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Abstract. Let R be an o-minimal expansion of the field of real numbers that defines
nontrivial arcs of both the sine and exponential functions. Let G be a collection of images of
solutions on intervals to differential equations y′ = F (y), where F ranges over all R-linear
transformations Rn → Rn. Then either the expansion of R by the elements of G is as
well behaved relative to R as one could reasonably hope for, or it defines the set of all
integers Z, and thus is as complicated as possible. In particular, if R defines any irrational
power functions, then the expansion of R by the elements of G either is o-minimal or
defines Z.

1. Introduction

We wish to understand expansions of o-minimal structures on the real field R := (R,+, · )
by images of solutions of definable vector fields. In this paper, we study the fundamental
case of linear vector fields.

The reader is assumed to be familiar with the basics of first-order definability theory
over R, including o-minimality (e.g., van den Dries and Miller [9]). We fix some termi-
nology. Throughout, “definable” (in some structure) means “definable using arbitrary real
constants” (in the structure). We use “expansion” and “reduct” in the sense of definabil-
ity, and identify structures up to interdefinability. A vector field on a subset A of Rn

is a map F : A → Rn. A solution of F is a differentiable map γ : I → Rn defined on a
nontrivial interval I ⊆ R of some sort such that γ(I) ⊆ A and γ′(t) = F (γ(t)) for all t ∈ I.
A trajectory of F is the image of a solution. We do not regard trajectories as carrying
directions or being parameterized in any particular way. A linear vector field is an R-lin-
ear transformation Rn → Rn for some n ≥ 1. See, for example, Perko [21, Chapter 1] or
Arnold [1, Chapter 3] for basics of linear vector field theory.

Recall that a subset of a topological space is locally closed if it is relatively open in its
closure, equivalently, if it is the intersection of an open set and a closed set. It is known
from ODE theory that every trajectory of a linear vector field is either locally closed (even
semianalytic) or dense and codense in a product of circles centered at the origin; the latter
can happen only if all eigenvalues of the vector field are purely imaginary, at least two
of which are rationally independent, and the trajectory is the image of a solution on an
unbounded interval.
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Let R∗ denote the set of nonzero real numbers. For ω ∈ R∗, let Sω denote the logarithmic
spiral { (et cosωt, et sinωt) : t ∈ R }. Note that Sω is a trajectory of (the vector field arising
from) the matrix

(
1 −ω
ω 1

)
.

1.1. Theorem. Let G be a collection of locally closed trajectories of linear vector fields such
that each Γ ∈ G is the image of a solution on an unbounded interval. Then (R, (Γ )Γ∈G) is
equal to exactly one of the following :

— (R, (xr)r∈K) for some subfield K of R
— (R, ex)
— (R, Sω) for some ω ∈ R∗
— (R,Z).

The structures (R, (xr)r∈K) and (R, ex) are canonical objects in o-minimality and the
model theory of expansions of R; see [17, 18] and Wilkie [24] for details. The structures
(R, Sω) are emerging as canonical objects in non-o-minimal tameness in the sense that
they are as well behaved as we could reasonably hope for given that they define infinitely
spiralling subsets of the plane; see [19, 3.4] for details or 4.4 below for a brief summary. The
exclusivity in 1.1 follows from some of these results, as we now show. By [18], (R, (xr)r∈K)
defines the power function xs if and only if s ∈ K, and (R, (xr)r∈R) is a proper reduct of
(R, ex), which is o-minimal by [24]. Evidently, neither (R,Z) nor any (R, Sω) are o-minimal.
By [19, Corollary to Theorem 3.4.2] (or 4.4 below), every subset of R definable in (R, Sω)
either has interior or is nowhere dense. Thus, (R, Sω) does not define Q, hence also not Z.
Moreover, the proof of 1.2 below shows that ω is unique up to nonzero rational multiples.

The structure (R,Z) defines every trajectory of any vector field, indeed, it defines every
real projective set (of any arity); see Kechris [14, (37.6)]. Thus, (R,Z) is also canonical in
a sense, but not a good one as far as model theory is concerned.

All outcomes in 1.1 occur, as will become apparent during the course of the proof. Indeed,
each can be realized with G a singleton provided that K is finitely generated. Thus, the
following result of independent interest is logically necessary for 1.1.

1.2. The collection of structures

— (R, (xr)r∈K), K a subfield of R
— (R, ex)
— (R, Sω), ω ∈ R∗
— (R,Z)

is closed under amalgamation.1

The proof uses a recent result of Hieronymi; for convenience, we recall the statement.
Given α ∈ R>0, put αZ = {αk : k ∈ Z }.

1.3 ([13]). If α, β ∈ R>0 are such that logα and log β are Q-linearly independent, then
(R, αZ, βZ) defines Z.

1That is, if R1 and R2 belong to the collection, then so does the expansion of R1 by all sets definable
in R2.
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(This has resolved a number of formerly-open issues, including what should be the con-
clusion of 1.1.)

Proof of 1.2. As (R,Z) defines all real projective sets, all of the structures are reducts
of (R,Z). Evidently, (R, (xr)r∈R) is a reduct of (R, ex). For every A ⊆ R we have
(R, (xr)r∈A) = (R, (xr)r∈Q(A)), where Q(A) is the subfield of R generated by A.

Let ω ∈ R∗. The projection on the first coordinate of the intersection of Sω with the
positive x-axis is equal to αZ with α = e2π/ω, so (R, xr, Sω) defines both αZ and αrZ. If
r is irrational, then (R, xr, Sω) = (R,Z) by 1.3. Similarly, if ω, τ ∈ R∗ and τ /∈ ωQ, then
(R, Sω, Sτ ) = (R,Z). On the other hand, if τ = ωq for some q ∈ Q (necessarily nonzero),
then (R, Sω, Sτ ) = (R, Sω). To see this, observe that for each t > 0 there is a unique point
in Sω of modulus t, namely, (t cos(ω log t), t sin(ω log t)). Thus, (R, Sω) defines the map

(cos(ω log x), sin(ω log x)) : R>0 → R2,

hence also the map (x1/q cos(ω log x), x1/q sin(ω log x)) : R>0 → R2, the image of which is
equal to Sτ . (Reparameterize by eqx.) Thus, (R, Sω) defines Sτ . �

We postpone the rest of the proof of 1.1 to Section 2.
The assumption in 1.1 that every Γ ∈ G be the image of a solution on an unbounded

interval is necessary. To illustrate, let r ∈ R. The graph of the restriction xr�[1, 2] is a
trajectory of ( 1 0

0 r ). By van den Dries [4], (R, xr�[1, 2]) is o-minimal and defines no irrational
power functions. By quantifier elimination and analytic continuation, xr�[1, 2] is definable
in R if and only if r ∈ Q. Hence, the conclusion of 1.1 fails for (R, xr�[1, 2]) if r is irrational.
It is conjectured that the topological assumption (“locally closed”) is necessary, but this is
open as yet; we discuss this in more detail in Section 3 below. In any case, we remove both
of the extra assumptions by working over a richer ground structure, as we show next.

Let RRE denote the expansion of R by the restrictions to [0, 1] of ex and sinx. (“RE”
is short for “restricted elementary”; see [5].) It is an easy exercise to see that sin �[0, 1] is
interdefinable with arctan over R; we use either as convenient.

1.4. Theorem. Let G be a collection of trajectories of linear vector fields. Then (RRE, (Γ )Γ∈G)
is equal to exactly one of the following :

— (RRE, (xr)r∈K) for some subfield K of R
— (R, arctan, ex)
— (RRE, Sω) for some ω ∈ R∗
— (R,Z).

Proof. By [4], RRE is o-minimal and defines no irrational power functions, so the proof of
exclusivity is the same as for 1.1. All restrictions of ex, sinx and cosx to bounded intervals
are definable in RRE, hence so are all solutions (not just their images) on bounded intervals
to linear vector fields (see [21, p. 42 Corollary]). It follows easily from recent work of
Tychonievich [23] that Z is definable if some Γ ∈ G is not locally closed; see 2.4 below.
The rest is immediate from 1.1. �

When combined with growth dichotomy [17] and results from [16, Chapter IV] (see 4.1
below for the statement), we immediately obtain:
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1.5. Theorem. Let G be a collection of trajectories of linear vector fields and R be an
o-minimal expansion of RRE. Then exactly one of the following holds for R′ := (R, (Γ )Γ∈G).

— R does not define ex and there is a subfield K of R such that R′ = (R, (xr)r∈K).
— R′ = (R, ex).
— R defines no irrational powers and there exists ω ∈ R∗ such that R′ = (R, Sω).
— R′ = (R,Z).

In each of the first three outcomes, the sets definable in R′ are as well behaved relative
to those definable in R as one could reasonably hope for, in particular, R′ is o-minimal in
the first two. It would take us too far afield to give details here, but I provide a summary
of the key results in an appendix (Section 4). Hence, loosely speaking, either R′ is as wild
as possible or it is as tame over R as reasonably possible. In particular,

1.6. If R defines any irrational power functions, then R′ either is o-minimal or defines Z.

Remarks. (i) RRE is interesting in its own right; see [5]. (ii) By Bianconi [2], (R, arctan)
does not define ex�[0, 1], nor does (R, ex) define arctan. (iii) By Pfaffian closure (see Speis-
segger [22]), if M is an o-minimal expansion of R, then so is (M, ex, arctan), but it is not yet
known if the field of exponents of M is necessarily preserved under expanding by ex�[0, 1]
or arctan, nor even if polynomial boundedness is necessarily preserved. Thus, although
we can apply 1.5 with R = (M, ex�[0, 1], arctan), we do not yet know what to conclude
over M. (iv) Currently, we know of no examples of expansions of o-minimal structures
R on (R, ex) by collections G of trajectories of C1 vector fields definable in R such that
(R, (Γ )Γ∈G) neither is o-minimal nor defines Z.

Theorem 1.5 characterizes expansions of o-minimal structures on RRE by collections of
trajectories of linear vector fields. Another paper is currently in preparation, joint with
Patrick Speissegger, on the next natural level of complexity: expansions by collections of
trajectories near isolated singularities of definable planar vector fields, with emphasis on
the analytic category. We already have a result similar to 1.5, but more care is needed for
its statement. Applications of 1.5 to the analysis of trajectories of definable vector fields
of arbitrary arity are hoped for, but the situation is unclear as yet even for n = 3.

Here is an outline of the rest of this paper. We prove 1.1 in Section 2. We discuss issues
of optimality in Section 3. In Section 4, an appendix, we recall for the reader’s convenience
some results from other sources.

2. Proof of 1.1

First, we declare an important convention and note some associated facts. Throughout,
we tend to identify R2n with Cn and use complex notation, though differentiability is always
taken in the real sense. In particular: “coordinate” means “complex coordinate” until
further notice. For a+ ib ∈ C and t > 0, put ta+ib = ta(cos(b log t) + i sin(b log t)). Observe
that the function xa+ib : R>0 → C is the restriction to R>0 of an appropriate branch of the
complex power function za+ib, so we may call xa+ib a power function. We identify xa+i0

with the real power function xa whenever appropriate. If c ∈ R, then xa+ib ◦ xc = xac+ibc,
but xa+ib ◦ xc+id does not even make sense unless d = 0. Note the following facts; they will
be used often (indeed, some we have used already).
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2.1. Let a, b ∈ R∗.
— { ta+ib : t ∈ R>0 } = Sb/a
— (R, xa+ib) = (R, xa, xib)
— (R, xib) = (R, xib�[1, 2], e2πZ/b)
— If a /∈ Q, then (R, xa+ib) = (R,Z).
— For w ∈ C, (R, Sb) defines xw if and only if w ∈ Q + ibQ.

Proof. Observe that: (i) x1+ib/a is the unique point of modulus x in Sb/a; (ii)
∣∣xa+ib∣∣ = xa

and xib = xa+ib/xa; (iii) every x > 0 can be written uniquely as cy for some c ∈ [1, e2π/|b|)
and y ∈ e2πZ/|b|; (iv) all restrictions of xib to compact subintervals of R>0 are definable in
(R, xib�[1, 2]). The rest follows easily from 1.3 and the proof of 1.2. �

We now begin the proof proper. Let G be a collection of locally closed trajectories of
linear vector fields such that each Γ ∈ G is the image of a solution on an unbounded
interval. We must show that (R, (Γ )Γ∈G) is one of the following structures:

— (R, (xr)r∈K) for some subfield K of R
— (R, ex)
— (R, Sω) for some ω ∈ R∗
— (R,Z).

It suffices to do the case that G consists of a single trajectory Γ (by 1.2), and to show that
(R, Γ ) is one of the following structures:

— (R, (xr)r∈R) for some finite R ⊆ R
— (R, ex)
— (R, xiω) for some ω ∈ R∗
— (R,Z).

There is a real n×n matrix M , a column vector c ∈ Rn, and an unbounded interval I ⊆ R
such that Γ = { eMtc : t ∈ I }. By replacing M with M + iM , c with c + ic, and Γ with
Γ + iΓ , we reduce to the case that M is an n × n complex matrix for some n ≥ 1, and
we work over C. Thus, for computation, we regard Γ ⊆ Cn as a (real-time) trajectory of
the vector field Cn → Cn arising from M , but we also regard Γ as a subset of R2n in the
usual way. (For information on complexification and decomplexification of linear systems,
see [1, §20].) By replacing Γ with its image under some invertible linear transformation,
we reduce to the case that M is in Jordan normal form (over C). Thus, there exist

— a nonnegative integer J
— nonnegative integers n0, . . . , nJ such that n0 + · · ·+ nJ = n and n1, . . . , nJ ≥ 2
— an n0 × n0 diagonal matrix M0 (allowing n0 = 0)
— nj × nj Jordan blocks Mj for j = 1, . . . , J (allowing J = 0)
— column vectors cj ∈ Cnj for j = 0, . . . , J

such that (R, Γ ) is equal to the expansion of R by the image of I under the map

γ :=
(
eM0xc0, . . . , e

MJxcJ
)

: R→ Cn0 × · · · × CnJ ∼= Cn.

(In this setting, a Jordan block is a complex square matrix such that all diagonal entries
are equal, all superdiagonal entries are equal to 1, and all other entries are 0.
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2.2. By taking coordinate projections of Γ , we may eliminate any constant component
functions of γ as we see fit (provided that Γ remains a trajectory of a linear vector field).
Thus, we may reduce to the case that all diagonal entries of M0 are nonzero, all coordinates
of c0 are nonzero, and for each j = 1, . . . , J , the last coordinate of cj is nonzero. (If the
last coordinate of cj is 0, then eMjxcj = (eBxb, 0), where B is the result of deleting the last
row and column from Mj and b is the result of deleting the last coordinate of cj. Observe
that B is again a Jordan block.)

2.3. By 2.2, we may replace Γ with its image under some invertible diagonal transformation
to reduce to the case that:

— Every coordinate function of eM0xc0 is of the form eλx where λ is a simple (that is,
of multiplicity 1) nonzero eigenvalue of M .

— For each j = 1, . . . , J , the projection of eMjxcj on its last two coordinates is of the
form ((ξ + x)eλx, eλx), where λ is a nonsimple eigenvalue of M and ξ ∈ C. (Divide
eMjxcj by the last coordinate of cj.)

The proof now proceeds by a case distinction on the nature of the set of eigenvalues of M ;
we outline the steps in order to motivate the details. If all eigenvalues are simple, then M
is diagonal, which then involves a few subcases. If M has a nonsimple nonreal eigenvalue,
then, after permuting coordinates, the projection of Γ on the last two coordinates defines Z
over R. Thus, we reduce to the case that all nonreal eigenvalues of M are diagonal entries of
M0. If some Mj arises from a nonsimple nonzero real eigenvalue, then again after permuting

coordinates, the projection of Γ on the last two coordinates defines ex over R, allowing an
easy finish by consideration of the possible outcomes of the diagonal case. We are then
left only with the case that 0 is a nonsimple eigenvalue of M and all other eigenvalues
of M are diagonal entries of M0. Hence, the map

(
eM1xc1, . . . , e

MJxcJ
)

is nontrivial and
polynomial (by nilpotence), and the projection of Γ on the last two coordinates is equal to
{ (ξ + t, 1) : t ∈ I } for some ξ ∈ C. Thus, if M0 is trivial (that is, 0× 0), then (R, Γ ) = R.
Otherwise, (R, Γ ) defines the map eM0xc0�I (not just its image), allowing us to finish by an
easy case distinction on the eigenvalues of M0. We now proceed to details via a sequence
of lemmas.

Put C∗ = C \ {0}.

2.4. Let X = { (ξ1e
ib1t, . . . , ξme

ibmt) : t ∈ I }, where b1, . . . , bm ∈ R and ξ1, . . . , ξm ∈ C∗.
The following are equivalent.

(1) There exist j, k ∈ {1, . . . ,m} such that bk /∈ bjQ.

(2) X is not definable in R.
(3) X is not locally closed.
(4) X is dense and co-dense in |ζ1|S1 × · · · × |ζm|S1.
(5) (R, X, arctan) = (R,Z).

Proof. As ξ1, . . . , ξm 6= 0, it suffices to consider the case that ξ1 = · · · = ξm = 1.
The equivalence of the first four items is essentially just a rephrasing of known ODE facts

(see [1, §24]). The o-minimality of (R, arctan) yields (5)⇒(2), so we also have (5)⇒(1). It
suffices now to show that (1)⇒(5). Assume that, say, b1 6= 0 and b2/b1 is irrational. Let
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G be the subgroup of S1 generated by ei2πb2/b1 . Let πX denote the projection of X on the
first two coordinates. Since I is unbounded, the set

{ z ∈ C : (1, z) ∈ πX } ∪ { z ∈ C : (1, z) ∈ πX }

is a cofinite subset of G, so (R, X) defines G. By [23], (R, G, arctan) defines Z, so the same
is true of (R, X, arctan). �

In addition to 2.1 and 2.3, the following easy observations should now be kept in mind.

2.5. Let a > 0.

— (R, xw) = (R, xw�(0, a)) = (R, xw�(a,∞)) for each w ∈ C.
— (R, ex) = (R, ex�(−∞, a)) = (R, ex�(a,∞)).
— (R, αZ) = (R, αZ ∩ (0, a)) = (R, αZ ∩ (a,∞)) for every α > 0.
— (R, Sω) = (R, Sω ∩ { z ∈ C : |z| < a }) = (R, Sω ∩ { z ∈ C : |z| > a }) for every

ω ∈ R∗.
— (R,Z) = (R,Z ∩ (−∞, a)) = (R,Z ∩ (−∞, a)).

2.6. If M is diagonal, then (R, Γ ) is equal to one of the following :

— (R, (xr)r∈R) for some finite R ⊆ R
— (R, xiω) for some ω ∈ R∗
— (R,Z).

Proof. We have Γ = { (eλ1x, . . . , eλnx) : x ∈ I } where λ1, . . . , λn ∈ C∗. If (R, Γ ) defines Z,
then we are done, so assume otherwise. Recall 2.1.

If all λk are purely imaginary, then (R, Γ ) = R by 2.4 (Γ is locally closed), so assume
that at least one λj has nonzero real part.

Suppose that some λj is real. By permuting coordinates and reparameterizing, we may
take λ1 = 1. Then Γ = { (x, xλ2 , . . . , xλn) : x ∈ eI }, so

(R, Γ ) = (R, xReλ2 , . . . , xReλn , xi Imλ2 , . . . , xi Imλn).

If λ2, . . . , λn ∈ R, then we are done, so assume that λ2 /∈ R. As we have assumed that Z is
not definable, we have λ2, . . . , λn ∈ Q + i(Imλ2)Q, so (R, Γ ) = (R, xi Imλ2).

Suppose that no λj is real. After permuting coordinates and reparameterizing, we write

λ1 = 1 + iω with ω ∈ R∗. We show that (R, Γ ) = (R, xiω). By 1.2 and an easy induction,
it is enough to do the case n = 2, that is, Γ = { (e(1+iω)t, e(a+ib)t) : t ∈ I } for some
a, b ∈ R with b 6= 0. It suffices now to show that a ∈ Q and b ∈ ωQ. The projection
of Γ on its first coordinate defines Sω over R, so (R, Γ ) defines e2πZ/ω. If a = 0, then
{ |z| : (z, 1) ∈ Γ } = { e2πk/b : k ∈ Z ∩ I }. Since (R, Γ ) does not define Z, we have
b ∈ ωQ. Suppose that a 6= 0. The projection of Γ on its last coordinate then defines Sb/a,

so b/a ∈ ωQ and Γ = { (e(1+iω)t, e(1+iω)at) : t ∈ I }. Now, for every x ∈ eI , there are unique
z, w ∈ C such that (z, w) ∈ Γ and |z| = x; for this w, we have |w| = xa. Thus, (R, Γ )
defines the function xa, so a ∈ Q, which in turn yields b ∈ ωQ (since b/a ∈ ωQ). �

2.7. Suppose that M =
(
a+ib 1
0 a+ib

)
with a, b ∈ R.

(1) If b 6= 0, then (R, Γ ) = (R,Z).
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(2) If a 6= 0 and b = 0, then (R, Γ ) = (R, ex).

Proof. We have Γ = { ((ξ + t)e(a+ib)t, e(a+ib)t) : t ∈ I } for some ξ ∈ C.
(1). Suppose that b 6= 0. If a = 0, then

{ z ∈ C : (ξ + z, 1) ∈ Γ } = { 2πk/b : k ∈ Z ∩ I },

so (R, Γ ) defines Z. Suppose that a 6= 0. By projecting on the second coordinate, (R, Γ )
defines Sb/a. For every x ∈ eI , log x is the unique y ∈ R for which there exists z ∈ C such

that |z| = x and ((ξ + y/a)z, z) ∈ Γ . Thus, (R, Γ ) defines both Sb/a and log, hence also Z.
(2). Suppose that a 6= 0 and b = 0. Reparameterizing and interchanging the coordinates

of Γ yields the graph of the function ξx + (1/a)x log x�eI , which is interdefinable over R
with ex. Hence, (R, Γ ) = (R, ex). �

Remark. Of course, (R, Γ ) = R if a = b = 0.

2.8. Suppose that M =
(
a+ib 0 0
0 0 1
0 0 0

)
with a, b ∈ R.

— If b 6= 0, then (R, Γ ) = (R,Z).
— If b = 0, then (R, Γ ) = (R, ex).

Proof. We have Γ = { (e(a+ib)t, ξ + t, 1) : t ∈ I } for some ξ ∈ C, so (R, Γ ) defines the
function e(a+ib)x�I. Recall that a+ ib 6= 0 (2.2)k. The rest is immediate. �

We are now ready to finish the

Proof of Theorem 1.1. If M is diagonal, then we are done by 2.6. Suppose that M is not
diagonal. Then J ≥ 1 and M1, . . . ,MJ arise from nonsimple eigenvalues of M .

Suppose that M has a nonsimple, nonreal eigenvalue a+ib. After permuting coordinates,
we may assume that a + ib is an eigenvalue of MJ . Project Γ on its last two coordinates
and apply 2.7 to obtain that (R, Γ ) defines Z.

By the preceding paragraph, we may reduce to the case that all nonreal eigenvalues of
M are simple. Note that by basic ODE theory, the map

x 7→
(
eM1xc1, . . . , e

MJxcJ
)

: R→ Cn−n0

is then definable in (R, ex), hence so is the projection of Γ on the last n− n0 coordinates.
Suppose that M has a nonsimple, nonzero real eigenvalue a. By permuting coordinates,

we may assume that a is an eigenvalue of MJ . Project Γ on its last two coordinates and
apply 2.7 to obtain that (R, Γ ) defines ex. By 2.6, (R, Γ ) = (R,Z) if M0 has a nonreal
eigenvalue, and (R, Γ ) = (R, ex) otherwise.

Finally, suppose that 0 is the only nonsimple eigenvalue of M . Then the map(
eM1xc1, . . . , e

MJxcJ
)

is polynomial, so the projection of Γ on the last n−n0 coordinates is definable in R. Hence,
(R, Γ ) = R if M0 is trivial. Suppose that M0 is nontrivial. By 2.8 and 2.6, (R, Γ ) is equal
to (R,Z) or (R, ex), depending on whether or not M0 has a nonreal eigenvalue. �
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3. Optimality

It is clear from its proof that, with enough patience, a version of 1.1 can be stated that
describes precisely the outcomes in terms of the collection of eigenvalues of the matrices that
give rise to the trajectories in G, provided that the trajectories and matrices are suitably
normalized (recall 2.2). Similarly, “definable” can be refined to “∅-definable” uniformly
with respect to G by tracking parameters and adding constants as needed to the structures
in the conclusion of 1.1. We leave formulations of these variants to the interested reader.

It is suspected that “locally closed” is necessary in 1.1, but this is open as yet. The
proof of 1.1 shows that, essentially, the problem is to understand what happens if some
Γ ∈ G are complex multiplicative groups { (eit, eib2t, . . . , eibnt) : t ∈ R } where n ≥ 2 and b2
is irrational. By the proof of 2.4, (R, Γ ) then defines an infinite cyclic subgroup G of S1.
Hence, it also defines a dense-and-codense subset of [−1, 1], so the first three outcomes of 1.1
fail for (R, Γ ). It is suspected that (R, Γ ) does not define Z—at least, for generic enough
choices of b2, . . . , bn—so that the conclusion of 1.1 fails. For example, suppose that n = 2
and b2 is not ∅-definable in (R, ex). The current conjecture is that (R, Γ ) defines no new
(relative to R) open sets; work on this is currently underway by other researchers (Caycedo,
Günaydın and Hieronymi). If so, then it is fair to say that (R, Γ ) is as topologically tame as
possible; see Dolich et al. [3], Miller and Speissegger [20], and [19, §5] for more information.
It is worth noting that although (R, arctan, G) defines Z by [23], (R, G) defines no new
open sets; see Günaydın and Hieronymi [12] for details. Of course, we could also hope to
show that the conclusion of 1.1 fails for expansions of (R, ex) or some (R, Sω) by collections
of such Γ , but so far, there is no evidence to suggest that any such collections define any
new open sets over either (R, ex) or (R, Sω).

It is not yet known what is the optimal version of 1.1 if we drop only the assumption that
all trajectories be images of solutions on unbounded intervals. Work on this is currently
underway by Tychonievich.

Much of the proof of 1.1 goes through in greater generality with a little extra work. For
example, instead of having all Γ ∈ G be trajectories of linear vector fields, we could consider
images of intervals under arbitrary C-linear combinations of functions of the form xmeλx

where m ∈ N and λ ∈ C. However, troubles arising from purely imaginary λ become even
more pronounced—e.g., consider functions x(eib1x + · · ·+ eibnx) for rationally independent
reals b1, . . . , bn—thus making for more technical statements. It is unclear to me as yet
whether the extra generality is worth formulating as a stand-alone result.

Finally, to what extent might the results of this paper hold over o-minimal expansions of
arbitrary real closed fields? I regard this question as unproductive for now, if for no other
reason than that the works of Hieronymi [13] and Tychonievich [23] appear to rely heavily
on working over R.

4. Appendix

For the reader’s convenience, I provide here a brief summary of some results from else-
where. The original sources should be consulted for complete information, including history
and attributions.

9



Let R be a polynomially bounded o-minimal expansion of R with field of exponents K
(that is, the set of all r ∈ R such that R defines the power function xr). By Pfaffian
closure [22], (R, arctan, ex) is o-minimal, hence so are all reducts of (R, arctan, ex�[0, 1])
over R. But in this generality, it is not yet known if these reducts also have field of
exponents K, nor even if they are polynomially bounded. This lack of knowledge accounts
for some awkwardness in the statements below.

For technical reasons, put xr = 0 for x ≤ 0.

4.1 ([16]). Let S ⊆ R be such that R defines xs�[1, 2] for each s ∈ S.

(1) Relative to R, the expansion (R, (xr)r∈K(S)) admits QE (quantifier elimination) and
is explicitly universally axiomatizable.

(2) Every function definable in (R, (xs)s∈S) is given piecewise by compositions of powers
xr with r ∈ K(S) and functions definable in R.

(3) (R, (xs)s∈S) is polynomially bounded with field of exponents K(S).

(This has not yet been published elsewhere in this form.)

Sketch of proof. (1). By definability of Skolem functions [7, p. 94], we may assume that
R admits quantifier elimination and is universally axiomatizable. The rest is a routine
modification of the proof of [18, 2.5], using [6, Theorem C] instead of [18, 1.2]. (In the
proof of [18, 2.4], use K instead of Q, and the reduct of A to the language of R instead
of Aan.)

(2) is a standard model-theoretic consequence of (1); see e.g. van den Dries et al. [8].
(3). Without loss of generality, we may assume that R has no relation symbols other

than <. By [8, 5.8], we regard the Hardy field H of (R, (xr)r∈K(S)) as an elementary
extension of (R, (xr)r∈K(S)). In the second and third paragraphs of the proof of [18, 2.4],
again modified as above, let x be the germ of the identity function on R. Put A =
(R, (xr)r∈K(S)) and B = H. Then the resulting structure C is a model of Th(R, (xr)r∈K(S))
containing R(x) as a Hardy field. On the other hand, by [8, 5.8], H is the smallest model
of Th(R, (xr)r∈K(S)) containing R(x). Hence, C = H, υ(H) = K(S).υ(x), and K(S) is the
field of exponents of (R, (xr)r∈K(S)). �

Remark. By [8, 5.5 and 5.12], (R, (xr)r∈K(S)) is o-minimal without appeal to Pfaffian clo-
sure.

The next result is due to van den Dries and Speissegger. Set log x = 0 for x ≤ 0.

4.2. Suppose that R defines ex�[0, 1].

(1) Relative to R, the expansion (R, ex, log) admits QE and is explicitly universally
axiomatizable [10, Theorem B].

(2) Every function definable in (R, ex) is given piecewise by compositions of ex, log,
and functions definable in R.

(3) (R, ex) is exponentially bounded [10, 9.6].

Again, (2) is a routine consequence of (1), and the proof of (1) yields o-minimality of
(R, ex) without appeal to Pfaffian closure. On the other hand, (3) holds without assuming
that R defines ex�[0, 1] by Pfaffian closure and more precise results from Lion et al. [15].
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Note that every real restricted power xr�[1, 2] is definable in (R, ex�[0, 1]), so the conclusion
of 4.1 holds for any S ⊆ R.

See [11] for more detailed statements related to 4.1 and 4.2.
Given α > 0, define the function b cα : R → R by bxcα = 0 if x ≤ 0, and bxcα =

max
(
αZ ∩ (−∞, x]

)
for x > 0. Note that (R, <, b cα) = (R, <, αZ).

4.3 ([19]). Suppose that K = Q.

(1) Relative to R, the expansion (R, b cα) admits QE and is explicitly universally
axiomatizable.

(2) Every function definable in (R, αZ) is given piecewise by compositions of b cα and
functions definable in R.

(3) Let p, n be positive integers and A be a finite collection of subsets of Rn definable
in (R, αZ). Then there is a finite partition P of Rn into embedded Cp-submanifolds
(not required to be connected), each of which is definable in (R, αZ), and there is
countable decomposition C of Rn into Cp-cells definable R such that C is compatible
with P , which in turn is compatible with A.

Note. Antongiulio Fornasiero has found a gap in the proof of (3) as given in [19]; it can be
repaired in this case by deriving (3) directly from (1) (and (2)), as opposed to the rather
roundabout method suggested in [19].

4.4. Suppose that K = Q. Let ω ∈ R∗ be such that R defines xiω�[1, 2]. Let p ∈ N and A
be a finite collection of subsets of Rn definable in (R, Sω). Then there is a finite partition
P of Rn into embedded Cp-submanifolds (not required to be connected), each of which is
definable in (R, Sω), and there is countable decomposition C of Rn into Cp-cells definable
R such that C is compatible with P , which in turn is compatible with A.

Proof. By 2.1, we have (R, Sω) = (R, b ce2π/ω). Apply 4.3. �

Note that RRE defines all restricted complex powers xz�[1, 2]. The conclusion of 4.4
should be regarded as a good candidate for the best general tameness condition that could
hold for expansions of R by infinitely spiralling subsets of the plane. Of course, if K 6= Q,
then the conclusion fails spectacularly, as then (R, Sω) defines Z by 1.3. Thus, we obtain
the following dichotomy:

4.5. Given any o-minimal expansion M of R and ω ∈ R∗, either (M, Sω) defines Z or the
conclusion of 4.4 holds for (M, Sω).

Proof. If (M, Sω) does not define Z, then it defines no irrational powers, so the same is true
of (M, xiω�[1, 2]). Apply 4.4 with R = (M, xiω�[1, 2]). �
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