition of a field iso-
morphism ϕ : K → L and an L-isogeny (i.e. L-rational homomorphism, surjective
with finite kernel). We point out that, as throughout this paper, we identify the
field isomorphism ϕ to the corresponding map ϕ◦ : G→ ϕG, where ϕG denotes the
algebraic group over L obtained by transfer of base field. Then an isomorphism
α : G→ H is said to be quasi-standard if G = G1×· · ·×Gn and H = H1×· · ·×Hn

for G1, . . . , Gn, H1, . . . ,Hn some algebraic subgroups such that, for each i, we have
α(Gi) = Hi, and α|Gi

: Gi → Hi is a standard isomorphism.
We will mention several consequences of Theorem 1.1. In particular, they are

worth mentioning Theorems 1.5 and 1.9, whose proofs are not direct, and the
following two results, which reformulate Theorem 1.1 in some interesting special
cases.

Corollary 1.2. – Any two abstractly isomorphic connected (nonnecessarily affine)
algebraic groups G and H over an algebraically closed field K of characteristic zero
have a common algebraic central extension.

Moreover, G/Z(G) and H/Z(H) are isomorphic as algebraic groups.

Proof – By Lemma 1.6 below, there is a connected affine algebraic group GA
(resp. HA) over K such that GA and G (resp. HA and H) are abstractly iso-
morphic, and such that GA/Z(GA) and G/Z(G) (resp. HA/Z(HA) and H/Z(H))
are isomorphic as algebraic groups. Since GA and HA are abstractly isomorphic,
Theorem 1.1 provides a connected algebraic group D, a finite central subgroup
F of D, a quasi-standard automorphism α of D, and two integer r and s such
that the algebraic groups GA and D/F × Kr

+ (resp. HA and D/α(F ) × Ks
+)

are isomorphic. Since F and α(F ) are finite, and since D is connected, we have
Z(D/F × Kr

+) = Z(D)/F × Kr
+ and Z(D/α(F ) × Ks

+) = Z(D)/F × Ks
+, so
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GA/Z(GA) and HA/Z(HA) are isomorphic to D/Z(D) as algebraic groups. Con-
sequently, G/Z(G) and H/Z(H) are isomorphic as algebraic groups.

Finally, the preimage in G × H of the graph of any isomorphism of algebraic
groups from G/Z(G) to H/Z(H) is a common algebraic central extension for G
and H. �

Corollary 1.3. – Let G and H be two abstractly isomorphic connected affine alge-
braic groups over an algebraically closed field K of characteristic zero. If G and H
are not a central product of two infinite closed subgroups with a finite intersection,
then G and H are isomorphic as algebraic groups.

Proof – Theorem 1.1 provides a connected algebraic group D, a finite central
subgroup F of D, and a quasi-standard automorphism α of D, such that G and
D/F (resp. H and D/α(F )) are isomorphic as algebraic groups. Our hypotheses
over G and H imply that D has no decomposition as a direct product of two infinite
closed subgroups, so α is standard. Now the map α : D/F → D/α(F ) defined by
α(xF ) = α(x)α(F ) for each x ∈ D is a standard isomorphism, hence the algebraic
groups D/F and D/α(F ) are isomorphic. �

Our study is closely linked with the very classical problem of the abstract isomor-
phisms of algebraic groups, which has been intensively studied since the twenties,
and whose main paper is [3]. In the particular context of the algebraically closed
fields [18], the theory essentially says that, if G and H are two simple algebraic
groups over algebraically closed fields K and L respectively, then any abstract iso-
morphism µ : G → H is standard. The purpose of [3] was to extend the result by
considering abstract homomorphisms, and especially to analyze the case where the
ground fields K and L are not algebraically closed, but the nonsimple case was not
considered. Indeed, in the context of the nonnecessarily simple connected affine al-
gebraic groups, an abstract isomorphism α between two connected affine algebraic
groups G and H, over algebraically closed fields K and L of characteristic zero, is
not necessarily standard, even if G and H are solvable and centerless, or perfect and
centerless for instance (see Example 3.1 (1) and (3)). Furthermore, in Example 3.1
(1) and (3), the isomorphism is not even continuous for the Zariski topology. Based
on this observation, the relevance of the abstract isomorphisms in the general case
seems rather different from the simple case, since such an isomorphism does not
necessarily preserve the geometric structure of G.

In the present article, we consider the abstract isomorphisms from another point
of view. Indeed, if α : G → H is an abstract isomorphism between two connected
affine algebraic groups G and H, then prehaps that α is not standard, but that the
existence of α implies that of a standard isomorphism from G to H. This situation
is interesting since, in this case, the abstract isomorphy implies the isomorphy of
the ground fields, and even the isomorphy of the algebraic groups when K = L.
This is the subject of Corollary 1.8. However, to attack this problem, the algebraic
and geometric methods do not seem to work outside, and the proof of Theorem 1.1
lies heavily on the model theory.

The methods and tools that will be used in this paper comes from the theory
of groups of finite Morley rank. For more details about these groups, we may refer
to [1, 4, 15, 16]. Morley rank is an ordinal-valued abstract dimension notion that
arose in model theory. Groups of finite Morley rank are defined as being the goups
having as Morley rank a natural number. Model theory studies structure using a
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certain formalism. A structure is an underlying set together with the graphs of
some distinguished relations and functions. Thus an “abstract” group, or a pure
group as model theorists would say, is a set G with the group law, inversion and
the constant 1, as the distinguished binary, unary and 0-ary operations (one writes
(G, · , −1, 1)). Any subset of Gn (n ∈ N) described using first-order logic and
symbols defining the three functions, the pure group language, is a definable set.
More generally, one defines an interpretable set as a quotient of a definable set by
a definable equivalence relation.

Using this line, a (pure) field is a structure of the form (K,+,−, · , 0, 1), where
+, − and · are binary functions and 0 and 1 are constants. In this structure,
the definable sets coincide with the constructible ones. This structural equivalence
between definability and constructibility in the case of algebraically closed fields
has a consequence at the level of model-theoretic and geometric dimensions:

Morley rank = Zariski dimension.

One question in the present paper is to compare the definable sets in an affine
algebraic group when this group is seen as a pure group structure and when it is
seen as a constructible set in an algebraically closed field. This is related also to
the main conjecture in the analysis of groups of finite Morley rank: the Cherlin-
Zil’ber Algebraicity Conjecture. This conjecture states that an infinite simple group
of finite Morley rank is isomorphic as an abstract group to an algebraic group
over an algebraically closed field. Such a statement can be seen as finding an
isomorphism between an abstract group with a dimension notion and an affine
algebraic group. Since affine algebraic groups are examples of groups of finite
Morley rank, it is natural that model theoretic techniques are relevant for questions
of algebro-geometric nature such as the ones addressed in this paper.

1.2. Methods. Since the geometric and algebraic classical methods seem not ap-
propriate for the study of the abstract structure of nonnecessarily simple groups, we
are going to consider the model theory. Indeed, in the 80’s, B.I. Zil’ber [19], then B.
Poizat [16], showed that model theory is potentially effective for our subject, since
they dealt with a model-theoretic proof of the theorem of the abstract isomorphisms
of simple algebraic groups in the algebraically closed context. However the bulk of
the present work concerns nonnecessarily simple groups, and the last part of the
proof of [16, Corollary 4.17] provides a rather general piece of information about
the abstract isomorphisms. We gives it below. Moreover, we note that a slightly
more elaborate version of this result will be fundamental for us (see Fact 3.6).

Fact 1.4. – [16, Proof of Corollaire 4.17] Let α be an abstract isomorphism between
two algebraic groups G and H over algebraically closed fields. If, in the pure group
G, there is an interpretable field K and a definable isomorphism from G to an
algebraic group over K, then α is a standard isomorphism.

Actually the proof of [16, Corollaire 4.17] shows that α = β ◦ ϕ for a quasi-
morphism β and a field isomorphism ϕ. If the characteristic of the ground field of
H is zero, then β is an isomorphism and α is standard. Otherwise there is a power
Frm, for m ∈ N, of the Frobenius automorphism Fr of the ground field of H, such
that β ◦ Frm is an isogeny, and the map α = (β ◦ Frm) ◦ (Fr−m ◦ ϕ) is standard.

Usually, the two most natural ways for a model theorist to view an algebraic
group is as a pure group, or as a group, interpretable in a pure field. In this
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paper, we introduce an intermediate notion: the ACF -expansion of a pure group
(Definition 3.2). Indeed, on the one hand, the pure group is not sufficiently rich
for our subject (see Example 3.1 (2) and (3)), and on the other hand abstract
isomorphisms do not preserve all the sets interpretable in the pure field. However,
the ACF -expansion of a pure group is effective just if the ground field is isomorphic
to the algebraic closure Q of the field Q (see Lemma 3.10 for instance). Thus, most
of our analysis is concerned with algebraic groups over Q. In the final argument
(§9), a classical model-theoretical argument will generalize the result over Q to any
algebraically closed field of characteristic zero.

As in [16], in order to analyze the abstract structure of algebraic groups over Q,
and more generally the one of algebraic groups over an algebraically closed field,
we remark that their associated pure groups are of finite Morley rank. In fact, we
introduce in §4 the notion of a ACF -group, including the one of a pure group and
the one of the ACF -expansion of a pure group. Then a very substantial part of the
article is to prove Theorem 7.7. This one says that, if G is a connected algebraic
group over Q then, in the ACF -expansion of pure group G, the quotient G/Z(G)
is definably linear, in the sense of Definition 4.2. The core of the proof relies on
the Burdges’ unipotence theory [5], its improvements in [9] and [10, §3.2], and the
theory of solvable groups of finite Morley rank. Another key point is the notion of
a pseudo-torus (Definition 2.4), a concept derived from the one of a decent torus of
a group of finite Morley rank, and of a torus of an algebraic group. Indeed, they
are the basis of the analysis of Ũ -groups, and thus they make possible the use of
the Burdges’ unipotence for algebraic groups.

1.3. Abstract isomorphy versus elementary equivalence. It is noticeable
that the final argument provides a slightly stronger result than Theorem 1.1. In-
deed, Theorem 1.5 below is proven in §9 for affine groups, simultaneously with the
main theorem. Thus, in this paper, if K denotes an algebraically closed field of
characteristic zero, we describe the structure of all the affine algebraic groups over
K elementarily equivalent to a fixed connected affine algebraic group G over K,
and not only abstractly isomorphic to G.

Theorem 1.5. – Let G and H be two connected (nonnecessarily affine) algebraic
groups over an algebraically closed field K of characteristic zero. Then G and H are
abstractly isomorphic if and only if their pure groups are elementarily equivalent.

Furthermore, thanks to Lemma 1.6 below, we note that the groups are not
necessarily affine in Theorem 1.5.

Lemma 1.6. – Let G be any connected algebraic group over an algebraically closed
field K of characteristic zero. Then there are a connected affine algebraic group GA
over K such that GA and G are abstractly isomorphic.

Moreover, we may choose GA such that GA/Z(GA) and G/Z(G) are isomorphic
as algebraic groups.

Proof – Let N be the smallest connected normal algebraic subgroup of G such
that G/N is affine [17, §5, Corollary 3 p.431], and let A be the largest connected
affine algebraic subgroup of G [17, §5, Theorem 16]. Then, by [17, §5, Corollary 1
p.433], we have N ≤ Z(G), and by [17, §5, Corollary 5 p.440], we have G = AN and
N contains only a finite number of elements of any given finite order. So (A∩N)◦
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and N are abelian and divisible, and (A ∩ N)◦ has a (nonnecessarily algebraic)
divisible complement R in N .

By the choice of A, the group (A ∩N)◦ is the largest connected affine algebraic
subgroup of N , and N/(A ∩ N)◦ is an abelian variety by [17, §5, Theorem 16].
Consequently, for each integer n, the group R ' N/(A ∩ N)◦ has n2g elements
of order dividing n, where g denotes the dimension of N/(A ∩ N)◦. This implies
that R is abstractly isomorphic to the torus (K∗)2g, so the affine algebraic group
A × (K∗)2g is abstractly isomorphic to A × R. But we have G = AN = AR and
A ∩ R ≤ (A ∩ N) ∩ R is finite, so there is an abstract surjective homomorphism
τ : A× (K∗)2g → G such that τ(x, 1) = x for each x ∈ A, and with finite kernel E.
Hence there is an abstract isomorphism σ from G to the connected affine algebraic
group GA := (A× (K∗)2g)/E, such that its restriction σ|A : A→ (A×{1})E/E is
an isomorphism of algebraic groups. Thus, since we have N ≤ Z(G) and G = AN ,
we obtain G = AZ(G), and the map σ : G/Z(G)→ GA/Z(GA) induced by σ is an
isomorphism of algebraic groups. �

1.4. What happens when the ground field is not fixed. If we consider two
abstractly isomorphic connected affine algebraic groups G and H over distinct al-
gebraically closed fields of characteristic zero, thanks to the following lemma and
to Theorem 1.1, we can describe the structure of H from the one of G (Corollary
1.8). The proof of Lemma 1.7 is based on the fact that the pure group G has finite
Morley rank.

Lemma 1.7. – Let G and H be two abstractly isomorphic connected (nonnecessarily
affine) algebraic groups over algebraically closed fields K and L of characteristic
zero. If G is either nonabelian or uncountable, there is a field isomorphism between
K and L.

Otherwise, either G is trivial and there is no condition over L, or G is infinite
and L is any countable algebraically closed field of characteristic zero.

Proof – We may assume that G is nontrivial. If G is nonabelian, its Borel
subgroups, i.e. its maximal solvable connected closed subgroups, are nonabelian
too. Let B be such a subgroup of G. Then B is a maximal solvable subgroup of G,
so it is definable in the pure group G [4, Corollary 5.38]. Moreover B is connected
in the pure field K, and since all the definable sets of the pure group G are definable
in K too, B is connected in the pure group G. We consider the Fitting subgroup
F (B) of B (see §2.1), which is a normal nilpotent definable subgroup of B. Then
Fact 2.16 says that F (B)/Z(B) is a Ũ -group (see Definition 2.8). In particular,
F (B)/Z(B) is connected in the pure group G. Since B is a solvable connected
algebraic group, then B′ is unipotent, so F (B) contains B′, and B/F (B) is abelian.
Thus, if F (B) = Z(B), then B′ is central in B and B is nilpotent, so we obtain
B = F (B) = Z(B), contradicting that B is nonabelian. Consequently F (B)/Z(B)
is infinite. But K has characteristic zero and B is algebraic over K, so B/Z(B)
has no infinite subgroup of bounded exponent. Hence it follows from Definition 2.8
that there is a field K0 of characteristic zero, interpretable in the pure group G. By
Fact 2.2, the fields K and K0 are definably isomorphic in the pure field K. Since G
and H are abstractly isomorphic, there is a field L0 interpretable in the pure group
H, with L0 isomorphic to K0. In the same way, L0 and L are isomorphic, so there
is a field isomorphism between K and L. Hence we may assume that G is abelian.
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We note that G, K, H and L have the same cardinality. Moreover, K and L
are elementarily equivalent by completeness of ACF0 [15, Corollary 3.2.3]. So, if
G is uncountable, then K and L are two uncountable algebraically closed fields
of characteristic zero with the same cardinality, hence they are isomorphic by the
κ-categoricity of ACF0 [15, Proposition 2.2.5].

If G is abelian and countable, then K and L are necessarily countable. By
Lemma 1.6, there is a connected affine algebraic group GA over K such that GA
and G are abstractly isomorphic. Then we find two integers r and s with rs 6= 0
such that the algebraic groups GA and (K∗)r ×Ks

+ are isomorphic. But, for any
countable algebraically closed field F of characteristic zero, (K∗)r×Ks

+ is abstractly
isomorphic to (F ∗)r × F s+, so we obtain the result. �

Then when the ground fields are not fixed, Theorem 1.1 becomes as follows.

Corollary 1.8. – Let G be a connected affine algebraic group over an algebraically
closed field K of characteristic zero. Unless G is abelian and countable, there is a
connected affine algebraic group D over K and a finite central subgroup F of D such
that, for each connected affine algebraic group H over an algebraically closed field
L of characteristic zero, if H is abstractly isomorphic to G, then there are a quasi-
standard automorphism α of D and an integer s such that H and α(D)/α(F )×Ls+
are isomorphic as algebraic groups.

Now, by Corollaries 1.2 and 1.3, we easily obtain some other general results
concerning the abstract isomorphisms and standard isomorphisms.

Moreover, Theorem 1.1 and Lemma 1.7 allow to associate with any abstract
group a very particular integer. Indeed, let G, D and F be as in Theorem 1.1.
Since K has characteristic zero, the number of central subgroups of D isomorphic
to F is finite, so there are finitely many algebraic groups of the form D/α(F ) for
a quasi-standard automorphism α of D. We denote by n(G) their number up to
isomorphism of algebraic groups. Then Theorem 1.1 and Lemma 1.7 yield another
important result to this paper.

Theorem 1.9. – For any abstract group G, there is an integer n(G) such that, for
each algebraically closed field K of characteristic zero, and each integer d, up to
isomorphism of algebraic groups, there are either zero, or n(G), connected affine
algebraic groups H over K of dimension d and abstractly isomorphic to G.

Proof – We may assume that G is nontrivial, and that there is an algebraically
closed field K of characteristic zero such that G is a connected affine algebraic
group over K. Moreover, by Theorem 1.1 and Lemma 1.7, we may assume that G
is abelian and countable. In this last case, there are two integer r and s with rs 6= 0
such that the algebraic groups G and (K∗)r×Ks

+ are isomorphic. Now let L be any
algebraically closed field of characteristic zero such that there is a connected affine
algebraic group over L, abstractly isomorphic to G. Then, up to isomorphism of
algebraic groups, the connected affine algebraic groups over L abstractly isomorphic
to G are of the form (L∗)r × Lt+, where t is any integer such that rt 6= 0. This
implies that, for each integer d, up to isomorphism of algebraic groups, there are
at most one connected affine algebraic groups H over L of dimension d such that
H is abstractly isomorphic to G. �
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1.5. Plan of the article. After reminders of known facts in §2, we analyze the
following very special group in §3:

G =


 t a u

0 t v
0 0 1

 | t ∈ Q∗, (a, u, v) ∈ Q3

 .

For that, we introduce the notion of a ACF -expansion of a pure group (Definition
3.2), and we prove that the maximal tori of G are definable in the ACF -expansion
of the pure group G (Proposition 3.11).

In §4, we study the unipotent groups over Q, and we prove that, for each con-
nected nilpotent algebraic group G over Q, the quotient G/Z(G) is definably linear
(in the sense of Definition 4.2) in the ACF -expansion of the pure group G (Theo-
rem 4.3). In order to study the minimal configuration, we need Proposition 3.11.
Moreover, a key point of this section is the Hoschild-Mostow Theorem (Fact 4.5),
of which we provide a model-theoretic proof for the special case used here (Fact
4.6).

Section §5 is devoted to the study of the ACF -groups and ACF0-groups (see
the beginning of §4 for the definitions). These concepts encompass different ways
of seeing an algebraic group for the model-theorist: as a pure group, as the ACF -
expansion of a pure group, or as a group interpretable in a pure field for instance.
Moreover, it appears that the notion of a definably linear group is not sufficient
to analyze the ACF -groups (see Example 5.1). Therefore we introduce a slightly
thinness concept: the definably affine groups (Definition 5.2). In particular, each
ACF -group G has a largest connected definably affine subgroup (Corollary 5.10),
and a smallest normal definable subgroup W (G) such that G/W (G) is definably
affine (Corollary 5.17). It is noticeable that the proofs are somewhat more for-
mal in this section, and most results are valid for the algebraic groups over any
algebraically closed field, not just over Q.

When the ground field of an algebraic group G is algebraically closed of charac-
teristic zero, the definability of tori becomes a problem. We approach this problem
using decent tori and pseudo-tori (Definition 2.4). However, even if G is a centerless
connected algebraic group over Q, the maximal tori of the pure group G may not be
definable (Example 3.1 (2)). In §6, we prove that, when G is a connected solvable
algebraic group over Q, then T ∩ F (G) is central in G for each pseudo-torus T of
the ACF -expansion of the pure group G (Theorem 6.3), where F (G) denotes the
Fitting subgroup of G (see §2.1). Moreover, it is noticeable that, in order to study
the minimal configuration, we need Proposition 3.11 again.

From this result, from the analysis of the unipotent groups in §4, and from the
one of the ACF -groups in §5, we deduce Theorem 7.7, which is fundamental for us.
Indeed, it says that when G is a connected algebraic group over Q, then G/Z(G)
is definably linear in the ACF -expansion of the pure group G. It is the base of the
construction of the group D in the main theorem. Actually, this last group is built
in §8. Its construction is rather natural, but above all, we have a serious problem
with some central finite subgroups of it (see the proof of Theorem 8.14).

The transition from the algebraic groups over Q to the algebraic groups over
any algebraically closed field of characteristic zero is made in §9, essentially by a
classical model-theoretic argument. Furthermore, it is noticeable that the end of
the proof of the main result provides simultaneously the one of Theorem 1.5 in the
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affine case (the general case of Theorem 1.5 follows from the affine case and from
Lemma 1.6).

2. Facts

The notations will be as in [4], which is also our main reference for groups of
finite Morley rank. In this section we recall some definitions and known results.

Here is a list of the main notations and definitions used in this paper, with where
they are defined.
d( · ) §2.1
· ◦ §2.1
F ( · ) §2.1
J( · ) §2.4
UK( · ) Not. 2.7
Ũ( · ) Def. 2.8
V ( · ) Not. 4.10
A( · ) Cor. 5.10
W ( · ) Cor. 5.17
Φ( · ) §6
S( · ) §7
T ( · ) §7
Q( · ) §7
T ( · ) §8
D( · ) §8

Fitting subgroup §2.1
S-minimal §2.1
Decent torus Def. 2.4
Pseudo-torus Def. 2.4
Indecomposable group §2.4
UK-group Def. 2.8
Ũ -group Def. 2.8
T -expansion Def. 3.2
ACF -group §4
Definably linear group Def. 4.2
Definably affine group Def. 5.2
Carter subgroup §6
Frattini subgroup §6
Quasiunipotent radical §7
Centrally indecomposable group Def. 8.3

2.1. Generalities. If X is a subset of a group G of finite Morley rank, then the de-
finable hull of X, denoted by d(X), is the intersection of all the definable subgroups
of G which contain X. By the descending chain condition on definable subgroups,
this intersection is definable.

If H is a definable subgroup of a group G of finite Morley rank, its connected
component is the smallest definable subgroup of finite index in H, and it is denoted
by H◦. The link between the connected component of a group of finite Morley rank
and the identity component of an algebraic group is clarified by Lemma 4.1.

The Fitting subgroup F (G) of a group G is the subgroup generated by all the nor-
mal nilpotent subgroups of G. Nesin proved that the Fitting subgroup is definable
and nilpotent in any group of finite Morley rank [4, Theorem 7.3].

A subgroup A of a group G of finite Morley rank is said to be S-minimal, where
S is a subset of G, if A is infinite, definable, normalized by S and minimal for
these conditions. It is noticeable that, when G is solvable and connected, then any
G-minimal subgroup of G is abelian [4, Proposition 7.7].

2.2. Fields of finite Morley rank. The following result due to B. Zil’ber confers
a central importance on fields of finite Morley rank. Moreover, we recall that, by a
theorem of A. Macintyre [4, Theorem 8.1], an infinite field of finite Morley rank is
always algebraically closed.

Fact 2.1. – [4, Theorem 9.1] Let G = A o H be a group of finite Morley rank
where A and H are two infinite definable abelian subgroups, A is H-minimal and
CH(A) = 1. Then G interprets an algebraically closed field K such that A ' K+

definably, and H is definably isomorphic to a subgroup of K∗.
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Fact 2.2. – [16, Théorème 4.15] Let F be an algebraically closed field. Then, in the
pure field F , every infinite definable field K is definably isomorphic to F .

Fact 2.3. – [16, Corollaire 3.3] Let K be a field of finite Morley rank of characteristic
zero. Then K+ has no nontrivial proper definable subgroup.

2.3. Decent tori and pseudo-tori. In [7], G. Cherlin defines decent tori as an
analogue to algebraic tori. In [12], we introduce pseudo-tori, as a more general
notion, independant of torsion. Here we relate just the more general results used
in this paper concerning pseudo-tori, but their proofs are very often similar to
their analogues in [7] concerning decent tori. Moreover, pseudo-tori are the basis
of Ũ -groups defined below.

Definition 2.4. – Let T be a radicable abelian group of finite Morley rank.
• We say that T is a decent torus if T is the definable hull of its torsion.
• We say that T is a pseudo-torus if no definable quotient of T is definably

isomorphic to the additive group K+ of an interpretable field K.

We note that any decent torus is a pseudo-torus, and any pseudo-torus is con-
nected. In the following fact, we summarize the main properties of pseudo-tori.

Fact 2.5. – Let G be a group of finite Morley rank. Then,
(i) [12, Theorem 1.7] the maximal pseudo-tori of G are conjugate;

(ii) [12, Proposition 2.7] for any pseudo-torus T of G, NG(T )◦ centralizes T ;
(iii) [12, Corollaries 2.8 and 2.9] F (G) has a unique maximal pseudo-torus, and

this one is central in G◦;
(iν) [12, Corollary 2.13] if N is a normal definable subgroup of G, the maximal

pseudo-tori of G/N are the images of the maximal pseudo-tori of G.

2.4. Unipotence. In [5], J. Burdges introduced some analogues of the algebraic
unipotence for groups of finite Morley rank. In [9, 10], we continued the analysis
of these concepts. Here are considered Ũ -groups introduced in [10]. This notion
heavily depends on pseudo-tori [12]. We summarize the general results needed, and
we refer to [5, 9, 10] for a more complete introduction to these unipotence notions.

To obtain a notion analogous to the unipotence in algebraic groups, Burdges [5]
first introduces the notion of indecomposable group.

An abelian connected group A of finite Morley rank is indecomposable if it is not
the sum of two proper definable subgroups. If A 6= 1, then A has a unique maximal
proper definable connected subgroup J(A), and if A = 1, let J(1) = 1.

The first result is nontrivial and is consequence of Fact 2.5 (iν) above.

Fact 2.6. – [12, Lemma 2.2] Let G be a group of finite Morley rank and H a definable
normal subgroup of G. If B is a radicable indecomposable definable abelian subgroup
of G/H, then there is an indecomposable definable abelian subgroup A of G such
that B = AH/H.

In particular, Fact 2.6 says that any (nonnecessarily abelian) radicable group of
finite Morley rank is generated by its indecomposable definable abelian subgroups.

We recall the definitions and properties of Ũ -groups.

Notation 2.7. – For any group G of finite Morley rank and any interpretable
field K of characteristic zero, we denote by UK(G) the subgroup of G generated
by its indecomposable definable abelian subgroups A such that A/J(A) is definably
isomorphic to K+.
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Definition 2.8. –

• A group G of finite Morley rank is said to be a UK-group, where K is an
interpretable field of characteristic zero, if G = UK(G). We say that a
UK-group G is homogeneous if each definable connected subgroup of G is a
UK-subgroup.
• For every group G of finite Morley rank, we denote by Ũ(G) the subgroup of
G generated by its normal homogeneous UK-subgroups, for the interpretable
fields K of characteristic zero, and by its normal definable connected sub-
groups of bounded exponent.
• A Ũ -group is a group G of finite Morley rank such that G = Ũ(G).

Remark 2.9. –

• By Fact 2.3, any radicable indecomposable definable abelian subgroup is
either a pseudo-torus or a UK-group for an interpretable field K of charac-
teristic 0.
• By Fact 2.5 (iν) and Fact 2.12 below, in any Ũ -group, each pseudo-torus is

trivial.

The below facts 2.10-2.16 comes from [10], but their proofs are not given in [10].
Indeed, they are mainly obtained by using [12] in place of [7], and their proofs are
similar to the ones of [5, 6, 9].

Fact 2.10. – (see [10, Fact 3.10] and [6, Theorem 3.4]) Let G be a radicable nilpo-
tent group of finite Morley rank, and let T be its maximal pseudo-torus. Then G
interprets some fields K1, · · · , Kn of characteristic zero such that

G = T ∗ UK1(G) ∗ UK2(G) ∗ · · · ∗ UKn
(G),

where ∗ denotes the central product.

Fact 2.11. – (see [10, Fact 3.11] and [9, Theorem 4.11]) Let G be a connected group
of finite Morley rank, and K an interpretable field of characteristic zero. Assume
that G acts definably by conjugation on H, a nilpotent UK-group. Then [G, H] is
a homogeneous UK-subgroup.

Fact 2.12. – (see [10, Fact 3.13] and [9, Theorem 5.4]) Let G be a nilpotent Ũ -group.
Then G interprets some algebraically closed fields K1, · · · , Kn of characteristic zero
such that the following decomposition holds:

G = B × UK1(G)× UK2(G)× · · · × UKn
(G)

where B is a definable connected characteristic subgroup of bounded exponent, and
UKs

(G) a homogeneous UKs
-subgroup (for s ∈ {1, 2, . . . , n}).

Fact 2.13. – (see [10, Fact 3.15] and [9, Proposition 5.7]) Let G be a torsion-free
group of finite Morley rank containing no nontrivial pseudo-torus. Then G is a
Ũ -group if and only if, for each interpretable field K of characteristic zero, UK(G)
is a homogeneous UK-subgroup.

Fact 2.14. – (see [10, Fact 3.16] and [9, Corollary 5.8])

• Every definable quotient of a Ũ -group is a Ũ -group.
• Every definable connected subgroup of a Ũ -group is a Ũ -group.
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Fact 2.15. – (see [10, Fact 3.18] and [5, Lemma 2.11]) Let G be a group of finite
Morley rank, U and V be two definable subgroups with V normal in G, and K be
an interpretable field of characteristic zero. Then UK(UV/V ) = UK(U)V/V .

Fact 2.16. – (see [10, Fact 3.25] and [9, Results 5.8, 6.12 and 6.20]) Let G be a
solvable connected group of finite Morley rank. Then F (G)/Z(G) is a Ũ -group.

3. The ACF -expansion of a pure group

First we focus on a very particular algebraic group. We consider the algebraic
closure Q of Q and the following subgroup of GL(3,Q):

 t a u
0 t v
0 0 1

 | t ∈ Q∗, (a, u, v) ∈ Q3

 .

This group will play a key role for us. However, the following examples show that
the notion of a pure group is not sufficiently rich to analyze it. In order to remedy
to this problem, we will define the ACF -expansion of a pure group (Definition 3.2).

Example 3.1. –
(1) Let Q̃ denote a proper elementary extension of the pure fieldQ. We consider

the following solvable centerless connected algebraic group

G̃ =


 t a u

0 t v
0 0 1

 | t ∈ Q̃∗, (a, u, v) ∈ Q̃3

 .

Then G̃ has an abstract automorphism α such that α(T ) is not Zariski
closed for any maximal torus T of G̃. Thus the maximal tori of G̃ are not
definable in the pure group G̃.

Furthermore, the latter implies that the automorphism α is not contin-
uous for the Zariski topology of G̃. In particular, α is not standard.

Indeed, since Q̃ is a proper extension of Q, it has a nonzero derivation
δ. Then we consider the map α : G̃→ G̃ defined by

α

 t a u
0 t v
0 0 1

 =

 t a+ δ(t) u+ δ(v)
0 t v
0 0 1

 ,

for each t ∈ Q̃∗ and each (a, u, v) ∈ Q̃3. It is an abstract automorphism of
G̃, so for each subset X of G̃, the set X is definable in the pure group G̃ if
and only if α(X) is definable in the pure group G̃.

We verify α(T ) is not Zariski closed for any maximal torus T of G̃. By
conjugacy of maximal tori in G̃, we may assume that T is the diagonal
subgroup of G̃. Then we have

T ∩ α(T ) = {diag(t, t, 1) | t ∈ Q̃∗, δ(t) = 0},
so neither T ∩ α(T ), nor α(T ) is Zariski closed.

(2) Now we consider the pure group

G =


 t a u

0 t v
0 0 1

 | t ∈ Q∗, (a, u, v) ∈ Q3

 .
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By Lemma 3.10 below, all of its abstract automorphisms are standard.
Nevertheless, we cannot apply Fact 1.4 to G, since G does not verify its
hypotheses.

Indeed, otherwise, in the pure group G, there would be an interpretable
field K and a definable isomorphism ν from G to an algebraic group H over
K. In particular, K and ν would be definable in the pure field Q, so ν(T )
would be a maximal torus of H for each maximal torus T of G. Then, by
the definability of K in G, the subgroups ν(T ) and T would be definable in
G. But Q̃ is a proper elementary extension of the pure field Q, so the pure
group G̃ is an elementary extension of the pure group G, and the extension
T̃ of T to G̃ is a maximal torus of G̃. Hence T̃ would be definable in the
pure group G̃, contradicting the previous example.

We note that the argument above shows that, in the pure group G,
• there is no definable isomorphism from G to an algebraic group over

an interpretable field.
• the maximal tori of G are not definable.

(3) The algebraic groups G̃ and G above are solvable of class two, centerless
and connected. However, we obtain the same conclusions by considering the
algebraic groups H̃ and H below instead of G̃ and G respectively, whereas
H̃ and H are perfect, centerless and connected.

Indeed, consider the following perfect connected affine algebraic group

R =




a b r s
c d t u
0 0 a b
0 0 c d

 | (a, b, c, d, r, s, t, u) ∈ Q8
, ad− bc = 1

 ,

and the group H := R/Z(R). Then H is a perfect centreless connected
algebraic group over Q.

Now let Q̃ be as above, and let R̃ and H̃ be the elementary extensions
of R and H respectively to Q̃. Then H̃ is a perfect centreless connected
algebraic group over Q̃.

If we consider a nonzero derivation δ of Q̃, and the abstract automor-
phism β of R̃ defined by

β


a b r s
c d t u
0 0 a b
0 0 c d

 =


a b r + δ(a) s+ δ(b)
c d t+ δ(c) u+ δ(d)
0 0 a b
0 0 c d

 ,

for each (a, b, c, d, r, s, t, u) ∈ Q̃8 satisfying ad− bc = 1. Then β induces an
automorphism β of H̃. Arguing as for the automorphism α above, we show
that β is not continuous for the Zariski topology of G̃. In particular, β is
not standard.

Thus, as in (2), H does not verify the hypotheses of Fact 1.4. Even so,
since H is not a direct product of two proper subgroups, it follows from Fact
3.6, Lemma 5.6 and Theorem 7.7 below, that all the abstract automorphisms
of H are standard.

The three examples in 3.1 above show that the pure group structure of a con-
nected affine algebraic group may not be as rich as its definable geometric structure,
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even when the group is centerless. This motivates the following definition. We note
that, in this paper, the word definable signifies definable with parameters.

Definition 3.2. – Let T be a theory in a language L , and let M = (M ; · · · ) be a
structure in a language L ′. We assume that M is interpretable in a model of T .

• Let n ∈ N and A ⊆Mn. Then A is said to be T -definable if, for each L ′-
isomorphism f from M to another L ′-structure M1, and for each model
N of T interpreting M1, the set f(A) is definable in N .
• For each n ∈ N, let An be the family of the T -definable subsets of Mn and,

for each A ∈ An, let RA be a symbol of an n-ary relation. We consider
A = ∪n∈NAn and L ∗ = L ′ ∪ (

⋃
A∈A RA).

• The T -expansion of M = (M ; · · · ) is the L ∗-expansion M ∗ = (M ; · · · ) of
M , where RM∗

A = A for each A ∈ A .

By the following results, if a structure M is interpretable in a model of a theory
T , then for any set X and any automorphism α of the structure M , if X is definable
in the T -expansion M ∗, its image α(X) is definable in M ∗ too (Corollary 3.5).
Thus, in our context where we consider group isomorphisms, and since M ∗ seems
to be richer than M , it appears more interesting to work in M ∗ than in M .

Lemma 3.3. – Let T be a theory in a language L , and let M = (M ; · · · ) be a
structure interpretable in a model of T . Then, for each n ∈ N and each A ⊆Mn,
the set A is definable in the T -expansion M ∗ of M if and only if it is T -definable.

Proof – We may assume that A definable in M ∗, and we have just to prove that
A is T -definable. We assume toward a contradiction that A is not T -definable.
In particular, it is not definable in M , its complement is not T -definable, and it
is neither a union nor an intersection of two T -definable sets. Moreover, it is not
of the form M ×X for a T -definable set X, and there is no T -definable subset X
of Mn+1 such that A = π(X) where π : Mn+1 → Mn denotes the projection map
defined for any (x1, . . . , xn+1) ∈ Mn+1 by π(x1, . . . , xn+1) = (x1, . . . , xn). Hence
[15, Proposition 1.3.4] says that we may assume that there exists m ∈ N, a T -
definable subset X of Mn+m and b ∈ Mm such that A = {a ∈ Mn | (a, b) ∈ X}.
But again in this last case, it follows from the definition that A is T -definable, as
claimed. �

Corollary 3.4. – Let T be a theory in a language L , and let M = (M ; · · · ) and
M ′ = (M ′; · · · ) be two L ′-structures interpretable in some models of T , where L ′

is another language. Let f : M → M ′ be an L ′-isomorphism, and let M ∗ and
M ′∗ be the T -expansions of M and M ′ respectively. Then, for each n ∈ N and
each A ⊆Mn definable in M ∗, the set f(A) is definable in M ′∗.

Proof – Let g be an L ′-isomorphism from M ′ to another L ′-structure M1.
We assume that M1 is interpretable in a model N of T . Then g ◦ f is an L ′-
isomorphism from M to M1. Now, since A is T -definable by Lemma 3.3, the set
g(f(A)) is definable in N . This proves that f(A) is definable in M ′∗. �

Corollary 3.5. – Let T be a theory in a language L , and let M be a structure
interpretable in a model of T . If X is any definable set in the T -expansion M ∗,
then its image by any automorphism of the structure M is definable in M ∗ too.

It is noticeable that, by the previous result and the remark after Fact 1.4, the
proof of [16, Corollaire 4.17] provides the very general following fact, which is
fundamental for us.
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Fact 3.6. – [16, Proof of Corollaire 4.17] Let α be an abstract isomorphism between
two algebraic groups G and H over algebraically closed fields. If, in the ACF -
expansion of the pure group G, there are an interpretable field K and a definable
isomorphism from a definable section U/V to an algebraic group over K, then the
isomorphism α|U/V : U/V → α(U)/α(V ) is standard.

Furthermore, we notice that the definition of the T -expansion of a structure M
for a theory T is rather robust.

Lemma 3.7. – Let T be a theory in a language L , and let M be a structure in
a language L ′. We assume that M is interpretable in a model of T . Let M0 be
another structure, interpretable in the T -expansion of M . If A is a set, definable
in the T -expansion of M0, then A is definable in the T -expansion of M too.

Proof – Let M (resp. M0) be the domain of M (resp. M0). Let A be a
subset of Mn

0 for n ∈ N, with A definable in the T -expansion of M0. Since M0 is
interpretable in the T -expansion of M , there are m ∈ N, a subset B of Mm and
an equivalence relation R over B, with B and R definable in the T -expansion of
M , such that M0 = B/R. We denote by AM the preimage of A in (Mm)n. Then
we have just to prove that AM is definable in the T -expansion of M .

Let f be an L ′-isomorphism from M to another L ′-structure M1, and let N
be a model of T interpreting M1. Then f induces an isomorphism f from the
structure M0 to a structure MB with domain f(B)/f(R). Moreover, since the
structure M0 is interpretable in the T -expansion of M , then MB is interpretable
in N . Now, since f is an isomorphism from M0 to MB , then f(A) is definable in
N . Thus f(AM ) is definable in N , and A is definable in the T -expansion of M .
�

Nevertheless, by the following remark, this notion is not preserved by elementary
extensions.

Remark 3.8. – Let G̃ and G be as in Example 3.1 (1) and (2) respectively. Then
the pure group G̃ is an elementary extension of G. Moreover, if T denotes any
maximal torus of G, then its extension T̃ to G̃ is a maximal torus of G̃. But T is
definable in the ACF -expansion of the pure group G by Lemma 3.11 below, while
that T̃ is not definable in the ACF -expansion of the pure group G̃. Indeed, if α
is as in Example 3.1 (1), then α(T̃ ) is not Zariski closed (see Example 3.1 (1)),
so neither α(T̃ ), nor T̃ by Corollary 3.5, is definable in the ACF -expansion of the
pure group G̃.

From now on, we study the abstract automorphisms of some algebraic groups.

Lemma 3.9. – Let K be an algebraically closed field of characteristic zero. Then
each abstract automorphism α of the group

G =
{(

t a
0 1

)
| t ∈ K∗, a ∈ K

}
has the form α = β ◦ µ for µ a field automorphism of K, and β an inner automor-
phism of G.

Proof – Let u ∈ K \ {−1, 0, 1}, x =
(

1 u
0 1

)
and y =

(
u 0
0 1

)
. Then we

have G = A o H for A = CG(x) and H = CG(y). In particular, A and H are
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definable in the pure group G, and Fact 2.1 says that G interprets an algebraically
closed field L such that A is definably isomorphic to L+ and such that H is definably
isomorphic to a subgroup of L∗, acting by multiplication on A. But, in the pure
field K, the fields K and L are definably isomorphic by Fact 2.2, so L∗ has no
proper infinite definable subgroup, and we obtain H ' L∗ definably. Hence the

groups G = A o H and L+ o L∗ '
{(

t a
0 1

)
| t ∈ L∗, a ∈ L

}
are isomorphic,

definably in the pure group G. Thus, by Fact 3.6 (or Fact 1.4), we have α = β ◦ µ
for µ a field automorphism of K, and β an algebraic automorphism of G.

We show that β is an inner automorphism of G. Since H is abelian and self-
normalizing in G, it is a Cartan subgroup, and β(H) is a Cartan subgroup too.
Hence H and β(H) are conjugate, and we may assume that β stabilizes H. The
action of H on A \ {0} is transitive, so there exists h ∈ H such that β(x) = xh,
and we may assume that β fixes x. Therefore, since A ' K+ is torsion-free of
dimension one, and since x is nontrivial, β centralizes A. Thus we have β(xy) = xy.
But if β inverts H, then we have β(xy) = xy

−1
, and y2 centralizes x, contradicting

u 6∈ {−1, 0, 1}. Hence β does not invert H. Since H is a torus of dimension one, its
algebraic automorphisms are the identity map and the inversion map, so we obtain
β(h) = h for each h ∈ H, and β centralizes G = AH, proving the result. �

Lemma 3.10. – Let K be an algebraically closed field of characteristic zero. Then
each abstract automorphism α of the group

G =


 t a u

0 t v
0 0 1

 | t ∈ K∗, (a, u, v) ∈ K3


has the form α = βr,δ ◦ γ ◦ µ for µ a field automorphism of K, γ an inner auto-
morphism of G and βr,δ an abstract automorphism of G such that, for each t ∈ K∗
and each (a, u, v) ∈ K3, we have

βr,δ(

 t a u
0 t v
0 0 1

) =

 t ra+ δ(t) ru+ δ(v)
0 t v
0 0 1

 ,

where δ is a derivation of K and r an element of K.

Proof – The unipotent part of G is its Fitting subgroup, so it is characteristic

and definable in the pure group G, and its center Z =


 1 0 u

0 1 0
0 0 1

 |u ∈ K


is characteristic and definable too. Also the preimage in G of the center of G/Z

is U =


 1 a u

0 1 0
0 0 1

 | (a, u) ∈ K2

 , so U is characteristic and definable in the

pure group G. Moreover, there is an isomorphism of algebraic groups between the

quotient group G/U and
{(

t a
0 1

)
| t ∈ K∗, a ∈ K

}
, and Lemma 3.9 shows that

the automorphism α of G/U induced by α has the form α = γ ◦ µ for µ a field
automorphism of K, and γ an inner automorphism of G/U . Hence we may assume
that α centralizes G/U , and we have just to prove that α has the form α = βr,δ ◦ γ
for γ an inner automorphism of G induced by an element of U .
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We consider

C =


 t a 0

0 t 0
0 0 1

 | t ∈ K∗, a ∈ K
 .

This subgroup is abelian and self-normalizing in G, so it is definable in the pure
group G, and it is a Cartan subgroup of G. In particular, C and α(C) are two
Cartan subgroups of V = UC = Z o C, and they are conjugate by an element of
Z ≤ U . Hence we may assume that α normalizes C and we have just to prove
that α has the form α = βr,δ ◦ γ for γ an inner automorphism of G induced by an
element of C ∩ U .

The center of V is C∩U , and there is an isomorphism of algebraic groups between
V/(C ∩ U) and {(

t a
0 1

)
| t ∈ K∗, a ∈ K

}
.

Then Lemma 3.9 shows that the automorphism α of V/(C ∩ U) induced by α has
the form α = γ ◦ µ for µ a field automorphism of K, and γ an inner automorphism
of V/(C ∩ U). Since U/(C ∩ U) is the unique nontrivial normal abelian subgroup
of V/(C ∩U), it is characteristic in V/(C ∩U), and γ and µ normalize it. But V/U
is abelian, so γ centralizes it, and since α centralizes G/U , the field automorphism
µ centralizes V/U too. Furthermore, V/U is a torus of dimension one, hence µ is a
field automorphism centralizing K∗ and, consequently, µ is the identity map. Now
α = γ is an inner automorphism of V/(C ∩ U), and there exists r ∈ K such that,

for each t ∈ K∗ and each (a, u) ∈ K2, there is b ∈ K such that α(

 t a u
0 t 0
0 0 1

) = t b ru
0 t 0
0 0 1

. Moreover, since α normalizes C, the element b depends just on t

and a, and there is a map ν0 : K∗ ×K → K such that for each t ∈ K∗ and each
a ∈ K, we have:

α(

 t a 0
0 t 0
0 0 1

) =

 t ν0(t, a) 0
0 t 0
0 0 1

 .

In addition, we have G′ =


 1 0 u

0 1 v
0 0 1

 | (u, v) ∈ K2

, and α centralizes G/U ,

so there is a map µ0 : K ×K → K such that, for each (u, v) ∈ K2, we have

α(

 1 0 u
0 1 v
0 0 1

) =

 1 0 µ0(u, v)
0 1 v
0 0 1

 ,
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and µ0 satisfies µ0(u, 0) = ru for each u ∈ K. Thus, for each t ∈ K∗ and each
(a, u, v) ∈ K3, we have

α(

 t a u
0 t v
0 0 1

) = α(

 1 0 u
0 1 v
0 0 1

) · α(

 t a 0
0 t 0
0 0 1

)

=

 t ν0(t, a) µ0(u, v)
0 t v
0 0 1

 .

By considering t ∈ K∗, (a, u, v) ∈ K3 and the equality α(xy) = α(x)α(y) for

x =

 t 0 0
0 t 0
0 0 1

 (resp. x =

 1 0 u
0 1 0
0 0 1

) and y =

 1 t−1a 0
0 1 0
0 0 1

 (resp.

y =

 1 0 0
0 1 v
0 0 1

), we obtain ν0(t, a) = ν0(t, 0) + tν0(1, t−1a) (resp. µ0(u, v) =

ru+µ0(0, v)). Moreover, by considering a ∈ K, and the equality α(xy) = α(x)α(y)

for x =

 1 a 0
0 1 0
0 0 1

 and y =

 1 0 0
0 1 1
0 0 1

, we obtain µ0(a, 1) = µ0(0, 1) +

ν0(1, a). Since we have µ0(a, 1) = ra + µ0(0, 1), this yields ν0(1, a) = ra for each
a ∈ K, and ν0(t, a) = ν0(t, 0) + ra for each (t, a) ∈ K∗ ×K.

Now we consider the maps ν : K → K and µ : K → K defined by ν(0) = 0 and,
for each t ∈ K∗ and each v ∈ K, ν(t) = ν0(t, 0) and µ(v) = µ0(0, v). Then, for each
t ∈ K∗, (a, u, v) ∈ K3, we have

α(

 t a u
0 t v
0 0 1

) =

 t ra+ ν(t) ru+ µ(v)
0 t v
0 0 1

 .

We note that we have ν(1) = 0 and µ(0) = 0. Moreover, if γ denotes the conjugation

by

 1 −r−1µ(1) 0
0 1 0
0 0 1

 ∈ C ∩ U , we obtain

(α ◦ γ−1)(

 1 0 0
0 1 1
0 0 1

) =

 1 0 0
0 1 1
0 0 1

 ,

so we may assume µ(1) = 0, and we have just to prove that α = βr,δ for a derivation
δ of K.

We consider t ∈ K∗ and the equality α(xy) = α(x)α(y) for x =

 t 0 0
0 t 0
0 0 1


and y =

 1 0 0
0 1 1
0 0 1

. Since µ(1) = 0, we obtain ν(t) = µ(t), and since ν(0) =

0 = µ(0), we find ν = µ. From now on, we have just to prove that ν is a derivation
of K.



ALGEBRAIC GROUPS UP TO ABSTRACT ISOMORPHISM 19

Firstly, for each (v, v′) ∈ K2, by considering the equality α(xy) = α(x)α(y) for

x =

 1 0 0
0 1 v
0 0 1

 and y =

 1 0 0
0 1 v′

0 0 1

, we find ν(v + v′) = ν(v) + ν(v′).

Secondly, for each (t, t′) ∈ (K∗)2, by considering the equality α(xy) = α(x)α(y)

for x =

 t 0 0
0 t 0
0 0 1

 and y =

 t′ 0 0
0 t′ 0
0 0 1

, we find ν(tt′) = tν(t′) + t′ν(t).

Since we have ν(tt′) = 0 = tν(t′) + t′ν(t) as soon as t = 0 or t′ = 0, the map ν is
indeed a derivation, and this finishes the proof. �

Proposition 3.11. – We consider the group

G =


 t a u

0 t v
0 0 1

 | t ∈ Q∗, (a, u, v) ∈ Q3

 .

Then its maximal tori are definable in the ACF -expansion of the pure group G.

Proof – We consider another algebraically closed field L, a pure group GL
interpretable in L, and an abstract group isomorphism µ : G → GL. We remark
thatG has no proper subgroup of finite index, so the groupsG andGL are connected
as pure groups as well as algebraic groups. We consider the subgroup H of G formed

by the matrices

 1 0 u
0 1 0
0 0 1

 for u ∈ Q. Then H is a normal definable subgroup

of the pure group G, since it is the centralizer in G of the subgroup M formed by the

matrices

 1 a u
0 1 v
0 0 1

 for (a, u, v) ∈ Q3
. We may consider the groups H oG/M

and G′/H o G/M where G/M acts by conjugation on H and G′/H: they are
definable in the pure group G because M = CG(H) is definable. Moreover, the
actions are transitive on H \{0} and on G′/H \{0} respectively, and faithfull, so in
the pure group G, there are two interpretable fields K1 and K2 such that H (resp.
G′/H) is definably isomorphic to (K1)+ (resp. (K2)+) (Fact 2.1). We note also
that, in the pure field Q, the fields K1 and K2 are definably isomorphic to Q (Fact
2.2).

Now there are two fields L1 and L2, isomorphic to K1 and K2 respectively, and
interpretable in the pure group GL, such that µ(H) (resp. µ(G′)/µ(H)) is definably
isomorphic to (L1)+ (resp. (L2)+). So Fact 2.2 says that, in the pure field L, the
fields L1 and L2 are definably isomorphic to L. In particular, this proves that the
fields Q and L are isomorphic. Moreover, µ(G′) is an abelian group and, in the
pure field L, the groups µ(H) and µ(G′)/µ(H) are definably isomorphic to L+, so
µ(G′) is isomorphic to L+ × L+, definably in the pure field L.

We consider a maximal torus T of GL and its centralizer C. Then we have
GL = CG′L, so Z(C) ∩ G′L is central in GL. Since GL is centerless, Z(C) ∩ G′L is
trivial, and since C is nilpotent, we obtain GL = G′L o C. Since G′L is a maximal
abelian subgroup of GL, the group C ' GL/G

′
L acts faithfully by conjugation on

G′L, and C is isomorphic to an abelian definable subgroup of GL(2, L), definably in
the pure field L. Consequently, in the pure field L, there is a definable isomorphism



20 OLIVIER FRÉCON

f from GL to a subgroup of
 t1 a u

b t2 v
0 0 1

 | (t1, t2, a, b, u, v) ∈ L6, t1t2 − ab 6= 0

 ,

such that
• f(µ(H)) is formed by the matrices where t1 = t2 = 1 and a = b = v = 0;
• f(G′L) = f(µ(G′)) by the matrices where t1 = t2 = 1 and a = b = 0;
• f(C) by some matrices where u = v = 0.

In addition, since µ(H) is normal in GL, we obtain b = 0 for each element of f(GL).
Also, µ(M)/G′L is an infinite abelian torsion-free subgroup of GL/G′L, definable in
the pure group GL, so C ' GL/G′L contains a closed infinite torsion-free subgroup,
that is a nontrivial unipotent subgroup. Since the unipotent part of

 t1 a 0
0 t2 0
0 0 1

 | (t1, t2) ∈ (L∗)2, a ∈ L


has dimension one, it is contained in f(C), and we obtain
 1 a 0

0 1 0
0 0 1

 | a ∈ L
 ⊆ f(C) ⊆


 t1 a 0

0 t2 0
0 0 1

 | (t1, t2) ∈ (L∗)2, a ∈ L

 .

Since f(C) is abelian, has torsion, and is connected because it is isomorphic to
G/G′ which is radicable, this forces f(C) to be equal to

 t a 0
0 t 0
0 0 1

 | t ∈ L∗, a ∈ L
 ,

and f(GL) is equal to
 t a u

0 t v
0 0 1

 | t ∈ L∗, (a, u, v) ∈ L3

 .

Since the fields Q and L are isomorphic, we may consider a field isomorphism
δ : L → Q. Then δ ◦ f ◦ µ is an abstract automorphism of G, and Lemma 3.10
shows that δ ◦ f ◦ µ is a standard automorphism. So the image of any maximal
torus of G by δ ◦ f ◦ µ is a maximal torus of G. But δ is a field isomorphism, and
the isomorphism f is definable in the pure field L, so the preimage by δ ◦ f of any
maximal torus of G is a maximal torus of GL. Hence the image of any maximal
torus of G by µ is a maximal torus of GL. In particular, the image of any maximal
torus of G is definable in L. Thus, the maximal tori of G are definable in the
ACF -expansion of the pure group G. �

4. Unipotent groups over Q

In this paper, we study the structures M = (G, · ,−1 , 1, · · · ) interpretable in a
pure algebraically closed field K, where (G, · ,−1 , 1) is a group. Such a structure is
said to be an ACF -group and, if p denotes the characteristic of K,M is said to be
an ACFp-group.
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In particular, any ACF -group is a group of finite Morley rank, and each inter-
pretable group in an ACF -group is an ACF -group too. Also, in the pure field K,
any ACF -group G is constructible [16, §4.a], and there is an isomorphism definable
in the pure field K, between G and an algebraic group over K [16, Théorème 4.13].

The connected component G◦ of an ACF -group G as a group of finite Morley
rank is not necessarily equal to the one G◦◦ of G as a constructible group. Indeed,
if p is a prime integer, the pure group K+ ⊕ Fp is connected as a group of finite
Morley rank, and it is not connected as a constructible group. However, by Lemma
4.1, the situation is different for ACF0-groups. Then, in the rest of this paper, for
any ACF0-group G, we will denote by G◦ its connected component as a group of
finite Morley rank, as well as a constructible group.

Lemma 4.1. – For any ACF0-group G, we have G◦ = G◦◦.

Proof – Since G◦ contains G◦◦, we may assume G = G◦. We proceed by
induction on the Morley rank of G. Let A be a G-normal definable connected
subgroup of G◦◦. If A 6= 1, the induction hypothesis applied with G/A provides the
result. Hence we may assume that G◦◦ contains no nontrivial G-normal definable
connected subgroup. Then the Zil’ber’s Indecomposability Theorem [4, Results
5.26 and 5.29] yields [G◦◦, G] = 1. Now Z(G) contains G◦◦ and it is a definable
subgroup of finite index in the connected group G, so G = Z(G) is abelian.

Let n be the index of G◦◦ in G. Then {gn | g ∈ G} is a connected definable sub-
group of G, and it is contained in G◦◦. so it is trivial and G has bounded exponent
m. Since G is an ACF0-group, it is constructible, and since it has exponent m, it is
finite. Finally, G is trivial since it is a finite connected group of finite Morley rank.
�

The following notion is central for our paper.

Definition 4.2. – A group of finite Morley rank is said to be definably linear (over
finitely many interpretable fields K1, . . . , Kn), if G has an interpretable faithful
linear representation over the ring K1 ⊕ · · · ⊕Kn.

In other words, G definably embeds in H1 × · · · × Hn, where Hi is an affine
algebraic group over Ki for each i = 1, . . . , n.

In this section, we prove our first theorem. Its proof is based on the previous
section and on a Hochschild-Mostow’s theorem (Facts 4.5 and 4.6).

Theorem 4.3. – Let G be a connected nilpotent algebraic group over Q. Then, in
the ACF -expansion of the pure group G, the quotient G/Z(G) is definably linear.

Remark 4.4. – This result fails when G is a nilpotent algebraic group over an
algebraically closed field K of characteristic zero not isomorphic to Q.

Indeed, consider a nonzero derivation δ of K, the group

G =




1 a b x
0 1 a y
0 0 1 z
0 0 0 1

 | (a, b, x, y, z) ∈ K5

 ,
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and the group automorphism α : G→ G defined for each (a, b, x, y, z) ∈ K5 by:

α(


1 a b x
0 1 a y
0 0 1 z
0 0 0 1

) =


1 a b+ δ(a) x+ δ(y)
0 1 a y + δ(z)
0 0 1 z
0 0 0 1

 .

Then suppose toward a contradiction that G/Z(G) is definably linear in the ACF -
expansion of the pure group G. That is G/Z(G) is definably isomorphic to H1 ×
· · ·Hn, where Hi is an affine algebraic group over an interpretable field Ki for
each i (Lemma 5.6). Moreover, we may assume that, for each i 6= j, the fields
Ki and Kj are not definably isomorphic, and that Hi is not trivial. Since Hi is
a UKi-group for each i, and since G′ contains Z(G), Facts 2.10 and 2.15 provide
G = UK1(G) ∗ · · · ∗ UKn

(G), where ∗ denotes the central product, and Fact 2.11
gives G′ = UK1(G)′ × · · · × UKn

(G)′. If, for some i, we have UKi
(G)′ = 1, then

UKi
(G) is central in G, contradicting that Hi is nontrivial. Since G is nilpotent,

this implies that Z(G) ∩ UKi(G)′ is infinite for each i. Since Z(G) is torsion-free
and of dimension one over K, its Morley rank is one in the ACF -expansion of the
pure group G too, and we obtain Z(G) ≤ UKi

(G)′ for each i. Thus we find n = 1,
and G/Z(G) is definably linear over K1.

From now on, since K1 and K are definably isomorphic in the pure field K
(Fact 2.2), the definable subsets of G/Z(G) are precisely its constructible subsets.
In particular, for each constructible subset X/Z(G) of G/Z(G), the image of X by
any group automorphism of G is constructible too. But, if we set

X =




1 0 0 x
0 1 0 0
0 0 1 z
0 0 0 1

 | (x, z) ∈ K2

 ,

then X is constructible and X∩α(X) is not constructible, contradicting that G/Z(G)
is definably linear.

Our study starts with the analysis of some automorphisms of algebraic groups.
The following theorem by Hochschild-Mostow, together with Lemma 4.7, has several
consequences very useful for us.

An affine algebraic group is said to be conservative if the action of its algebraic
automorphism group on its algebra of polynomial functions is locally finite. Actu-
ally, by [14], a group G is conservative if and only if the holomorph of G inherit
an affine algebraic group structure with which it is the semidirect product, in the
sense of affine algebraic groups, of G and its algebraic automorphism group.

Fact 4.5. – [14, Theorem 3.2] Let G be a connected affine algebraic group over the
algebraic closed field F of characteristic zero. Then G is conservative if and only
if one of the following two conditions is satisfied:

(1) the center of G is finite over its unipotent part;
(2) the center of a maximal reductive subgroup of G has dimension at most 1.

Actually, only a special case of this result will be used: when the group is
generated by its unipotent elements. Fortunately, for this particular case, we can
provide below a model theoretic proof for Fact 4.5.
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Fact 4.6. – (Special case of Fact 4.5) Let K be an algebraically closed field of
characteristic zero, and let G be an affine algebraic group over K. If G is generated
by its unipotent elements, then there is an affine algebraic group of the form H =
G o A, where A is an algebraic subgroup acting faithfully on G by conjugation
and such that, for each algebraic group automorphism ϕ of G, there exists a ∈ A
satisfying ϕ(g) = ga for each g ∈ G.

Proof – We may assume G 6= 1. We consider the pure language of fields. Then
G is an interpretable group and it has a finite Morley rank. Moreover, G × G
definably embeds in L = GLm(K) for a positive integer m. Since there is finitely
many Jordan decompositions for unipotent elements in L, there is a finite subset X
of nontrivial unipotent elements of G × G such that each element of the set U of
the nontrivial unipotent elements of G×G is conjugate in L with a unique element
of X. For each x ∈ X, let Vx = d(x). Since each x ∈ X is nontrivial and unipotent,
Vx is definably isomorphic to K+. Thus F = {V gx | (x, g) ∈ X ×L, xg ∈ G×G} is
a uniformly definable family of subgroups of G×G such that V1 ∩ V2 = 1 for each
distinct elements V1 and V2 of F . Moreover, for each x ∈ X, the subgroup Vx is
unipotent, so all the elements of ∪F are unipotent and, by choice of X, we have
∪F = U ∪ {1}.

We consider n nontrivial unipotent elements u1, · · · , un of G, such that ui+1 6∈
d(u1, · · · , ui) for each i < n, and such that G = d(u1, · · · , un). The existence of
n is ensured by the Zil’ber Indecomposability Theorem ([16, Theorem 2.9] or [4,
Theorem 5.26]), and because, for each nontrivial unipotent element u of G, the
subgroup d(u) is definably isomorphic to K+, so it is connected. In particular, we
notice that G is connected.

From now on, by the Zil’ber Indecomposability Theorem, there is an integer k
such that, for any elements F1, · · · , Fn of F , the product (F1 · · ·Fn)k is a subgroup
of G × G. In particular, the family H0 of these products is a uniformly definable
family of subgroups of G×G. Let

H = {F ∈H0 | rk(F ) = rk(G), F ∩ (G× {1}) = 1, F ∩ ({1} ×G) = 1}.

Then H is a uniformly definable family of subgroups of G×G, and since rk(F ) =
rk(G) for each F ∈H , the connectedness of G implies that each element of H is
the graph of an algebraic group automorphism of G. Conversely, if α is an algebraic
group automorphism of G, then for each i, the element (ui, α(ui)) is nontrivial
and unipotent, so d((ui, α(ui))) ∈ F . Moreover, the graph ∆ of α contains the
subgroup H ∈H0 generated by the subgroups d((ui, α(ui))) for i = 1, · · · , n. But
we have G = d(u1, · · · , un), so there is a definable surjection from H to G, and
rk(H) ≥ rk(G). Since ∆ contains H, we obtain rk(H) = rk(∆) = rk(G) and
H ∈ H . Now, since ∆ is the graph of an automorphism of G, it is connected, so
∆ = H belongs to F . This proves that H is the set of graphs of the algebraic
group automorphisms of G. In particular the group Autalg(G) of all the algebraic
group automorphisms of G is interpretable in K.

Furthermore, our argument proves that each ϕ ∈ Autalg(G) is characterized by
ϕ(u1), · · · , ϕ(un), so the multiplication in Autalg(G) is interpretable too, as well
as its action over G. Thus, there is an algebraic group of the form GoA, where A
is an algebraic subgroup acting faithfully on G by conjugation and such that, for
each ϕ ∈ Autalg(G), there exists a ∈ A satisfying ϕ(g) = ga for each g ∈ G.
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From now on, we have to show that the algebraic group G o A is affine. Since
G∗ = GoA◦ is connected and since A◦ ∩Z(G∗) = 1, the group A◦ is affine by the
Rosenlicht’s Theorem [17, §5, Theorem 13]. Then G∗ is affine by [17, §5, Theorem
16 p.439], and GoA is affine too by [17, §5, Corollary 1 p.430], as desired. �

Lemma 4.7. – Let K be a field of finite Morley rank of characteristic zero, and let
G be an affine algebraic group over K. If G is generated by its unipotent elements,
then any definable automorphism of G is an algebraic automorphism.

Proof – We may assume G 6= 1. For any nontrivial unipotent element u of G,
the subgroup d(u) is contained in the Zariski closure 〈u〉 of 〈u〉, which is definably
isomorphic to K+. By Fact 2.3, we obtain d(u) = 〈u〉, and d(u) is closed and
connected (as an algebraic group, as well as a group of finite Morley rank). Let
u1, · · · , un be n nontrivial unipotent elements of G such that ui+1 6∈ d(u1, · · · , ui)
for each i < n, and such that G = d(u1, · · · , un). The existence of n is ensured
since d(u) is connected for each unipotent element u, and by the finiteness of the
Morley rank of G.

Let α be a definable automorphism of G. We show that α is an algebraic group
automorphism of G. Let ∆α be the graph of α. Then ∆α is a definable subgroup
of G × G, and it is definably isomorphic to G. In particular ∆α is connected
(as a group of finite Morley rank). But G = d(u1, · · · , un), so we have ∆α =
d(〈(ui, α(ui)) | i = 1, · · · , n〉). For each i = 1, . . . , n, the subgroup d(ui, α(ui))
is contained in 〈(ui, α(ui))〉, which is definably isomorphic to K+. So we obtain
d(ui, α(ui)) = 〈(ui, α(ui))〉 (Fact 2.3), and ∆α contains ∆0 = 〈〈(ui, α(ui))〉 | i =
1, · · · , n〉. Since 〈(ui, α(ui))〉 is a connected closed subgroup for each i, the group
∆0 is connected and closed too. In particular, it is definable. But it is contained in
∆α, and it contains (ui, α(ui)) for each i, hence it is equal to ∆α, and ∆α is closed.
Thus, the automorphism α is interpretable in the pure field K, and α is algebraic.
�

Corollary 4.8. – Let G be a group of finite Morley rank interpreting a field K of
characteristic zero. We assume that G acts faithfully and definably on an affine
algebraic group U over K. If U is generated by its unipotent elements, then U oG
is definably isomorphic to a definable subgroup of an affine algebraic group over K.

Proof – By Fact 4.5 or 4.6, there is an affine algebraic group of the form
H = U oA for a closed subgroup A, such that H is isomorphic to the holomorph of
U . By Lemma 4.7, each element of G acts on U by algebraic group automorphism,
so there is a definable isomorphism from G to a definable subgroup of A. �

Proposition 4.9. – Let G be a nilpotent group of finite Morley rank interpreting
a field K of characteristic zero. Then G has a largest definable subgroup definably
isomorphic to a unipotent algebraic group over K.

Proof – We may assume that G is connected. We proceed by induction on
the Morley rank of G. Let N be a definable subgroup, maximal among the ones
definably isomorphic to a unipotent algebraic group overK. We may assumeN < G
and we consider a maximal proper definable subgroup M of G containing N . By
induction hypothesis, N is definably characteristic in M , so N is normal in G.

Let U be a definable subgroup of G definably isomorphic to a unipotent algebraic
group over K. We may assume that N does not contain U and that U is minimal
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for these conditions. Then, by induction hypothesis, we have G = NU . Also, U has
a normal definable subgroup V such that V is definably isomorphic to a unipotent
algebraic group over K, and such that U = V o A for a definable subgroup A
definably isomorphic to K+. By minimality of U , N contains V and, finally, we
have U = A ' K+. Hence, by Fact 2.3, we have G = N oU , and either CU (N) = 1
or CU (N) = U .

In the first case, Corollary 4.8 gives the result. In the second case, G is definably
isomorphic to N ×K+, so we have the result too. �

In the pure language of fields, if A is an indecomposable unipotent algebraic
group over a field K of characteristic zero, then J(A) = 1. This remark induces
the following notion.

Notation 4.10. – In each group G of finite Morley rank, we consider

V (G) = 〈J(A) | A is a radicable indecomposable definable abelian subgroup of G〉.

Remark 4.11. –
• By the Zil’ber Indecomposability Theorem, for each group G of finite Mor-

ley rank, V (G) is definable and connected.
• Moreover, by Fact 2.6, V (G/H) = V (G)H/H for every normal definable

subgroup H of G.

Lemma 4.12. – Let G be a nilpotent group of finite Morley rank, and let K be
an interpretable field of characteristic zero such that G is a UK-group. Then G is
definably isomorphic to a unipotent algebraic group over K if and only if V (G) = 1.

Moreover, in this case, G is a homogeneous UK-group.

Proof – First we assume that G is definably isomorphic to a unipotent algebraic
group G̃ over K. Then each nontrivial indecomposable definable abelian subgroup
A of G̃ is contained in a closed subgroup B definably isomorphic to K+. So Fact
2.3 yields A = B and J(A) = 1, and we have V (G̃) = 1 and V (G) = 1. Now each
indecomposable subgroup of G is a UK-group, so G is a homogeneous UK-group.

If V (G) = 1, we proceed by induction on the rank of G. We may assume G 6= 1.
Let M be a maximal proper connected definable subgroup of G. Then we have
V (M) ≤ V (G) = 1 and, by induction hypothesis, M is definably isomorphic to a
unipotent algebraic group over K. Since G is a UK-group, there is an indecom-
posable definable abelian subgroup A of G not contained in M such that A/J(A)
is definably isomorphic to K+. In particular, by the maximality of M , we have
G = MA. On the other hand, since J(A) ≤ V (G) is trivial, A is definably isomor-
phic to K+. Now Proposition 4.9 says that G = MA is definably isomorphic to a
unipotent algebraic group over K. �

Corollary 4.13. – Let G be a nilpotent UK-group of finite Morley rank for an
interpretable field K of characteristic zero. If there are finitely many algebraically
closed fields K1, . . . ,Kn such that G is definably isomorphic to a direct product of
unipotent groups U1, . . . , Un over K1, . . . ,Kn respectively, then V (G) = 1.

Proof – In this case, each nontrivial indecomposable definable abelian subgroup
A of G is contained in a definable subgroup B which is definably isomorphic to
(K1)+ × · · · × (Kn)+. So Fact 2.3 says that A is definably isomorphic to (Ki)+ for
some i and that J(A) = 1. In particular, this proves that V (G) = 1. �
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Now, by a relatively technical argument, we can prove Theorem 4.3, as a conse-
quence of the previous study.

Proof of Theorem 4.3 – We proceed by induction on the nilpotence class of
G and on the Morley rank of G. By Fact 2.10, if T0 is the maximal pseudo-torus
of G, then G interprets some fields K1, · · · , Kn of characteristic zero such that
G = T0 ∗UK1(G)∗ · · · ∗UKn

(G), where ∗ denotes the central product, so G/Z(G) is
definably isomorphic to UK1(G)/Z(UK1(G))×· · ·×UKn

(G)/Z(UKn
(G)). But, if G

is not a UKi-group for some i = 1, . . . , n, then the induction hypothesis shows that
UKi(G)/Z(UKi(G)) satisfies the result for each i, so G satisfies the result. Hence
we may assume that G is a UL-group for an interpretable field L. In particular, by
Lemma 4.12, we have just to prove that V (G) is central in G, and we may assume
V (G) � Z(G). We note that, by Facts 2.13 and 2.16, G/Z(G) is a homogeneous
UL-group.

If G has two distinct G-minimal subgroups A1 and A2, we consider Zi/Ai =
Z(G/Ai) for i = 1, 2. By induction hypothesis and Corollary 4.13, we have V (G) ≤
Z1 ∩ Z2. Now V (G) is central in G, contradicting V (G) � Z(G). Hence G has a
unique G-minimal subgroup A.

We denote by M the set of the maximal proper connected definable subgroups
of G. If there are two distinct elements M1 and M2 of M such that V (M1) and
V (M2) are contained in Z(G), then Proposition 4.9 and Lemma 4.12 show that
G/Z(G) = M1M2/Z(G) satisfies the theorem. Hence there is at most one element
MV of M such that Z(G) contains V (MV ). We denote by M ∗ the set of the
elements M of M such that Z(G) does not contain V (M).

For each M ∈M , by induction hypothesis, Z(M) contains V (M). If Z(M) does
not contain Z(G), then M does not contain Z(G). Moreover, since G is nilpotent
and connected, its torsion part is contained in its maximal torus, which is central in
G, so Z(G) is connected, and we have G = MZ(G) by maximality of M . But this
implies that Z(M) = Z(G) ∩M , so G/Z(G) is definably isomorphic to M/Z(M),
and we obtain V (G) ≤ Z(G), contradicting V (G) � Z(G). Hence Z(M) contains
Z(G) for each M ∈M .

Let M1 ∈ M . Since G is a UL-group, G/M1 is definably isomorphic to L+

(Facts 2.3 and 2.15). By Fact 2.6, G has an indecomposable subgroup I0 covering
G/M1. Since G is nonabelian, we have G 6= I0, and there exists M2 ∈M containing
I0. Therefore G/M2 is definably isomorphic to L+, and G/(M1 ∩M2) is definably
isomorphic to L+ × L+. Let N = M1 ∩M2. Since Z(M1) ∩ Z(M2) centralizes
M1M2 = G, the previous paragraph yields Z(G) = Z(M1) ∩ Z(M2). In particular,
N contains Z(G) and we have V (N) ≤ V (M1)∩V (M2) ≤ Z(M1)∩Z(M2) = Z(G),
so N/Z(G) ≤ G/Z(G) is definably isomorphic to a unipotent group over L (Lemma
4.12). Moreover, since G/N ' L+ × L+, we have V (G) ≤ N .

If there exists M3 ∈ M does not containing N , then G/(N ∩M3) is definably
isomorphic to L+×L+×L+. Now we find N1, N2 and N3 such that, for i = 1, 2, 3,
we have Ni = M i

1 ∩M i
2 for some maximal definable subgroups M i

1 and M i
2, and

such that G = 〈N1, N2, N3〉. By the previous paragraph, Ni contains Z(G) for
i = 1, 2, 3, the quotient Ni/Z(G) is definably isomorphic to a unipotent group over
L, and Proposition 4.9 shows that G/Z(G) is definably isomorphic to a unipotent
group over L too. Now Lemma 4.12 contradicts V (G) � Z(G). Hence each element
of M contains N . Moreover, we have G′V (G) ≤ N and G/N ' L+ × L+, and
G/G′V (G) is definably isomorphic to a direct product of copies of L+ by Lemma
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4.12, so the intersection of the elements of M is contained in G′V (G). Hence we
obtain N = G′V (G).

We consider the subgroup Z defined by Z/A = Z(G/A). By induction hypoth-
esis, Z contains V (G), and G/Z is definably isomorphic to a unipotent group over
L (Lemma 4.12). For each z ∈ Z \ Z(G), the groups G/CG(z) and A are defin-
ably isomorphic, so we have CG(z) ∈M , and N ≤ CG(z). Thus N centralizes Z.
Moreover, CG(z) ∈ M implies that A ' G/CG(z) is definably isomorphic to L+.
We show that N contains Z. If G = Z, then we have N ≤ CG(Z) = Z(G), con-
tradicting V (G) ≤ N and V (G) � Z(G). Therefore Z is contained in an element
MZ of M . Since MZ ∈ M contains N , and since G/N is definably isomorphic
to L+ × L+, either N contains Z or NZ = MZ . In the second case, let I1 be
an indecomposable subgroup of G such that J(I1) is not contained in Z(G). Let
x ∈ J(I1) \ Z(G). Then x belongs to V (G) ≤ Z, so CG(x) belongs to M and
CG(x) contains N . Moreover, we have x ∈ V (G) ≤ N , so x centralizes Z, and we
obtain CG(x) = NZ. But x centralizes I1, hence I1 is contained in NZ. This shows
that each indecomposable subgroup I1 satisfying J(I1) � Z(G) is contained in NZ.
Since G/N is definably isomorphic to L+ × L+, there exists M∗ ∈ M ∗ \ {NZ},
and we find an indecomposable subgroup I2 in M∗ such that J(I2) � Z(G). Con-
sequently, we have I2 ≤ NZ ∩M∗ = N , contradicting V (N) ≤ Z(G). This proves
that N contains Z. In particular, since Z contains V (G), we obtain N = G′Z.

We show that Z/Z(G) is definably isomorphic L+ ×L+. Since we have Z(G) <
Z ≤ Z(N), we have either CG(Z) = N , or CG(Z) ∈M . We consider two distinct
elements H1 and H2 of M \ {CG(Z)}. For i = 1, 2, we fix hi ∈ Hi \ CG(Z), and
let γi : Z → A be the homomorphism defined by γi(z) = [z, hi]. Then Z/CZ(hi) is
definably isomorphic to A ' L+. Thus, since we have G = Nd(h1, h2), we obtain
CZ(h1, h2) = Z(G), and Z/Z(G) is either definably isomorphic to L+, or definably
isomorphic to L+ × L+. In the first case, for i = 1, 2, we have CZ(hi) = Z(G),
so V (Hi) is contained in Z ∩ Z(Hi) = Z(G), and Hi belongs to M \M ∗. This
contradicts that M \M ∗ has at most one element. Hence Z/Z(G) is definably
isomorphic L+ × L+. Furthermore, if CG(Z) belongs to M , we consider g ∈
G \ CG(Z). Then CZ(g) centralizes d(CG(Z), g) = G, and we have Z(G) = CZ(g).
But the homorphism γg : Z → A defined by γg(z) = [g, z] is surjective by G-
minimality of A, hence Z/CZ(g) is definably isomorphic to A ' L+, contradicting
that Z/Z(G) is definably isomorphic L+×L+. Thus CG(Z) does not belong to M ,
and we have N = CG(Z).

By Fact 2.2, the fields Q and L are isomorphic, definably in the pure field Q.
Hence there is an isomorphism f , definable in the pure field Q, from G to a con-
nected nilpotent algebraic group GL over L. We consider the induced isomorphism
f : G/Z → GL/f(Z), and its graph ∆. In the ACF -expansion of the pure group G,
there is a definable isomorphism i between G/Z ×GL/f(Z) and a unipotent group
U1 over L. Since, in the pure field Q, the fields Q and L are definably isomorphic,
there is an isomorphism j : U1 → U2, definable in Q, from U1 to a unipotent group
U2 over Q, such that the preimage of each closed subgroup of U2 is a subgroup
of U1, definable in the ACF -expansion of the pure group G. But (j ◦ i)(∆) is a
subgroup of U2, definable in Q, so it is a closed subgroup of U2, and ∆ is a subgroup
of G/Z ×GL/f(Z), definable in the ACF -expansion of the pure group G.

We consider the preimage ∆ of ∆ in G×GL. It is a definable subgroup of G×GL,
and if ∆∗ is the graph of f , then we have ∆ = (Z × {1})∆∗. Since G centralizes
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Z/A and does not centralize Z, we have ∆′ = (A × {1})(∆∗)′. In the same way,
since G centralizes A, if ∆2 denotes [∆,∆′], we have ∆2 = (∆∗)2. In particular,
∆2 ∩ (G × {1}) is trivial. We consider ∆/∆2, and let Z∆/∆2 be its center. Then
[∆, Z∆∩(G×{1})] is contained in ∆2∩(G×{1}) = 1, so Z∆∩(G×{1}) ≤ Z(G)×{1}.
If the nilpotence class of G is not 2, then the induction hypothesis applied with
∆/∆2 shows that V (∆) is contained in Z∆. But GL is a unipotent group over
L, so we have V (GL) = 1 and V (G × GL) is contained in G × {1}. Hence V (∆)
is contained in Z∆ ∩ (G × {1}) ≤ Z(G) × {1}, and V (G) is contained in Z(G).
This contradiction implies that the nilpotence class of G is 2. In particular, G′ is
contained in Z(G) ≤ Z and we have N = G′Z = Z.

We show that M = M ∗. Indeed, if MV exists, we consider M ∈ M ∗. Then
Proposition 4.9 and Lemma 4.12 show that V (G) = V (MMV ) is contained in
V (M)Z(G). But we have Z = N = G′V (G) = Z(G)V (G), so we obtain N =
Z(G)V (M) ≤ Z(M), and M ≤ CG(N) = Z, contradicting our choice of M . Hence
we have V (M) � Z(G) for each M ∈M .

Now, for each g ∈ G \ N , we consider the map γg : G → Z(G) defined by
γg(x) = [g, x]. Since g 6∈ Z does not centralize N = Z and centralizes Z/A, we
have γg(N) = A ' L+ and, since Z/Z(G) is definably isomorphic to L+ × L+,
the group CZ(g)/Z(G) is definably isomorphic to L+. Moreover, since g 6∈ Z(G),
we have CG(g) < G and, since N ≤ M for each M ∈ M , we have CG(g)N < G.
Since g 6∈ N and since G/N is definably isomorphic to L+ × L+, this implies that
CG(g)N/N is definably isomorphic to L+. Now, if we consider h ∈ G \ CG(g)N ,
then we have CG(h)N/N ' L+ too, and since h ∈ CG(h) \CG(g)N , Fact 2.3 gives
G = d(g)d(h)N . Thus, for each z ∈ CG(g, h), we have G = CG(z)N , Therefore,
since N is contained in each element of M , we have G = CG(z) and z ∈ Z(G),
so CG(g)/Z(G) ∩ CG(h)/Z(G) is trivial. On the other hand, again since N is
contained in each element of M , we obtain G = CG(g)CG(h), and G/Z(G) is the
direct product of CG(g)/Z(G) and CG(h)/Z(G).

We fix g ∈ G \ N and h ∈ G \ CG(g)N . The previous paragraph shows that,
for any definable isomorphism α : CG(g)/Z(G)→ CG(h)/Z(G), there is a definable
subgroup U/Z(G) of G/Z(G) representing the graph of α. We remark that, since
G/N is definably isomorphic to L+ × L+, we have either U ≤ N , or UN/N ' L+

definably, or UN/N = G/N . Since G = CG(g)U and since G 6= CG(g)N , we have
not U ≤ N . Moreover, since N is contained in each element of M and since U < G,
we do not have UN/N = G/N , and we obtain UN/N ' L+ and UN ∈ M . In
particular, we have V (UN) � Z(G) and V (UN) ≤ Z(UN). We consider u ∈ U \N .
Since UN/N ' L+, the subgroup CG(u)N contains UN , and since UN ∈ M , we
have either G = CG(u)N or CG(u) ≤ UN . In the first case, since each element of M
contains N , the group CG(u) is contained in no element of M , and we obtain G =
CG(u) and u ∈ Z(G), contradicting Z(G) ≤ N . Hence UN contains CG(u). Then
CG(u) centralizes V (UN), and since the previous paragraph gives CZ(u)/Z(G) '
L+, we obtain CZ(u) = V (UN)Z(G) = V (U)V (N)Z(G). Also, since Z(G) contains
V (N), we have CZ(u) = V (U)Z(G) ≤ U . But we have Z/Z(G) ' L+ × L+, so
either U∩Z = CZ(u) or U contains Z. Since we have U/Z(G)∩CG(g)/Z(G) = 1 and
CZ(g)/Z(G) ' L+, U does not contain Z, and we obtain U∩Z = CZ(u). Moreover,
since we have u ∈ U \N , we have CU (u)N/N 6= 1, and since the previous paragraph
gives CG(u)N/N ' L+ ' UN/N , we obtain CU (u)N/N = CG(u)N/N = UN/N .
In particular, we have CG(u) = CU (u)N ∩ CG(u) = CU (u)CN (u), and since U
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contains CN (u), we obtain CG(u) ≤ U . Furthermore, since U ∩ Z = CZ(u), we
obtain U = CG(u)(N ∩ U) ≤ CG(u) and U = CG(u).

We note that, if u ∈ CG(g)N , then we have UN = CG(g)N because UN/N '
L+ ' CG(g)N/N , contradicting G = CG(g)U and C(g)N < G. Thus we have
u 6∈ CG(g)N and, in the same way, u 6∈ CG(h)N . In particular, the following
uniformly definable family F of subgroups of G/Z(G) contains the graph of each
definable isomorphism from CG(g)/Z(G) to CG(h)/Z(G):

F = {CG(u)/Z(G) | u ∈ G \ (CG(g)N ∪ CG(h)N)}.

Conversely, for each u ∈ G \ (CG(g)N ∪ CG(h)N), the quotient group G/Z(G) is
the direct product of CG(g)/Z(G) and CG(u)/Z(G), and also of CG(u)/Z(G) and
CG(h)/Z(G), so CG(u)/Z(G) is the graph of an isomorphism from CG(g)/Z(G) to
CG(h)/Z(G). Now the set I of the definable isomorphisms from CG(g)/Z(G) to
CG(h)/Z(G) is a (nonempty) uniformly definable family. But, if we fix r ∈ I , then
the set of the definable automorphisms of CG(g)/Z(G) is A = {r−1 ◦ s | s ∈ I },
and it is a uniformly definable family.

We show that the Morley rank of A is 2. We note that, in the pure field Q,
we have rk(L+) = 1 (Fact 2.2), so we have rk(L+) = 1 in the ACF -expansion
of the pure group G too. Since there are some definable bijections between F ,
I and A , we have to prove that F has Morley rank 2. First we show that, if
CG(u)/Z(G) and CG(v)/Z(G) are two distinct elements of F , then CG(u)∩CG(v)
is contained in N , that is the elements of F are generically disjoint. The previous
analysis shows that, if we have v 6∈ CG(u)N , then CG(u) ∩ CG(v) = Z(G), so
we may assume v ∈ CG(u)N . Therefore CG(u)N/N ∩ CG(v)N/N is not trivial
and, since CG(u)N/N and CG(v)N/N are definably isomorphic to L+, we obtain
CG(u)N = CG(v)N . Also, the previous study gives CZ(u) = V (CG(u)N)Z(G) =
V (CG(v)N)Z(G) = CZ(v). Since CG(u)/CZ(u) and CG(v)/CZ(v) are definably
isomorphic to CG(u)Z/Z = CG(v)Z/Z ' L+, we have either CG(u) = CG(v) or
CG(u) ∩ CG(v) = CZ(u) = CZ(v) ≤ N . Hence the elements of F are generically
disjoint. Moreover, each element CG(u)/Z(G) of F has Morley rank

rk(CG(u)/CZ(u)) + rk(CZ(u)/Z(G)) = 2rk(L+) = 2,

and ∪F contains G/Z(G) \ (CG(g)N/Z(G) ∪ CG(h)N/Z(G)) which is a generic
subset of G/Z(G). So the Morley rank of ∪F is rk(G/Z(G)) = rk(G/N) +
rk(N/Z(G)) = 4rk(L+) = 4, and the one of A is rk(∪F )− rk(CG(u)/Z(G)) = 2,
as claimed.

The same reasoning applied in the pure field Q shows that the group A has
dimension 2 over Q too.

In the pure field Q, the group CG(g)/Z(G) is definably isomorphic to Q+ ×
Q+, since CG(g)/CZ(g) and CZ(g)/Z(G) are definably isomorphic to L+ ' Q+.
Hence there is a definable embedding µ from the canonical semidirect product
CG(g)/Z(G)oA to (Q+×Q+)oGL(2,Q), where GL(2,Q) acts by multiplication
on Q+ × Q+, and such that µ(CG(g)/Z(G)) = Q+ × Q+ and µ(A ) is a closed
subgroup of GL(2,Q). By Lemma 4.1, the group µ(A ◦) is connected, and since A
has dimension 2 over Q, the group µ(A ◦) has dimension two. Let T be a maximal
torus of µ(A ◦). It is nontrivial since µ(A ◦) is a closed subgroup of dimension
two of GL(2,Q). First we assume that µ−1(T ) is definable in the ACF -expansion
of the pure group G. Since T is nontrivial, there exists e1 ∈ Q+ × Q+ such that



30 OLIVIER FRÉCON

T ·e1 = Q
∗ ·e1, and the subset V1 := (T ·e1)∪{(0, 0)} = Q ·e1 is an infinite subgroup

of Q+ × Q+. Now either T centralizes (Q+ × Q+)/V1 and V2 := CQ+×Q+
(T ) is a

complement of V1 in Q+ × Q+, or T does not centralize (Q+ × Q+)/V1 and we
find e2 ∈ (Q+ × Q+) \ V1 such that T · e2 = Q

∗ · e2. In this last case, the subset
V2 := (T · e2) ∪ {(0, 0)} = Q · e2 is an infinite complement of V1 in Q+ × Q+.
Thus, for i = 1, 2, the preimage µ−1(Vi) = (µ−1(T ) · µ−1(ei)) ∪ {µ−1(0, 0)} of
Vi is definable in the ACF -expansion of the pure group G. Since V1 and V2 are
infinite and satisfy Q+×Q+ = V1⊕V2, and since CG(g)/Z(G) has Morley rank two
then, for i = 1, 2, the subgroup µ−1(Vi) is torsion-free of Morley rank one and we
have CG(g)/Z(G) = µ−1(V1)⊕µ−1(V2). Since CG(g)/Z(G) is an homogeneous UL-
group, this implies that µ−1(Vi) is definably isomorphic to L+ for i = 1, 2, and that
CG(g)/Z(G) is definably isomorphic to L+×L+ in the ACF -expansion of the pure
group G. But CG(h)/Z(G) is definably isomorphic to CG(g)/Z(G), and G/Z(G)
is the direct product of CG(g)/Z(G) and CG(h)/Z(G), so G/Z(G) is isomorphic
to (L+)4, definably in the ACF -expansion of the pure group G. This contradicts
V (G) � Z(G). Hence µ−1(T ) is not definable in the ACF -expansion of the pure
group G.

Since µ−1(T ) is not definable in G, the group µ(A ◦) is not a torus, and since
it has dimension two while the maximal unipotent subgroups of GL(2,Q) have
dimension one, we have µ(A ◦) = P o T for P a maximal unipotent subgroup
of GL(2,Q). Moreover, since µ−1(T ) is not definable in G, we have µ−1(T ) <
CA ◦(µ−1(T )) and T < Cµ(A ◦)(T ), and since P is a torsion-free group of dimension
one, we obtain µ(A ◦) = Cµ(A ◦)(T ) and µ(A ◦) is abelian. Now T centralizes a
nontrivial unipotent subgroup of GL(2,Q), hence T is central in GL(2,Q) and it is
conjugate with the following subgroup of GL(2,Q):

R =
{(

t a
0 t

)
| t ∈ Q∗, a ∈ Q

}
.

Thus there is an isomorphism ν, definable in Q, from (Q+ × Q+) o µ(A ◦) to
H1 = (Q+ ×Q+)oR, where R acts on Q+ ×Q+ by multiplication, and such that
ν(T ) is the maximal torus of R. But there is an isomorphism γ, definable in Q,
from H1 to the following group

H2 =


 t a u

0 t v
0 0 1

 | t ∈ Q∗, (a, u, v) ∈ Q3

 ,

and satisfying (γ ◦ ν)(T ) =


 t 0 0

0 t 0
0 0 1

 | t ∈ Q∗
. Since µ−1(T ) is not de-

finable in G, this implies that, in the ACF -expansion of the pure group H2, the
maximal torus (γ ◦ ν)(T ) is not definable. This contradicts Lemma 3.7 and Propo-
sition 3.11, and finishes the proof. �

5. Definably affine groups

Generally a quotient of a definably linear group of finite Morley rank by a normal
definable subgroup, even finite, is not definably linear (Example 5.1). In order to
overcome this obstacle, we introduce definably affine groups (Definition 5.2). Then
we obtain a structural result about the definably affine ACF -groups (Proposition
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5.11). Moreover, we introduce two new subgroups A(G) and W (G) for any ACF -
group G (Corollaries 5.10 and 5.17). We notice that the subsections 5.1 and 5.2
concern all the ACF -groups, not just the ACF0-groups, since we do not need
Lemma 4.1 in them.

Example 5.1. – We consider the pure group G = H1 ×H2, where H1 and H2 are
two copies of SL2(K) for an algebraically closed field K of characteristic zero. On
the one hand, for i = 1, 2, the quotient Hi/Z(Hi) is definably linear [16, Corollaire
4.16], and Hi is definably linear too (Proposition 5.14). Hence G is definably
linear. On the other hand, if i and j denote the involutions of Z(H1) and Z(H2)
respectively, then G = G/〈(i, j)〉 is not definably linear.

Indeed, let µ be a nontrivial field automorphism of K, and let µ∗ be the auto-
morphism of H1 induced by µ. We consider the automorphism α of G defined for
each (h1, h2) ∈ G by α((h1, h2)) = (µ∗(h1), h2). Then, if ∆ is the graph in G of
an algebraic group isomorphism from H1 to H2, and if ∆ := ∆/〈(i, j)〉 denotes its
image in G, the intersection of ∆ and of α(∆) is not definable. So α(∆) is not
definable and α is not a standard isomorphism. Consequently, by Fact 3.6 (or Fact
1.4), the pure group G is not definably linear over one interpretable field. But if
G is definably linear over several interpretable fields, then Lemma 5.6 shows that
G is a direct product of two proper definable subgroups. This contradicts that each
nontrivial normal subgroup of G contains the central involution of G. Hence G is
not definably linear.

5.1. Definition and generalities.

Definition 5.2. – A group G of finite Morley rank is said to be definably affine (over
finitely many fields K1, . . . , Kn, interpretable in G) if G is definably isomorphic to
a definable section of H1 × · · · ×Hn, where Hi is an affine algebraic group over Ki

for each i = 1, . . . , n.

Remark 5.3. –
(1) If G is a definably affine ACF -group, interpretable in the pure algebraically

closed field K, then G is affine by [16, §4.e (2)] and Fact 2.2.
(2) Every definable quotient and every definable subgroup of a definably affine

group is definably affine too.
(3) By [16, §4.e (2)] and Fact 2.2, if an ACF -group G is definably affine over

an algebraically closed field L, there is a definable isomorphism ρ : G→ H
for an affine algebraic group H over L, and any subgroup of H is definable
in G if and only if it is closed.

Our first result is a remark concerning some definable fields isomorphisms. For
the fields of finite Morley rank and of characteristic zero, a result of the same vein
is known [10, Corollary 2.8].

Lemma 5.4. – Let K and L be two fields, definable in an ACF -group G. If one
of the following two conditions is satisfied, then K and L are definably isomorphic:

• K+ and L+ are definably isomorphic;
• K∗ and L∗ are definably isomorphic.

Proof – Let F be an algebraically closed field such that G is interpretable in
the pure field F . We may assume that K and L are infinite. Thus there is a field
isomorphism α : K → L, definable in the pure field F (Fact 2.2). If δ : K+ → L+
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is a group isomorphism, definable in G, then µ = δ−1 ◦α is a group automorphism
of K+, definable in F . By Fact 2.2, the map µ is definable in the pure field K, so
α = δ ◦ µ is definable in G.

If γ : K∗ → L∗ is a group isomorphism, definable in G, we consider the map
β : K → L defined by β(x) = γ(x) for each x ∈ K∗ and by β(0) = 0. Then
ν = β−1 ◦ α is a permutation of K definable in F , and ν is definable in the pure
field K (Fact 2.2). Thus α = β ◦ ν is definable in G. �

Corollary 5.5. – Let G be an infinite ACF -group. Suppose that K and L are two
interpretable fields such that G is definably affine over K (resp. L). Then K and
L are definably isomorphic.

Proof – We may assume that G has no proper infinite definable subgroup.
Let HK (resp. HL) be an affine algebraic group over K (resp. L) such that G is
definably isomorphic to HK (resp. HL). By the minimality of G, the group HK

(resp. HL) is definably isomorphic to either K∗ (resp. L∗), or K+ (resp. L+). Now
Lemma 5.4 provides the result. �

Lemma 5.6. – Let G be an ACF -group, and let K1, . . . ,Kn be n infinite definable
fields, such that Ki is not definably isomorphic to Kj for i 6= j. For i = 1, . . . , n, we
consider an affine algebraic group Hi. Then, for each connected definable subgroup
U of H = H1 × · · · ×Hn, we have U = (U ∩H1)× · · · × (U ∩Hn).

Proof – We assume toward a contradiction that U is a counterexample of
minimal Morley rank. Then, for each proper connected definable subgroup M0

of U , we have M0 = (M0 ∩ H1) × · · · × (M0 ∩ Hn), so U has a unique maximal
proper connected definable subgroup M . For each i, we denote by ρi : U → Hi the
projection map from U to Hi. We may assume ρi(U) = Hi 6= 1 for each i. From
now on, M = (M ∩H1)× · · · × (M ∩Hn) is normal in H. Thus, if M 6= 1, we have
Hi ∩M 6= 1 for some i, and H/Hi ∩M is equal to H1(Hi ∩M)/(Hi ∩M)× · · · ×
Hn(Hi ∩M)/(Hi ∩M). Then, in H/(Hi ∩M), the minimality of the Morley rank
of U gives

U/(Hi ∩M) = (U ∩H1)(Hi ∩M)/(Hi ∩M)× · · · × (U ∩Hn)(Hi ∩M)/(Hi ∩M),

and U = (U ∩H1)× · · · × (U ∩Hn), contradicting the choice of U , so M = 1.
For each i, since ρi is definable, the triviality of M implies that each proper closed

subgroup of Hi is finite, so Hi is definably isomorphic either to (Ki)∗, or to (Ki)+.
Moreover, for each i, since ρi(U) = Hi 6= 1, the kernel Ri of ρi is finite, and U/Ri
is definably isomorphic either to (Ki)∗, or to (Ki)+. Now R = 〈Ri | i = 1, . . . , n〉
is finite and, for each i, U/R is definably isomorphic either to (Ki)∗, or to (Ki)+.
Hence Lemma 5.4 yields a contradiction. �

Corollary 5.7. – Let G be an ACF -group, definably affine over interpretable fields
K1, . . . ,Kn. Then, for each i = 1, . . . , n, there is an affine algebraic group Hi

over Ki, such that G is definably isomorphic to U/F , for a definable subgroup U of
H1 × · · · ×Hn, and a finite normal subgroup F of U .

Proof – We may assume that Ki is not definably isomorphic to Kj for i 6=
j. Since G is definably affine, it is definably isomorphic to a definable section
U/F of H1 × · · · × Hn, where Hi is an affine algebraic group over Ki for each
i = 1, . . . , n. We may assume F ∩ Hi = 1 for each i. But Lemma 5.6 gives
F ◦ = (F ◦ ∩H1)× · · · × (F ◦ ∩Hn) = 1, so F is finite. �
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From now on, we connect the notions of definably linear groups and of definably
affine groups.

At first we note that, if G is both an ACF -group and an affine algebraic group
over an algebraically closed field K, then since any quotient of an affine algebraic
group by a normal closed subgroup is affine, it follows that the ACF -group G is
definably affine over one interpretable field if and only if it is definably linear over
one interpretable field.

Corollary 5.8. – Let G be an ACF -group, definably affine over interpretable fields
K1, . . . ,Kn. Then G has a finite normal subgroup E such that G/E is definably
linear over K1, . . . ,Kn.

Proof – Let U/F and H1, . . . ,Hn be as in the previous result. We may assume
G = U/F . For each i, let Fi be the projection of F on Hi. Then E = (F1 × · · · ×
Fn)/F is convenient. �

5.2. The subgroup A(G).

Theorem 5.9. – Let G be an ACF -group. If G is generated by its connected
definably affine subgroups over interpretable fields K1, . . . ,Kn, then G is definably
affine over K1, . . . ,Kn.

Proof – Let L be an algebraically closed field such that G is interpretable in
the pure field L. First we assume that G is generated by its connected definably
affine subgroups over an interpretable field K. We may assume that K is infinite,
therefore K is isomorphic to L, definably in the pure field L (Fact 2.2). Let ϕ be
an isomorphism from G to an algebraic group GK over K, definable in the pure
field L, and let ∆ be its graph. By the Zilber’s Indecomposability Theorem, G
is connected and there exist finitely many connected definably affine subgroups
R1, . . . , Rm of G over K such that G = 〈Ri | i = 1, . . . ,m〉. Since K and L are
definably isomorphic in L, for each i, the subgroup ϕ(Ri) of GK is affine, and any
subgroup of Ri × ϕ(Ri) is definable in G if and only if it is definable in L. In
particular, the subgroup Si = {(x, ϕ(x)) | x ∈ Ri} of ∆ is affine and definable in
G for each i. Moreover, for each i, since Ri is connected (in G), this implies that
Si and ϕ(Ri) are connected in G. Consequently, the Zilber’s Indecomposability
Theorem says that ∆ = 〈Si | i = 1, . . . , n〉 is definable in G, so ϕ is definable in
G. Moreover, for each i, since ϕ(Ri) is connected in G, it is connected in K too,
and GK = 〈ϕ(Ri) | i = 1, . . . , n〉 is an affine algebraic group. Hence G is definably
linear over K.

For the proof of the result, we may assume that Ki is not definably isomorphic
to Kj for each i 6= j. For each i, we denote by Ui the (normal) subgroup of G
generated by the connected definable subgroups of G, definably affine over Ki. By
the Zilber’s Indecomposability Theorem, Ui is definable and connected for each i,
and the previous paragraph says that Ui is definably linear over Ki for each i. Now,
for each i 6= j, by the Zilber’s Indecomposability Theorem, [Ui, Uj ] is a connected
definable subgroup of Ui ∩ Uj , and it is definably affine over Ki (resp. Kj). Hence
Corollary 5.5 yields [Ui, Uj ] = 1.

We show that G is the central product of U1, . . . , Un. By the Zilber’s Inde-
composability Theorem, G is connected and there exist finitely many connected
definably affine subgroups R1, . . . , Rm of G such that G = 〈Ri | i = 1, . . . ,m〉. By
Lemma 5.6 and Corollary 5.7, for each i = 1, . . . , n and each j = 1, . . . ,m, there
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is an affine algebraic group Hij over Ki, such that Rj is definably isomorphic to
Vj/Fj , for a definable subgroup Vj of H1j×· · ·×Hnj , and a finite normal subgroup
Fj of Vj . Since Rj is connected for each j, we may assume that Vj is connected for
each j. Now, for each j = 1, . . . ,m, Lemma 5.6 shows that Rj has some connected
definable subgroups S1j , . . . , Snj such that Rj = 〈Sij | i = 1, . . . , n〉 and such that
Sij is definably affine over Ki for each i. Since for each i, j, the subgroup Sij is
contained in Ui, this shows that G is generated by U1, . . . , Un. Since [Ui, Uj ] = 1
for each i 6= j, the group G is the central product of U1, . . . , Un. Hence we find a
definable epimorphism from U1 × · · · × Un to G. Since Ui is definably linear over
Ki for each i, this finishes the proof. �

Corollary 5.10. – Any ACF -group G has a largest connected definably affine
subgroup denoted A(G).

Proposition 5.11. – Let G be a connected ACF -group. Suppose that G is definably
affine over the fields K1, . . . ,Kn, and that Ki is not definably isomorphic to Kj for
each i 6= j. For each i, let Gi be the largest connected subgroup of G definably linear
over Ki. Then the following conditions hold:

• G is the central product of G1, . . . , Gn;
• G has a nontrivial finite normal subgroup E such that G/E is the direct

product of G1E/E, . . . , GnE/E; in particular Gi ∩ Gj is finite for each
i 6= j;

• {G1, · · · , Gn} is stable by each automorphism of the ACF -group G.

Proof – By Corollary 5.7, for each i, there is an affine algebraic group Hi

over Ki such that G is definably isomorphic to U/F , for U a definable subgroup
of H1 × · · · × Hn and a finite normal subgroup F of U . We may assume G =
U/F . Since G is connected, we may assume that U is connected, and Lemma
5.6 gives U = (U ∩ H1) × · · · × (U ∩ Hn). In particular, U ∩ Hi is connected for
each i, and we may assume Hi ≤ U for each i. Now G is the central product of
H1F/F, . . . ,HnF/F , and HiF/F ∩HjF/F is finite for each i 6= j.

For each i, we consider Vi such that Gi = Vi/F . By Lemma 5.6, we have
V ◦i = (V ◦i ∩H1)× · · · × (V ◦i ∩Hn) for each i. In particular, V ◦i ∩Hj is connected
for each i, j. Thus, for each i, j, the subgroup (V ◦i ∩ Hj)F/F ≤ Gi ∩ HjF/F
is connected and definably affine over Ki (resp. Kj). Hence Corollary 5.5 gives
V ◦i ∩Hj = 1 for each i 6= j, so V ◦i is contained in Hi for each i. Since Gi contains
HiF/F for each i, we obtain Gi = HiF/F for each i. This proves that G is the
central product of G1, . . . , Gn, and that Gi ∩Gj is finite for each i 6= j.

Moreover, Corollary 5.8 provides a finite normal subgroup E such that G/E is
definably linear over K1, . . . ,Kn, and Lemma 5.6 says that G/E is definably isomor-
phic to A1 × · · · ×An for some affine algebraic groups A1, . . . , An over K1, . . . ,Kn

respectively. Then Corollary 5.5 and Lemma 5.6 imply that GiE/E is definably iso-
morphic toAi for each i, and thatG/E is the direct product ofG1E/E, . . . , GnE/E.

Let ϕ be an automorphism of the ACF -group G. We fix i ∈ {1, . . . , n}, and
we show that ϕ(Gi) ∈ {G1, . . . , Gn}. Then, as for Gi in G, there is an infinite
interpretable field L such that ϕ(Gi) is the largest connected definable subgroup of
G, definably linear over L. If L is not definably isomorphic to Kj for each j, then
G is definably affine over K1, . . . ,Kn, L, and the previous paragraphs applied with
this situation give dim(G) = dim(G1) + · · ·+dim(Gn) +dim(ϕ(Gi)). On the other
hand, by the previous paragraph, we have dim(G) = dim(G1) + · · ·+ dim(Gn), so
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ϕ(Gi) is finite. Since ϕ(Gi) is connected, we obtain ϕ(Gi) = 1, so Gi = 1 = ϕ(Gi).
Hence we may assume that L is definably isomorphic to Kj for some j. Since ϕ(Gi)
is the largest connected definable subgroup of G, definably linear over L, we obtain
ϕ(Gi) = Gj . This finishes the proof. �

5.3. The subgroup W (G). We provide some crucial criterions for the ACF -
groups to be definably affine (Theorems 5.15 and 5.9). Moreover, similarly to
the existence of the subgroup A(G) in any ACF -group G (Corollary 5.10), we show
that any such a group G has a smallest normal definable subgroup W (G) such that
G/W (G) is definably affine, and that W (G) is connected when G is an ACF0-group
(Corollary 5.17).

In the proof of Corollary 5.13, we use the following result, due to A.V. Borovik
and G. Cherlin.

Fact 5.12. – [11, Proof of proposition 4.3] Let H be a normal definable subgroup
of finite index of a group G of finite Morley rank. Then G definably embeds in the
wreath product of H by G/H.

Corollary 5.13. – Let G be a group of finite Morley rank. If G◦ is definably affine
over interpretable fields K1, . . . ,Kn, then G is definably affine over K1, . . . ,Kn too.

Proof – For each i = 1, . . . , n, let Hi be an affine algebraic group over Ki such
that G◦ is definably isomorphic to the definable section U/F of H = H1×· · ·×Hn.
Then the wreath product W of G◦ ' U/F by G/G◦ is definably isomorphic to a
definable section of the wreath product of H by G/G◦, which is definably linear
over K1, . . . ,Kn. Since Fact 5.12 says that G definably embeds in W , we obtain
the result. �

Proposition 5.14. – Let G be an ACF0-group, and let E be a finite normal sub-
group of G. If G/E is definably linear over an interpretable field L, then G is
definably linear over L too.

Proof – Let K be an algebraically closed field of characteristic zero such that
the ACF0-group G is interpretable in the pure field K. By Corollary 5.13, we may
assume that G is connected and infinite. Moreover, G/E is definably linear over
L, so G/E and G are affine over K by Fact 2.2, and we may assume that G is an
infinite subgroup of GLn(K) for an integer n. Since G/E is definably linear over
L, we find an algebraic group A0 over L definably isomorphic to G/E. Since G
is infinite, L is infinite too and L is isomorphic to K, definably in K by Fact 2.2.
Let α be a field automorphism from K to L, definable in the pure field K. We
consider A = α∗(G) and B = α∗(E), where α∗ is the isomorphism from GLn(K)
to GLn(L) induced by α. Then A/B is isomorphic to A0, definably in the pure
field K. In the pure field K, for each i, the definable subsets of GL i(L) are the
images of the constructible subsets of GL i(K) by the isomorphisms α∗i induced by
α. In particular A is definable in L and, for any isomorphism from A/B to A0,
definable in K, the graph ∆0 is definable in L too.

Let Z = B×E, and let ∆ be the graph of the isomorphism u from A to G induced
by α∗. Let v be an isomorphism from G/E to A0 definable in G. Then u induces
an isomorphism u from A/B to G/E, definable in K, and v ◦ u is an isomorphism
from A/B to A0 definable in K. By the previous paragraph, v ◦ u is definable in
L too. Thus, since v is definable in G, u is definable in G. This shows that ∆Z
is a subgroup of A × G, definable in G. Moreover, since Z is abelian and finite,
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∆Z/∆ is abelian and finite. Since, by Lemma 4.1, (∆Z)◦/((∆Z)◦)′ is a connected
abelian algebraic group over an algebraically closed field of characteristic zero, it
is divisible and it has no proper subgroup of finite index. In particular, (∆Z)◦ is
contained in ∆, and since it has finite index in ∆Z, the group ∆ is definable in G.
This proves that u is definable in G, so G is definably linear over L. �

Theorem 5.15. – Let G be an ACF0-group. Suppose that G has a finite normal
subgroup F such that G/F is definably affine over interpretable fields K1, . . . ,Kn.
Then G is definably affine over K1, . . . ,Kn

Proof – By Corollary 5.13, we may assume that G is connected. By Corollary
5.8, G has a finite normal subgroup E containing F such that there exists a definable
isomorphism ρ from G/E to a definable subgroup U of H = H1 × · · · ×Hn, where
Hi is an affine algebraic group over Ki for each i. By Lemma 5.6, we have U =
(U ∩H1)× · · · × (U ∩Hn).

For each i, we consider Vi/E = ρ−1(U ∩Hi). Then we have G/E = V1/E×· · ·×
Vn/E and, for each i 6= j, we have [Vi, Vj ] ≤ E. Since Vi/E is connected for each
i and since E is finite, the Zil’ber’s Indecomposability Theorem [4, Corollary 5.29]
shows that [Vi, Vj ] = 1 for each i 6= j. Thus G is the central product of V1, . . . , Vn,
and there is a definable epimorphism f from V1×· · ·×Vn to G with a finite kernel.
Hence, by Corollary 5.13, we have just to prove that V ◦i is definably affine over Ki

for each i. But, for each i, the quotient V ◦i /(V
◦
i ∩ E) is definably linear over Ki,

hence Proposition 5.14 provides the result. �

Lemma 5.16. – Let G be a group of finite Morley rank. If G is residually de-
finably affine over interpretable fields K1, . . . ,Kn, then G is definably affine over
K1, . . . ,Kn.

Proof – We find finitely many normal definable subgroups S1, . . . , Sm of G such
that ∩mi=1Si = 1 and such that G/Si is definably affine over K1, . . . ,Kn for each i.
Then G definably embeds in (G/S1)× · · · × (G/Sm), and the result follows. �

Corollary 5.17. – Any ACF -group G has a smallest normal definable subgroup
W (G) such that G/W (G) is definably affine.

Furthermore, if G is an ACF0-group, then W (G) is connected.

Proof – The existence of W (G) follows from Lemma 5.16. Since G/G◦ is defin-
ably linear over any finite field, we have W (G) ≤ G◦. In particular, W (G)/W (G)◦

is a central subgroup of G◦/W (G)◦, and it is abelian. Now, by Corollary 5.13 and
Theorem 5.15, we obtain W (G) = W (G)◦, and this equality finishes the proof. �

6. More on pseudo-tori

In this section, we consider an algebraic group G over Q, and its pseudo-tori in
the ACF -expansion of the pure group G. Ideally, these subgroups are the tori of
G. However, even if G is centerless and connected, the maximal tori of the pure
group G may be not definable (Example 3.1 (2)).

Our first result concerns the ACF -expansion of the pure group G, when G is a
connected centerless algebraic group over Q, with G solvable of class two (Propo-
sition 6.2). We should note that, by the main theorem of [8], such a group inter-
prets finitely many connected, solvable of class two and centerless algebraic groups
G1, . . . , Gn over algebraically closed fields K1, . . . ,Kn respectively, in such a way
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that G imbeds in G1 × · · · × Gn. However, contrary to what is announced, the
embedding in [8] is not necessarily definable. Indeed, otherwise the group G in Ex-
ample 3.1 (2) would be definably linear, and since it is not a direct product of two
proper subgroups, it would be definably linear over one interpretable field (Lemma
5.6), contradicting Example 3.1 (2).

For the proof of Proposition 6.2 and of the main result of this section, that is
Theorem 6.3, we need Carter subgroups. These subgroups are defined in any group
of finite Morley rank as being definable, connected, nilpotent, and of finite index in
their normalizers. They have turned out to be increasingly useful in the analysis of
groups of finite Morley rank. In the algebraic groups over an algebraically closed
field, and when the language is the one of the pure fields, these subgroups are
precisely Cartan subgroups, namely the connected component of centralizers of the
maximal tori. The following fact is a summarize, in the solvable context, of their
properties useful for us. We refer to [13] for more details on Carter subgroups.

Fact 6.1. – Let G be a connected solvable group of finite Morley rank, and let N
be a normal definable subgroup of G. Then the following conditions are satisfied:

(i) [12, Corollary 2.10] any pseudo-torus of G lies in a Carter subgroup of G;
(ii) [13, Theorem 3.11] its Carter subgroups are self-normalizing;

(iii) [13, Corollary 3.3] the Carter subgroups of G/N are exactly of the form
QN/N , with Q a Carter subgroup of G;

(iν) [13, Proposition 3.19] if G is 2-solvable, then G has a definable connected
characteristic abelian subgroup A of G such that G = AoC for every Carter
subgroup C of G.

Proposition 6.2. – Let G be an algebraic group over Q. If G is connected, cen-
terless, and solvable of class two, then the ACF -expansion of the pure group G is
definably linear.

Proof – We notice that, since G is connected and centerless, F (G) is torsion-
free. We suppose toward a contradiction that there exists a counterexample G of
minimal Morley rank. For i = 1, 2, let Ai be a G-minimal subgroup, let Zi/Ai be
the center of G/Ai, and let Wi be the hypercenter of G/Ai. Since G is connected,
Wi is definable for i = 1, 2 [16, Corollaire 3.15]. Moreover, since F (G) is torsion-
free, A1 and A2 are torsion-free too. Thus, if we have A1 6= A2, then A1 ∩ A2 is
trivial, and Z1 ∩ Z2 ≤ Z(G) is trivial too, so W1 ∩W2 is trivial. In this case, since
G/W1 and G/W2 are definably affine by induction hypothesis, G is definably affine
(Lemma 5.16). Hence G has a unique G-minimal subgroup A.

Let C be a Carter subgroup of G. By Fact 6.1 (iii), we have G = G′C. Then
Z(C)∩CC(G′) is central in G, so CC(G′) is trivial. Moreover, since G is 2-solvable,
C ′ centralizes G′, so C is abelian. Hence C ∩ G′ is central in G, and we obtain
G = G′ o C.

We show that, if A(G′) denotes the largest connected definably affine subgroup of
G′ (Corollary 5.10), we have A ≤ A(G′) < G′, and that C/CC(A(G′)) is definably
linear over one interpretable field. By Facts 2.1, we have A ≤ A(G′). Moreover,
since G′ ≤ F (G) is torsion-free, A(G′) is definably linear by Corollary 5.8. So
the uniqueness of A and Lemma 5.6 show that A(G′) is definably linear over one
interpretable field K. Moreover, since G′ is torsion-free, K is of characteristic zero
and A(G′) is definably isomorphic to a unipotent algebraic group over K. Conse-
quently, Corollary 4.8 says that C/CC(A(G′)) is definaly linear over K. Therefore,
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if A(G′) = G′, since CC(G′) is trivial, then C is definably linear over K. But, since
G is solvable, we have G′H < G for each normal proper subgroup H of G, so the
conjugates of C generate G. Hence the condition A(G′) = G′ implies that G is
definably affine over K by Theorem 5.9. Thus we obtain A(G′) < G′.

We claim that G has a unique maximal proper normal connected definable sub-
group. Indeed, suppose that N1 and N2 are two distinct maximal proper normal
connected definable subgroups of G. In particular, N1 and N2 contain G′, and G
is generated by N1 and N2. We may assume that A is noncentral in N2. Since
Z(N2) ≤ F (G) is torsion-free, and since it is normal in G and does not contains A,
it is trivial. Hence N2 is definably linear by induction hypothesis. Moreover, by the
maximality of N2 and since G is solvable, N2 contains G′, therefore G′ is definably
linear. This contradicts the previous paragraph, so G has a unique maximal proper
normal connected definable subgroup N .

We show that N = F (G). Indeed, we have F (G) ≤ N by the uniqueness of N .
Let B be a G-minimal section of G′. If C centralizes B, then C covers B by Fact
6.1 (iii), contradicting G′ ∩ C = 1. So Fact 2.1 says that G/CG(B) ' C/CC(B) is
definably isomorphic to a subgroup of L∗ for an interpretable algebraically closed
field L. But L and Q are definably isomorphic in the pure field Q (Fact 2.2), hence
L∗ has no proper connected definable subgroup, and CG(B)◦ is a maximal proper
connected definable subgroup of G. Then, by the uniqueness of N , we obtain
N = CG(B)◦, and N centralizes each G-minimal section of G′. This implies that
N is nilpotent, so N = F (G).

We show that A = A(G′). We note that, since G is centerless and since A(G′)
contains A, we have CG(A(G′)) < G. So, by the uniqueness of N , the quotient
NCG(A(G′))/CG(A(G′)) is the unique maximal proper normal connected definable
subgroup of G/CG(A(G′)). But G/CG(A(G′)) is abelian since G′ is abelian, and
G/CG(A(G′)) ' C/CC(A(G′)) is definably linear over K. Hence, since K and Q
are definably isomorphic in the pure field Q (Fact 2.2), the quotient G/CG(A(G′))
has dimension one over Q, and the uniqueness of N gives N = CG(A(G′))◦. In
particular, since the unipotent part of G is contained in F (G) = N , it centralizes
A(G′), andG/CG(A(G′)) is a torus. Moreover, A(G′) is a closed torsion-free abelian
subgroup of G, so it is a Q-vector space, and there is a base (a1, . . . , an) of A(G′)
such that G normalizes Q · ai for each i. Then, since A(G′) is definably linear over
K and since K and Q are definably isomorphic in the pure field Q, the subgroups
Q·ai are definable and normal in G for each i. So we obtain n = 1 by the uniqueness
of A, and A(G′) is definably isomorphic to K+. Now Fact 2.3 gives A(G′) = A, as
desired.

We show that AC is the unique maximal proper connected definable subgroup of
G containing C. Indeed, if G = AC, then we have G′ = A = A(G′), contradicting
A(G′) < G′. Let M be a maximal proper connected definable subgroup M of G
containing C. Since AC is proper in G, we have C < M . Then M ∩ G′ is a
normal infinite definable subgroup of G, and we have A ≤ M by the uniqueness
of A. Let Z be the hypercenter of M . It is definable by [16, Corollaire 3.15], and
it is contained in C by Fact 6.1 (ii). In particular, Z ∩G′ is trivial. Moreover, by
induction hypothesis, M/Z is definably linear, so M ∩ G′ is definably linear, and
the previous paragraph gives M ∩ G′ ≤ A(G′) = A. Now we have M = AC, as
claimed.
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From now on, we can prove that the maximal tori of G are definable. Indeed,
by the maximality of AC and since A < G′, the quotient G′/A is C-minimal. Since
G = G′ o C, Fact 6.1 (iii) says that C does not centralize G′/A, and Fact 2.1
provides an infinite interpretable field K1 such that G′/A is definably isomorphic
to (K1)+. Then Fact 2.2 shows that G′/A is isomorphic to Q+, definably in Q.
Since A ' Q · a1 is isomorphic to Q+, definably in Q too, G′ is isomorphic to a
Q-vector space of dimension two, definably in Q. Thus, since CC(G′) is trivial, C
is isomorphic, definably in Q, to an abelian connected closed subgroup of{(

s a
0 t

)
| (s, t) ∈ (Q

∗
)2, a ∈ Q

}
.

In particular, C has dimension at most two over Q. Since C/CC(A) is definably
linear over K, Proposition 5.14 says that C/CC(A)◦ is definably linear over K too.
Thus, since the conjugates of C generate G, and since G is not definably affine
over K, Theorem 5.9 shows that CC(A)◦ is nontrivial, so C has dimension exactly
two over Q. Moreover, CC(A)◦ ≤ N = F (G) is torsion-free, so it is a unipotent
subgroup, and C is not a torus. This implies that C is isomorphic, definably in Q,
to {(

t a
0 t

)
| t ∈ Q∗, a ∈ Q

}
.

Consequently, G = G′ o C is isomorphic, definably in Q, to
 t a u

0 t v
0 0 1

 | t ∈ Q∗, (a, u, v) ∈ Q3

 ,

and Lemma 3.7 and Proposition 3.11 say that the maximal tori of G are definable.
Let T be the maximal torus of C. Since C ∩ N ≤ F (G) is torsion-free, C ∩ N

is a unipotent subgroup. On the other hand, the unipotent part of C is contained
in the one of G, which is contained in F (G) = N , so we obtain C = (C ∩N)× T .
Actually, since N = F (G) is torsion-free, it is the unipotent part of G, and since
G = G′C = NC = N o T , the torus T is maximal in G. Consequently, by the
previous paragraph, it is definable, and G′T is definable too. But, since G =
G′oC and since C ∩N = CC(A)◦ is nontrivial, G′T is a proper normal connected
definable subgroup of G. Hence G′T is contained in N by the uniqueness of N .
This contradicts G = N o T , and finishes the proof. �

From now on, we are going to prove the following fundamental result.

Theorem 6.3. – Let G be a connected solvable algebraic group over Q. Then
T ∩F (G) is central in G for each pseudo-torus T of the ACF -expansion of the pure
group G.

First, we have to prove Lemma 6.5. Its proof uses the Frattini subgroup, which
is defined for any group G of finite Morley rank, as being the intersection of all the
maximal proper definable connected subgroups of G. It is denoted by Φ(G).

Fact 6.4. – Let G be a connected group of finite Morley rank. Then,
(i) [13, Lemma 2.14.b] if H is a definable subgroup of G such that G = Φ(G)H,

we have G = H;
(ii) [13, Lemma 2.14.a] Φ(G/Φ(G)) is trivial;
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(iii) [13, Proposition 3.18] if G is solvable, Φ(G) is nilpotent and F (G)/Φ(G) =
F (G/Φ(G)) is abelian. In particular, G/Φ(G) is 2-solvable, and G is nilpo-
tent if and only if G/Φ(G) is abelian;

(iν) [13, Proposition 6.5] if G is solvable, F (G)∩Φ(C) ≤ Φ(G) for each Carter
subgroup C of G;

(ν) [11, Lemma 5.4] if G is nilpotent and if Φ(G) is finite, Φ(G/A) is finite for
each normal definable subgroup A of G.

Lemma 6.5. – Let C be a nilpotent group of finite Morley rank, and T a pseudo-
torus of C. Then, for each connected definable subgroup A of T , AΦ(C)/Φ(C) is a
pseudo-torus.

Proof – By Facts 2.5 (iν) and 6.4 (ii), we may assume Φ(C) = 1. In particular C
is abelian (Fact 6.4 (iii)). We assume toward a contradiction that A is not a pseudo-
torus. Since T is abelian and radicable, then A is abelian and radicable too, and it
has a definable normal subgroup B such that A/B is definably isomorphic to K+

for an interpretable field K. Moreover, since A is radicable, the characteristic of
K is zero, and A/B has no nontrivial proper definable subgroup (Fact 2.3). Since
Φ(C/B) is finite (Fact 6.4 (ν)), there is a maximal proper connected definable
subgroup M/B of C/B does not containing A/B. In particular, since A/B has
no nontrivial proper definable subgroup, we have A ∩ M = B. Moreover, by
maximality of M/B, we have C = MA = MT , and K+ ' A/B = A/(A ∩M)
is definably isomorphic to T/(T ∩M), contradicting that T is a pseudo-torus. This
finishes the proof. �

From now on, we can prove Theorem 6.3.

Proof – [Proof of Theorem 6.3] We assume toward a contradiction that G is a
counterexample of minimal Morley rank and with Z(G) of minimal Morley degree.
We may assume that T is a maximal pseudo-torus of G. We show that no proper
normal definable subgroup of G contains T . Indeed, suppose toward a contradiction
that M is a proper normal definable subgroup of G containing T . Then M◦ contains
T since T is connected, and T ∩F (M◦) is central in M◦ by the minimality of rk(G).
But we have G = MNG(T ) by Fact 2.5 (i) and a Frattini Argument, therefore by
Fact 2.5 (ii) and since G is connected, we find G = M◦CG(T ). Hence we obtain
T ∩ F (M◦) ≤ Z(G). Since M is normal in G, we have F (M◦) = M◦ ∩ F (G), so
T ∩F (G) is central in G, contradicting the choice of G. This proves that no proper
normal definable subgroup of G contains T . In particular, we have G = G′T .

We show that Z(G) = 1. By Fact 2.5 (iν), TZ(G)/Z(G) is a pseudo-torus of
G/Z(G). Consequently, if Z(G) is infinite, the minimality of rk(G) implies that
(T ∩ F (G))Z(G)/Z(G) is central in G/Z(G), so CG(t) is a normal subgroup of G
for each t ∈ T ∩ F (G). Now the previous paragraph gives G = CG(t) for each
t ∈ T ∩ F (G), that is T ∩ F (G) ≤ Z(G), which contradicts our hypothesis. Thus
Z(G) is finite and, since G is connected, G/Z(G) is centerless. If Z(G) 6= 1, the
minimality of the Morley degree of Z(G) yields (T ∩ F (G))Z(G)/Z(G) = 1 and
T ∩ F (G) ≤ Z(G), contradicting our hypothesis on G, so G is centerless.

We show that F (G) is torsion-free. Indeed, for each prime p, since Q has char-
acteristic zero and since F (G) is nilpotent, the subset Fp of the elements of order p
in F (G) is finite. Then, since G is connected and normalizes Fp, it centralizes Fp,
and we obtain Fp = ∅ because Z(G) = 1. This proves that F (G) is torsion-free.
Furthermore, this implies that F (G) is a unipotent subgroup of G.
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By Fact 6.1 (i), T is contained in a Carter subgroup C of G. We show that
Φ(C) contains T ∩ F (G). Since F (G) is torsion-free, T ∩ F (G) is connected. By
Lemma 6.5, the group (T ∩ F (G))Φ(C)/Φ(C) is a pseudo-torus, and Fact 2.5 (iν)
yields a pseudo-torus T0 of T ∩ F (G) such that T0Φ(C) = (T ∩ F (G))Φ(C). By
Fact 2.5 (iii), we have T0 ≤ Z(G) = 1, so (T ∩F (G))Φ(C)/Φ(C) = 1 and T ∩F (G)
is contained in Φ(C). In particular, T ∩ F (G) is contained in Φ(G) (Fact 6.4 (iν)).

We show that T is contained in a unique maximal proper definable connected
subgroup M of G. Indeed, since T < G, the subgroup M exists. Moreover, we
have T ∩ F (M) ≤ Z(M) by the minimality of rk(G). Since M contains Φ(G) by
the definition of Φ(G), and since Φ(G) is nilpotent (Fact 6.4 (iii)), we have Φ(G) ≤
F (M) and the previous paragraph yields T∩F (G) ≤ T∩F (M) ≤ Z(M). Thus, if T
is contained in two distinct maximal proper definable connected subgroups M1 and
M2 of G, then T ∩F (G) centralizes 〈M1, M2〉 = G, contradicting T ∩F (G) � Z(G).
Hence we obtain the uniqueness of M .

We consider Z/G′′ = Z(G/G′′), G = G/Z and T = TZ/Z. We show that
G = G

′o T and that G is centerless. If G′′ = 1 then, since G is centerless, we have
Z = 1 and Z(G) = 1. Moreover G′ and T are abelian and, since the first paragraph
gives G = G′T , we obtain G′ ∩ T ≤ Z(G) = 1, so G = G′ o T and G = G

′ o T .
Hence we may assume G′′ 6= 1. In particular, the minimality of rk(G) yields
TG′′/G′′ ∩ F (G/G′′) ≤ Z/G′′. But Fact 6.4 (iii) gives G′′ ≤ Φ(G) ≤ F (G) and
F (G/Φ(G)) = F (G)/Φ(G), hence we have F (G/G′′) = F (G)/G′′ and we obtain
T ∩ F (G) ≤ Z. Also, the equalities Z/G′′ = Z(G/G′′) and F (G/G′′) = F (G)/G′′

imply Z ≤ F (G) and F (G) = F (G)/Z, so we have T ∩ F (G) = 1. In particular,
since F (G) contains the abelian subgroup G

′
, we have G

′ ∩ T = 1, and since the
first paragraph gives G = G′T , we obtain G = G

′ o T . Now, since G
′ ≤ F (G)

and since T ∩ F (G) = 1, we find G
′

= F (G) = F (G)/Z. Moreover, C = CZ/Z
is a Carter subgroup of G (Fact 6.1 (iii)), and Fact 6.1 (iν) provides a definable
connected characteristic abelian subgroup A = A/Z in G such that G = A o C.
Since Fact 2.5 (iii) says that T is central in C, the definable subgroup AT is normal
in G and the first paragraph gives G = AT . Thus we obtain C = T . Since G′

is torsion-free, Z(G) ≤ F (G) = G
′

is torsion-free too. In particular, since Z(G)
normalizes the Carter subgroup C, we obtain Z(G) ≤ C ∩ F (G) = T ∩ F (G) = 1.
This proves that G is a centerless 2-solvable group.

We show that G
′

has no nontrivial proper definable subgroup. Fact 6.4 (iii)
gives G′′ ≤ Φ(G) ≤ M , so M is normal in MZ, and M = MZ/Z is proper in G
by the first paragraph. Then M is the unique maximal proper definable connected
subgroup of G containing T . In particular G

′
has no decomposition of the form

G
′

= A1 A2 for two proper definable connected subgroups A1 and A2 of G
′
, with A1

and A2 normal in G, otherwise M would contain Ai T for i = 1, 2. Then Lemma
5.6 and Proposition 6.2 show that G is definably linear over an interpretable field
K. Thus, since K and Q are isomorphic, definably in Q (Fact 2.2), each closed
subgroup of G is definable, and the pseudo-tori of G are tori. Moreover, in the pure
field Q, since G′ is torsion-free, G

′
is a Q-vector space. Thus, in Q, since T is a

torus acting on G
′
, there is a basis (v1, · · · , vn) of G

′
, where n is the dimension of

G
′

over Q, such that T normalizes Q · vi for each i. Then, by the uniqueness of
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M , we obtain n = 1 and G
′

= Q · v1. Now Fact 2.3 says that G
′

has no nontrivial
proper definable subgroup.

We show that G′/G′′ has no nontrivial proper definable subgroup. By Fact 6.1
(iii) and (iν), G/G′′ has a definable connected characteristic subgroup B/G′′ such
that G/G′′ = B/G′′oCG′′/G′′. Since T is central in C (Fact 2.5 (iii)), the subgroup
BT is normal in G and the first paragraph gives G = BT , so CG′′/G′′ = TG′′/G′′.
In particular B contains G′. Since Fact 6.1 (iii) says that G = G′C, we obtain B =
G′. Moreover, Z/G′′ = Z(G/G′′) normalizes CG′′/G′′ therefore, since CG′′/G′′ is a
Carter subgroup of G/G′′ (Fact 6.1 (iii)), we obtain Z ≤ CG′′ (Fact 6.1 (ii)). Now
Z/G′′∩G′/G′′ is trivial, and G′/G′′ is definably isomorphic to G

′
. Thus G′/G′′ has

no nontrivial proper definable subgroup. Since G is a solvable connected algebraic
group, G′ is nilpotent, and we have Φ(G′) = G′′ (Fact 6.4 (iii)). Let x ∈ G′ \ G′′
and let X := d(x) be the smallest definable subgroup of G′ containing x. Then X
is abelian and, since G′/G′′ has no nontrivial proper definable subgroup, we have
G′ = XG′′ = XΦ(G′). Thus Fact 6.4 (i) gives G′ = X. In particular, G′ is abelian
and G′′ = 1. Now G′ has no nontrivial proper definable subgroup. Since G = G′T
and since F (G) contains G′, we have F (G) = G′(T ∩ F (G)). Consequently, either
F (G) = T ∩ F (G), or T ∩ F (G) is a maximal proper definable subgroup of F (G).
In the first case, we obtain G′ ≤ T and, since G = G′T , we have G = T and G is
abelian, contradicting our choice of G. In the second case, T ∩ F (G) is normal in
F (G). But, since T ∩ F (G) � Z(G), we have T ∩ F (G) 6= 1 and T ∩ Z(F (G)) is
nontrivial. Hence, since we have G = G′T = F (G)T , the subgroup T ∩Z(F (G)) is
central in G, contradicting that G is centerless. This finishes the proof. �

7. Analysis of G/Z(G) and of G′

The purpose of this section is to prove that, if G is a connected algebraic group
over Q, then G/Z(G) is definably linear and G′ is definably affine, in the ACF -
expansion of the pure group G (Theorems 7.7).

For any group G of finite Morley rank, we denote by S(G) the connected compo-
nent of the intersection of the maximal pseudo-tori of G, and by T (G) the subgroup
of G generated by its pseudo-tori.

Remark 7.1. –

• By the Zilber’s Indecomposability Theorem, T (G) is a connected definable
subgroup of G, for any group G of finite Morley rank.
• If G is an ACF -group, then T (G) contains all the tori of G.
• Moreover, S(G) is central in G◦.

Indeed, it is central in T (G), and the conjugacy of the maximal pseudo-tori
of G (Fact 2.5 (i)) and a Frattini Argument provide G◦ = T (G)NG◦(T ) for
each maximal pseudo-tori T of G. So, by Fact 2.5 (ii), we have S(G) ≤
Z(G◦).

In any group G of finite Morley rank, we denote by Q(G) the quasiunipotent
radical, which is the largest normal connected definable nilpotent subgroup of G
with no nontrivial radicable torsion subgroup. This subgroup was introduced in [2].
Ideally, in any ACF -group, this subgroup is the unipotent radical. However, this
fails for some abelian connected groups, since the pure group Q+×Q

∗
is abstractly

isomorphic to Q
∗
, so its quasiunipotent radical is trivial.
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Lemma 7.2. – In any connected ACF0-group G, we have

G/S(G) = Q(G/S(G)) · T (G)/S(G).

Proof – By Fact 2.5 (iν), we may assume S(G) = 1. Let K be an algebraically
closed field of characteristic zero such that G is interpretable in K. We may assume
that G is an algebraic group over K. In particular, T (G) is an algebraic subgroup
of G containing each torus of G.

By Lemma 4.1, the algebraic group G is connected. We denote by GL its largest
connected linear algebraic subgroup. In particular, G/GL is an abelian variety, so
it is G/GL is a pseudo-torus, and it is covered by T (G) (Fact 2.5 (iν)). Moreover,
we have GL = UoS for S a maximal reductive subgroup of GL and U its unipotent
radical. Since S is generated by its tori, we obtain S ≤ T (G).

Now let Q := d(U) denote the smallest definable subgroup of G containing U .
Since U is a unipotent group, Q is radicable and nilpotent, so Q is connected and
nilpotent. We show that Q = U . By Fact 2.5 (iii), Q has a unique maximal
pseudo-torus T . In particular T is normal in G and it is contained in each maximal
pseudo-torus of G, so we have T ≤ S(G) = 1. Thus Q is quasiunipotent and it is
contained in Q(G). Hence G is contained in Q(G)T (G), and we obtain the result.
�

Proposition 7.3. – Let G be an algebraic group over Q. Then, in the ACF -
expansion of the pure group G, the quotient T (G)/S(G) is definably affine.

Proof – We may assume G = T (G) and, by Fact 2.5 (iν), we may assume
S(G) = 1. Let T be a maximal pseudo-torus of G containing a maximal torus of G,
and let B be a Borel subgroup of G, in the algebraic sense, with B containing T .
Since S(B) is central in B (Remark 7.1), it is central in G too, and it is contained
in S(G) = 1 by the conjugacy of the maximal pseudo-tori (Fact 2.5 (i)). Moreover,
Fact 2.1 says that, for each minimal infinite definable T -normal section A of B, the
quotient T/CT (A) is definably affine. Thus, W (T )F (B)◦ is nilpotent, and since
B′ is nilpotent and connected, W (T )F (B)◦ is contained in F (B). Now Theorem
6.3 implies that W (T ) is central in B. Thus, by the conjugacy of the maximal
pseudo-tori in B (Fact 2.5 (i)), the subgroup W (T )◦ is contained in S(B) = 1, and
T is definably affine by Corollary 5.17. Now Theorem 5.9 yields the result. �

Lemma 7.4. – Let H be a normal connected definable subgroup of an ACF -group
G. If H is definably affine, then G/CG(H) is definably affine too.

Proof – Let K1, . . . ,Kn be interpretable fields such that H is definably affine
over K1, . . . ,Kn, and such that Ki is not definably isomorphic to Kj for each i 6= j.
For each i, we denote by Hi the largest connected definable subgroup of H definably
affine over Ki (Theorem 5.9). These subgroups are normal in G. By Proposition
5.11, H is generated by H1, . . . ,Hn. Hence, by Lemma 5.16, we may assume that
H is definably affine over one interpretable field K. Moreover, we may assume that
K is infinite.

Let L be an algebraically closed field such that G is interpretable in the pure
field L. By Fact 2.2, the fields K and L are isomorphic, definably in L. We
consider HoG/CG(H), where G/CG(H) acts on H by conjugation. It is isomorphic
to an algebraic group over L, definably in L. Since K and L are isomorphic,
definably in L, we find an isomorphism ϕ, definable in L, from H o G/CG(H)
to an algebraic group R over K. Since H is definably affine over K and since
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K and L are isomorphic, definably in L, the map ϕ|H : H → ϕ(H) is definable
in G. Moreover, since K and L are isomorphic, definably in L, the subgroup
V = ϕ(G/CG(H)) is algebraic over K, and it is definable in G. Now the semidirect
product R = ϕ(H) o V is definable in G. Thus, since ϕ|H is definable in G,
the graph ∆ = {(g, v) ∈ G/CG(H) × V | ∀h ∈ H, ϕ|H(g · h) = v · ϕ|H(h)} of
ϕ|G/CG(H) : G/CG(H) → V is definable in G too. From now on, G/CG(H) is
definably isomorphic to an algebraic group V over K.

We verify that V is affine. Since the ACF -group H is connected, and since
ϕ(H) and ϕ|H are definable in G, then ϕ(H) is connected in G too, and ϕ(H) is
connected in the pure field K. Thus V is an algebraic group acting faithfully over
a connected algebraic group, so it is affine by the Rosenlicht’s Theorem [17, §5,
Théorème 13]. This implies that G/CG(H) is definably affine over K. �

Corollary 7.5. – Let G be an algebraic group over Q. Then, in the ACF -expansion
of the pure group G, the quotient G/CG(T (G)) is definably affine.

Proof – By Corollary 5.13, we may assume that G is connected. In particular,
S(G) is central in G. We consider C = CG(T (G)/S(G)). Since [T (G), C] is
contained in S(G), each maximal pseudo-torus of G is normalized by C and, by
Fact 2.5 (ii), it is centralized by C◦. This implies that C◦ centralizes T (G), so
C/CG(T (G)) is a finite group. By Proposition 7.3 and Lemma 7.4, the quotient
G/C is definably affine. Then we obtain the result by Theorem 5.15. �

Lemma 7.6. – Let H be a normal definable subgroup of a connected ACF -group G.
If G/CG(H) is definably affine over the fields K1, . . . ,Kn, then [G,H] is definably
affine over K1, . . . ,Kn too.

Proof – We consider the semi-direct product R = H o G/CG(H), where
G/CG(H) acts on H by conjugation. Then R is an ACF -group, and the subgroup
S of R generated by the conjugates of G/CG(H) is definably affine over K1, . . . ,Kn

(Theorem 5.9). But S contains the definable subgroup [G,H], so [G,H] is definably
affine over K1, . . . ,Kn. �

Then we obtain a result on the abstract structure of the algebraic groups over
Q, and this one is fundamental for us.

Theorem 7.7. – Let G be a connected algebraic group over Q. Then, in the ACF -
expansion of the pure group G, the quotient G/Z(G) is definably linear, and G′ is
definably affine.

Furthermore, if U/Z(G) (resp. V/Z(G)) is the largest connected subgroup of
G/Z(G), definably linear over one interpretable field K (resp. L), and if K and L
are not definably isomorphic, then [U, V ] is trivial and U ′ ∩ V ′ is finite.

Proof – We show that G/Z(G) is definably affine. Let Q be the preimage of
Q(G/S(G)) in G. Since S(G) is central in G, the group Q is nilpotent, and Q/Z(Q)
is definably linear by Theorem 4.3. Moreover, by Corollary 7.5, the quotient
Q/CQ(T (G)) is definably affine, so QZ(G)/Z(G) is definably affine by Lemma 7.2.
Since Proposition 7.3 says that T (G)/S(G) is definably affine, T (G)Z(G)/Z(G) is
definably affine too. Hence G/Z(G) is definably affine by Theorem 5.9 and Lemma
7.2. Furthermore, Lemma 7.6 says that G′ is definably affine.

We show that G/Z(G) is definably linear. By Corollary 5.8, G/Z(G) has a finite
normal subgroup E/Z(G) such that G/E is definably linear. In particular, G cen-
tralizes E/Z(G), and E is nilpotent. We consider a bounded exponent subgroup B0
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of E covering E/Z(G). Then B0 is contained in a characteristic bounded exponent
subgroup B1 of E, and B1 is finite since Q is of characteristic zero. Hence B1 is
central in G, and E/Z(G) is trivial. This proves that G/Z(G) is definably linear.

By Lemma 7.6, the groups [G,U ] and [G,V ] are definably affine over K and L
respectively, so they are definably linear over K and L respectively. By Proposition
5.11, this implies that U ′ ∩ V ′ ≤ [G,U ] ∩ [G,V ] and [U, V ] ≤ [G,U ] ∩ [G,V ] are
finite. Moreover, we have [U, V ] = [U◦Z(G), V ] = [U◦, V ], so [U, V ] is connected,
and [U, V ] is trivial, as desired. �

8. Canonical development of G

In this section, we prove Theorem 1.1 in the special case K = Q (Lemma 8.10
and Theorem 8.14).

For the rest of this section, we fix a nontrivial connected algebraic group G over
Q, and we consider the ACF -expansion of the pure group G. By Theorem 7.7,
we find interpretable fields K1, . . . ,Kn such that Ki is not definably isomorphic to
Kj for each i 6= j, and such that G/Z(G) is definably linear over K1, . . . ,Kn. By
Lemma 5.6 and Proposition 5.11, if for each i we denote by Gi/Z(G) the largest
connected subgroup of G/Z(G) definably linear over Ki, the quotient G/Z(G) is
the direct product of the subgroups Gi/Z(G), and G′i = (G◦i )

′ is definably linear
over Ki for each i (Lemma 7.6). Moreover, Theorem 7.7 says that G is the central
product of G1, . . . , Gn, and we may assume that Gi/Z(G) is nontrivial for each i.

First we consider a purely algebraic lemma.

Lemma 8.1. – Let G̃ be a connected affine algebraic group over an algebraically
closed field K of characteristic zero. Then, for each positive integer n, up to iso-
morphism of algebraic groups, there is a unique connected affine algebraic extension
G∗ of G̃, with a normal finite subgroup X of exponent dividing n, and satisfying
the following property:

for each connected affine algebraic group H over K, if H has a normal finite sub-
group E of exponent dividing n such that G̃ and H/E are algebraically isomorphic,
there is an algebraic surjective homomorphism γ : G∗ → H such that γ(X) = E.

Proof – In this proof, any couple (H,E), where H is a connected affine algebraic
group over K and E a normal finite subgroup of H of exponent dividing n, is said
to be an n-extension of G̃ if G̃ and H/E are isomorphic as algebraic groups. We
consider the family E of the n-extensions of G̃ modulo the equivalence relation R
defined by the following assertion: “if (H1, E1) and (H2, E2)) are two n-extensions
of G̃, we denote by (H1, E1)R(H2, E2) the existence of an algebraic isomorphism
γ : H1 → H2 such that γ(E1) = E2.” We identify any n-extension of G̃ with its
class modulo R. Moreover, we consider the order relation ≤ on E defined by the
following assertion: “if (H1, E1) and (H2, E2)) are two elements of E , we denote
by (H1, E1) ≤ (H2, E2) the existence of an algebraic surjective homomorphism γ :
H2 → H1 such that γ(E2) = E1.”

First we notice that, for each element (H,E) of E , the order of E is at most nr,
where r denotes the Lie rank of the algebraic group G̃. Indeed, since E is finite
and since G̃ and H/E are isomorphic as algebraic groups, the rank of H is r too.
But the field K has characteristic zero, and E is finite and normal in H, so E
is contained in any maximal torus of H. Consequently, since the exponent of E
divides n, the order of E is at most nr.
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Now we have just to prove that, if (M,E) and (N,F ) are two maximal elements
of E , then (M,E)R(N,F ). Since M/E and N/F are isomorphic to G̃ as algebraic
groups, we may consider a subgroup ∆ of M ×N such that ∆/(E×F ) is the graph
of an isomorphism of algebraic groups from M/E to N/F . We consider D = ∆◦ and
A = D∩(E×F ). Then D, M and N have the same dimensions over K, and D∩M
and D∩N are contained in A. We consider the projection maps ρM : M ×N →M
and ρN : M × N → N . Since D, M and N have the same dimensions, and since
D ∩M and D ∩N are contained in A, the images of D by ρM and ρN are M and
N respectively. Moreover, we have

D ∩ ρ−1
M (E) = D ∩ (E ×N) = D ∩ (∆ ∩ (E ×N)) = D ∩ (E × F ) = A

and, in the same way, D ∩ ρ−1
N (F ) = A. In particular, (D,A) is an n-extension

of G̃ satisfying (M,E) ≤ (D,A) and (N,F ) ≤ (D,A). By the maximalities of
(M,E) and (N,F ), we obtain (M,E)R(D,A) and (N,F )R(D,A). Finally, we find
(M,E)R(N,F ), and we can take (G∗, X) = (M,E). �

For each i, we consider an algebraic complement Ci/G′i of Z(G)◦G′i/G
′
i in G◦i /G

′
i.

Since G is connected, the torsion part of Z(G) ∩ G′ is finite. Then, for each i, we
denote by ni the exponent of the torsion subgroup Xi of Z(G)◦∩G′i, and by Ci

∗
the

unique connected affine algebraic extension of Ci := Ci/Xi, with a normal finite
subgroup of exponent dividing ni and satisfying the property of Lemma 8.1.

Moreover, we fix an algebraic complement Z to (Z(G)◦ ∩ G′)◦ in Z(G)◦. We
note that, since G is the central product of G1, . . . , Gn, the group G′ is the central
product of G′1, . . . , G

′
n, and G is also the central product of Z and C1, . . . , Cn. Now

we obtain the following structural result on G.

Lemma 8.2. – The group G has a central finite subgroup F0 such that G/F0 is the
direct product of ZF0/F0 and of ×nk=1CkF0/F0.

Proof – Since G′j is definably linear over Kj for each j, Lemma 5.6 and
Corollary 5.8 imply that the Morley rank of Z(G) ∩ G′ =

∏n
j=1(Z(G) ∩ G′j) is∑n

k=1 rk(Z(G) ∩G′k). Then we obtain∑n
k=1 rk(Ck) =

∑n
k=1(rk(Gk)− rk(Z(G)◦) + rk(Z(G)◦ ∩G′k))

=
∑n
k=1(rk(Gk/Z(G)) + rk(Z(G) ∩G′k))

= rk(G/Z(G)) + rk(Z(G) ∩G′),
and rk(Z) +

∑n
k=1 rk(Ci) = rk(G/Z(G)) + rk(Z(G)) = rk(G). Thus, Z0 = Z ∩

(
∏n
k=1 Ck) is finite, and for each j, the group Ej = Cj ∩ (

∏
k 6=j Ck) is finite too.

Let F0 be the subgroup generated by Z0 and the subgroups Ej . Then F0 is finite
and central in G, and G/F0 is the direct product of ZF0/F0 and of ×nk=1CkF0/F0.
�

It is not clear that Ci is uniquely determined in the pure group G. However, we
will see that Ci

∗
is uniquely determined in the pure group G, up to isomorphism

of algebraic groups (Corollary 8.9). The proof need the following notion.

Definition 8.3. – A group A is said to be centrally indecomposable if there is no
decomposition of A under the form of a central product of two proper subgroups
having a finite intersection.

Lemma 8.4. – Let G be a connected affine algebraic group over an algebraically
closed field K of characteristic zero. If G is a central product of two proper closed
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subgroups U and V with U ∩ V finite, then G has a nonstandard automorphism α
centralizing U .

Furthermore, we may choose α such that, for any two infinite closed subgroups
U1 and V1 of U and V respectively, the isomorphism β : U1V1 → α(U1V1) induced
by α is nonstandard.

Proof – First we notice that U and V are infinite since G = UV is connected,
and since U and V are closed and proper in G. Let µ be a nontrivial field auto-
morphism of K. Since U ∩ V is finite, we may choose µ as centralizing U ∩ V . We
consider the automorphism α of G defined by α(uv) = µ(u)v for each u ∈ U and
each v ∈ V . Then α centralizes U .

Let U1 and V1 be two infinite closed subgroups of U and V respectively. We
assume toward a contradiction that the isomorphism β : U1V1 → α(U1V1) induced
by α is standard. Then we have β = γ ◦ ν for ν a field automorphism of K, and
γ an isogeny. We obtain ν(v) = γ−1(v) for each v ∈ V1. Since V1 is infinite, this
implies that ν is definable in the pure field K. Consequently, β is definable in the
pure field K too. Now, since U1 is infinite and since we have β(u) = µ(u) for each
u ∈ U1, the automorphism µ is definable in the pure field K too. In particular,
CK(µ) is a definable subfield of K, so either µ is trivial, or CK(µ) is finite. But the
field K has characteristic zero, so µ centralizes an infinite subfield of K. Hence µ
is trivial contradicting our choice of µ. �

Lemma 8.5. – For each i, we have C ′i = G′i and Z(Ci)◦ ≤ Z(G)◦ ∩ Ci ≤ C ′i.

Proof – Since Gi = G◦iZ(G) = CiZ(G), we have C ′i = G′i. In particular,
since G◦i /G

′
i is the direct product of Ci/G′i and of Z(G)◦G′i/G

′
i, we obtain Z(G)◦∩

Ci ≤ C ′i. Moreover, since G is the central product of G1, . . . , Gn, we have also
Z(Ci)◦ ≤ Z(G)◦ ∩ Ci. �

Proposition 8.6. – For each i, the groups Ci and Ci are centrally indecomposable.

Proof – We assume toward a contradiction that Ci is not centrally indecom-
posable. Let U and V be two proper subgroups of Ci having a finite intersection
and such that Ci is the central product of U and V . Since Ci is connected, U and
V are infinite. If U is abelian, then U centralizes Gi, and since Gi centralizes Gj
for each j 6= i by Theorem 7.7, we obtain U ≤ Z(G). Then Z(G)◦∩U is an infinite
subgroup of Z(G)◦ ∩ Ci ≤ C ′i = V ′, contradicting that U ∩ V is finite. Hence U is
not abelian. In the same way, V is not abelian. In particular, CCi

(U) = Z(U)V and
CCi

(V ) = UZ(V ) are proper in Ci. Moreover, by the connectedness of Ci, we find
Ci = CUCV , for CU := CCi(V )◦ and CV := CCi(U)◦, and this product is central.
Thus, Ci is the central product of two proper connected algebraic subgroups CU
and CV .

We consider an algebraic complement R/C ′U of (CU ∩ CV )◦C ′U/C
′
U in CU/C

′
U ,

and an algebraic complement S/C ′V of (R ∩ CV )◦C ′V /C
′
V in CV /C

′
V . Then Ci is

the central product of R and S, and (R ∩ S)◦ is contained in C ′U ∩ C ′V ≤ U ′ ∩ V ′,
therefore R ∩ S is finite. Since R ≤ CU and S ≤ CV are proper in Ci, they are
infinite. In the same way that for U and V , the subgroups R and S are not abelian,
and since they are connected, R′ and S′ are infinite.

By Lemma 8.4, the group Ci has a nonstandard automorphism α centralizing
R(Ci ∩ F0). Moreover, we may choose α such that the automorphism β of G′i =
C ′i = R′S′ induced by α is nonstandard. Since G is the central product of Z
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and C1, . . . , Cn, and since Ci ∩ (Z
∏
k 6=i Ck) is contained in Ci ∩ F0, there is an

automorphism µ of G centralizing Z
∏
k 6=i Ck and whose restriction to Ci is α. In

particular, the restriction of µ to C ′i is nonstandard. But C ′i = G′i is definably linear
over Ki, hence this contradicts Fact 3.6, and Ci is centrally indecomposable.

Finally, if Ci is the central product of two proper subgroups U1/Xi and V1/Xi

having a finite intersection, then U1 and V1 are two proper subgroups of Ci having
a finite intersection, satisfying Ci = U1V1, and such that [U1, V1] ≤ Xi is finite
and central in Ci. Let V2 be a subgroup of V1 such that Ci = U1V2, and such
that |U1 ∩ V2| is minimal among such subgroups. Then, for each u ∈ U1, the map
adu : V2 → Xi, defined for each v ∈ V2 by adu(v) = [u, v], is an homomorphism.
Moreover, its kernel V3 has finite index in V2. But Q has characteristic zero and
Ci is connected, so Ci has no proper subgroup of finite index. Hence we have
Ci = U1V3, and V3 = V2 by the choice of V2. Thus Ci is the central product of
U1 and V2, contradicting the previous paragraphs. Consequently, Ci is centrally
indecomposable. �

Proposition 8.7. – If A is any affine algebraic group over Q abstractly isomorphic
to Ci, then A is isomorphic to Ci as algebraic groups.

Proof – We have to find an isomorphism between A and Ci, definable in the
pure field Q. Let α be an abstract isomorphism between A and Ci. For each
isomorphism α0 : A → Ci, we denote by α0 the isomorphism between A/Z(A)◦

and Ci/Z(Ci)◦, induced by α0. By Proposition 8.6, the group Ci is centrally in-
decomposable, and since it is connected, then Theorem 7.7 implies that, in the
ACF -expansion of the pure group Ci, the quotient Ci/Z(Ci) is definably linear
over one interpretable field. Then Ci/Z(Ci)◦ is definably linear over one inter-
pretable field too, by Proposition 5.14. Now Fact 3.6 says that the isomorphism
α : A/Z(A)◦ → Ci/Z(Ci)◦ is standard. Thus, there is an automorphism δ of Ci,
induced by a field automorphism of Q, such that α ◦ δ−1

= α ◦ δ−1 is an isomor-
phism of algebraic groups. Let µ = α ◦ δ−1, and let ∆ be its graph. Then, if
Z1 = Z(A)◦ × Z(Ci)◦, the group ∆Z1 = ∆Z(A)◦ = ∆Z(Ci)◦ is definable in the
pure field Q. This implies that (∆Z1)′ = ∆′ is definable in the pure field Q too.

We consider an algebraic complement D/∆′ of Z1∆′/∆′ in ∆Z1/∆′. Then, since
∆Z1/Z1 is the graph of µ, we have D ∩A ≤ ∆Z1 ∩A = Z1. So we obtain

D ∩A ≤ (D ∩ Z1) ∩A ≤ ∆′ ∩A ≤ ∆ ∩A.

Thus, since ∆ is the graph of an isomorphism from A to Ci, we find D ∩A = 1. In
the same way, D ∩Ci is trivial. If ZC/Xi denotes the center of Ci, then [Ci, ZC ] is
contained in Xi, and it is connected since Ci is connected, so ZC = Z(Ci). Hence
Z(Ci)◦ is contained in Ci

′
by Lemma 8.5. This proves that ∆′ contains the graph

of the restriction of µ to Z(A)◦, and it implies that ∆′Z1 = ∆′Z(A)◦ = ∆′Z(Ci)◦,
so AD ≥ A∆′ contains Z1. Now AD contains ∆ ≤ ∆Z1 = DZ1, and it contains Ci
too since ∆ is the graph of µ. Consequently, we have AD = ACi and, in the same
way, CiD = ACi. Since D is an algebraic subgroup satisfying D ∩A = D ∩Ci = 1
and AD = CiD = ACi, it is the graph of an isomorphism of algebraic groups from
A to Ci, and the proof is finished. �

Corollary 8.8. – Let A be a centrally indecomposable subgroup of Gi containing
G′i. If it is a complement of Z(G)◦G′i/G

′
i in G◦i /G

′
i then, up to isomorphism of
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algebraic groups, Ci is the only affine algebraic group over Q such that the abstract
groups A := A/Xi and Ci are isomorphic.

Proof – The group (Z(G)◦ ∩ G′i)/Xi is definable in the pure group G, and it
is torsion-free, so it is divisible and it has a complement S/Xi in Z(G)◦/Xi. Then
we have Gi = AS = CiS, and A/(A ∩ S) is isomorphic to Ci/(Ci ∩ S) as algebraic
groups. Moreover, the group A ∩ S is contained in A ∩Z(G)◦ ≤ Z(G)◦ ∩G′i = Xi,
so A∩S = Xi. In the same way, we have Ci ∩S = Xi, so A and Ci are isomorphic
as abstract groups, and the conclusion follows from Proposition 8.7. �

Corollary 8.9. – The algebraic groups Ci and Ci
∗

depend just on the ACF -group
Gi.

Proof – Since G is the central product of G1, . . . , Gn, then we have Z(Gi) =
Z(G), and the result follows from Corollary 8.8. �

From now on, we consider the direct product D(G) of the groups C1
∗
, . . . , Cn

∗
,

and of an abelian group T (G) which is Q+ if Z(G)◦G′/G′ is nontrivial and torsion-
free, otherwise it is (Q

∗
)r where r is the Lie rank of Z(G)◦G′/G′. We note that

D(G) depends just on the pure group G by Corollary 8.9.
By the choice of T (G), there is an integer s such that Z(G)◦G′/G′ is isomor-

phic to T (G) × Qs+ as algebraic groups, so T (G) × Qs+ is isomorphic to Z '
Z(G)◦/(Z(G)◦ ∩ G′)◦ too. Consequently, since for each i there is a surjective
algebraic homomorphism from Ci

∗
to Ci with finite kernel, there is a natural sur-

jective algebraic homomorphism γG from D(G)×Qs+ to G, with finite kernel F by
Lemma 8.2. Moreover, F is central in D(G)×Qs+ and, since Q

s

+ is torsion-free, F is
contained in D(G). Since T (G) and T (G)/(T (G) ∩ F ) are isomorphic as algebraic
groups, we may choose F such that T (G) ∩ F is trivial.

We note that we have [D(G)×Qs+, γ−1
G (Z(G))] ≤ F , so γ−1

G (Z(G)) = Z(D(G)×
Q
s

+) since D(G)×Qs+ is connected. Therefore we find, for each i,

γ−1
G (Gi) = Ci

∗
Z(D(G)×Qs+).

Lemma 8.10. – There is an abstract isomorphism from G to D(G)/F .
Furthermore, if G′ does not contain Z(G)◦, then there is an abstract isomorphism

µ : D(G)/F → D(G)/F ×Qt+ for each integer t.

Proof – We may assume Z(G)◦ � G′, and t ≥ 1. Let R be the torsion part of
T (G). Then T (G) = R×S, for a direct product S of countably many copies of Q+.
In particular, since Q

t

+ is a direct product of countably many copies of Q+ too, the
groups T (G) and T (G)×Qt+ are abstractly isomorphic. More precisely, there is an
abstract isomorphism α : T (G) → T (G) × Qt+ such that α(r) = r for each r ∈ R.
This gives an abstract isomorphism α∗ : D(G)→ D(G)×Qt+ such that α∗(x) = x

for each x ∈ (×ni=1Ci
∗
) × R. But F is finite, so it is contained in (×ni=1Ci

∗
) × R,

and we obtain the desired isomorphism µ : D(G)/F → D(G)/F ×Qt+. �

However, by the following remark, F depends on the algebraic structure of G,
and not just of the abstract structure of G. This is a serious problem for us.

Remark 8.11. – Let r ≥ 5 be a prime integer, and let G = H1 × H2 where H1

and H2 are two copies of the group H = Q+ oQ
∗
, where the action of Q

∗
on Q+



50 OLIVIER FRÉCON

is defined by:
for each (a, x) ∈ Q∗ ×Q+, a · x = arx.

Let ∆ be the graph in G of the identity automorphism of H, and let Z be the center
of ∆. Now let δ be a field automorphism of Q such that there exists t ∈ Q∗ of order
r and satisfying δ(t) 6= t and δ(t) 6= t−1. This is possible since r ≥ 5. Let µ be the
automorphism of G defined for each (h1, h2) ∈ H1 ×H2 by µ(h1, h2) = (δ(h1), h2).
Then µ induces an abstract isomorphism from G/Z to G/µ(Z). However, the
algebraic groups G/Z and G/µ(Z) are not isomorphic.

Indeed, suppose toward a contradiction that there is an isomorphism f : G/Z →
G/µ(Z) of algebraic groups. Then, for i = 1, 2, we have either f(HiZ/Z) =
H1µ(Z)/µ(Z), or f(HiZ/Z) = H2µ(Z)/µ(Z). Let T be a maximal torus of ∆,
and let T0 be a maximal torus of G containing T . Then T contains Z, and T/Z
(resp. T0/Z) is a maximal torus of ∆/Z (resp. G/Z). Moreover, T0µ(Z)/µ(Z) is
a maximal torus of G/µ(Z), and by the conjugacy of the maximal tori in G/µ(Z),
we may assume f(T0/Z) = T0µ(Z)/µ(Z).

Now let S/µ(Z) = f(T/Z). Then S is of dimension one over Q, and since
S/µ(Z) is a torus, S◦ is a torus. We have T ∩ Hi ≤ ∆ ∩ Hi = 1 for i = 1, 2, so
T/Z ∩HiZ/Z = 1 for i = 1, 2, and S/µ(Z) ∩Hiµ(Z)/µ(Z) = 1 for i = 1, 2. For
i = 1, 2, we have Z ∩Hi ≤ ∆ ∩Hi = 1 so, since µ is an abstract automorphism of
G such that µ(Hi) = Hi, we have µ(Z)∩Hi = 1. Consequently S ∩Hi ≤ µ(Z)∩Hi

is trivial for i = 1, 2.
Since T0 is a maximal torus of G, it has the form T0 = T1 × T2, where Ti is a

maximal torus of Hi for i = 1, 2. Since S is a torus contained in T0µ(Z) and since
µ(Z) is finite, we have S◦ ≤ T0. Now, since T1, T2, T and S◦ are of dimension one
over Q, the groups T and S◦ are the graphs of two isomorphisms α and β of algebraic
groups from T1 to T2. Moreover, since dim(Ti) = 1 for i = 1, 2, there are precisely
two isomorphisms of algebraic groups from T1 to T2, so we have either α = β or
β(x) = α(x)−1 for each x ∈ T1. In the first case, we have T = S◦, so S contains
Zµ(Z). But the existence of t ∈ Q∗ of order r such that δ(t) 6= t implies Z 6= µ(Z),
so Zµ(Z) has order r2 since r is a prime, and we have Zµ(Z) = Z(H1)× Z(H2).
This contradicts S ∩ Hi = 1 for i = 1, 2. Hence we have β(x) = α(x)−1 for each
x ∈ T1.

Let Z−1 be the graph in G of the automorphism inversion of Z(H). Since we
have β(x) = α(x)−1 for each x ∈ T1, we have Z−1 ≤ S◦. Moreover, the existence
of t ∈ Q∗ of order r such that δ(t) 6= t−1 implies Z−1 6= µ(Z), so Z−1µ(Z) has
order r2 since r is a prime, and we have Z−1µ(Z) = Z(H1)×Z(H2). But we have
S ∩Hi = 1 for i = 1, 2, so the latter implies that S does not contain Z−1. Thus,
there is no isomorphism of algebraic groups from G/Z to G/µ(Z).

Lemma 8.12. – Let X and Y be two finite subgroups of an algebraic torus T
over Q. If there is an isomorphism δ : X → Y , then there is a quasi-standard
automorphism ϕ of T such that ϕ(x) = δ(x) for each x ∈ X.

Proof – Let X = X1 × · · · × Xr be a decomposition of X where, for each
i, Xi is cyclic and, if i > 1, its order divides the one of Xi−1. For each i, we
consider Yi = δ(Xi). We show, by induction on r, that there exists a direct product
T1 × · · · × Tr of subtori of T with dimension one, such that Ti contains Xi for each
i. We may assume that T contains a direct product S = T1 × · · · × Tr−1 of subtori
with dimension one, such that Ti contains Xi for each i ≤ r − 1. For each prime
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p dividing |Xr|, there are pr−1 − 1 elements of order p in S, and since |Xi| divides
|Xi−1| for each i > 1, there are pr−1 − 1 elements of order p in X1 × · · · × Xr−1

too. Consequently, S ∩Xr is trivial.
We note that Xr is contained in a subtorus R of T with dimension one. Indeed,

otherwise, if we consider a subtorus R1 of T containg X and with minimal dimen-
sion, then R1 has a subtorus R2 such that R1/R2 has dimension two. Let T1 and T2

be two subtori of R1/R2 such that R1/R2 = T1×T2. Let x be the image in R1/R2

of a generator x of Xr. By the minimality of dim(R1), we have x 6∈ Ti \ {1} for
i = 1, 2, so we have x = (t1, t2) with ti ∈ Ti for i = 1, 2. Let µ be an isomorphism
of algebraic groups from T1 to T2. Then we find t ∈ T1 and (a, b) ∈ N2 such that
t1 = t

a and t2 = µ(t)b. Now we consider R = {(ua, µ(u)b) | u ∈ T1}. Then R is the
image of a nonzero algebraic homomorphism from T1 to R1/R2, so R is a subtorus
with dimension one. But R contains x, hence its preimage R0 is a subtorus of R1

containing Xr. Since we have dim(R0) = dim(R1) − 1, we have a contradiction
with the choice of R1, and Xr is contained in a subtorus R of T with dimension
one.

Now SR is a subtorus of T , and we find a subtorus V of SR such that SR = S×V .
we have x = (s, v) for s ∈ S and v ∈ V \ {1}. Let c1 and d1 be the orders of s
and v respectively. Then c1 and d1 divides |Xr|, and we consider c := |Xr|/c1.
The previous paragraph applied with 〈s〉 yields a subtorus S1 of S with dimension
one and containing s. Let γ : S1 → V be an isomorphism of algebraic groups, and
let y ∈ S1 of order |Xr| such that yc = s. Then there exists an integer e dividing
|Xr| such that γ(y)e = v. Since |Xi| divides |Xi−1| for each i > 1, any element
of S with order dividing |Xr| belongs to X1 × · · · ×Xr−1. In particular, we have
y ∈ X1 × · · · × Xr−1. Let Q := {(uc, γ(u)e) | u ∈ S1}. Since Q is the image
of a nontrivial algebraic homomorphism from S1 to S × V , it is a subtorus with
dimension one. Moreover, Q contains x, and since S ∩Xr = 1, no element of S ∩Q
has order dividing |Xr|. But we have S ∩Q = S1 ∩Q = {uc | u ∈ S1, u

e = 1}, and
e divides |Xr|, hence each element of S ∩ Q has order dividing e and |Xr|. This
proves that S ∩ Q = 1, and we may choose Tr to be Q. Thus, as claimed, there
exists a direct product T1 × · · · × Tr of subtori of T with dimension one, such that
Ti contains Xi for each i.

In the same way, there exists a direct product T ′1 × · · · × T ′r of subtori of T
with dimension one, such that T ′i contains Yi for each i. Let T0 (resp. T ′0) be an
algebraic complement of T1 × · · · × Tr (resp. T ′1 × · · · × T ′r) in T . Then T0 and
T ′0 are two tori of dimension dim(T ) − r, so there is an isomorphism of algebraic
groups ϕ0 : T0 → T ′0. For each i = 1, . . . , r, let ϕi : Ti → T ′i be an isomorphism
of algebraic groups. Since T = T0 × T1 × · · · × Tr = T ′0 × T ′1 × · · · × T ′r, the map
ϕ′ : T → T , defined by ϕ′(ui) = ϕi(ui) for each i and each ui ∈ Ti, is an algebraic
automorphism of T . Moreover, for each i, the subgroup Xi (resp. Yi) is the only
subgroup of Ti (resp. T ′i ) of order |Xi| = |Yi|, so we have ϕ′(Xi) = Yi for each i.

For each i = 1, . . . , r, let xi be a generator of Xi. Then, for each i, ϕ′(xi) and
δ(xi) are two elements of order |Xi| in T ′i , so there is a field automorphism βi of
Q such that (ϕ′ ◦ βi)(xi) = δ(xi). Let ϕ be the automorphism of T , defined by
ϕ(u0) = ϕ′(u0) for each u0 ∈ T0, and by ϕ(ui) = (ϕ′ ◦ βi)(ui) for each i = 1, . . . , r.
Thus ϕ is a quasi-standard automorphism of T , and it satisfies ϕ(x) = δ(x) for each
x ∈ X, as desired. �

Lemma 8.13. – For each i, the exponent of Yi := γ−1
G (Xi) ∩ Ci

∗
Z(D(G))◦ is ni.
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Moreover, Yi is finite and central in D(G), and we have Yi = (γ−1
G (Xi) ∩

Ci
∗
)(γ−1

G (Xi) ∩ T (G)).

Proof – Since Xi ≤ Z(G) is finite and central in G, and since the kernel F of
γG is finite, then Yi ≤ γ−1

G (Xi) is finite and normal in D(G). Moreover, since D(G)
is connected, then Yi is central in D(G).

By the choice of Ci
∗
, the exponent of Y Ci := γ−1

G (Xi) ∩ Ci
∗

is ni. Since we
have Xi ≤ Ci = γG(Ci

∗
), we obtain Xi = γG(Y Ci ). Now we consider Y Ti :=

γ−1
G (Xi) ∩ T (G). Since T (G) ∩ F is trivial and since the exponent of Xi is ni, the

exponent of Y Ti divides ni, and we have just to prove that Y Ci Y
T
i contains Yi.

Let u ∈ Yi. Then there exist c ∈ Ci
∗

and z ∈ Z(D(G))◦ such that u = cz.
Since we have γG(Ci

∗
) = Ci and γG(Z(D(G))◦) = γG(Z(D(G)))◦ = Z(G)◦, we

find γG(c) ∈ Ci and γG(c) = γG(u)γG(z−1) ∈ XiZ(G)◦ = Z(G)◦. Thus we
obtain γG(c) ∈ Ci ∩ Z(G)◦ = G′i = (G◦i )

′ = C ′i, and there exists c′ ∈ (Ci
∗
)′

such that γG(c) = γG(c′). Now we have u = (cc′−1)(c′z) with cc′−1 ∈ Ci
∗

and
c′z ∈ (Ci

∗
)′Z(D(G))◦. Since we have γG(cc′−1) = γG(c)γG(c′)−1 = 1 ∈ Xi, we find

cc′−1 ∈ Y Ci . Consequently, we have just to prove that c′z belongs to Y Ci Y
T
i .

Since D(G) is the direct product of C1
∗
, . . . , Cn

∗
and of T (G), the subgroup

Z(D(G))◦ is the direct product of Z(C1
∗
)◦, . . . , Z(Cn

∗
)◦ and of T (G). Moreover

Lemma 8.5 implies that (Ci
∗
)′ contains Z(Ci

∗
)◦, therefore (Ci

∗
)′Z(D(G))◦ is the

direct product of (Ci
∗
)′, T (G) and of the groups Z(Ck

∗
)◦ for k 6= i. But, for each

k 6= i, the torsion part of Z(Ck
∗
)◦ is contained in the maximal torus Tk of Z(Ck

∗
)◦,

and Tk is trivial since Z(Ck
∗
)◦ is contained in (Ck

∗
)′ by Lemma 8.5. Hence the

torsion part of (Ci
∗
)′Z(D(G))◦ is contained in (Ci

∗
)′ × T (G).

Since Xi and F are finite, then γ−1
G (Xi) is finite too, and since γG(c′z) =

γG(c)γG(z) = γG(u) belongs to Xi, the element c′z is of finite order. Thus c′z
belongs to (Ci

∗
)′ × T (G), and there exist d ∈ (Ci

∗
)′ and t ∈ T (G) such that

c′z = dt. Moreover, since c′z has finite order, the elements d and t have finite
orders too. Now we find γG(t) = γG(d)−1γG(c′z) ∈ C ′iXi = C ′i, and γG(t) ∈
C ′i ∩γG(T (G)) ≤ C ′i ∩Z(G)◦, so γG(t) is a torsion element of C ′i ∩Z(G)◦ and γG(t)
belongs to Xi. This proves that t belongs to Y Ti . Furthermore, this proves that
γG(d) = γG(c′z)γG(t)−1 belongs to Xi, so we obtain d ∈ Y Ci and c′z = dt belongs
to Y Ci Y

T
i , as desired. �

Theorem 8.14. – Let H be an affine algebraic group over Q. If H and G are
abstractly isomorphic, then there is a quasi-standard automorphism α of D(G),
and an isomorphism of algebraic groups between H and

• D(G)/α(F )×Qt+ for an integer t if G′ does not contains Z(G)◦;
• D(G)/α(F ) if G′ contains Z(G)◦.

Proof – Let δ0 : G → H be an abstract isomorphism. Since H and G are
abstractly isomorphic, and since G is connected, then H is connected too and, in
the ACF -expansion of the pure group H, we find interpretable fields L1, . . . , Ln
such that Li is not definably isomorphic to Lj for each i 6= j, and such that
H/Z(H) is definably linear over L1, . . . , Ln. For each i, we denote by Hi/Z(H) the
largest connected subgroup of H/Z(H) definably linear over Li. We may assume
Hi = δ0(Gi) for each i. Moreover, since H ' G, we may assume D(H) = D(G), and
even that T (H) = T (G) and that the groups C1

∗
, . . . , Cn

∗
for H are the same that
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for G. Let t be the integer such that Z(H)◦H ′/H ′ and T (H)×Qt+ are isomorphic as
algebraic groups. Then we consider the natural surjective algebraic homomorphism
γH : D(H)×Qt+ → H. It satisfies γ−1

H (Hi) = Ci
∗
Z(D(H)×Qt+) for each i, and its

kernel E is a central finite subgroup of D(H) = D(G), and it verifies E∩T (H) = 1.
By Lemma 8.10, the quotient D(G)/F (resp. D(G)/E) is abstractly isomorphic

to G (resp. H), so there is an abstract isomorphism δ : D(G)/F → D(G)/E. We
notice that, if G′ contains Z(G)◦, then we have s = 0, and H ′ contains Z(H)◦

too, so t = 0. Hence, in all the cases, we have just to prove that there is a
quasi-standard automorphism α of D(G) such that D(G)/E and D(G)/α(F ) are
isomorphic as algebraic groups. In particular, since G and D(G)/F (resp. H and
D(H)/E) are abstractly isomorphic by Lemma 8.10, we may assume G = D(G)/F
(resp. H = D(H)/E), and δ = δ0. Thus we have s = 0 and t = 0, and Hi = δ(Gi)
for each i. From now on, the main difficulty for the proof is to find a quasi-standard
automorphism α of D(G) such that D(G)/Z(D(G))◦α(F ) and D(G)/Z(D(G))◦E
are isomorphic as algebraic groups.

For each i, we consider Pi := Ci
∗
Z(D(G)) = γ−1

G (Gi) = γ−1
H (Hi). Then, for

each i, we have Gi = Pi/F , Hi = Pi/E, and δ(Pi/F ) = Pi/E. Let ZF /F :=
Z(G) = Z(D(G)/F ) and ZE/E := Z(H) = Z(D(G)/E). Then [D(G), ZF ] is a
connected subgroup of the finite subgroup F , so ZF is central in D(G), and since
it contains Z(D(G)), we obtain ZF = Z(D(G)). In the same way, for each central
finite subgroup Y of D(G), we have Z(D(G)/Y ) = Z(D(G))/Y . In particular,
we obtain ZE = Z(D(G)). Now the algebraic groups Pi/Z(D(G)), Gi/Z(G) and
Hi/Z(H) are isomorphic. Moreover, since G/Z(G) is the direct product of the
groups G1/Z(G), . . . , Gn/Z(G), we have

D(G)/Z(D(G)) = P1/Z(D(G))× · · · × Pn/Z(D(G)).

But, for each i, in the ACF -expansion of the pure group G, the quotient Gi/Z(G)
is definably linear over Ki, so Fact 3.6 says that the isomorphism from Gi/Z(G)
to Hi/Z(H) induced by δ is a standard isomorphism. Hence, for each i, since
Pi/Z(D(G)), Gi/Z(G) and Hi/Z(H) are isomorphic as algebraic groups, the auto-
morphism δ∗i of Pi/Z(D(G)) induced by δ, is a standard automorphism. In other
words, for each i, there is a field automorphism ϕi of Q, such that the automorphism
δϕi := δ∗i ◦ ϕ

−1
i of Pi/Z(D(G)) is algebraic over Q.

We fix i, and we consider the preimage Ω of the graph of δϕi in Pi × Qi. It
is an algebraic subgroup and, since Pi/Z(D(G)) ' Gi/Z(G) is connected, then
Ω/(Z(D(G)) × Z(D(G))) is connected too, and we have Ω = Ω◦(Z(D(G)) ×
Z(D(G))).

We consider the group Y Hi := γ−1
H (XH

i )∩Ci
∗
Z(D(G))◦ = γ−1

H (XH
i )∩P ◦i , where

XH
i is the torsion part of Z(H)◦ ∩H ′i. Then we have δ(YiF/F ) = δ(γ−1

G (Xi)/F ∩
Ci
∗
Z(D(G))◦F/F ) = δ(γ−1

G (Xi)/F ) ∩ δ(Ci
∗
Z(D(G))◦F/F ). But we have G =

D(G)/F , so γ−1
G (Xi)/F is precisely Xi, that is the torsion part of Z(G)◦ ∩ G′i.

Hence δ(γ−1
G (Xi)/F ) is the torsion part of Z(H)◦ ∩ H ′i, that is δ(γ−1

G (Xi)/F ) =
XH
i . Moreover, we have Pi = Ci

∗
Z(D(G)), so we find δ(Ci

∗
Z(D(G))◦F/F ) =

δ(P ◦i F/F ) = P ◦i E/E, and we obtain δ(YiF/F ) = XH
i ∩P ◦i E/E = (γ−1

H (XH
i )/E)∩

(P ◦i E/E) = (γ−1
H (XH

i ) ∩ P ◦i )E/E = Y Hi E/E. Thus, the isomorphism δ induces
an isomorphism δ∗i : P ◦i F/YiF → P ◦i E/Y

H
i E and, since we have P ◦i ∩ F ≤ Yi ≤

P ◦i and P ◦i ∩ E ≤ Y Hi ≤ P ◦i , the isomorphism δ induces an isomorphism δ0
i :
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P ◦i /Yi → P ◦i /Y
H
i . We consider the isomorphism δi := δ0

i ◦ ϕ
−1
i from P ◦i /Yi to

P ◦i /Y
H
i . Let δi be the isomorphism from P ◦i /Z(D(G))◦Yi to P ◦i /Z(D(G))◦Y Hi

induced by δi. Since Z(D(G))◦Yi and Z(D(G))◦Y Hi have finite index in Z(D(G)),
then the graph of δi has finite index in Ω/(Z(D(G))◦Yi × Z(D(G))◦Y Hi ), because
Ω/(Z(D(G))×Z(D(G))) is the graph of δϕi . Since Q is an algebraically closed field
and of characteristic zero, the connected algebraic groups over Q have no proper
subgroup of finite index. In particular, P ◦i /Z(D(G))◦Yi has no proper subgroup of
finite index, so the graph of δi has no proper subgroup of finite index. Moreover,
by considering ΩY := Ω◦(Yi × Y Hi ) and ZY := Z(D(G))◦Yi × Z(D(G))◦Y Hi , then
the group ΩY /ZY is connected, so ΩY /ZY has no proper subgroup of finite index.
This implies that the graph of δi is ΩY /ZY . In particular, δi is an isomorphism of
algebraic groups.

Let Θ denote the preimage in P ◦i × P ◦i of the graph of δi. Then we have ΩY =
ΘZY , and Ω′Y (Yi × Y Hi )/(Yi × Y Hi ) = Θ′(Yi × Y Hi )/(Yi × Y Hi ) is the graph of the
restriction of δi to (P ◦i )′/Yi. Moreover, since ZY Ω′Y /Ω

′
Y (Yi × Y Hi ) is a connected

algebraic subgroup of the connected abelian group ΩY /Ω′Y (Yi × Y Hi ), it has an
algebraic complement W0/Ω′Y (Yi × Y Hi ).

(1) The algebraic groups W := W ◦0 and Ci
∗

are isomorphic, and W ∩ (Zi×P ◦i )
and W ∩ (P ◦i × Zi) are trivial. Moreover, the image of the first (resp. the second)
projection of W (Zi × Zi) in P ◦i × P ◦i is surjective.

For each k, let Zk := T (G) × (×j 6=kZ(Cj
∗
)◦). Then we have Z(D(G))◦ =

Z(Ck
∗
)◦ × Zk for each k. Let ZW := ZiYi × ZiY Hi ≤ P ◦i × P ◦i . Since Lemma 8.5

gives Z(Ci
∗
)◦ ≤ (Ci

∗
)′, we obtain ZY ≤ ((P ◦i )′ × (P ◦i )′)ZW . Then W0((P ◦i )′ ×

(P ◦i )′)ZW contains Ω◦ ≤ ΩY and, since ΩY /ZY is the graph of the isomorphism δi :
P ◦i /Z(D(G))◦Yi → P ◦i /Z(D(G))◦Y Hi , its first (resp. second) projection in P ◦i ×P ◦i
is surjective. Moreover, since Ω′Y (Yi×Y Hi )/(Yi×Y Hi ) = Θ′(Yi×Y Hi )/(Yi×Y Hi ) is
the graph of the restriction to (P ◦i )′Yi/Yi of the isomorphism δi : P ◦i /Yi → P ◦i /Y

H
i ,

the first (resp. second) projection of W0Ω′Y ZW in P ◦i × P ◦i is surjective too. But
W0 contains Ω′Y , so we have (W0Ω′Y ZW )◦ = (W0ZW )◦ ≤ WZW , and since P ◦i is
connected, the first (resp. second) projection of WZW in P ◦i × P ◦i is surjective.

We verify that rk(W ) = rk(Ci
∗
). We have

rk(W ) = rk(W0)
= rk(W0/Ω′Y (Yi × Y Hi )) + rk(Ω′Y (Yi × Y Hi ))
= (rk(ΩY /Ω′Y (Yi × Y Hi ))− rk(ZY Ω′Y /Ω

′
Y (Yi × Y Hi )))

+rk(Ω′Y (Yi × Y Hi )),

and since Yi×Y Hi is finite, we obtain rk(W ) = rk(ΩY )−rk(ZY Ω′Y /Ω
′
Y ) = rk(ΩY )−

(rk(ZY )− rk(ZY ∩ Ω′Y )). Moreover, by definition of Ω, we have

rk(ΩY ) = rk(Ω)
= rk(Ω/(Z(D(G))× Z(D(G)))) + rk(Z(D(G))× Z(D(G)))
= rk(Pi/Z(D(G))) + rk(ZY )
= rk(P ◦i /Z(D(G))◦Yi) + rk(ZY )
= rk(Ci

∗
Z(D(G))◦/Z(D(G))◦) + rk(ZY )

= rk(Ci
∗
/(Ci

∗ ∩ Z(D(G))◦)) + rk(ZY )
= rk(Ci

∗
)− rk(Ci

∗ ∩ Z(D(G))◦) + rk(ZY ),
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and since D(G) is the direct product of Ci
∗

by another connected algebraic group,
we obtain rk(ΩY ) = rk(Ci

∗
) − rk(Z(Ci

∗
)◦) + rk(ZY ). Since for each central fi-

nite subgroup Y of D(G) we have Z(D(G)/Y ) = Z(D(G))/Y , then we have
Z(D(G)/Yi) = Z(D(G))/Yi. Since D(G) is the central product of the groups
P1, . . . , Pn, we have Z(P ◦i /Yi) = Z(D(G)/Yi) ∩ P ◦i /Yi. Therefore, since Pi con-
tains Z(D(G)), we obtain

Z(P ◦i /Yi)
◦ = (Z(D(G)/Yi)∩P ◦i /Yi)◦ = (Z(D(G))/Yi∩P ◦i /Yi)◦ = Z(D(G))◦Yi/Yi.

In the same way, we have Z(P ◦i /Y
H
i )◦ = Z(D(G))◦Y Hi /Y Hi , so

δi(Z(D(G))◦Yi/Yi) = Z(D(G))◦Y Hi /Y Hi .

Since Ω′Y (Yi × Y Hi )/(Yi × Y Hi ) = Θ′(Yi × Y Hi )/(Yi × Y Hi ) is the graph of the
restriction to (P ◦i )′Yi/Yi of δi, the latter proves that (ZY ∩ Ω′Y )Yi/Yi is the graph
of the restriction to (Z(D(G))◦Yi ∩ (P ◦i )′Yi)/Yi of δi. Now, since Yi × Y Hi is finite,
we have rk(ZY ∩ Ω′Y ) = rk(Z(D(G))◦Yi ∩ (P ◦i )′Yi) = rk(Z(D(G))◦ ∩ (P ◦i )′) =
rk(Z(D(G))◦ ∩ (Ci

∗
)′) = rk(Z(Ci

∗
)◦ ∩ (Ci

∗
)′), and since Lemma 8.5 implies that

(Ci
∗
)′ contains Z(Ci

∗
)◦, we obtain rk(ZY ∩ Ω′Y ) = rk(Z(Ci

∗
)◦), and

rk(W ) = rk(ΩY )− rk(ZY ) + rk(ZY ∩ Ω′Y )
= (rk(Ci

∗
)− rk(Z(Ci

∗
)◦) + rk(ZY ))− rk(ZY ) + rk(Z(Ci

∗
)◦)

= rk(Ci
∗
),

as claimed.
We show that W/(W ∩ (Yi × Y Hi )) and Ci are isomorphic as algebraic groups.

Indeed, there is an isomorphism of algebraic groups between Ci and

γ−1
G (Ci)/γ−1

G (Xi) = Ci
∗
γ−1
G (Xi)/γ−1

G (Xi) ' Ci
∗
/(γ−1

G (Xi) ∩ Ci
∗
),

and since we have P ◦i = Ci
∗
Z(D(G))◦ = Ci

∗×Zi, the groups P ◦i /(γ
−1
G (Xi)∩Ci

∗
)Zi

and Ci are isomorphic as algebraic groups. Thus, since Zi contains γ−1
G (Xi) ∩

T (G) ≤ T (G), the algebraic groups Ci and P ◦i /YiZi are isomorphic by Lemma
8.13, so Ci and (P ◦i × P ◦i )/(YiZi × P ◦i ) are isomorphic too. Now, since the first
projection of WZW in P ◦i ×P ◦i is surjective, that is WZW ({1}×P ◦i ) = P ◦i ×P ◦i , the
algebraic groups Ci and WZW /(WZW ∩ (YiZi×P ◦i )) are isomorphic. Hence, since
ZW is contained in YiZi×P ◦i , the algebraic groups Ci and W/(W ∩ (YiZi×P ◦i )) =
W/(W∩(WZW∩(YiZi×P ◦i ))) are isomorphic. In particular, since we have rk(W ) =
rk(Ci

∗
) = rk(Ci) by the previous paragraph, the intersection W ∩ (YiZi × P ◦i ) is

finite. Since ΩY /ZY is the graph of δi, we have ΩY ∩ (Z(D(G))◦Yi×P ◦i ) = ZY and
W ∩ (YiZi×P ◦i ) ≤ ΩY ∩ (Z(D(G))◦Yi×P ◦i ) is contained in W ∩ZY ≤W0 ∩ZY ≤
Ω′Y (Yi × Y Hi ), so we find

W ∩ (YiZi × P ◦i ) ≤ W ∩ ZY
≤ ZY ∩ Ω′Y (Yi × Y Hi ))
≤ (Z(D(G))◦Yi ∩ (P ◦i )′Yi)× (Z(D(G))◦Y Hi ∩ (P ◦i )′Y Hi ).

Let WP (resp. WQ) be the image of the finite group W ∩ (YiZi × P ◦i ) by the first
(resp. the second) projection in P ◦i × P ◦i . Then WPF/F is a finite subgroup of

(Z(D(G))◦Yi ∩ (P ◦i )′Yi)F/F = (Z(D(G))◦YiF/F ) ∩ ((P ◦i )′YiF/F )
= (γG(Z(D(G)))◦γG(Yi)) ∩ ((γG(Pi)◦)′γG(Yi))
≤ (Z(G)◦Xi) ∩ ((G◦i )

′Xi)
= Z(G)◦ ∩G′i,
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so WPF/F is contained in Xi, and WP is contained in γ−1
G (Xi) ∩ P ◦i = Yi. In the

same way we obtain WQ ≤ Y Hi , so we have W ∩ (YiZi × P ◦i ) ≤ Yi × Y Hi . Thus
W/(W ∩ (Yi × Y Hi )) and Ci are isomorphic as algebraic groups.

We prove that W and Ci
∗

are isomorphic as algebraic groups, and that W ∩(Zi×
P ◦i ) and W ∩ (P ◦i ×Zi) are trivial. Since the exponent of Yi × Y Hi is ni by Lemma
8.13, and since W/(W ∩(Yi×Y Hi )) and Ci are isomorphic as algebraic groups, there
is an isogeny ι1 from Ci

∗
to W . Since the first projection of WZW in P ◦i × P ◦i is

surjective, and since P ◦i is connected, the first projection of W (Zi×Zi) in P ◦i ×P ◦i
is surjective too. Thus we have P ◦i ×P ◦i = (W (Zi×Zi))({1}×P ◦i ) = W (Zi×P ◦i ).
Then, since we have P ◦i = Ci

∗×Zi, the algebraic groups W (Zi×P ◦i )/(Zi×P ◦i ) and
Ci
∗

are isomorphic, so W/(W ∩ (Zi × P ◦i )) and Ci
∗

are isomorphic too. Therefore,
since we have rk(W ) = rk(Ci

∗
), there is an isogeny ι2 from W to Ci

∗
with kernel

W ∩ (Zi × P ◦i ). Now ι2 ◦ ι1 is an isogeny from Ci
∗

to Ci
∗
. Since ker(ι2 ◦ ι1) is

finite and since Ci
∗

is connected, the preimage of Z(Ci
∗
) by ι2 ◦ ι1 is precisely

Z(Ci
∗
). In particular, if XC denotes the torsion part of Z(Ci

∗
), then XC contains

ker(ι2 ◦ ι1), and XC/ ker(ι2 ◦ ι1) is isomorphic to XC . But Lemma 8.5 implies that
(Ci
∗
)′ contains Z(Ci

∗
)◦, so Z(Ci

∗
)◦ has no nontrivial torus, and it is torsion-free.

Hence XC is finite and ker(ι2 ◦ ι1) is trivial. Thus ι2 ◦ ι1 is an automorphism
of Ci

∗
, and ι2 is an isomorphism from W to Ci

∗
. In particular, W and Ci

∗
are

isomorphic as algebraic groups, and since the kernel of ι2 is W ∩ (Zi×P ◦i ), we have
W ∩ (Zi × P ◦i ) = 1. In the same way, we obtain W ∩ (P ◦i × Zi) = 1.

(2) P ◦i is the direct product of Zi by Ri (resp. Si), the first (resp. the second)
projection in P ◦i × P ◦i is surjective, and W is the graph of an isomorphism of
algebraic groups ωi : Ri → Si.

Since we have W ∩ ({1} × Si) ≤ W ∩ (Zi × P ◦i ) = 1 and W ∩ (Ri × {1}) ≤
W ∩ (P ◦i × Zi) = 1, the algebraic group W is the graph of an isomorphism ωi :
Ri → Si of algebraic groups. Moreover, since we have W ∩ (Zi × P ◦i ) = 1 (resp.
W ∩ (P ◦i × Zi) = 1), then Ri ∩ Zi (resp. Si ∩ Zi) is trivial. Therefore, since the
first (resp. the second) projection of W (Zi × Zi) in P ◦i × P ◦i is surjective, then P ◦i
is the direct product of Ri by Zi (resp. Si by Zi).

(3) D(G) is the direct product of T (G) and of the groups Rk (resp. Sk) for
k ∈ {1, . . . , n}.

We note that, for each k, since we have P ◦k = Ck
∗ × Zk = Rk × Zk, we find

(Ck
∗
)′ = R′k, Z(Ck

∗
) = Z(P ◦k ) ∩ Ck

∗
and Z(Rk) = Z(P ◦k ) ∩ Rk. Therefore, since

(Ck
∗
)′ contains Z(Ck

∗
)◦ (Lemma 8.5), then Rk ≥ (Ck

∗
)′ contains Z(Ck

∗
)◦, and

Z(Rk) contains Z(Ck
∗
)◦. But we have Z(P ◦k ) = Z(Ck

∗
)×Zk = Z(Rk)×Zk, hence

we obtain Z(Rk)◦ = Z(Ck
∗
)◦ for each k. In particular, the product T (G)(

∏n
j=1Rj)

contains Zk = T (G)× (×j 6=kZ(Rj)◦) for each k, and since P ◦k is the direct product
of Rk by Zk for each k, this product contains Ck

∗
for each k. Thus we have

D(G) = T (G)(
∏n
j=1Rj). Since D(G) is the central product of T (G) and of the

groups Pj = Cj
∗
Z(D(G)) for j ∈ {1, . . . , n}, and since Rj is contained in Pj for each

j, then D(G) the central product of T (G) and of the groups Rj for j ∈ {1, . . . , n}.
This implies that that Z(D(G)) is the product of the groups T (G) and Z(Rj) for j ∈
{1, . . . , n}. Moreover, since the algebraic groups Rk and Ck

∗
are isomorphic for each

k, and since D(G) is the direct product of T (G) and of Cj
∗

for j ∈ {1, . . . , n}, we
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have rk(D(G)) = rk(T (G))+
∑n
j=1 rk(Cj

∗
) = rk(T (G))+

∑n
j=1 rk(Rj). Therefore,

for each k, the intersection Ik := Rk ∩ (T (G)
∏
j 6=k Rj) is finite. Since D(G) is the

central product of T (G) and of the groups Rj for j ∈ {1, . . . , n}, then Ik is central
in Rk.

For each k, since (Ck
∗
)′ contains Z(Ck

∗
)◦ by Lemma 8.5, the maximal torus

of Z(Ck
∗
)◦ is trivial, and Z(Ck

∗
)◦ is torsion-free. Consequently, for each k, the

torsion part JCk of Z(Ck
∗
) is finite, and Z(Ck

∗
) is the direct product of JCk by

Z(Ck
∗
)◦. But, for each k, the algebraic groups Rk and Ck

∗
are isomorphic, hence

Z(Rk) is the direct product of its torsion part Jk ' JCk by Z(Rk)◦. Since D(G) is
the direct product of T (G) ≤ Z(D(G))◦ and of the groups Cj

∗
for j ∈ {1, . . . , n},

then Z(D(G)) is the direct product of T (G) and of the groups Z(Cj
∗
) for j ∈

{1, . . . , n}. Thus Z(D(G)) is the direct product of Z(D(G))◦ and of the groups
JCj for j ∈ {1, . . . , n}. In particular, its Morley degree is

∑n
j=1 |JCj | =

∑n
j=1 |Jj |.

Since Z(D(G)) is the product of the groups T (G) and Z(Rj) for j ∈ {1, . . . , n},
and since Z(Rj) is the direct product of Jj by Z(Rj)◦ for each j, then Z(D(G)) is
the product of Z(D(G))◦ and of the groups Jj for j ∈ {1, . . . , n}. But its Morley
degree is

∑n
k=1 |Jj |, hence Z(D(G)) is the direct product of Z(D(G))◦ and of the

groups Jj for j ∈ {1, . . . , n}.
Now we consider k ∈ {1, . . . , n} and x ∈ Ik. Then there are u ∈ T (G) and

xj ∈ Rj for each j 6= k such that x = u
∏
j 6=k xj . Let xk := x−1. Then we

have u
∏n
j=1 xj = 1 and, for each j, we find xj = u−1

∏
l 6=j xl ∈ Ij . For each

j, since Ij is a finite central subgroup of Rj , we have Ij ≤ Jj . But we have
u ∈ T (G) ≤ Z(D(G))◦, and Z(D(G)) is the direct product of Z(D(G))◦ and of
the groups Jj for j ∈ {1, . . . , n}. Hence we find u = 1 and xj = 1 for each j. In
particular, x and Ik are trivial. Thus D(G) is the direct product of T (G) and of
the groups Rk for k ∈ {1, . . . , n}, as desired. In the same way, D(G) is the direct
product of T (G) and of the groups Sk for k ∈ {1, . . . , n}.

(4) Determination of the quasi-standard automorphism α of D(G).

Since, for each j, the group Z(Cj
∗
)◦ is torsion-free, and since Z(D(G))◦ is the

direct product of T (G) and of the groups Z(Cj
∗
)◦ for j ∈ {1, . . . , n}, then the

torsion part S of T (G) is the one of Z(D(G))◦. Since we have ZF = ZE = Z(D(G)),
then SF/F (resp. SE/E) is the torsion part of Z(D(G)/F )◦ (resp. Z(D(G)/E)◦),
and we obtain δ(SF/F ) = SE/E. Moreover, since F ∩ T (G) = E ∩ T (G) = 1, the
automorphism δ induces an automorphism δS of S such that δ(xF ) = δS(x)E for
each x ∈ S.

Let X := T (G) ∩D(G)′F . Since we have T (G) ∩D(G)′ = T (G) ∩ (C1
∗ × · · · ×

Cn
∗
)′ = 1, then X is a finite subgroup of T (G), and it is contained in S ≤ T (G).

If S = 1, we denote by ϕX the identity map of T (G). Otherwise T (G) is a torus,
and Lemma 8.12 provides a quasi-standard automorphism ϕX of T (G) such that
ϕX(x) = δS(x) for each x ∈ X. We consider the automorphism α of D(G) defined
as follows: for each j, for each x ∈ Rj, α(x) = (ωj ◦ ϕj)(x); for each x ∈ T (G),
α(x) = ϕX(x). Thus α is a quasi-standard automorphism of D(G).

(5) D(G)/Z(D(G))◦α(F ) and D(G)/Z(D(G))◦E are isomorphic as algebraic
groups.
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Let α : D(G)/F → D(G)/α(F ) be the abstract isomorphism induced by α, and
let ν = δ ◦ α−1. For each i, we have

α(Pi/F ) = α(Pi)/α(F ) = α(RiZ(D(G)))/α(F ) = SiZ(D(G))/α(F ) = Pi/α(F ),

and ν(Pi/α(F )) = δ(Pi/F ) = Pi/E. We show that the map

ν : D(G)/Z(D(G))◦α(F )→ D(G)/Z(D(G))◦E

induced by ν is an isomorphism of algebraic groups. We consider the abstract iso-
morphism αZ : D(G)/Z(D(G))◦F → D(G)/Z(D(G))◦α(F ) induced by α, and let
δ : D(G)/Z(D(G))◦F → D(G)/Z(D(G))◦E be the abstract isomorphism induced
by δ. For each i, we denote by νi : P ◦i α(F )/Z(D(G))◦α(F ) → P ◦i E/Z(D(G))◦E
the restriction of ν to P ◦i α(F )/Z(D(G))◦α(F ). For each i, since the subgroup
Ri (resp. Si) covers P ◦i F/Z(D(G))◦F (resp. P ◦i α(F )/Z(D(G))◦α(F )), and since
ωi : Ri → Si satisfies

ωi(Ri ∩ Z(D(G))◦F ) = ωi(Ri) ∩ α(Z(D(G))◦F ) = Si ∩ Z(D(G))◦α(F ),

then ωi induces an isomorphism of algebraic groups

ωi : P ◦i F/Z(D(G))◦F → P ◦i α(F )/Z(D(G))◦α(F ).

Thus, for each i and each x ∈ P ◦i α(F )/Z(D(G))◦α(F ), we have νi(x) = (δ ◦
(αZ)−1)(x) = (δ ◦ ϕ−1

i ◦ ω
−1
i )(x), so we obtain

νi = (δ ◦ ϕ−1
i ) ◦ ω−1

i .

But, for each i, we have

Yi = γ−1
G (Xi) ∩ Ci

∗
Z(D(G))◦ ≤ γ−1

G (Z(G)◦) ∩ P ◦i = Z(D(G))◦F ∩ P ◦i ,

and F∩P ◦i ≤ γ
−1
G (Xi)∩Ci

∗
Z(D(G))◦ = Yi, so we have Z(D(G))◦Yi = Z(D(G))◦F∩

P ◦i , and in the same way, Z(D(G))◦Y Hi = Z(D(G))◦E ∩ P ◦i . Hence the isomor-
phism δ ◦ ϕ−1

i : P ◦i F/Z(D(G))◦F → P ◦i E/Z(D(G))◦E is induced by δi, and it is
algebraic. Since ωi is an isomorphism of algebraic groups too, this proves that νi
is an isomorphism of algebraic groups. Since D(G) is generated by the subgroups
P ◦i for i = 1, . . . , n, the map ν is an isomorphism of algebraic groups, as desired.

(6) Final argument.

Let ∆ be the preimage of the graph of ν in D(G) × D(G), and let ZD =
Z(D(G))◦α(F )×Z(D(G))◦E. Then ∆ZD/ZD is the graph of ν, so it is an algebraic
group and, since D(G)/Z(D(G))◦α(F ) is connected, ∆ZD/ZD is connected. More-
over, since ZD/(α(F ) × E) is connected too, ∆ZD/(α(F ) × E) is connected. We
have (∆ZD/(α(F )×E))′ = ∆′(α(F )×E)/(α(F )×E), so ∆′(α(F )×E)/(α(F )×E)
is a connected algebraic subgroup of ∆ZD/(α(F )× E).

We consider the diagonal ∆0 of T (G) × T (G), and let ρ be the isomorphism
from T (G)α(F )/α(F ) to T (G)E/E whose graph is ∆0(α(F ) × E)/(α(F ) × E).
Let u ∈ D(G)′α(F )/α(F ) ∩ T (G)α(F )/α(F ). Then there exists x ∈ X such that
α−1(u) = xF . Hence we have ν(u) = δ(xF ) = δS(x)E = ϕX(x)E = α(x)E, and

(u, ν(u)) = (α(x)α(F ), α(x)E) ∈ ∆0(α(F )× E)/(α(F )× E).

Consequently, for each u ∈ D(G)′α(F )/α(F ) ∩ T (G)α(F )/α(F ), we have ν(u) =
ρ(u), and we can define an isomorphism

νρ : D(G)′T (G)α(F )/α(F )→ D(G)′T (G)E/E
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by νρ(x) = ν(x) for each x ∈ D(G)′α(F )/α(F ), and νρ(x) = ρ(x) for each x ∈
T (G)α(F )/α(F ). Then the graph of νρ is

∆1/(α(F )× E) := ∆′∆0(α(F )× E)/(α(F )× E).

Moreover, since ∆′(α(F )×E)/(α(F )×E) and ∆0(α(F )×E)/(α(F )×E) are two
algebraic groups, ∆1 is algebraic, and νρ is an isomorphism of algebraic groups.

Since ∆1/(α(F ) × E) is the graph of an isomorphism of algebraic groups be-
tween two connected algebraic groups, it is connected. Since ∆ZD/(α(F ) × E) is
connected, then ∆ZD/∆1 is connected too. But ∆1 contains ∆′, so ∆ZD/∆1 is
abelian. Hence, since ∆ZD/∆1 and ZD∆1/∆1 are connected, there is an algebraic
complement ∆2/∆1 of ZD∆1/∆1 in ∆ZD/∆1. Now, since ∆ZD/ZD is the graph
of ν, we have ∆ZD/ZD ∩ (D(G)× Z(D(G))◦E)/ZD = 1 and

∆2 ∩ (D(G)× E) ≤ ∆ZD ∩ (D(G)× E)
= ZD ∩ (D(G)× E)
= Z(D(G))◦α(F )× E.

Consequently we obtain

∆2 ∩ (D(G)× E) = ∆2 ∩ (Z(D(G))◦α(F )× E)
≤ ∆2 ∩ ZD
≤ ∆1.

Finally, , since ∆1/(α(F )× E) is the graph of an isomorphism of algebraic groups
from D(G)′T (G)α(F )/α(F ) to D(G)′T (G)E/E, we find

∆2 ∩ (D(G)× E) = ∆1 ∩ (D(G)× E) = α(F )× E.

In the same way, we obtain ∆2 ∩ (α(F )×D(G)) = α(F )× E.
Since Lemma 8.5 implies that (Ci

∗
)′ contains Z(Ci

∗
)◦ for each i, then Z(D(G))◦

is contained in D(G)′T (G). Therefore, for each x ∈ Z(D(G))◦F/F = Z(D(G)/F )◦,
there exist d ∈ (D(G)′F/F )∩(Z(D(G))◦F/F ) and u ∈ T (G)F/F such that x = d u,
and we have

νρ(x) = νρ(d)νρ(u) = ν(d)ρ(u) ∈ Z(D(G)/E)◦ · T (G)E/E = Z(D(G))◦E/E.

The latter proves that νρ(Z(D(G))◦F/F ) = Z(D(G))◦E/E. Thus, since the graph
of νρ is ∆1/(α(F ) × E), the group (∆1 ∩ ZD)/(α(F ) × E) is the graph of the
restriction of νρ to Z(D(G))◦F/F . Consequently, we obtain

rk(∆1 ∩ ZD) = rk((∆1 ∩ ZD)/(α(F )× E)) = rk(Z(D(G))◦F/F ) = rk(Z(D(G))).

This yields

rk(ZD∆1) = rk(ZD) + rk(∆1)− rk(∆1 ∩ ZD)
= 2rk(Z(D(G))) + rk(∆1)− rk(Z(D(G)))
= rk(Z(D(G))) + rk(∆1).

Moreover, since ∆ZD/ZD is the graph of ν, we have

rk(∆ZD/ZD) = rk(D(G)/Z(D(G))◦α(F )) = rk(D(G))− rk(Z(D(G)))

and

rk(∆ZD) = (rk(D(G))− rk(Z(D(G)))) + rk(ZD) = rk(D(G)) + rk(Z(D(G))).
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Now, since ∆2/∆1 is a complement of ZD∆1/∆1 in ∆ZD/∆1, we find

rk(∆2) = rk(∆ZD/∆1)− rk(ZD∆1/∆1) + rk(∆1)
= rk(∆ZD)− rk(ZD∆1) + rk(∆1)
= (rk(D(G)) + rk(Z(D(G))))− (rk(Z(D(G))) + rk(∆1)) + rk(∆1)
= rk(D(G)).

Since we have ∆2 ∩ (D(G)×E) = α(F )×E and ∆2 ∩ (α(F )×D(G)) = α(F )×E
by the previous paragraph, the latter implies that ∆2/(α(F ) × E) is the graph of
an isomorphism β from D(G)/α(F ) to D(G)/E. Moreover, β is algebraic since ∆2

is an algebraic group.
Finally, D(G)/α(F ) and D(G)/E are isomorphic as algebraic groups, as desired.

�

We note that Theorem 8.14 together with Lemma 8.10 provide Theorem 1.1 in
the case K = Q.

9. The final argument

In this section, we fix a connected affine ACF0-group M = (G, · ,−1 , 1, · · · ),
interpretable in the pure field Q, and an elementary substructure M∗ = (G∗, · · · )
of M. We note that the structures M and M∗ have finite Morley rank, so any
infinite field, interpretable in M or M∗, is algebraically closed by a theorem of A.
Macintyre [4, Theorem 8.1].

Lemma 9.1. – Let U∗/V ∗ be a definable section of G∗, and let U/V be its canonical
extension to G. If U/V is definably isomorphic to K+ (resp. K∗) for an infinite
interpretable field K, then U = U∗V .

Proof – In this case, there is an infinite field L, interpretable in M∗, and
a definable morphism α from U∗ to L+ (resp. L∗), with kernel V ∗. Then we
have L = M0/R0 for M0 a definable subset of (G∗)n, where n is an integer, and
R0 a definable equivalence relation over M0. We consider the extensions L1, M1,
R1 and α1 to G of L, M0, R0 and α respectively. Since L1 is an infinite field,
interpretable in Q, then Fact 2.2 says that L1 is isomorphic to Q. Moreover, L
is infinite and interpretable in M∗, so it is algebraically closed. Since Q has no
proper algebraically closed subfield, this implies that the canonical embedding of L
in L1 is an isomorphism: the subset M0 of M1 covers L1 = M1/R1. Thus, for each
u ∈ U , there is u∗ ∈ U∗ such that α1(u) = α1(u∗). Since α1 is a morphism with
kernel V , this yields the result. �

We note that, since G is connected and since its ground field is algebraically
closed and of characteristic zero, there is no proper subgroup of finite index in G.

Proposition 9.2. – G = G∗Z(G)◦.

Proof – Since there is no proper subgroup of finite index in G, we have just
to prove that G = G∗Z(G). Let B∗ be a Borel subgroup of G∗, that is a maximal
solvable connected definable subgroup, and let B be its extension to G. Then
B is a maximal solvable connected definable subgroup of G, so it is an algebraic
Borel subgroup of G by [4, Corollary 5.38] and Lemma 4.1. In particular, we have
Z(B) = Z(G), so Z(B∗) = Z(G∗). Moreover, since B is the extension of B∗, we
have B = d(B∗). Let D = D/Z(G) be the largest connected definable subgroup of



ALGEBRAIC GROUPS UP TO ABSTRACT ISOMORPHISM 61

B = B/Z(G) contained in B∗ = B∗Z(G)/Z(G). Then D is normal in B∗, so D is
normal in B.

If D = B∗, then we have B∗ = B. Since the conjugates of B cover G, the
ones of B∗ in G∗ cover G∗. In particular, G∗ = G∗Z(G)/Z(G) is generated by
the conjugates of D in G∗. Now, since D is definable in G and connected, G∗ is a
connected definable subgroup of G. Since G∗ is an elementary substructure of G,
this proves that G∗ = G, and G = G∗Z(G). Hence we may assume D 6= B∗.

Let D∗0/Z(G∗) be the largest connected definable subgroup of B∗/Z(G∗), with
D∗0 contained in D, and let D0 be its extension to G. Then D∗0 is normal in B∗, and
D0/Z(G) is a normal connected definable subgroup of B/Z(G), and D0 is contained
in D. Let U∗/D∗0 be a B∗-minimal section of B∗, and let U be the extension of U∗

to G. Then U/D0 is a B-minimal section of B. By choice of D∗0 , the subgroups U∗

and U are not contained in D, and U∗/Z(G∗) and U/Z(G) are connected.
If U/D0 is definably isomorphic to K+ or K∗ for an infinite interpretable field

K, then Lemma 9.1 gives U = U∗D0. But this implies that U is contained in B∗D,
hence U/Z(G) is contained in B∗, contradicting the maximality of D.

If the Fitting subgroup F (B) covers U/D0, then U/D0 is definably isomorphic to
a section of F (B)/Z(B). But F (B)/Z(B) is a Ũ -group by Fact 2.16, hence U/D0 is
a Ũ -group by Fact 2.14. SinceQ is algebraically closed of characteristic zero, there is
no infinite definable group of bounded exponent in F (B)/Z(B), and Fact 2.12 shows
that F (B)/Z(B) is torsion-free. In particular, U/D0 is torsion-free. Consequently,
by B-minimality of U/D0, Fact 2.12 provides an interpretable algebraically closed
field L of characteristic zero such that U/D0 is definably isomorphic to L+. This
contradicts the previous paragraph, so F (B) does not cover U/D0, and (F (B) ∩
U)D0/D0 is finite. But D0 contains Z(B) and F (B)/Z(B) is torsion-free, so F (B)
avoids U/D0.

Since B is a connected solvable algebraic group, B/F (B)◦ is abelian, and F (B)
is a maximal nilpotent subgroup of B, so F (B) is the intersection of the centralizers
of the B-minimal sections of B. Then we find finitely many B-minimal sections
R1/S1, . . . , Rn/Sn of B such that F (B) is the intersection of their centralizers in
B. Now, for each i = 1, . . . , n, either B centralizes Ri/Si, or B/CB(Ri/Si) is
definably isomorphic to K∗i for an interpretable algebraically closed field Ki (Fact
2.1). Consequently, for each i = 1, . . . , n such that CB(Ri/Si) does not cover U/D0,
there is a finite subgroup Fi/D0 of U/D0 such that U/Fi is definably isomorphic
to an infinite definable subgroup of K∗i . Morover, in Q, the fields Ki and Q are
definably isomorphic (Fact 2.2), so K∗i has Morley rank one (in Q). This implies
that U/Fi is definably isomorphic to K∗i .

Now, if i and j are two elements of {1, . . . , n} such that the subgroups CB(Ri/Si)
and CB(Rj/Sj) do not cover U/D0, then U/FiFj is definably isomorphic to K∗i and
K∗j , so Ki and Kj are definably isomorphic (Lemma 5.4). Moreover, since F (B)
avoids U/D0, the intersection of the subgroups Fi of this form is D0. Thus, there
is i ∈ {1, . . . , n} such that U/D0 is definably isomorphic to a subgroup of (K∗i )n.
By minimality of U/D0, this implies that U/D0 is definably isomorphic to K∗i ,
contradicting that U/D0 is definably isomorphic to no group of the form K∗ for an
infinite interpretable field K. This finishes the proof. �

Corollary 9.3. – If G′ contains Z(G)◦, then G = G∗, otherwise G is abstractly
isomorphic to G∗ ×Q+.
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Proof – In the first case, Proposition 9.2 gives G′ = (G∗)′, so G∗ ≥ G′ contains
Z(G)◦, and again Proposition 9.2 provides the result.

In the second case, we note that, since the ground field of G is of characteristic
zero, there are finitely many elements of order n in Z(G) for each n ∈ N. Hence
Z(G∗) contains the torsion of Z(G). Moreover, since the ground field of G is
algebraically closed and of characteristic zero, Z(G)◦ is divisible, so Z(G∗)◦ is
divisible too. Therefore Z(G∗)◦ = G∗ ∩Z(G)◦ has a complement D in Z(G)◦, and
D is divisible and torsion-free since Z(G)◦ is divisible and since Z(G∗) contains
the torsion of Z(G). Now Proposition 9.2 gives G = G∗ ×D. Since D is divisible
and torsion-free, it is a direct product of countably many copies of Q, and Q+ is
isomorphic to Q+×D. But Z(G)◦ is not contained in G′, hence Lemma 8.10 shows
that G is abstracly isomorphic to

G×Q+ ' G∗ ×D ×Q+ ' G∗ ×Q+,

and the result follows. �

Corollary 9.4. – Let H be another connected affine algebraic group over Q. If the
pure groups G and H are elementarily equivalent, then they are abstractly isomor-
phic.

Proof – We assume that M = (G, · ,−1 , 1), and we consider the structure
N = (H, · ,−1 , 1). Let T be the theory ofM and N . By [15, Theorem 4.2.20], there
is an elementary substructure M0 = (G0, · ,−1 , 1) of M (resp. N0 = (H0, · ,−1 , 1)
ofN ), whereM0 (resp. N0) is a prime model of T . ThenM0 andN0 are isomorphic
by [15, Corollary 4.2.16]. Now Corollary 9.3 says that,

• either G′ contains Z(G)◦, therefore H ′ contains Z(H)◦, and we have G =
G0 ' H0 = H;
• or G′ does not contain Z(G)◦, therefore H ′ does not contain Z(H)◦, and

we have
G ' G∗ ×Q+ ' H∗ ×Q+ ' H.

�

From now on, we are ready for the proof of Theorem 1.1 and, simultaneously,
for the one of Theorem 1.5 in the affine case. We notice that, for the proof below,
it is essential that the automorphism α of D in Theorem 8.14 is quasi-standard:
the transition from the ground field Q to any algebraically closed field requires this
property.

Proof of Theorem 1.1 in the general case, and of Theorem 1.5 for
affine groups – Let K be an algebraically closed field of characteristic zero, and
let G be a connected affine algebraic group over K. We consider an elementary
substructure K1 of the pure field K, with K1 isomorphic to Q. Let G1 be the
elementary substructure of G in K1. Then Lemma 8.10 and Theorem 8.14 provide
the existence of a connected affine algebraic group D1 over K1 and of a finite
central subgroup F of D1, such that the affine algebraic groups over K1 abstractly
isomorphic to G1 are the following ones, up to isomorphism of algebraic groups:

• D1/α1(F ) if G′1 contains Z(G1)◦;
• D1/α1(F )× (K1)s+ if Z(G1)◦ is not contained in G′1,

where α1 is a quasi-standard automorphism of D1, and s is an integer. We may
assume that there is an integer s such that G1 and D1/F × (K1)s+ are isomorphic
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as algebraic groups, and we may assume that D1 is constructed as D(G1) in §8. We
consider the elementary extension D of D1 to K. We note that, since the extension
of F to K is F , the algebraic groups G and D/F ×Ks

+ are isomorphic.
Firstly, if G′ contains Z(G)◦, then for each quasi-standard automorphism α of

D, the groups D/F and D/α(F ) are abstractly isomorphic. Secondly, if Z(G)◦ is
not contained in G′, we consider an integer r and a quasi-standard automorphism α
of D, and we show that D/α(F )×Kr

+ is abstractly isomorphic to G. Since Z(G)◦

is not contained in G′, then Z(G1)◦ is not contained in G′1, and the subgroup T1 of
D1, corresponding to T (G1) in §8, is either (K1)+, or (K∗1 )k for a positive integer
k. Hence D has an algebraic subgroup A such that we have either D = A×K+, or
D = A × (K∗)k for a positive integer k. Since K has characteristic zero, then for
each integer l, the groups K+ (resp. (K∗)k) and K+×Kl

+ (resp. (K∗)k ×Kl
+) are

abstractly isomorphic. This implies that D/F is abstractly isomorphic to D/F×Kl
+

for each integer l. In particular, the groups G, D/F and D/F ×Kr
+ are abstractly

isomorphic. Since D/F and D/α(F ) are abstractly isomorphic too, we obtain the
abstract isomorphy between G and D/α(F )×Kr

+.
Now we consider a connected affine algebraic group H over K, and we assume

that the pure groups G and H are elementarily equivalent. Let H1 be the elemen-
tary substructure of H in K1. Then the pure groups G1 and H1 are elementarily
equivalent, and Corollary 9.4 shows that G1 and H1 are abstractly isomorphic.
Consequently, there exists a quasi-standard automorphism α1 of D1 such that:

• either G′1 contains Z(G1)◦, and H1 and D1/α1(F ) are isomorphic as alge-
braic groups;

• or G′1 does not contain Z(G1)◦, and there is an integer r such that H1 and
D1/α1(F )× (K1)r+ are isomorphic as algebraic groups.

Since α1(F ) is finite, its extension to K is α1(F ), and one of the following two
conditions is satisfied:

• either Z(G)◦ ≤ G′, and H and D/α1(F ) are isomorphic as algebraic groups;
• or Z(G)◦ 6≤ G′, and H and D/α1(F ) × Kr

+ are isomorphic as algebraic
groups.

Moreover, since α1 is a quasi-standard automorphism of D1, there is two decomposi-
tions D1 = R∗1×· · ·×R∗n and D1 = S∗1×· · ·×S∗n of D1, where R∗1, . . . , R

∗
n, S

∗
1 , . . . , S

∗
n

are some algebraic subgroups of D1 such that α1(R∗i ) = S∗i for each i, and such
that the isomorphism αi1 : R∗i → S∗i induced by α1 is standard for each i. Thus,
for each i = 1, . . . , n, there is a field automorphism δ∗i of K1 and an isomorphism
µ∗i : R∗i → S∗i of algebraic groups such that αi1 = µ∗i ◦ δ∗i . Now we consider the
extensions R1, . . . , Rn, S1, . . . , Sn to K of R∗1, . . . , R

∗
n, S

∗
1 , . . . , S

∗
n respectively, and

the ones µ1, . . . , µn of µ∗1, . . . , µ
∗
n respectively. Moreover, for each i, we consider an

extension δi to K of the automorphism δ∗i of K1. Then, for each i, the isomor-
phism αi = µi ◦ δi from Ri to Si is standard, and it satisfies αi(x) = αi1(x) for each
x ∈ R∗i . Now the automorphism α of D defined by α(x) = αi(x) for each x ∈ Ri
is quasi-standard, and it satisfies α(F ) = α1(F ). Finally, H has the desired form.
�
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