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ABSTRACT

We initiate a geometric stability study of groups of the form G/G00, where G
is a 1-dimensional definably compact, definably connected, definable group in
a real closed field M . We consider an enriched structure M ′ with a predicate
for G00 and prove 1-basedness for additive truncations of M , multiplicative
truncations, SO2(M) and its truncations; such groups are now interpretable in
M ′. We prove that the only 1-based groups are sufficiently “big” multiplicative
truncations, and we relate the results obtained to valuation theory. In the last
section we extend our results to ind-definable groups constructed from these
above.

1 Introduction

This paper is based on the positive solution of Pillay’s conjecture for definably
compact, definably connected, definable, 1-dimensional groups G in a real closed
field M in [7] and on the Madden and Stanton classification of 1-dimensional
Nash groups over the reals in [15]. Our aim is, considering some of the groups
described in [15], to understand the geometric complexity (in the sense of Zil’ber
trichotomy) of the groups G/G00. This model theoretic analysis, though, is not
directly possible in our ambient structure M , and a few changes of category will
be required to extract the “theory of G/G00” and to be able to study stability
on it. Since the group G/G00 is an o-minimal definable set in a structure M
with a predicate for G00, we can apply the generalisation to o-minimal theories
of the notion of 1-basedness, defined in [8], to such groups.

In section 2 we recall the notions of hyperdefinable set, externally definable
set and logic topology. We recall a theorem from [9] that proves o-minimality
as sets for hyperdefinable groups (which become definable in the appropriate
expansion of our base structure); afterwards we generalise this theorem to ind-
hyperdefinable groups.

In section 3 we recall the conditions we are imposing on our groups, Pillay’s
conjecture and the notion of a Nash group.
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Section 4 provides the definition of 1-basedness for a stably embedded set; and
it has a case study of additive truncations, multiplicative truncations, SO2(M)
and its truncations.

Section 5 is a case study of certain ind-definable sets arising from those from
section 4.

Notation is standard: T denotes a complete theory in a language L, M a model
of a theory, usually x, y, z, . . . denote finite tuples of variables, though occasion-
ally we shall highlight if they are tuples, by putting x, y, z, . . . Formulae are
denoted by Greek letters ϕ,ψ, χ, . . . , and sets by capital letters: X,Y, Z, . . . .

We assume a basic knowledge of o-minimality and of the related notion of di-
mension. Details can be found in the first chapters of [18].

We also assume basic knowledge of valuation theory (see for example [2] for
references), but we recall here briefly some notions. We view a real closed
valued field as a structure Mw = (M,R,Γ, 0, 1,+,−, ·, <), where M is a real
closed field, R a valuation ring, Γ the value group, and w denotes the valuation
w : M → Γ ∪ {∞}. The unique maximal ideal of R is denoted by I, and the
residue field by k. We recall that Γ = M/(R \ I).

We can define the sets above in terms of the valuation:

• Valuation ring: R = {x|w(x) ≥ 0}.

• Valuation ideal: I = {x|w(x) > 0}.

• Residue field: k = R/I.

We shall denote the standard valuation (with R = Fin the convex hull of Q,
and I the infinitesimal neighbourhood of the identity) by v.

Sometimes we indicate Mw simply as (M,R), or as (M,R, . . . ), where the dots
stand for the usual signature of the ordered fields.

2 Uniform o-minimality for bounded hyperde-
finable sets

In this section we recall a fundamental tool in the proof of Pillay’s conjecture:
the logic topology, originally defined in [7]. We define o-minimality of a set,
and related notions, and prove directly a special case of Theorem 8.6 [9]. We
conclude with a generalisation to bounded ind-hyperdefinable sets.

Let M be a saturated model of a theory T . Given X a definable subset of Mn

and an equivalence relation E ⊂ X × X, we say that E is type definable if
its graph is a type definable subset of X × X. The quotient X/E is called a
hyperdefinable set in M . We say that E is a bounded equivalence relation if
|X/E| < |M |, and in this case we shall call X/E a bounded hyperdefinable set.
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Let X/E be a bounded hyperdefinable set, and denote by π the canonical pro-
jection π : X → X/E. We call a set Y ⊂ X/E closed if π−1(Y ) is type definable
in M .

It is an easy exercise to show that these closed sets induce a topology on X/E,
called logic topology.

The following theorem is from [7], and shows some interesting properties of the
logic topology.

Theorem 2.1. The bounded hyperdefinable set X/E equipped with the logic
topology is a compact Hausdorff space. If, moreover, E is defined by a countable
number of formulae, X/E is separable.

Sketch proof: Compactness follows easily from saturation of M .

To prove that X/E is Hausdorff we need to find, for any given y∼, z∼ ∈ X/E
such that y∼ 6= z∼, two disjoint neighbourhoods. Taking y ∈ π−1(y∼) and z ∈
π−1(z∼) we clearly have ¬E(y, z), which is expressed by an infinite disjunction
of formulae. By compactness there is a formula ϕ such that ϕ(y) and ¬ϕ(z)
and π−1 (y∼) ⊂ ϕ(x), π−1 (z∼) ⊂ ¬ϕ(x). We consider ϕ(x) =

{
x ∈ X|∃t ∈

y∼, E(x, t)
}

and ¬ϕ(x) =
{
x ∈ X|∃t ∈ z∼, E(x, t)

}
: type definable sets in

X (by saturation). Observe now that their images under π are closed sets,
overlapping and covering X/E; so their complements are disjoint open sets.
Moreover z ∈ ϕ(x)

c
and y ∈ ¬ϕ(x)

c
. These are the neighbourhoods we are

looking for.

For the “moreover” part we prove it is second countable, this always implies
separability. Remark 1.6 from [5] says that X/E has a basis of cardinality
at most |M0| + |L|, for some submodel M0 over which E is type definable.
Now Löwenheim-Skolem allows us to find a model of countable cardinality, so
the remark implies that X/E has a countable basis and is therefore second
countable.

A similar theorem can be obtained for the class of ind-definable sets: a set X̃ is
said to be ind-definable if there is a chain of definable sets X0 ⊂ X1 ⊂ X2 ⊂ . . .
such that X̃ =

⋃
i∈ωXi.

The following is the definition required for Remark 7.6 [9].

Definition 2.2. Given X̃ = ∪i∈ωXi ind-definable, an equivalence relation E ⊆
X̃ × X̃ is type definable if for each n ∈ ω, E � (Xn ×Xn) is type definable and
for each i ∈ ω exists j ∈ ω such that all the classes meeting Xi are contained in
Xj . The set X̃/E is called an ind-hyperdefinable set.

If each E � (Xn×Xn) has a bounded number of classes we call it a bounded type
definable equivalence relation, and X̃/E is called a bounded ind-hyperdefinable
set.

The logic topology on X̃/E is given by: Y ⊆ X̃/E is closed if π−1(Y ) ∩Xn is
type definable for all n ∈ ω.
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It is easy to see that a compact set is a closed set whose preimage is contained
in some Xi.

Theorem 2.3. A bounded ind-hyperdefinable set X̃/E with the logic topology
is a locally compact Hausdorff space.

Proof. We need to find a compact neighbourhood of any given point c∼ ∈ X̃/E.
By definition π−1(c∼) ⊆ Xi for some i.

We consider the set O ⊂ X̃/E of the classes whose preimage is completely
contained in Xi:

π−1(O) =
{
x ∈ X̃|¬∃t(¬Xi(t)) ∧ E(x, t)

}
It is open, since it is the complement of a closed set (it easy to see that the
preimage of its complement is type-definable using saturation of M).

This set is contained in the set C ⊂ X̃/E of all classes meeting Xi:

π−1(C) =
{
x ∈ X̃|∃t(Xi(t)) ∧ E(x, t)

}
It is closed, again by saturation; moreover, it is contained in some Xj by defini-
tion of the equivalence relation E. Therefore c∼ ∈ O ⊂ C, and C is the required
compact neighbourhood.

The proof that X̃/E is Hausdorff is similar to the one in Theorem 2.1.

Here we recall a theorem due to Baisalov and Poizat, which was then generalised
by Shelah to a wider class of theories.

Let N be any structure. A subset X ⊆ Nn is externally definable if, given
N ′ � N a |N |+-saturated model of Th(N), we can find parameters c ∈ N ′ and
a formula ϕ(x, y) ∈ LN such that ϕ(x, c) defines X when restricted to N .

Equivalently, X is externally definable in N if there is a structure N ′ � Th(N),
N ′ � N , and a definable set X ′ in N ′ such that X = X ′ ∩N .

We construct from N a new theory Th(NSh) in this way: for each externally
definable set, by an LN ′ -formula ϕ say, we add a relation symbol Rϕ in the
language. We call the new language LSh; the model will be denoted by NSh

and this gives rise to a new theory Th(NSh). This new theory is called Shelah’s
expansion of the structure N .

Baisalov and Poizat proved in [11] the following:

Theorem 2.4. If N is an o-minimal structure, Th(NSh) admits quantifier
elimination.

In order to study quotients of the form X/E, where E is externally definable,
and therefore definable in MSh, we need to localise the notions related to o-
minimality to definable sets in a structure.

Let N be any structure and X be a definable set in N with a dense total order
on it. We say that:
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• X is o-minimal if, given any formula ϕ(x) ∈ LN , with x a tuple of the
correct length, it defines on X a finite union of intervals and points (with
respect to the total order).

• X is uniformly o-minimal if it is o-minimal and, given any formula ϕ(x, y) ∈
LN , we can find a number αϕ ∈ ω such that for each choice of parameters
b ∈ N , ϕ(x, b) defines on X no more than αϕ intervals and points.

• X is weakly-o-minimal if, given any formula ϕ(x) ∈ LN , with x of the
correct length, it defines on X a finite union of convex sets.

• X is uniformly weakly o-minimal if it is weakly-o-minimal and, given any
formula ϕ(x, y) ∈ LN , we can find a number αϕ ∈ ω such that for each
choice of parameters b ∈ N , ϕ(x, b) defines on X no more than αϕ convex
sets.

An immediate consequence of theorem 2.4 is that if N is an o-minimal structure,
then NSh is uniformly weakly-o-minimal.

By Shelah’s generalisation to NIP theories in [14] we obtain also that if N is
uniformly weakly-o-minimal, then NSh is uniformly weakly-o-minimal.

We can now prove directly a special case of Theorem 8.6 [9], but firstly an easy
observation:

Observation 2.5. A definable, definably densly linearly ordered set X in a
uniformly weakly-o-minimal structure M , is a uniformly weakly-o-minimal set
in M

The proof is standard and uses the weak form of cell decomposition in theorem
4.6 of [16].

Theorem 2.6. Given a dense o-minimal theory T , a saturated model M , a
definable, definably densly linearly ordered X ⊂Mn and a type-definable, exter-
nally definable, convex equivalence relation E (each class is convex with respect
to the order on X) with a bounded number of classes; then the hyperdefinable
set X/E, definable in MSh, is uniformly o-minimal in MSh.

(Actually the convex assumption is not necessary, but it simplifies the definition
of the induced order on X/E.)

Proof. Note that, if E is convex, the order on X/E can be trivially defined by
[x]∼ ≤′ [y]∼ if x ≤ y. We shall drop the ′ in the future. (If it is not convex it
is nevertheless possible to define the order using o-minimality of the structure,
see Prop 8.6 [9].)

Firstly we work in MSh and we consider a formula ϕ(x, y, c) in L with c ∈M ′ �
M . Since MSh is uniformly weakly-o-minimal, so is X/E, and for each choice
of b ∈ M , ϕ(x, b, c) defining a set Y say, is realized only by ≤ αϕ convex sets.
Without loss of generality we can suppose Y ⊂ X, in fact Y will determine ≤ αϕ
cuts also in X. Let ψ(x, b, c) be the formula in MSh that defines the quotient
Y/E ⊆ X/E, it will define ≤ αϕ convex subsets of X/E. Since b was arbitrarily
chosen we get that X/E is uniformly weakly-o-minimal.
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To prove now that X/E is uniformly o-minimal it is sufficient to prove that it
is complete (all the convex sets in one-space will then have a supremum and an
infimum, and therefore they will be intervals).

Now we forget about Shelah’s expansion and we regard E as a bounded type
definable equivalence relation in a model M . Consider a Dedekind cut (A,B)
of X/E. For each a ∈ A we can define the set Aa = {x ∈ X/E|a ≤ x}; the
preimage of this set is type definable in M and therefore it is a closed set.
Analogously for each b ∈ B we define Bb = {x ∈ X/E|b ≥ x}, which has type
definable preimage, and is therefore closed. Consider now the family of closed
sets {Bb, Aa}a,b; it has the finite intersection property by density of the order,
so, since X/E with the logic topology is compact by 2.1, there is an element in
the intersection. Thus X/E is complete.

Observation: Note that the theorem above holds also if T is uniformly weakly-
o-minimal.

We can easily generalise the result to ind-hyperdefinable sets. Firstly notice
that the definitions of induced order and those related to o-minimality can be
extended to this class of sets in the obvious way.

Theorem 2.7. Given an o-minimal theory T , a saturated model M , an ind-
definable, externally definable, convex set X̃ =

⋃
iXi, densly linearly ordered

and such that the restriction of the ordering onto Xi is definable, and a bounded
type-definable, externally definable, convex equivalence relation E on X̃. Then
the ind-hyperdefinable set X̃/E, definable in MSh, is uniformly o-minimal in
MSh.

Proof. The proof of uniform weak-o-minimality of X̃/E goes through as in the
previous theorem.

We now need to prove completeness: consider a Dedekind cut (A,B) of X̃/E.
Denote X̃/E � Xi by Xi/E. Then there exists Xi ⊂ X̃ such that A∩Xi/E 6= ∅
and B ∩ Xi/E 6= ∅. As in the previous theorem we define for each a ∈ A,
Aa = {x ∈ Xi/E : a ≤ x}, and for each b ∈ B, Bb = {x ∈ Xi/E : b ≥ x}.
Again the family of closed sets {Bb, Aa}a,b has the finite intersection property.
Theorem 2.3 states that X̃/E is locally compact, so Xi/E is compact and we can
find an element in the intersection of {Bb, Aa}a,b. This gives us completeness
of X̃/E and ends the proof.

3 Pillay’s conjecture and Nash groups

In [6] Pillay proved that a group definable in an o-minimal structure can be
equipped with the structure of a definable manifold where the group operation
is continuous. Here we present a brief review in the real closed field case, and
recall Pillay’s conjecture stated in [7] and completely proved in [10].
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By a definable group G in a structure M we mean a group whose underlying
set G ⊂ Mn is definable, and the graphs of the operations ∗ : G×G → G and
−1 : G→ G are definable.

Definition 3.1. Given a set A containing the parameters defining G, we define
G0
A as the intersection of all A-definable subgroup of finite index. If G0

A does
not depend on A we call it G0 and we say that G0 exists.

Given a set A containing the parameters defining G, we define G00
A as the small-

est A-type-definable subgroup of bounded index. If G00
A does not depend on A

we call it G00 and we say that G00 exists.

For the rest of the section suppose M is a saturated real closed field. Then G0

exists, has finite index and is definable.

Definition 3.2. Given a set X, a definable atlas is a finite collection

{(U1, ψ1), (U2, ψ2), . . . , (Un, ψn)}

such that each Uj is a subset of X, and for each of them there is a bijective
homeomorphism ψj : Uj → Vj , where Vj is a definable open subset of Mnj ,
and whenever Uj ∩ Uk 6= ∅ then the map ψj ◦ ψ−1

k is a definable bijective
homeomorphism ψk(Uj ∩ Uk)→ ψj(Uj ∩ Uk).

Two definable atlases are compatible if their union is a definable atlas. For fixed
X compatibility of definable atlases is an equivalence relation.

We call n = sup{nj |j < n} the dimension of the atlas.

A definable manifold of dimension n is a definable set X with an equivalence
class of definable atlases of dimension n.

Such a definable manifold has an induced topology, called the t-topology: Y ⊂ X
is open if and only if each ψi(Y ∩ Ui) is open in Mn.

Moreover from [6] we get:

Fact 3.3. A group G definable in M can be given the structure of a definable
manifold over M in which multiplication and inverse are continuous operations
with respect to the t-topology.

There are other conditions we can impose on G in order to get good behaviour:

Definition 3.4. G is definably connected if there are no proper definable sub-
groups of finite index. Equivalently G = G0.

From [6] this is equivalent to G not being the disjoint union of two nonempty
definable t-open subsets.

Definition 3.5. G is definably compact if given an interval I = [a, b) in M and
a definable and continuous function f : I → G, then limx→b f(x) exists in G.

In the case M � RCF definably compact equals closed and bounded.

We state now Pillay’s conjecture, completely proved in [10]:
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Theorem 3.6. Given a definably connected, definably compact definable group
G in M , then G00 exists, and G/G00 is a compact connected Lie group of (Lie)
dimension equal to the o-minimal one of G. If moreover G is commutative, then
G00 is divisible and torsion free.

4 1-basedness and case studies

The notion we shall deal with is a variant of 1-basedness for o-minimal theories,
adapted to definable sets; but firstly we recall the classical definition from [8].

Let M be o-minimal. Given f(x, y) a ∅-definable function, and a ∈ M , we
define an equivalence relation ∼a on tuples of the same length as y by c ∼a c′ if
neither of f(−, c), f(−, c′) is defined in an open neighbourhood of a or if there
is an open neighbourhood U of a such that f(−, c) = f(−, c′) in U . We call the
equivalence class of c the germ of f(−, c) at a, and denote it by c/ ∼a.

Definition 4.1. Given an o-minimal theory T , we say that T is 1-based if
in any saturated model M � T , for any a ∈ M , for all definable functions
f(x, y) : M ×Mn → M , and for any c ∈ Mn such that a /∈ dcl(c), we have
c/∼a ∈ dcl(a, f(a, c)).

Definition 4.2. Given a theory T and ϕ(x) ∈ Leq, ϕ is stably embedded in T
if for any saturated model N of T and X = ϕ(N), any subset of Xn definable
(with parameters) in N is definable with parameters from X.

We localise 1-basedness to stably embedded formulae considering the following
construction:

Let ϕ(x) be an Leq-formula, M any saturated model of T , and suppose X =
ϕ(M) is a uniformly o-minimal set in M . Then it is stably embedded by Theo-
rem 2 of [4].

We define X to be the set X equipped with all ∅-definable (in M) subsets of
Xn. This is sufficient to preserve the structure induced on X by M , in fact
each definable subset Y of X in X is definable in M , and viceversa, by stable
embeddability. We still have to show that given X ′ � X there is M ′ � M for
which each definable set Y in X ′ is a definable subset Y ⊆ X ′ in M ′, where
X = X ′ ∩M , and viceversa. The first implication is obvious. For the latter let
Y be defined by ϕ(x, a), by stable embeddiness we can suppose a ∈ X ′, and let
X ′ be such that X ′ is its universe. Now Y is clearly definable in X ′.

Definition 4.3. We say that a stably embedded formula (or the setX it defines)
is 1-based in T if the theory TX = Th(X ) is 1-based.

4.1 The cases

From now on M will be a saturated real closed field, by o-minimality we have
a notion of dimension for definable sets (see [18] for more details).
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We shall proceed in a case study of G/G00 for G a 1-dimensional, definable,
definably connected, definably compact group. We put the previous facts and
theorems together: By the results in [12], G can be definably circularly ordered;
by fixing a point we suppose that the order is linear. We consider the structure
(M,G00, a, . . . )eq, obtained by adding a predicate for G00 to M and parameters
a defining G, if needed. Let M ′ be a saturated model of Th

(
(M,G00, a, . . . )eq

)
.

In M ′, G/G00 becomes ∅-definable and is, by theorem 2.6, uniformly o-minimal
in M ′. (G00 is convex, so externally definable. We apply the theorem, obtaining
uniform o-minimality in MSh, this clearly implies uniform o-minimality in M ′

since the latter is a reduct of the former).

Definition 4.4. Given a 1-dimensional, definable, definably linearly ordered
group (H, ∗) in M , a truncation of H is a group whose universe is [α−1, α), for
some α ∈ H, and whose operation is ∗ mod [2]α, defined as

β ∗mod [2]α γ =

 β ∗ γ if α−1 < β ∗ γ < α
β ∗ γ ∗ α−1 if β ∗ γ > α
β ∗ γ ∗ α if β ∗ γ < α−1

A truncation of the additive group will be called an additive truncation, and
one of the multiplicative group a multiplicative truncation. In addition to these
we shall consider SO2(M) and its truncations.

These are the only possible groups G as above when M = R, due to Madden
and Stanton classification of 1-dimensional Nash groups over the reals in [15]; in
a subsequent paper we shall prove that these are the only possible groups with
the above properties in a generic real closed field M .

Moreover by definable connectedness and corollary 2.15 of [6], G is commutative,
so Pillay’s conjecture implies that G00 is torsion-free and it is the subgroup
bounded by the torsion points.

4.2 Additive truncation

We begin our analysis with the easiest case. The method used here to prove
non-1-basedness is the standard one, to which we shall refer throughout the rest
of the paper.

It is an easy observation that every additive truncation is definably isomorphic
to the group G = ([−1, 1),+ mod 2); it will suffice to prove non-1-based for this
case.

In this case G00 corresponds to the additive group of infinitesimal elements of
M .

We add now a predicate for G00 to M , obtaining M ′ = (M,G00, . . . )eq. The
hyperdefinable group G/G00 in M is therefore definable, and clearly stably
embedded, in M ′. Let us consider M ′′ � M ′ saturated. In this structure we
can check 1-basedness of G/G00 as we defined it. Therefore let G be G/G00

with predicates for every ∅-definable set of M ′′, as in the construction above.
We consider the theory TG = Th(G). Let G′ be a saturated model of TG.
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Let G′ be a group such that G′/G′00 equals G′ as a set, let g, h ∈ G′, which
we identify with elements of G′/G′00, and let ĝ, ĥ be elements of G′ such that
ĝ/G′00 = g and ĥ/G′00 = h. We can define in G′ the operations + and · as
follows: g + h = (ĝ +M ĥ)/G00, where +M is the usual addition in M ; and
g · h = (ĝ ·M ĥ)/G00, again where ·M is the usual multiplication in M . Observe
that these are well defined in a neighbourhood of 0G′ .

By saturation of G′ we can find algebraically independent elements a, b, c ∈ G′.
Let d = a · b+ c; clearly dim(a, b, c, d) = 3.

Let us now define a function fbc(x) = x · b + c; the germ of this function is
exactly bc/ ∼= bc: in fact fbc = fb′c′ at a neighbourhood of a point if and
only if bc = b′c′. If G/G00 were 1-based we would have then bc/ ∼= bc ∈
acl (a, fbc(a)) = acl(a, d), so dim(a, b, c, d) = 2, that contradicts what we have
previously observed.

This proves non-1-basedness of G/G00.

Observation 4.5. Any group in definable bijection with a non-1-based group
is non-1-based

This is trivial: for example consider any group H/H00 in definable bijection
with G/G00 as above, in a structure where G00 and H00 are definable. If
f : G/G00 → H/H00 is the bijection, we define the operations on H/H00 as
follows: let + be a/H00 + b/H00 = f

(
f−1

(
a/H00

)
+G/G00 f−1

(
b/H00

))
, and ·

be defined in an analogous way. The proof above goes through with these new
operations, showing that H/H00 is non-1-based in the theory with a language
enriched by the parameters defining H.

We have therefore proved:

Theorem 4.6. Given G any additive truncation of M , the group G/G00 is
non-1-based in Th(M,G00, a, . . . ), where a is a tuple of parameters defining G.

4.3 Multiplicative truncation

The second case is G =
(
[b−1, b), · mod b2

)
, a multiplicative truncation.

We recall that G00 is the neighbourhood of the identity bounded by the torsion
points, so G00 =

∧
n∈ω{x|b−1/n < x < b1/n}.

The operation on G00 coincides with the multiplication on M and is closed, so
G00 is also a multiplicative subgroup of M .

The fundamental point in this section is the following valuation theoretical ob-
servation, see [17] Definition 3.4 and Proposition 3.5:

Observation 4.7. Given a convex multiplicative subgroup S of M

• If 2 ∈ S, then S is the set of positive units of the convex valuation ring
R = {a||a| < g for some g ∈ S}

10



• If 2 /∈ S, then S − 1 is the underlying set of a (convex) additive subgroup
of M (note: also the converse holds: for every additive convex subgroup
S of M s.t. 1 /∈ S then 1 + S is the set of a multiplicative group of M).
Moreover S − 1 is the maximal ideal of a convex valuation ring.

We shall apply this to G00 and show how the behaviour of G/G00 depends
entirely on whether the parameter b defining G is finite or infinite.

4.3.1 Small multiplicative trunctions

Let G = ([b−1, b), · mod b2), with b a finite element (i.e. v(b) = 0). Then
2 /∈ G00, so G00 − 1 is a convex additive subgroup. In this case we can follow
the method of the additive case, with a little variation. As before we consider
M ′ = (M,G00, b, . . . )eq and construct G′, saturated model of the theory of
G/G00. Observe that addition is not well defined in a neighbouhood of 0G′ , but
we can define an operation ⊕ : G × G → G: a ⊕ b = a + b − 1; this operation
is preserved passing to the quotient and is well defined for an interval (h−1, h),
say, with G00 < h < b. We denote the operation on the quotient in the same
way, ⊕ : G′ → G′, and let U be the neighbourhood of the identity over which it
is defined.

We can then find s, t, u ∈ U ⊂ G′ that are independent and such that (s ·t)⊕u =
d ∈ U by saturation.

The function f(x) = s · x ⊕ u is similar to the one for the additive case and
analogously witnesses non-1-basedness of G/G00 in Th(M ′).

4.3.2 Big multiplicative trunctions

In this case b is an infinite element (i.e. v(b) < 0). Clearly 2 ∈ G00, so G00 is
the set of units of a valuation w, say.

Instead of working in M ′ = (M,G00, b, . . . )eq we can work with a well known
structure: the real closed valued field Mw = (M,Γ, w, b, . . . )eq.

Lemma 4.8. If v(b) < 0 the structures M ′ = (M,G00, b, . . . )eq and Mw =
(M,Γ, w, b, . . . )eq are interdefinable.

Proof. Given M ′ = (M,G00, b, . . . )eq, we know that G00 is the set of positive
units of a valuation ring, therefore Γ = M>0/G00 is definable, and also the
valuation w : M → Γ ∪ {∞} is, by “w(x) = w(y) if and only if xy−1 ∈ G00 and
yx−1 ∈ G00”. Thus Mw is definable from M ′.

On the other hand from Mw we can define R = {x|w(x) ≥ 0} and I = {x|w(x) >
0}. Then G00 = {x|x > 0 ∧ x ∈ R \ I}. So we obtain M ′ from Mw.

Moreover, since Γ = M/(R \ I), G/G00 is a truncation of Γ in Mw.

We recall a well known fact about value groups of real closed valued fields, the
sketch proof we present below has been suggested to the author by Macpherson
and is implicit in [3]:

11



Theorem 4.9. The value group Γ of a real closed valued field is stably embedded

Proof. In [1] it is proved that the theory of real closed valued fields in the
two-sorted language with one sort for the real closed field M , with the usual
signature for ordered fields, the other one for Γ with the usual ordered group
signature plus constants for elements of Q, and a function symbol v for the
valuation v : M → Γ ∪ {∞}, admits quantifier elimination.

Thus any definable set in the value group sort can be defined by a boolean
combination of formulae of the form

t(γ1, . . . , γn, v (p(a))) ≥ t′(γ′1, . . . , γ′m, v (p′(a′)))

where t, t′ are terms in the signature of the value group, γi, γ′j ∈ Γ, and
p(a), p′(a′) are polyonomials in variables a = (a1, . . . , ar), a′ = (a′1, . . . , a

′
s) ∈M .

By using the properties of valuation v(p(a)) can be written as
∑
i αiv(ai), sim-

ilarly v(p′(a′)) becomes
∑
i α
′
iv(a′i), with α, α′ ∈ Q, and clearly v(ai), v(a′i) are

elements of Γ. Therefore any formula defining a set in Γ is equivalent to one
with parameters only from Γ.

Therefore TΓ = Th(Γ) is Th(Q,+, 0, <, λq), q ∈ Q, and it is clearly a 1-based
theory.

We can consider a Γ as a model of TΓ and G/G00 will be a definable group in
this structure. By stable embeddability, all definable sets of G/G00 in Mw are
definable with parameters from Γ. We can therefore use 1-basedness of TΓ to
obtain the result. Consider a saturated model G′ of TG/G00 ; there is a saturated
model Γ′ of TΓ for which G′ is a truncation. If G′ were non-1-based, then Γ′

would not be 1-based, contradicting what we just observed.

We have therefore proved:

Theorem 4.10. The group G/G00, where G =
([
b−1, b

)
, · mod b2

)
, is 1-based

in Th(M,G00, b, . . . ) if and only if v(b) < 0.

4.4 SO2 and truncations

At last we consider the group
(
SO2(M), ∗

)
and its truncations. These are

definable, definably compact, definably connected 1-dimensional groups, subsets
of M2, which can be definably circularly ordered anticlockwise (we recall that
SO2(M) lies on the set defined by x2 + y2 = 1). Fixing the identity O = (1, 0)
this order becomes linear.

A truncation of SO2(M) is a group of the form G =
(
[−S, S), ∗ mod [2]S

)
,

where S = (xS , yS) and −S = (xS ,−yS) for some xS , yS ∈ (−1, 1), the interval
is in the sense of the order of SO2(M), and [n]P means P ∗ · · · ∗P , n times. We
denote the coordinates of a point P by xP and yP .

It is sufficient to consider truncations with xS ∈ [0, 1): in fact if such truncation
is non-1-based then any other truncation (including SO2(M) itself) with the
same G00 is non-1-based.
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We need now to calculate G00; the following lemma gives us a precise definition
of G00 in terms of the standard valuation:

Lemma 4.11. A group G =
(
[−S, S), ∗ mod [2]S

)
has

G00 = {P |v(yP ) > v(yS)}

Proof. The lemma follows immediately from the claim: either v(y[n]P ) = v(yP )
for any n ∈ ω, or v(yP ) = 0; in fact G00 is bounded by its torsion points.

We take P such that v(yP ) > 0, and prove it by induction considering just
the powers of 2. Observe that x[2]P = x2

P − y2
P and y[2]P = 2xP yP . It is

clear that if v(yP ) = 0, P cannot be in G00, so suppose v(yP ) > 0, then
v(xP ) = 0, so v(y[2]P ) = v(2xP yP ) = v(yP ). Suppose now v(y[2n]P ) = v(yP ),
then v(y[2n+1]P ) = v(2x[2n]P y[2n]P ) = v(y[2n]P ) = v(yP ).

To prove non-1-basedness using observation 4.5 we construct a definable bijec-
tion with a non-1-based group, namely an additive truncation.

Lemma 4.12. The group G/G00 = ([−S, S), ∗ mod [2]S)/G00 is in definable
bijection with the quotient of an additive truncation A by its A00.

Proof. We define the function l : G → M that sends a point P to the second
coordinate of the intersection of the line through P and the origin with the line
x = 1. Namely l(P ) = yP

xP
. We then define A =

(
[−l(S), l(S)),+ mod 2 l(S)

)
.

Observe that v(l(S)) = v(yS), and therefore A00 =
{
x|v(x) > v(l(S))

}
= l(G00)

by lemma 4.11. It is then sufficient to prove that l : G/G00 → A/A00 is well
defined and injective passing to the quotient, and by construction it will then
be a bijection. So it sufficies to show that, given P̃ , Q̃ ∈ G \G00, and P,Q ∈ G
representatives of the respective equivalence classes, v(l(P ∗ −Q)) > v(l(S)) if
and only if v(l(P )− l(Q)) > v(l(S)). But by assumption v(yP ) = v(yQ) = v(yS)

so v(l(P )) = v(l(Q)) = v(l(S)), and then v
(
l(P ∗ −Q)

)
= v

(
xQyP−xP yQ

xP xQ−yP yQ

)
=

v (xQyP − xP yQ) = v
(
xPxQ

(
yP

xP
− yQ

xQ

))
= v

(
yP

xP
− yQ

xQ

)
= v(l(P ) − l(Q)).

This proves the statement.

We then get:

Theorem 4.13. Given G = SO2(M) or G a truncation of SO2(M), G/G00 is
non-1-based in Th

(
(M,G00, . . . )eq

)
(resp. Th

(
(M,G00, xS , yS , . . . )eq

)
).

5 Ind-definable sets

In this section we generalise the results of section 4 to certain ind-definable
groups. We take a truncation (G, ∗) of a group H, whose operation is ·, and we
say that G̃ is the group ind-defined by G if G̃ =

⋃
i∈ω Gi where G0 = G and

Gi+1 =< Gi > the closure of the set Gi under the operation ·. Clearly G̃ is an
ind-definable group in M .

13



It is an easy observation that G̃00 = G00.

Our aim is to recover 1-basedness (or non-1-basedness) from the compact cases:

Theorem 5.1. A group G̃/G̃00, where G̃ is ind-defined by a group G, either
an additive or a multiplicative or an SO2(M)-truncation, is 1-based if and only
if G/G00 is.

The first step to prove this theorem is:

Lemma 5.2. If G is an additive truncation, a “small” multiplicative truncation
or a truncation of SO2(M), the structure (M, G̃, G̃00, a, . . . )eq, in which G̃/G̃00

is definable, is interdefinable with (M,G00, a, . . . )eq.

Proof. Since G00 = G̃00 we only have to show that G̃ is definable in a structure
with a predicate for G00; we proceed by cases:

• Additive truncation: if G̃ is constructed from an additive truncation G,
we can rescale both of them and suppose G = [−1, 1). Then G00 is the
set of infinitesimal elements, and G̃ the set of finite elements, so we can
simply define G̃ as {x|x /∈ G00 ∧ x−1 /∈ G00}.

• Small multiplicative truncation: if G̃ is constructed from a multiplicative
truncation G = ([b−1, b), · mod b2), with v(b) ≥ 0, then we know that
G00 − 1 = A00: the minimal bounded index type-definable subgroup of
the additive truncation A =

([
− (b − 1), b − 1

)
,+ mod 2(b − 1)

)
. We

just proved that Ã is definable in the structure (M,G00, b, . . . )eq using the
predicate for A00 and this latter is definable using G00. We now define G̃
using Ã: let α be the upper cut of Ã; it is sufficient to prove that α + 1
is the upper cut of G̃. In fact α is definable from G00 and G̃ would be
defined by {x|x > 0 ∧ x < (α+ 1) ∧ x−1 < (α+ 1)}.
Consider then g ∈ G̃, and g > 1. To prove that g − 1 < α, it is sufficient
to show that v

(
g−1
b−1

)
≥ 0, since 1

b−1α is the upper cut of Fin: the convex

hull of Q. But g ∈ G̃ implies that g < bn for some n, and so g−1
b−1 <

bn−1
b−1 .

Using the valuation: v
(
g−1
b−1

)
≥ v

(
bn−1
b−1

)
= v(bn−1 + bn−2 + · · ·+ 1) = 0.

On the other hand if a < α, a < n(b − 1), then for some n, a + 1 <
n(b− 1) + 1 < (b− 1)n + · · ·+ n(b− 1) + 1 < (b− 1 + 1)n < bn, therefore
a+ 1 ∈ G̃.

Thus G̃ is definable in (M,G00, b, . . . )eq.

• Truncations of SO2(M). If G̃ is constructed from a truncation G =
[−S, S) of SO2(M), then either v(yS) = 0, and in this case G̃ is SO2(M)
itself and we are done, or v(yS) > 0. If this is the case, we want to con-
struct a definable bijection (in the structure M ′ = (M, G̃00, xS , yS , . . . )eq)
between G̃/G̃00 and the quotient of an ind-definable group Ã from an
additive truncation A, by its own Ã00.

We consider again the function l : G̃ → M , l(P ) = yP

xP
. Let A =(

[−l(S), l(S)) + mod 2 · l(S)
)
, then A00 = Ã00 = {x|v(x) > v(yS)},
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in fact v(l(S)) = v(yS). Then Ã = {x|v(x) ≥ v(l(S))}. Firstly we prove
that l(G̃00) = Ã00 (this would also imply interdefinability of the structures
M ′ and (M, Ã00, l(S), . . . )eq). We can of course simply consider G00 and
A00.

Following the proof of lemma 4.12 we obtain that l(G00) = A00. The same
argument proves also that l(G̃) = Ã = {x|v(x) ≥ v(yS)}.
The second step is to prove that the function on the quotient l : G̃/G̃00 →
Ã/Ã00 is well defined and it is therefore a bijection. We need to prove
that P/G̃00 = Q/G̃00 if and only if l(P )/Ã00 = l(Q)/Ã00, i.e. that v(l(P ∗
−Q)) > v(yS) if and only if v(l(P )− l(Q)) > v(yS).

This is exactly what we already proved in lemma 4.12, we therefore obtain
the statement.

By lemma 2.7, G̃/G̃00 is uniformly-o-minimal, so it makes sense to talk about
1-basedness of the theory of G̃/G̃00. It is clear in these cases that also G̃/G̃00 is
non-1-based: in fact we can witness it in a neighbourhood of the identity with
the same function used to prove non-1-basedness of G/G00 in the corresponding
cases of the previous section.

So we only need to deal with the group ind-defined by the multiplicative trun-
cation G = ([b−1, b), · mod b2), with v(b) < 0.

We consider again the structure Meq
w of the valued field interdefinable with

(M,G00, . . . )eq. G̃ is only
∨

-definable in this structure, by
∨
n∈ω{x|x > 0 ∧

v(x) > nv(b) ∧ −v(x) > nv(b)}. We restrict our attention to the sort Γ of the
value group, in which G/G00 is definable. We recall that Th(Γ) = Th(Q,+, 0, <
, q)q∈Q, and we add a predicate for G̃/G̃00, that is a cut in Γ, obtaining T ′.

We are now able finish the proof of theorem 5.1 by showing by contradiction
that this last G̃/G̃00 is 1-based.

Let then G̃ be a saturated model of TG̃/G̃00 , and f(x, y) be a function G̃×G̃m → G̃
definable in an open set S of G̃1+m, and a, c contained in that open subset, and
for which c/ ∼/∈ dcl(a, f(a, c)).

We can suppose S ⊂ G̃1+m
i , for some i, such that G̃i ∩ G̃/G̃00 = Gi/G̃

00.

We consider then the truncation (Gi, ∗), definable in (M,G00, . . . ). The function
above is then definable in Gi = TGi/G̃00 , and proves 1-basedness of Gi/G̃00,
contradicting theorem 4.10.

We have therefore proved the theorem 5.1.
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