INFINITELY DEFINABLE STRUCTURES IN SMALL THEORIES
CEDRIC MILLIET

ABsTracT. We observe simple links between preorders, semi-groups, rings and
categories (and between equivalence relations, groups, fields and groupoids),
which are infinitely definable in an arbitrary structure, and apply these obser-
vations to small structures. Recall that a structure is small if it has countably
many pure n-types for each integer n. A category defined by a pure n-type in
a small structure is the conjunction of definable categories. For a group G4
defined by an n-type over some arbitrary set A in a small and simple structure,
we deduce that

1) if G4 is included in some definable set such that boundedly many trans-

lates of G4 cover X, then G4 is the conjunction of definable groups.
2) for any finite tuple g in G 4, there is a definable group containing g.

In a universe 91, an infinitely A-definable set, instead of being defined by a formula,
is the conjunction of infinitely many formulae with parameters in some set A. An
infinitely A-definable structure in 9 is any structure whose domain, functions and
relations are infinitely A-definable in 9.

Definition. Let £ be a language, S a set of £-structures, and A an element of S
which is infinitely definable in 99t. We say that 9 loosely envelopes A with respect
to S if A is contained in some definable structure belonging to S. We say that I
envelopes A with respect to S if A is the conjunction of definable structures in S.

In the sequel, the set S will consist either of groups, semi-groups, fields, rings,
preorders, equivalence relations, categories or groupoids and will be obvious from
the context. For instance, we shall say that a structure envelopes an infinitely
definable group G to say that G is the conjunction of definable groups.

Note that being enveloped is strictly stronger that being loosely enveloped. A stable
structure is known to envelope infinitely definable groups and fields [1, Hrushovski].
Consequently, in an omega-stable structure, an infinitely definable group is defin-
able, as is an infinitely definable field in a superstable structure. Pillay and Poizat
proved that an infinitely (-definable equivalence relation on a small structure is
enveloped, provided that it be coarser than the equality of pure types [8]. Kim
generalised Pillay and Poizat’s result to arbitrary infinitely (-definable equivalence
relations on a small structure [3]. In [10], Wagner deduces from Kim’s result that
if a small structure loosely envelopes an infinitely (-definable group of finite arity,
it must envelope it. He asked whether an infinitely (-definable group in a small
structure should be enveloped [10, Problem 6.1.14]. We shall show
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Theorem. An infinitely O-definable category of finite arity in a small structure is
the conjunction of definable categories.

As the notion of category both generalises preorders and semi-groups, the latter
includes Kim’s result and gives a positive answer to Wagner’s question. It also
gives a similar conclusion for an infinitely (-definable groupoid, which is a category
where every morphism is invertible. As infinitely definable groupoids arise naturally
in some structures [2], this result might have an interest in itself. If we want to
look at infinitely definable categories over infinitely many parameters, we have to
assume additional conditions, in our case that the ambiant theory be simple. We
obtain :

Theorem. Let G 4 be an infinitely A-definable group of finite arity in a small and
simple structure.

1) If G 4 is included in some definable set such that boundedly many translates
of G 4 cover X, then G 4 is the conjunction of definable groups.
ii) For any finite tuple g in G 4, there is a definable group containing g.

For an infinitely A-definable field K 4 of finite arity in a small and simple structure,
the latter statement provides definable fields around every point, which give infor-
mation about the structure of K 4 : it must be algebraically closed, and in positive
characteristic, commutative.

1. A FEW WORDS ON STRUCTURES ENVELOPING ALGEBRAIC STRUCTURES

In the sequel, everything is inside some arbitrary universe 9, who may have addi-
tional properties in the following sections.

Definition 1.1. A set X is infinitely A-definable in 901 if it is a subset of MM for
some ordinal «, which is defined by a partial type with parameters in A. We call
a the arity of X in 9.

An infinitely A-definable structure is any structure whose domain, functions and
relations are infinitely A-definable. When considering infinitely definable groups
in M (and more generally, infinitely definable structures satisfying a given set of
axioms T'), we suppose that its type still defines a group (respectively still satisfies
the axioms of T') in any elementary extension of 9. In this section, every infinitely
definable set considered will have finite arity in 9. As we make no assumption
on the ambiant structure, we may also asssume in this section that every infinitely
definable set considered is definable without parameters, by expanding the langage
with possible parameters.

1.1. Equivalence relations, groups and fields. We begin by recalling from [7]
that if f is an infinitely definable map between two infinitely definable sets A and B
of finite arity, by compactness, f is the trace of a definable map, so we may assume
all the laws to be definable in this section. We go on by stating simple, but new
observations.

Proposition 1.2. If 9 envelopes every equivalence relation, it also envelopes every
group.



INFINITELY DEFINABLE STRUCTURES IN SMALL THEORIES 3

Proof. Let G be an infinitely definable group in 9. By compactness, there exists a
definable set X such that the group law be associative on Xg, and such that each
element of X have a unique inverse in Gy. Let X1, Xo,... be a chain of definable
subsets of Xy whose intersection equals G. As G is stable by multiplication, by
compactness there is some X, say X1, such that X; - X; be a subset of Xy3. We
consider the equivalence relation E on X, saying that = and y are related if xy~! €
G. By hypothesis, F is the conjunction of definable equivalence relations F;. Note
that an element g in Xy belongs to G if and only if 1Eg. By compactness, there
exists some index j such that the set {x € Xy : 2E;1} be included in X;. Let
J be the set {x € X; : zE;1}. The set G - J is included in J. For instance, if
g € G and if y € J, then g equals gyy~' and gy belongs to X, so gyEy, hence
gyE;1 by transitivity. Thus, if H denotes the left stabiliser of J, that is, the set
{9 € Xo:9J C J}, then the set HN H~!is a group in X, containing G. Note that
if the ambient structure envelopes every equivalence relation, so does every X;. It
follows that every X; contains some definable group H; around G, and G is the
conjunction of every H,. |

Remark 1.3. Note that the converse fails, as there are superstable structures that do
not envelope every equivalence relation [8, Exemple 2], but next section will show
that we just need to remove the symmetry assumption to make the equivalence
true.

Remark 1.4. Let E be an infinitely definable equivalence relation, and let E* the
infinitely definable equivalence relation defined by

xE*y if and only if there exists some b such that tp(b) = tp(x) and bEz

Recall from [8, Pillay Poizat] that E is enveloped if and only if so is every restriction
of E to a complete type, and so is E*. Actually, replacing in the previous proof
the equivalence relation zy~' € G by 3b = tp(z) Aby~! € G, one shows that the
structure 9 needs only envelope the equivalence relations coarser than the equality
of types to envelope every group.

Proposition 1.5. If M envelopes every group, it also envelopes commutative fields,
and envelopes every (possibly skew) field with respect to integral rings.

Proof. Let K be an infinitely definable field in this structure. By compactness,
there is a definable set X containing K such that addition and multiplication be
associative on X, and such that multiplication be distributive over addition. We
may also assume that every element in X have an additive and multiplicative in-
verse, and set 07! equal to 0. Replacing X by X N =X N X' N -X"1, we may
assume that X equals —X and X~!. So X is integral. By hypothesis there exists
a definable additive group H inside X and around K, and also a definable multi-
plicative group M inside H and around K*. Let S be theset {h € H: M-h C H}.
This is an additive subgroup of H stabilised by left multiplication by M. Let L
be the set {h € H : h- S C S}. This is a definable integral ring containing M.
If multiplication is commutative, the product L - L~ is a field containing K : for
every a,b,c,d in L, one has the equality

ab™' + cd™! = (bd) "' (ad + cb)
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1.2. Preorders, semi-groups, rings and categories. We call a preorder any
binary relation which is reflexive and transitive. A semi-group is any set with an
associative binary operation. A semi-group might have no identity element.

Proposition 1.6. If 9 envelopes every preorder, it also envelopes every semi-
group.

Proof. Let M be an infinitely definable semi-group. We may add a new constant 1
to M, and the set {(1,z,z), (z,1,z) : * € MU1} to the graph of multiplication, and
assume that M has an identity. Let Xy be a definable set containing M where the
law is associative. Let X; be a definable set containing M such that X; - X3 C Xj.
We consider the preorder R on X defined by xRy if and only if x € My, and finish
as in the group case. O

We shall show in the sequel that the converse is also true (see Propositions 1.9 and
1.10). As in the field case, and with a similar proof, we have

Proposition 1.7. If M envelopes every semi-group, it also envelopes every (pos-
sibly non-commutative) ring.

Definition 1.8. A category is a two-sorted structure, the objects O, and morphisms
M, together with applications iy and ¢; from M to O (saying that the morphism m
from M goes from ig(m) to i1(m)), a partial associative composition map o from
M X444, M to M (momn is defined when ig(m) equals i1(n)), and an identity map
Id from O to M (such that Id(x) be the identity morphism from z to z).

On the sorts of objects of a given category, one can define a preorder by setting
a < b if there is a morphism from a to b, as well as semi-groups M, whose elements
are morphisms from a to a for any object a. Conversely, on the one hand, a preorder
< is a category with trivial semi-groups, and with one morphism for every couple
a, b satisfying a < b. On the other hand, a semi-group is a category with one single
object and morphisms given by right multiplication by any element. Hence, the
notion of category generalises both preorders and semi-groups.

Proposition 1.9. If 91 envelopes any semi-group, it also envelopes any category.

Proof. Let C be an infinitely definable category, with objects O and morphisms M.
The set M has a partial structure of semi-group with law o, which can be extended
to the whole of M : let o be a new object and 0 a new morphism from o to o. Let
O equal O U {0}, and M equal M U {0}. We extend ip, i; and o respectively to
i, i1 and o by setting ig(0) = i1(0) = 0 and 050 = 05m = md0 = mon = 0 for all
morphisms m,n such that ig(m) # i1(n) ; the law & is still infinitely definable (as
O has finite arity), and associative over M. By hypothesis, M is the conjunction
of definable semi-groups M;. By compactness, ig and i, are defined on M, for
sufficiently large i. Let M; equal M; minus 0 and let O; equal io(M;) U i1 (M;).
(O;, M;) is not a category yet as the map Id need not be defined on O;. But the
equalities Id(i;(m)) om = m and n o Id(ig(n)) = n hold for all m,n in M. By
compactness, they must still hold for every m,n in M; for some sufficiently large 1.
In particular, Id is defined on O;. (]

Proposition 1.10. If 9 envelopes any category, it also envelopes any preorder.
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Proof. A preorder < on some set X is a category C' with objects X, morphisms
{(z,y) : * < y}, and maps ig, i1, o and Id defined by io(x,y) = z, i1(x,y) = y,
(z,y)o(y,2) = (x,2), and Id(z) = (z,z). By hypothesis, if < is infinitely definable,
it is the conjunction of definable categories C;. By compactness, for sufficiently large
i, the category C; is a preorder, ie there is at most one morphism between every
ordered pair of objects. O

Definition 1.11. A groupoid is a category whose morphisms are invertible.

Note that this generalises both the notions of groups and equivalence relations.

Remark 1.12. Similarly to the proof of Proposition 1.10, a structure which envelopes
any groupoid also envelopes any equivalence relation.

Proposition 1.13. M envelopes any equivalence relation if and only if it envelopes
any groupoid.

Proof. We adapt the proof from the group case. Let G be a groupoid, and let O and
M Dbe its objects and morphisms. By compactness, there are definable sets Xo and
X containing O and M, such that iy and iy be defined over X}, and such that
Id be defined over X, and o associative and defined over X,;, with in addition
the equality Id(i;(m))om = m o Id(ig(m)) = m holding for every m in X»;. We
may assume that Xj,; equal XA_/fl. By compactness, there is some definable Z;;
containing M with Zy; o Z); included in Xj,;. Let E be the equivalence relation
over X, defined by

rBy <= ig(z) =do(y) Azoy teM

By hypothesis, E is the conjunction of definable equivalence relations F;. Any
element z of X, belongs to M if and only if ©E Id(ig(x)) ; by compactness, there
is some index j such that the inclusion {x € Xy; : ®E;Id(io(z))} C Zar holds. Let
J equal {z € Zy : zE;Id(ig(x))} : it is stabilised by left multiplication by M.
Namely, if g is in M and y in J, and if ig(g) equals i1 (y) then

g=gold(io(9)) =goyoy™"

so goy is in X hence g o yEy, thus g o yE;Id(io(y)). Let H be the set {z € J :
xoJ C J}. H is closed under composition. (Xo, HNH 1UId(Xp)) is a groupoid
containing G. O

2. APPLICATION TO SMALL STRUCTURES

Definition 1. A structure is small if it has countably many n-types without pa-
rameters for every integer n.

In this section, we assume the ambiant structure 9t to be small. We recall a theorem
of Kim, using a result of Pillay and Poizat :

Fact 2.1. (Kim-Pillay-Poizat [8, 3]) A small structure 9t envelopes every infinitely
()-definable equivalence relation over M.

Note that [5, Krupinski, Newelski] gives an analytic proof of the previous theorem.
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Remark 2.2. As 9 is small, every finite cartesian power of 9 is again small. The
result fails for an infinitely definable equivalence relation over some infinite cartesian
power of 901, even in a Ny-categorical structure : if 91 is a dense linear order without
end points, take the relation E over M saying that zEy if and only if z; < y; and
¥ < x; for every ¢ < j.

According to our previous observations, this answers Wagner’s problem 6.1.14 in
[10], and shows that a small structure envelopes any infinitely (-definable group,
field and groupoid of finite arity. Recall that a definable small field is either finite
or algebraically closed [9], and that a small field of positive characteristic cannot
be skew [6].

Corollary 2.3. In a small structure, an infinitely (-definable field of finite arity is
finite or algebraically closed, and in positive characteristic, commutativity need not
be assumed but follows.

Three main questions arise : what happens for infinitely @-definable groups of
infinite arity? For infinitely @-definable semi-groups (even of finite arity)? And
for infinitely A-definable groups, where the set of parameters A is allowed to be
infinite? We tackle the two first questions in the next paragraphs, and give a partial
answer to the third question in section 3.

2.1. Preorders and semi-groups of finite arity. The following proposition is
inspired from [8] and [3].

Proposition 2.4. A closed preorder on a denumerable Hausdorff compact space is
the conjunction of clopen preorders.

Proof. Let X be this Hausdorff compact space, and R a closed preorder over X. Let
S¢ stand for the complement of any subset S of X. The space X has a clopen basis,
and R is a closed set of tuples in X x X. If (z,y) is not in R, there exists a basic
open set 01 x O2 outside R containing the tuple (z,y) ; the set O1 N O4 is empty
as R is reflexive. We choose O; and Os such that (O UO2)¢ have minimal Cantor-
Bendixson rank and degree, and write Y for (O; UO5)¢. We show that Y is empty ;
otherwise, let y be in Y with maximal rank. If (O x {y})NR and ({y} x O2)NR are
both non-empty, as R is transitive, (O1 x O2)N R is also non-empty, a contradiction.
We may assume (O; x {y}) N R to be empty. The set O; x {y} is contained in the
open set R°. So we can choose a basic open set (Jo containing y with O7 x Q2 C R.
But O1 X (Q2U0O3) is outside R. So (01 UO2 U Q2)° equals Y°N Q$, which misses
y, a contradiction with the degree of Y being minimal. So Y is empty, X equals
01 UO4, and O; x Of C R¢. Therefore, R C (X x O1) U (0§ x X), and (a,b) € R
implies (a,b) € Ry, where R, , is the preorder defined by

(a,b) € Ry y <= (a cO1=be 01)
We have shown that (a,b) € R is equivalent to A, ) e ((a7 b) € Rm’y). O

Corollary 2.5. A small structure envelopes any infinitely (-definable preorder of
finite arity n which is coarser than equality between n-types without parameters.
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Proof. Such a preorder < induces a closed preorder < on the space of n-types,
defined by

tpa) Stp(h) <= a<b
By Proposition 2.4, the preorder < is the conjunction of definable preorders. [

Proposition 2.6. A small structure envelopes every infinitely (-definable semi-
group of finite arity.

Proof. Let M be this semi-group. Without loss of generality or smallness, we may
assume that M have a unit, and add it to the language. There is a definable set
X containing M such that the law be associative on X. Let R be a preorder on X
defined by

xRy <= Jz Etp(y) (x € Mz)

Note that if z and y have the same type over (J, then z and y are in relation by R.
By Corollary 2.5, R is the conjunction of definable preorders R;. Note that m € M
if and only if mR1. By compactness, there is some j such that {x € X : 2R;1} C X.
Let J be the set {z € X : xR;1}. It is left stabilised by M : if m isin M and y in
J, then my € My, so myRy, thus myR;1. Consider the left stabiliser of J in X :
it is a semi-group containing M. O

Remark 2.7. Note that by compactness, an infinitely definable semi-group is the
conjunction of infinitely definable groups defined by countable types. It follows
from Proposition 2.6 that an w-stable structure envelopes any infinitely definable
semi-group with parameters in an arbitrary set.

From Propositions 1.9 and 1.10, it follows :

Corollary 2.8. A small structure envelopes any infinitely (-definable preorder of
finite arity.

2.2. Semi-groups of arbitrary arity. A semi-group G with identity 14 is said
to almost act on a set X if there is a map G x X — X. It acts on X if in addition,
for all g, h,x in G x G x X, the equalities (gh) -z =g- (h-z) and 1 -z = x hold.

Lemma 2.9. In the small structure I, let p be a partial type of finite arity, and
let X be the set {x € M* := p(x)}. Let G be a semi-group acting on X so that
the action be infinitely O-definable in M. Then, there are formulae f;, such that X
be the intersection of sets of the form {x € M* :}= fi(x)} on which G almost acts
(with the same map).

Proof. Let fy be any formula in p, and let X, be the set {z € M“ := fo(z)}. By
compactness, there is some formula f; in p such that G- X; C Xy, where X7 is the
set {x € MY := fi(x)}. Let Xo, X3... be a sequence of definable subsets of X;
whose conjunction is X. Let E be the equivalence relation on X, defined by

2By < Jg€ G (g-z=1y)

E is the conjunction of definable equivalence relations F;. Note that x € X if and
only if there exists some a € X with aEx. So there is some index j such that {z €
MY :Ja € X;, aF;x} C X;. We show that G acts on {z € M“ : Ja € X, aE,z}.
We call Y the latter set, and take some g in G and x in Y ; the product g - z is in
Xo so xEg -z, hence xF;g - ¢ and al;g - x. [l
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Remark 2.10. The point of the previous lemma is that the semigroup G may have
infinite arity.

Remark 2.11. The result holds if the set X is infinitely A-definable (of finite ar-
ity), as E only involves parameters defining the semigroup G. Hence, if G4 is an
infinitely A-definable group of finite arity, with an infinitely (-definable subgroup
H, there exists a definable set X containing G 4 stable under multiplication by H.

Proposition 2.12. In a small structure, an infinitely definable group is the inter-
section of definable sets each one equiped with an infinitely definable binary opera-
tion whose conjunction of graphs gives the group law.

Proof. Let G be this group. As G is the intersection of infinitely definable groups
defined by countable types, we may assume that G C 9 and that G is the
conjunction of countably many sets of the form X; = {z € M := f;(z)} where f;
are formulae. By compactness, we may assume that G- X; C Xy. For every integer
n, let E, be the equivalence relation "to have the same n first coordinates". On
Xo, we set,
2Ry < dg,h € G (g-xE,h-y)

Note that x € G if and only if xR, 1 for all n. By compactness, there is an integer
n such that R,1 C X;. Then, R,1 is stabilised left multiplicatively by G. As
the type defining R, 1 constrains only finitely many variables, by Lemma 2.9, we
may assume that G almost acts on every X;. By compactness, X; is stable under
multiplication for sufficiently large i. O

3. INFINITELY DEFINABLE GROUPS AND FIELDS
IN A SMALL AND SIMPLE STRUCTURE

3.1. Groups. In [3], Kim shows that the notion of strong type and Lascar strong
type coincide in a small and simple theory, a necessary condition to eliminate
hyperimaginaries. He proceeds in two steps, considering in the first one equivalence
relations with boundedly many classes. We give an analogue of the first step for
infinitely definable groups of finite arity.

In this last section, all infinitely definable groups and field considered will have
finite arity.

Let 9t be a k-satured model of some theory T. For a set, bounded will mean
strictly smaller than k. An hyperimaginary is a class a/E of some a in 9 modulo
an infinitely definable equivalence relation F on 9%, where « is a bounded ordinal.
We write Aut(9t/A) for the group of automorphisms of 9 fixing A setwise. The
action of Aut(9t/A) over M naturally extends to hyperimaginaries. The bounded
closure of some set A, written bdd(A), is the set of hyperimaginaries whose orbit
under Aut(9t/A) is bounded. We will not define here what a simple theory is, but
refer the reader to [10] for more details. If T is simple, two elements a and b have
the same Lascar strong type over A, which we write "Lstp(a/A) = Lstp(b/A)", if
and only if they have the same type over bdd(A) (see [10, Lemma 3.2.13]). Let us
recall the independence Theorem for Lascar strong types in simple theories.

Fact 3.1. (Kim-Pillay [4]) In a simple theory, let A, B,C,b and c satisfy
1) ACB,ACC’andBJ_/AC’,
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2) Neither tp(b/B), nor tp(c/C) fork over A,
3) Lstp(b/A) = Lstp(c/A).

Then there exists some a such that tp(a/BC) extends both tp(b/B) and tp(c/C),
such that tp(a/BC) does not fork over A, and such that a, b and ¢ have the same
Lascar strong type over A.

Two subgroups G and H of some group F are commensurable if the indices
[G : GN H] and [H : GN H] are bounded. The A-connected component of a
group G is the smallest infinitely A-definable group of bounded index in G. Every
infinitely definable group in a simple theory has an A-connected component (see
[10, Lemma 4.1.11]), which we will denote by G%. When it exists, G is always a
normal subgroup of G.

Lemma 3.2. Let X be a definable set in any structure with an infinitely definable
composition law (the product of two elements of X may be outside X ) such that the
product of every six elements of X be defined and associative. Let G 4 be an infinitely
A-definable group inside X. If the A-connected component of G4 is contained in
some definable group H in X, then G4 is contained in a definable group included
n H - GA.

Proof. The group G4 N H has finite index in G4, so H - G4 is definable, being a
finite union of cosets of H. The group (\,cx.c H" is thus also definable. Let us
call it N : this is a subgroup invariant under conjugation by elements of G4. As N
is the intersection of conjugates of H under G 4, and as the connected component
GY is normal in G4, the group N contains GY%. The product N - G4 is a definable
group containing G 4. O

A family $ of infinitely definable subsets of I is uniformly infinitely definable if
there are two partial types p(x,y) and ¢(z) such that

9 ={{z e M = p(x,a)} = qla)}
If ¢ and p are types over A, the family $ is uniformly infinitely A-definable. Let us
now point out a result from Wagner’s proof of [10, Theorem 4.5.13] and the earlier
[10, Remark 4.1.20] :

Fact 3.3. In a simple structure, let X be an infinitely A-definable set with an infin-
itely A-definable composition law (the product of two elements of X may be outside
X ). Let 9 be a uniformly infinitely A-definable family of pairwise commensurable
groups in X . If X contains -9 -9 -9, there exists an infinitely A-definable group
N inside -9 -9 - H which is commensurable with every H in $).

Proposition 3.4. In a small and simple structure, let Z be a definable set, and G 4
be an infinitely A-definable group inside Z, such that boundedly many translates of
G4 cover Z. Then Z envelopes G 4.

Proof. We may restrict Z and suppose that the group law be defined and associative
on Z. By compactness there is some definable set Y containing G 4 such that
Y -Y-Y .Y C Z. We may suppose that Z, Y and the group law are definable
without parameters. Let $ be the set {Gp : B = tp(A/0)}. The elements in $
are pairwise commensurable. According to Fact 3.3, there exists an infinitely -
definable group N which is commensurable with G4 ; hence, N is contained in a
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definable group included in Y by Proposition 1.2 and Fact 2.1. But N contains the
connected component of G4, so G4 is contained in some definable group included
in N - G4 according to Lemma 3.2. ]

If we could not do better, at least can we state local results. Recall that in an
infinitely definable group G with simple theory, an element ¢ is generic over A if
for every h \I/Ag in G, we have hg | A,h. Recall [10, Lemma 4.1.19] and [10,
Remark 4.1.20], which together give :

Fact 3.5. (Wagner [10]) In a simple structure, let G be a definable set with a
definable composition law having an identity, and such that the product of every
three elements of G be defined and associative, and such that any element have a
right and left inverse in G. In G, let X be an infinitely definable set such that for
all x and y independent in X, the product x =y be in X. Then X -X is an infinitely
definable group and X is generic in X - X. Actually, X contains every generic type
of X - X.

Lemma 3.6. In a simple structure, let G4 be an infinitely A-definable group, and
let g be a finite tuple of elements in G4. There is a finite set B and an infinitely
B-definable group containing acl(g) NGa.

Proof. The group law is defined and associative on a definable set X containing
G 4. By compactness, there is a definable set Y inside X such that Y -Y C X. We
may assume that X and Y are definable without parameters. Let I" be the bounded
closure of g. Let Nr be the set

{zeY :3A Etp(A)T) (A | zAhzeGa)}

Nr is an infinitely I'-definable set containing acl(g) N G4. Let x and y be two
elements of Ny such that z J/Fy. We show that 'y is inside Nr : there are
elements A" and A" realising tp(A/I') such that A" |z, A” | v, and such that
2 belong to G4 and y to Ga». According to the Independence Theorem 3.1,
there exists some A" realising tp(A’/2I") Utp(A” /yT') such that A" | . z,y. Thus
A" |2~y But z and y are in G4 so ™'y is in Gaw too ; a fortiori, 271y is
in Y. After Fact 3.5, the product Nr - Nr is an infinitely I'-definable group. Let us
consider the group
O'(N[‘ . NF)
oc€Aut(C/g)
This is a bounded, infinitely g-definable intersection containing acl(g) N G 4. O

Corollary 3.7. In a small and simple structure, let g be a finite tuple of an infin-
itely A-definable group G 4. There is a definable group containing acl(g) NGa.

3.2. Fields.

Lemma 3.8. In a simple structure, let K be a definable set with two definable
composition laws (the sum and product of two elements of K may be outside K ),
each having an identity 0 and 1 respectively (which are a constant in the language),
and such that the sum and product of every three elements of G be defined and
associative. We assume that multiplication is distributive over addition and that
any element in K has a right and left inverse in K for each law. In K, let X be an
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infinitely definable set containing 0 and 1, and such that for all x and y independent
in X, the sum x—vy and product x 'y be in X. Then X +X is an infinitely definable
field.

Proof. Note first that X equals —X and X ! as X contains 0 and 1. According to
Fact 3.5, X + X is an additive group ; we need just show that X - X is included in
X + X, for we shall have

(X+X) (X+X)CX - X+X-X+X X+X-XCX+X

Let p be an additive generic type in of X + X. Then p is in X. Let g and ¢’ be in
X, and let h be in p such that h | g,¢’. Then, h J/g, gand h+g’ Lg, g. Moreover,

we have ¢’ +h | ¢',s0 ¢’ +h | g by transitivity. Hence, gg’ + gh isin X. As h™!
isin X and g | h~!, the product gh belongs to X and gg’ to X + X. O

Lemma 3.9. In a simple structure, let g be finite tuple of an infinitely A-definable
field Ka. There is a finite set B and an infinitely B-definable field containing
acl(g)NGa.

Proof. Let X be a definable set where addition and multiplication are defined and
associative, and where multiplication is distributive over addition, and let Y be
definable subset of X such that Y -Y and Y + Y are in X. Let B be the bounded
closure of g, and let Lp be the set

(€Y :3C = tp(A/B) (C | x Az € Ko)}
B

Lp is an infinitely B-definable set containing acl(g) N G4. If 2 and y are two
elements of Lp independent over B, then 2~y and = — y also lie in L. According
to Fact 3.5, the set [, ¢ 4,4(e/q) (LB + L) has the required properties. O

Corollary 3.10. In a small and simple structure, let g be a finite tuple of an
infinitely A-definable field Ka. Then there is a definable field containing acl(g) N
Ka.

Corollary 3.11. In a small and simple structure, an infinitely A-definable field of
finite arity is finite or algebraically closed, and in positive characteristic, commu-
tativity need not be assumed but follows.

Proof. Let K4 be commutative field in a small and simple structure. If it is infi-
nite, by compactness, there is an element z of infinite order in K 4. Let P be a
polynomial with coefficients in K 4. According to Corollary 3.10, for every definable
set X containing K 4, there is a definable field Ly in X which contains x and the
coefficients of P. By [9], Lx is algebraically closed. The field [y, Lx is an
algebraically closed subfield of K4 which contains every coefficient of P.

If K4 has positive characteristic and is not assumed to be commutative, let x and
y be in K 4. By Corollary 3.10, there is a definable field containing x and y, so x
and y commute after [6]. O
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