
INFINITELY DEFINABLE STRUCTURES IN SMALL THEORIES

CÉDRIC MILLIET

Abstract. We observe simple links between preorders, semi-groups, rings and
categories (and between equivalence relations, groups, �elds and groupoids),
which are in�nitely de�nable in an arbitrary structure, and apply these obser-
vations to small structures. Recall that a structure is small if it has countably
many pure n-types for each integer n. A category de�ned by a pure n-type in
a small structure is the conjunction of de�nable categories. For a group GA

de�ned by an n-type over some arbitrary set A in a small and simple structure,
we deduce that
1) if GA is included in some de�nable set such that boundedly many trans-

lates of GA cover X, then GA is the conjunction of de�nable groups.
2) for any �nite tuple g in GA, there is a de�nable group containing g.

In a universe M, an in�nitely A-de�nable set, instead of being de�ned by a formula,
is the conjunction of in�nitely many formulae with parameters in some set A. An
in�nitely A-de�nable structure in M is any structure whose domain, functions and
relations are in�nitely A-de�nable in M.

De�nition. Let L be a language, S a set of L-structures, and A an element of S
which is in�nitely de�nable in M. We say that M loosely envelopes A with respect
to S if A is contained in some de�nable structure belonging to S. We say that M
envelopes A with respect to S if A is the conjunction of de�nable structures in S.

In the sequel, the set S will consist either of groups, semi-groups, �elds, rings,
preorders, equivalence relations, categories or groupoids and will be obvious from
the context. For instance, we shall say that a structure envelopes an in�nitely
de�nable group G to say that G is the conjunction of de�nable groups.

Note that being enveloped is strictly stronger that being loosely enveloped. A stable
structure is known to envelope in�nitely de�nable groups and �elds [1, Hrushovski].
Consequently, in an omega-stable structure, an in�nitely de�nable group is de�n-
able, as is an in�nitely de�nable �eld in a superstable structure. Pillay and Poizat
proved that an in�nitely ∅-de�nable equivalence relation on a small structure is
enveloped, provided that it be coarser than the equality of pure types [8]. Kim
generalised Pillay and Poizat's result to arbitrary in�nitely ∅-de�nable equivalence
relations on a small structure [3]. In [10], Wagner deduces from Kim's result that
if a small structure loosely envelopes an in�nitely ∅-de�nable group of �nite arity,
it must envelope it. He asked whether an in�nitely ∅-de�nable group in a small
structure should be enveloped [10, Problem 6.1.14]. We shall show
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Theorem. An in�nitely ∅-de�nable category of �nite arity in a small structure is
the conjunction of de�nable categories.

As the notion of category both generalises preorders and semi-groups, the latter
includes Kim's result and gives a positive answer to Wagner's question. It also
gives a similar conclusion for an in�nitely ∅-de�nable groupoid, which is a category
where every morphism is invertible. As in�nitely de�nable groupoids arise naturally
in some structures [2], this result might have an interest in itself. If we want to
look at in�nitely de�nable categories over in�nitely many parameters, we have to
assume additional conditions, in our case that the ambiant theory be simple. We
obtain :

Theorem. Let GA be an in�nitely A-de�nable group of �nite arity in a small and
simple structure.

i) If GA is included in some de�nable set such that boundedly many translates
of GA cover X, then GA is the conjunction of de�nable groups.

ii) For any �nite tuple g in GA, there is a de�nable group containing g.

For an in�nitely A-de�nable �eld KA of �nite arity in a small and simple structure,
the latter statement provides de�nable �elds around every point, which give infor-
mation about the structure of KA : it must be algebraically closed, and in positive
characteristic, commutative.

1. A few words on structures enveloping algebraic structures

In the sequel, everything is inside some arbitrary universe M, who may have addi-
tional properties in the following sections.

De�nition 1.1. A set X is in�nitely A-de�nable in M if it is a subset of Mα for
some ordinal α, which is de�ned by a partial type with parameters in A. We call
α the arity of X in M.

An in�nitely A-de�nable structure is any structure whose domain, functions and
relations are in�nitely A-de�nable. When considering in�nitely de�nable groups
in M (and more generally, in�nitely de�nable structures satisfying a given set of
axioms T ), we suppose that its type still de�nes a group (respectively still satis�es
the axioms of T ) in any elementary extension of M. In this section, every in�nitely
de�nable set considered will have �nite arity in M. As we make no assumption
on the ambiant structure, we may also asssume in this section that every in�nitely
de�nable set considered is de�nable without parameters, by expanding the langage
with possible parameters.

1.1. Equivalence relations, groups and �elds. We begin by recalling from [7]
that if f is an in�nitely de�nable map between two in�nitely de�nable sets A and B
of �nite arity, by compactness, f is the trace of a de�nable map, so we may assume
all the laws to be de�nable in this section. We go on by stating simple, but new
observations.

Proposition 1.2. If M envelopes every equivalence relation, it also envelopes every
group.
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Proof. Let G be an in�nitely de�nable group in M. By compactness, there exists a
de�nable set X0 such that the group law be associative on X0, and such that each
element of X0 have a unique inverse in G0. Let X1, X2, . . . be a chain of de�nable
subsets of X0 whose intersection equals G. As G is stable by multiplication, by
compactness there is some Xj , say X1, such that X1 · X1 be a subset of X0. We
consider the equivalence relation E on X0 saying that x and y are related if xy−1 ∈
G. By hypothesis, E is the conjunction of de�nable equivalence relations Ei. Note
that an element g in X0 belongs to G if and only if 1Eg. By compactness, there
exists some index j such that the set {x ∈ X0 : xEj1} be included in X1. Let
J be the set {x ∈ X1 : xEj1}. The set G · J is included in J . For instance, if
g ∈ G and if y ∈ J , then g equals gyy−1 and gy belongs to X0, so gyEy, hence
gyEj1 by transitivity. Thus, if H denotes the left stabiliser of J , that is, the set
{g ∈ X0 : gJ ⊂ J}, then the set H ∩H−1 is a group in X0 containing G. Note that
if the ambient structure envelopes every equivalence relation, so does every Xi. It
follows that every Xi contains some de�nable group Hi around G, and G is the
conjunction of every Hi. �

Remark 1.3. Note that the converse fails, as there are superstable structures that do
not envelope every equivalence relation [8, Exemple 2], but next section will show
that we just need to remove the symmetry assumption to make the equivalence
true.

Remark 1.4. Let E be an in�nitely de�nable equivalence relation, and let E∗ the
in�nitely de�nable equivalence relation de�ned by

xE∗y if and only if there exists some b such that tp(b) = tp(x) and bEz

Recall from [8, Pillay Poizat] that E is enveloped if and only if so is every restriction
of E to a complete type, and so is E∗. Actually, replacing in the previous proof
the equivalence relation xy−1 ∈ G by ∃b |= tp(x) ∧ by−1 ∈ G, one shows that the
structure M needs only envelope the equivalence relations coarser than the equality
of types to envelope every group.

Proposition 1.5. If M envelopes every group, it also envelopes commutative �elds,
and envelopes every (possibly skew) �eld with respect to integral rings.

Proof. Let K be an in�nitely de�nable �eld in this structure. By compactness,
there is a de�nable set X containing K such that addition and multiplication be
associative on X, and such that multiplication be distributive over addition. We
may also assume that every element in X have an additive and multiplicative in-
verse, and set 0−1 equal to 0. Replacing X by X ∩ −X ∩ X−1 ∩ −X−1, we may
assume that X equals −X and X−1. So X is integral. By hypothesis there exists
a de�nable additive group H inside X and around K+, and also a de�nable multi-
plicative groupM inside H and around K×. Let S be the set {h ∈ H : M ·h ⊂ H}.
This is an additive subgroup of H stabilised by left multiplication by M . Let L
be the set {h ∈ H : h · S ⊂ S}. This is a de�nable integral ring containing M .
If multiplication is commutative, the product L · L−1 is a �eld containing K : for
every a, b, c, d in L, one has the equality

ab−1 + cd−1 = (bd)−1(ad+ cb)

�
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1.2. Preorders, semi-groups, rings and categories. We call a preorder any
binary relation which is re�exive and transitive. A semi-group is any set with an
associative binary operation. A semi-group might have no identity element.

Proposition 1.6. If M envelopes every preorder, it also envelopes every semi-
group.

Proof. Let M be an in�nitely de�nable semi-group. We may add a new constant 1
toM , and the set {(1, x, x), (x, 1, x) : x ∈M∪1} to the graph of multiplication, and
assume that M has an identity. Let X0 be a de�nable set containing M where the
law is associative. Let X1 be a de�nable set containing M such that X1 ·X1 ⊂ X0.
We consider the preorder R on X0 de�ned by xRy if and only if x ∈My, and �nish
as in the group case. �

We shall show in the sequel that the converse is also true (see Propositions 1.9 and
1.10). As in the �eld case, and with a similar proof, we have

Proposition 1.7. If M envelopes every semi-group, it also envelopes every (pos-
sibly non-commutative) ring.

De�nition 1.8. A category is a two-sorted structure, the objectsO, and morphisms
M , together with applications i0 and i1 fromM to O (saying that the morphism m
from M goes from i0(m) to i1(m)), a partial associative composition map ◦ from
M ×i0,i1 M to M (m ◦ n is de�ned when i0(m) equals i1(n)), and an identity map
Id from O to M (such that Id(x) be the identity morphism from x to x).

On the sorts of objects of a given category, one can de�ne a preorder by setting
a ≤ b if there is a morphism from a to b, as well as semi-groups Ma whose elements
are morphisms from a to a for any object a. Conversely, on the one hand, a preorder
≤ is a category with trivial semi-groups, and with one morphism for every couple
a, b satisfying a ≤ b. On the other hand, a semi-group is a category with one single
object and morphisms given by right multiplication by any element. Hence, the
notion of category generalises both preorders and semi-groups.

Proposition 1.9. If M envelopes any semi-group, it also envelopes any category.

Proof. Let C be an in�nitely de�nable category, with objects O and morphismsM .
The set M has a partial structure of semi-group with law ◦, which can be extended
to the whole of M : let o be a new object and 0 a new morphism from o to o. Let
O equal O ∪ {o}, and M equal M ∪ {0}. We extend i0, i1 and ◦ respectively to
i0, i1 and ◦ by setting i0(0) = i1(0) = o and 0◦0 = 0◦m = m◦0 = m◦n = 0 for all
morphisms m,n such that i0(m) 6= i1(n) ; the law ◦̄ is still in�nitely de�nable (as
O has �nite arity), and associative over M . By hypothesis, M is the conjunction
of de�nable semi-groups M i. By compactness, i0 and i1 are de�ned on M i for
su�ciently large i. Let Mi equal M i minus 0 and let Oi equal i0(Mi) ∪ i1(Mi).
(Oi,Mi) is not a category yet as the map Id need not be de�ned on Oi. But the
equalities Id(i1(m)) ◦ m = m and n ◦ Id(i0(n)) = n hold for all m,n in M . By
compactness, they must still hold for every m,n in Mi for some su�ciently large i.
In particular, Id is de�ned on Oi. �

Proposition 1.10. If M envelopes any category, it also envelopes any preorder.
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Proof. A preorder ≤ on some set X is a category C with objects X, morphisms
{(x, y) : x ≤ y}, and maps i0, i1, ◦ and Id de�ned by i0(x, y) = x, i1(x, y) = y,
(x, y)◦(y, z) = (x, z), and Id(x) = (x, x). By hypothesis, if ≤ is in�nitely de�nable,
it is the conjunction of de�nable categories Ci. By compactness, for su�ciently large
i, the category Ci is a preorder, ie there is at most one morphism between every
ordered pair of objects. �

De�nition 1.11. A groupoid is a category whose morphisms are invertible.

Note that this generalises both the notions of groups and equivalence relations.

Remark 1.12. Similarly to the proof of Proposition 1.10, a structure which envelopes
any groupoid also envelopes any equivalence relation.

Proposition 1.13. M envelopes any equivalence relation if and only if it envelopes
any groupoid.

Proof. We adapt the proof from the group case. Let G be a groupoid, and let O and
M be its objects and morphisms. By compactness, there are de�nable sets XO and
XM containing O and M , such that i0 and i1 be de�ned over XM , and such that
Id be de�ned over XO, and ◦ associative and de�ned over XM , with in addition
the equality Id(i1(m)) ◦m = m ◦ Id(i0(m)) = m holding for every m in XM . We
may assume that XM equal X−1

M . By compactness, there is some de�nable ZM
containing M with ZM ◦ ZM included in XM . Let E be the equivalence relation
over XM de�ned by

xEy ⇐⇒ i0(x) = i0(y) ∧ x ◦ y−1 ∈M

By hypothesis, E is the conjunction of de�nable equivalence relations Ei. Any
element x of XM belongs to M if and only if xE Id(i0(x)) ; by compactness, there
is some index j such that the inclusion {x ∈ XM : xEjId(i0(x))} ⊂ ZM holds. Let
J equal {x ∈ ZM : xEjId(i0(x))} : it is stabilised by left multiplication by M .
Namely, if g is in M and y in J , and if i0(g) equals i1(y) then

g = g ◦ Id(i0(g)) = g ◦ y ◦ y−1

so g ◦ y is in X hence g ◦ yEy, thus g ◦ yEjId(i0(y)). Let H be the set {x ∈ J :
x ◦J ⊂ J}. H is closed under composition. (XO, H ∩H−1 ∪ Id(XO)) is a groupoid
containing G. �

2. Application to small structures

De�nition 1. A structure is small if it has countably many n-types without pa-
rameters for every integer n.

In this section, we assume the ambiant structure M to be small. We recall a theorem
of Kim, using a result of Pillay and Poizat :

Fact 2.1. (Kim-Pillay-Poizat [8, 3]) A small structure M envelopes every in�nitely
∅-de�nable equivalence relation over M.

Note that [5, Krupi«ski, Newelski] gives an analytic proof of the previous theorem.
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Remark 2.2. As M is small, every �nite cartesian power of M is again small. The
result fails for an in�nitely de�nable equivalence relation over some in�nite cartesian
power of M, even in a ℵ0-categorical structure : if M is a dense linear order without
end points, take the relation E over MQ saying that xEy if and only if xi < yj and
yi < xj for every i < j.

According to our previous observations, this answers Wagner's problem 6.1.14 in
[10], and shows that a small structure envelopes any in�nitely ∅-de�nable group,
�eld and groupoid of �nite arity. Recall that a de�nable small �eld is either �nite
or algebraically closed [9], and that a small �eld of positive characteristic cannot
be skew [6].

Corollary 2.3. In a small structure, an in�nitely ∅-de�nable �eld of �nite arity is
�nite or algebraically closed, and in positive characteristic, commutativity need not
be assumed but follows.

Three main questions arise : what happens for in�nitely ∅-de�nable groups of
in�nite arity? For in�nitely ∅-de�nable semi-groups (even of �nite arity)? And
for in�nitely A-de�nable groups, where the set of parameters A is allowed to be
in�nite? We tackle the two �rst questions in the next paragraphs, and give a partial
answer to the third question in section 3.

2.1. Preorders and semi-groups of �nite arity. The following proposition is
inspired from [8] and [3].

Proposition 2.4. A closed preorder on a denumerable Hausdor� compact space is
the conjunction of clopen preorders.

Proof. Let X be this Hausdor� compact space, and R a closed preorder over X. Let
Sc stand for the complement of any subset S of X. The space X has a clopen basis,
and R is a closed set of tuples in X ×X. If (x, y) is not in R, there exists a basic
open set O1 × O2 outside R containing the tuple (x, y) ; the set O1 ∩ O2 is empty
as R is re�exive. We choose O1 and O2 such that (O1 ∪O2)c have minimal Cantor-
Bendixson rank and degree, and write Y for (O1∪O2)c. We show that Y is empty ;
otherwise, let y be in Y with maximal rank. If (O1×{y})∩R and ({y}×O2)∩R are
both non-empty, as R is transitive, (O1×O2)∩R is also non-empty, a contradiction.
We may assume (O1 × {y}) ∩R to be empty. The set O1 × {y} is contained in the
open set Rc. So we can choose a basic open set Q2 containing y with O1×Q2 ⊂ R.
But O1× (Q2 ∪O2) is outside R. So (O1 ∪O2 ∪Q2)c equals Y c ∩Qc2, which misses
y, a contradiction with the degree of Y being minimal. So Y is empty, X equals
O1 ∪O2, and O1 ×Oc1 ⊂ Rc. Therefore, R ⊂ (X ×O1) ∪ (Oc1 ×X), and (a, b) ∈ R
implies (a, b) ∈ Rx,y where Rx,y is the preorder de�ned by

(a, b) ∈ Rx,y ⇐⇒
�
a ∈ O1 ⇒ b ∈ O1

�

We have shown that (a, b) ∈ R is equivalent to
V

(x,y)∈Rc

�
(a, b) ∈ Rx,y

�
. �

Corollary 2.5. A small structure envelopes any in�nitely ∅-de�nable preorder of
�nite arity n which is coarser than equality between n-types without parameters.
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Proof. Such a preorder ≤ induces a closed preorder . on the space of n-types,
de�ned by

tp(a) . tp(b) ⇐⇒ a ≤ b
By Proposition 2.4, the preorder . is the conjunction of de�nable preorders. �

Proposition 2.6. A small structure envelopes every in�nitely ∅-de�nable semi-
group of �nite arity.

Proof. Let M be this semi-group. Without loss of generality or smallness, we may
assume that M have a unit, and add it to the language. There is a de�nable set
X containing M such that the law be associative on X. Let R be a preorder on X
de�ned by

xRy ⇐⇒ ∃z |= tp(y) (x ∈Mz)
Note that if x and y have the same type over ∅, then x and y are in relation by R.
By Corollary 2.5, R is the conjunction of de�nable preorders Ri. Note that m ∈M
if and only ifmR1. By compactness, there is some j such that {x ∈ X : xRj1} ⊂ X.
Let J be the set {x ∈ X : xRj1}. It is left stabilised by M : if m is in M and y in
J , then my ∈ My, so myRy, thus myRj1. Consider the left stabiliser of J in X :
it is a semi-group containing M . �

Remark 2.7. Note that by compactness, an in�nitely de�nable semi-group is the
conjunction of in�nitely de�nable groups de�ned by countable types. It follows
from Proposition 2.6 that an ω-stable structure envelopes any in�nitely de�nable
semi-group with parameters in an arbitrary set.

From Propositions 1.9 and 1.10, it follows :

Corollary 2.8. A small structure envelopes any in�nitely ∅-de�nable preorder of
�nite arity.

2.2. Semi-groups of arbitrary arity. A semi-group G with identity 1G is said
to almost act on a set X if there is a map G×X → X. It acts on X if in addition,
for all g, h, x in G×G×X, the equalities (gh) · x = g · (h · x) and 1G · x = x hold.

Lemma 2.9. In the small structure M, let p be a partial type of �nite arity, and
let X be the set {x ∈ Mω :|= p(x)}. Let G be a semi-group acting on X so that
the action be in�nitely ∅-de�nable in M. Then, there are formulae fi, such that X
be the intersection of sets of the form {x ∈Mω :|= fi(x)} on which G almost acts
(with the same map).

Proof. Let f0 be any formula in p, and let X0 be the set {x ∈ Mω :|= f0(x)}. By
compactness, there is some formula f1 in p such that G ·X1 ⊂ X0, where X1 is the
set {x ∈ Mω :|= f1(x)}. Let X2, X3 . . . be a sequence of de�nable subsets of X1

whose conjunction is X. Let E be the equivalence relation on X0 de�ned by

xEy ⇐⇒ ∃g ∈ G (g · x = y)

E is the conjunction of de�nable equivalence relations Ei. Note that x ∈ X if and
only if there exists some a ∈ X with aEx. So there is some index j such that {x ∈
Mω : ∃a ∈ Xj , aEjx} ⊂ X1. We show that G acts on {x ∈Mω : ∃a ∈ Xj , aEjx}.
We call Y the latter set, and take some g in G and x in Y ; the product g · x is in
X0 so xEg · x, hence xEjg · x and aEjg · x. �



INFINITELY DEFINABLE STRUCTURES IN SMALL THEORIES 8

Remark 2.10. The point of the previous lemma is that the semigroup G may have
in�nite arity.

Remark 2.11. The result holds if the set X is in�nitely A-de�nable (of �nite ar-
ity), as E only involves parameters de�ning the semigroup G. Hence, if GA is an
in�nitely A-de�nable group of �nite arity, with an in�nitely ∅-de�nable subgroup
H, there exists a de�nable set X containing GA stable under multiplication by H.

Proposition 2.12. In a small structure, an in�nitely de�nable group is the inter-
section of de�nable sets each one equiped with an in�nitely de�nable binary opera-
tion whose conjunction of graphs gives the group law.

Proof. Let G be this group. As G is the intersection of in�nitely de�nable groups
de�ned by countable types, we may assume that G ⊂ Mω and that G is the
conjunction of countably many sets of the form Xi = {x ∈Mω :|= fi(x)} where fi
are formulae. By compactness, we may assume that G ·X1 ⊂ X0. For every integer
n, let En be the equivalence relation "to have the same n �rst coordinates". On
X0, we set

xRny ⇐⇒ ∃g, h ∈ G (g · xEnh · y)
Note that x ∈ G if and only if xRn1 for all n. By compactness, there is an integer
n such that Rn1 ⊂ X1. Then, Rn1 is stabilised left multiplicatively by G. As
the type de�ning Rn1 constrains only �nitely many variables, by Lemma 2.9, we
may assume that G almost acts on every Xi. By compactness, Xi is stable under
multiplication for su�ciently large i. �

3. Infinitely definable groups and fields

in a small and simple structure

3.1. Groups. In [3], Kim shows that the notion of strong type and Lascar strong
type coincide in a small and simple theory, a necessary condition to eliminate
hyperimaginaries. He proceeds in two steps, considering in the �rst one equivalence
relations with boundedly many classes. We give an analogue of the �rst step for
in�nitely de�nable groups of �nite arity.

In this last section, all in�nitely de�nable groups and �eld considered will have
�nite arity.

Let M be a κ-satured model of some theory T . For a set, bounded will mean
strictly smaller than κ. An hyperimaginary is a class a/E of some a in Mα modulo
an in�nitely de�nable equivalence relation E on Mα, where α is a bounded ordinal.
We write Aut(M/A) for the group of automorphisms of M �xing A setwise. The
action of Aut(M/A) over M naturally extends to hyperimaginaries. The bounded
closure of some set A, written bdd(A), is the set of hyperimaginaries whose orbit
under Aut(M/A) is bounded. We will not de�ne here what a simple theory is, but
refer the reader to [10] for more details. If T is simple, two elements a and b have
the same Lascar strong type over A, which we write "Lstp(a/A) = Lstp(b/A)", if
and only if they have the same type over bdd(A) (see [10, Lemma 3.2.13]). Let us
recall the independence Theorem for Lascar strong types in simple theories.

Fact 3.1. (Kim-Pillay [4]) In a simple theory, let A,B,C, b and c satisfy

1) A ⊂ B, A ⊂ C and B |̂
A
C,
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2) Neither tp(b/B), nor tp(c/C) fork over A,
3) Lstp(b/A) = Lstp(c/A).

Then there exists some a such that tp(a/BC) extends both tp(b/B) and tp(c/C),
such that tp(a/BC) does not fork over A, and such that a, b and c have the same
Lascar strong type over A.

Two subgroups G and H of some group F are commensurable if the indices
[G : G ∩ H] and [H : G ∩ H] are bounded. The A-connected component of a
group G is the smallest in�nitely A-de�nable group of bounded index in G. Every
in�nitely de�nable group in a simple theory has an A-connected component (see
[10, Lemma 4.1.11]), which we will denote by G0

A. When it exists, G0
A is always a

normal subgroup of G.

Lemma 3.2. Let X be a de�nable set in any structure with an in�nitely de�nable
composition law (the product of two elements of X may be outside X) such that the
product of every six elements of X be de�ned and associative. Let GA be an in�nitely
A-de�nable group inside X. If the A-connected component of GA is contained in
some de�nable group H in X, then GA is contained in a de�nable group included
in H ·GA.

Proof. The group GA ∩H has �nite index in GA, so H · GA is de�nable, being a
�nite union of cosets of H. The group

T
h∈H·GA

Hh is thus also de�nable. Let us
call it N : this is a subgroup invariant under conjugation by elements of GA. As N
is the intersection of conjugates of H under GA, and as the connected component
G0
A is normal in GA, the group N contains G0

A. The product N ·GA is a de�nable
group containing GA. �

A family H of in�nitely de�nable subsets of Mα is uniformly in�nitely de�nable if
there are two partial types p(x, y) and q(z) such that

H = {{x ∈Mα :|= p(x, a)} :|= q(a)}
If q and p are types over A, the family H is uniformly in�nitely A-de�nable. Let us
now point out a result from Wagner's proof of [10, Theorem 4.5.13] and the earlier
[10, Remark 4.1.20] :

Fact 3.3. In a simple structure, let X be an in�nitely A-de�nable set with an in�n-
itely A-de�nable composition law (the product of two elements of X may be outside
X). Let H be a uniformly in�nitely A-de�nable family of pairwise commensurable
groups in X. If X contains H ·H ·H ·H, there exists an in�nitely A-de�nable group
N inside H · H · H · H which is commensurable with every H in H.

Proposition 3.4. In a small and simple structure, let Z be a de�nable set, and GA
be an in�nitely A-de�nable group inside Z, such that boundedly many translates of
GA cover Z. Then Z envelopes GA.

Proof. We may restrict Z and suppose that the group law be de�ned and associative
on Z. By compactness there is some de�nable set Y containing GA such that
Y · Y · Y · Y ⊂ Z. We may suppose that Z, Y and the group law are de�nable
without parameters. Let H be the set {GB : B |= tp(A/∅)}. The elements in H
are pairwise commensurable. According to Fact 3.3, there exists an in�nitely ∅-
de�nable group N which is commensurable with GA ; hence, N is contained in a
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de�nable group included in Y by Proposition 1.2 and Fact 2.1. But N contains the
connected component of GA, so GA is contained in some de�nable group included
in N ·GA according to Lemma 3.2. �

If we could not do better, at least can we state local results. Recall that in an
in�nitely de�nable group G with simple theory, an element g is generic over A if
for every h |̂

A
g in G, we have hg |̂ A, h. Recall [10, Lemma 4.1.19] and [10,

Remark 4.1.20], which together give :

Fact 3.5. (Wagner [10]) In a simple structure, let G be a de�nable set with a
de�nable composition law having an identity, and such that the product of every
three elements of G be de�ned and associative, and such that any element have a
right and left inverse in G. In G, let X be an in�nitely de�nable set such that for
all x and y independent in X, the product x−1y be in X. Then X ·X is an in�nitely
de�nable group and X is generic in X ·X. Actually, X contains every generic type
of X ·X.

Lemma 3.6. In a simple structure, let GA be an in�nitely A-de�nable group, and
let g be a �nite tuple of elements in GA. There is a �nite set B and an in�nitely
B-de�nable group containing acl(g) ∩GA.

Proof. The group law is de�ned and associative on a de�nable set X containing
GA. By compactness, there is a de�nable set Y inside X such that Y · Y ⊂ X. We
may assume that X and Y are de�nable without parameters. Let Γ be the bounded
closure of g. Let NΓ be the set

{x ∈ Y : ∃A′ |= tp(A/Γ) (A′ |̂
Γ

x ∧ x ∈ GA′)}

NΓ is an in�nitely Γ-de�nable set containing acl(g) ∩ GA. Let x and y be two
elements of NΓ such that x |̂

Γ
y. We show that x−1y is inside NΓ : there are

elements A′ and A′′ realising tp(A/Γ) such that A′ |̂
Γ
x, A′′ |̂

Γ
y, and such that

x belong to GA′ and y to GA′′ . According to the Independence Theorem 3.1,
there exists some A′′′ realising tp(A′/xΓ)∪ tp(A′′/yΓ) such that A′′′ |̂

Γ
x, y. Thus

A′′′ |̂
Γ
x−1y. But x and y are in GA′′′ so x−1y is in GA′′′ too ; a fortiori, x−1y is

in Y . After Fact 3.5, the product NΓ ·NΓ is an in�nitely Γ-de�nable group. Let us
consider the group \

σ∈Aut(C/g)

σ(NΓ ·NΓ)

This is a bounded, in�nitely g-de�nable intersection containing acl(g) ∩GA. �

Corollary 3.7. In a small and simple structure, let g be a �nite tuple of an in�n-
itely A-de�nable group GA. There is a de�nable group containing acl(g) ∩GA.

3.2. Fields.

Lemma 3.8. In a simple structure, let K be a de�nable set with two de�nable
composition laws (the sum and product of two elements of K may be outside K),
each having an identity 0 and 1 respectively (which are a constant in the language),
and such that the sum and product of every three elements of G be de�ned and
associative. We assume that multiplication is distributive over addition and that
any element in K has a right and left inverse in K for each law. In K, let X be an
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in�nitely de�nable set containing 0 and 1, and such that for all x and y independent
in X, the sum x−y and product x−1y be in X. Then X+X is an in�nitely de�nable
�eld.

Proof. Note �rst that X equals −X and X−1 as X contains 0 and 1. According to
Fact 3.5, X +X is an additive group ; we need just show that X ·X is included in
X +X, for we shall have

(X +X) · (X +X) ⊂ X ·X +X ·X +X ·X +X ·X ⊂ X +X

Let p be an additive generic type in of X +X. Then p is in X. Let g and g′ be in
X, and let h be in p such that h |̂ g, g′. Then, h |̂

g′ g and h+g′ |̂
g′ g. Moreover,

we have g′ + h |̂ g′, so g′ + h |̂ g by transitivity. Hence, gg′ + gh is in X. As h−1

is in X and g |̂ h−1, the product gh belongs to X and gg′ to X +X. �

Lemma 3.9. In a simple structure, let g be �nite tuple of an in�nitely A-de�nable
�eld KA. There is a �nite set B and an in�nitely B-de�nable �eld containing
acl(g) ∩GA.

Proof. Let X be a de�nable set where addition and multiplication are de�ned and
associative, and where multiplication is distributive over addition, and let Y be
de�nable subset of X such that Y · Y and Y + Y are in X. Let B be the bounded
closure of g, and let LB be the set

{x ∈ Y : ∃C |= tp(A/B) (C |̂
B

x ∧ x ∈ KC)}

LB is an in�nitely B-de�nable set containing acl(g) ∩ GA. If x and y are two
elements of LB independent over B, then x−1y and x− y also lie in LB . According
to Fact 3.5, the set

T
σ∈Aut(C/g) σ(LB + LB) has the required properties. �

Corollary 3.10. In a small and simple structure, let g be a �nite tuple of an
in�nitely A-de�nable �eld KA. Then there is a de�nable �eld containing acl(g) ∩
KA.

Corollary 3.11. In a small and simple structure, an in�nitely A-de�nable �eld of
�nite arity is �nite or algebraically closed, and in positive characteristic, commu-
tativity need not be assumed but follows.

Proof. Let KA be commutative �eld in a small and simple structure. If it is in�-
nite, by compactness, there is an element x of in�nite order in KA. Let P be a
polynomial with coe�cients in KA. According to Corollary 3.10, for every de�nable
set X containing KA, there is a de�nable �eld LX in X which contains x and the
coe�cients of P . By [9], LX is algebraically closed. The �eld

T
X⊃KA

LX is an
algebraically closed sub�eld of KA which contains every coe�cient of P .

If KA has positive characteristic and is not assumed to be commutative, let x and
y be in KA. By Corollary 3.10, there is a de�nable �eld containing x and y, so x
and y commute after [6]. �
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