
WEAKLY ONE-BASED GEOMETRIC THEORIESALEXANDER BERENSTEIN AND EVGUENI VASSILIEVAbstrat. We study the lass of weakly loally modular geometri theoriesintrodued in [5℄, a ommon generalization of the lasses of linear SU-rank1 and linear o-minimal theories. We �nd new onditions equivalent to weakloal modularity: weak one-basedness and the absene of type de�nable almostquasidesigns. Among other things, we show that weak one-basedness is losedunder reduts and generi prediate expansions. We also show that a lovelypair expansion of a non-trivial weakly one-based ω-ategorial superrosy thornrank 1 theory interprets an in�nite vetor spae over a �nite �eld.1. IntrodutionIt is a well known fat [21℄ that for a strongly minimal theory T , the followingonditions are equivalent: i) T is linear, ii) T is 1-based, iii) T is loally modular.Furthermore, these onditions are preserved under reduts. For a simple SU -rankone theory T the piture hanges slightly, it is proved in [23, 5℄ that for suh atheory T , it is equivalent that: i) T is 1-based, ii) T is linear and iii) T is weaklyloally modular (see De�nition 2.1). It is also known (e.g. see [23℄) that in the
SU -rank one setting loal modularity is a stritly stronger ondition than being 1-based. A more general framework where we an still study the geometry assoiatedto the algebrai losure is the lass of geometri theories. Reall that a geometritheory is a omplete theory T suh that for any model M |= T , the algebrailosure satis�es the Exhange Property and in addition T eliminates the quanti�er
∃∞. Examples inlude strongly minimal theories, simple SU rank 1 theories, denseo-minimal theories and the theory of the p-adis. Inside a model of a geometritheory, algebrai independene gives a good notion of independene for real tuples.A key example of the behavior of linearity in o-minimal theories is the followingtheory �rst introdued in [15℄.Example 1.1. Let R = (R,+, <, f |(−1,1)) where f is de�ned by f(x) = πx.Clearly, f |(−1,1) an be extended to all of R by f(x) = nf

(x

n
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anonial bases, i.e. a smallest algebraially losed subset over whih a type is free.The theory T also fails to be 1-based, i.e. there is M |= T saturated and there aresets A,B ⊂M suh that A 6 |⌣acleq(A)∩acleq(B)
B.The example above shows that inside a geometri theory T , loal modularityand 1-basedness do not need to be preserved under reduts. The main reason forthe failure of the seond ondition is the absene of almost anonial bases in theredut.The origin of the expression 1-basedness omes from the onept that in a 1-basedsimple theory one element in a Morley sequene ontains all the information aboutthe original type (in general we require a ountable Morley sequene to reover allthe information). Following this idea we introdue the notion of weak 1-basedness(see De�nition 2.3), prove that this notion oinides, in the setting of geometristrutures, with the notion weak loal modularity introdued in [5℄ (see De�nition2.1) and �nally show that it is preserved under reduts.The main goal of this paper is to study the lass of weakly 1-based geometristrutures. All linear o-minimal theories, inluding the one presented in Example1.1, as well as linear SU rank 1 theories are examples of weakly 1-based theories.Our work is divided as follows:In the seond setion of this paper we de�ne weak loal modularity, weak 1-basedness and show that the notions oinide. We also introdue the notion of typede�nable almost quasidesigns, prove that it oinides with weak loal modularityand use it to show that a redut of a weakly loally modular theory is again weaklyloally modular.In setion three we study the geometry assoiated to a weakly 1-based geometritheory. We follow the approah from [23℄ and show that a lovely pair assoiated toa non-trivial weakly 1-based ω-ategorial superrosy thorn rank 1 theory interpretsan in�nite vetor spae over a �nite �eld.In setion four we generalize the notion of weak 1-basedness to the setting ofrosy theories. We show that, under some mild assumptions, if T is a thorn rankone rosy weakly 1-based theory, then the assoiated theory TP of lovely pairs of Tis again weakly 1-based.In setion �ve we onentrate on examples: we show that the expansion of aweakly 1-based theory with a generi prediate is again weakly 1-based and provethat divisible groups with the Mann property inside a real losed �eld with theindued struture from the �eld are also weakly 1-based. Finally, in the last setion,we show that the dense embeddings studied by Maintyre in [16℄ are a speial aseof lovely pairs of geometri strutures.We assume that the reader is familiar with the results on lovely pairs of geomet-ri strutures presented in [5℄ (although no familiarity with lovely pairs is neededfor most of setion 2 and setion 5). We will now reall the de�nition and basiproperties of lovely pairs.De�nition 1.2. We say that an elementary pair of models P (M) � M of a geo-metri theory T is a lovely pair of models of T if(1) (density/oheir property) if A ⊂M is algebraially losed and �nite dimen-sional and q ∈ S1(A) is non-algebrai, then there is a ∈ P (M) suh that

a |= q; 2



(2) (extension property) if A ⊂M is algebraially losed and �nite dimensionaland q ∈ S1(A) is non-algebrai, then there is a ∈ M , a |= q and a 6∈
acl(A ∪ P (M)).Any elementary pair of models extends to a lovely one. Any two lovely pairsof models of a geometri theory are elementarily equivalent, thus giving rise to aomplete theory TP in the expanded language LP = L(T )∪{P}. The lass of lovelypairs of models of T is almost an elementary lass: su�iently saturated models of

TP are again lovely pairs.Lovely pairs of geometri strutures are a ommon generalization of lovely pairsof supersimple SU-rank 1 strutures [23℄ and (su�iently saturated) dense pairs ofo-minimal expansions of ordered abelian groups [10℄.Given a pair (M,P ) and a set A ⊂ M , we say that A is P -independent, if
A |⌣P (A)

P (M) where P (A) = A ∩ P (M). Any two P -independent tuples ~a and ~bin a lovely pair, satisfying the same quanti�er free LP -type, have the same LP -type.When working in lovely pairs, we will refer to the operator
scl(−) = acl(− ∪ P (M))as the small losure. Note that a small losure of any set is algebraially losed inthe sense of TP . We write tpP and aclP for types and algebrai losure in the senseof TP .The following is a result of Boxall [6℄ (generalizing a fat from [23℄ to the settingof superrosy theories of þ-rank 1):Fat 1.3. Suppose T is a þ-rank 1 theory that eliminates ∃∞. Then TP is superrosyof þ-rank ≤ ω. Moreover:(1) Any de�nable �large" set in a lovely pair (M,P ) (i.e. a set de�nable over Asuh that it has a realization in M\ acl(P (M) ∪A)) does not þ-divide over

∅.(2) Any in�nite de�nable subset of P (M) does not þ-divide over ∅. In parti-ular, P (M) has þ-rank 1 in (M,P ).Thus, when T is rosy of thorn rank 1, TP is again super-rosy; we write |⌣
P forthorn independene in models of TP .2. Weak loal modularity, weak 1-basedness and linearityOur goal in this setion is to study, in the setting of geometri theories, ana-logues to the notions of loal modularity, 1-basedness and linearity that are wellunderstood in the setting of minimal stable theories [20℄ and SU -rank one simpletheories [23℄.In [5℄ we studied a notion alled weak loal modularity using lovely pairs ofstrutures and provided several haraterizations of it. We reall the de�nition:De�nition 2.1. (See [5, Theorem 1℄) Let T be a geometri theory. We say that

T is weakly loally modular if for M |= T saturated and A,B ⊂ M there exist
C |⌣AB suh that A |⌣acl(AC)∩acl(BC)

BIn [5℄ we showed this notion oinided with 1-basedness for SU -rank one simpletheories and with linearity for o-minimal theories. We have also shown that weakloal modularity is equivalent to aclP = acl and to modularity of scl in models of
TP . We also proved: 3



Fat 2.2. ([5, Proposition 4.8℄) If T is a weakly loally modular superrosy geometritheory of þ-rank 1, then TP has þ-rank ≤ 2.Note that in the SU-rank 1 ase [23℄, weak loal modularity of T is atuallyequivalent to SU-rank of T being ≤ 2.We now introdue a notion that is an analogue of 1-basedness in the setting ofgeometri theories.De�nition 2.3. Let T be a geometri theory. We say that T is weakly 1-basedif whenever M |= T is saturated, ~a ∈ M and B ⊂ M , there is ~a′ |= tp(~a/B)independent from ~a over B, suh that ~a |⌣~a′
B.In the stable or simple setting, a rank one theory is loally modular if and onlyif it is 1-based. The proof uses the notion of anonial bases. An analogue of hisnotion an be de�ned in the setting of geometri strutures, see for example [21℄:De�nition 2.4. Let T be a geometri theory and let M |= T be saturated.We say T has almost anonial bases if whenever A ⊂ M is algebraially losedand a1, . . . , an ∈ M , there is a smallest B ⊂ A algebraially losed suh that

tp(a1, . . . , an/A) is free over B.The main problem with this notion is that almost anonial bases need not existin geometri strutures (see [21℄ and Example 1.1). When they exists, the proofsin [23℄ that show the equivalene of loal modularity and 1-basedness for SU -rankone simple theories an be used almost word-by-word to prove the equivalene ofweak loal modularity and weak 1-basedness in the setting of geometri theories.Instead, we will show that weak loal modularity agrees with weak 1-basednessusing stronger formulations of weak 1-basedness.We start with a tehnial lemma.Lemma 2.5. Let T be a geometri theory and let M |= T be saturated. Let ~a ∈M ,
B ⊂M and ~a′ ∈M be suh that tp(~a/B) = tp(~a′/B), ~a |⌣B

~a′ and ~a |⌣~a′
B. Then

~a′ |⌣~a
B.Proof. We an write ~a = ~a1~a2, where ~a1 is an independent tuple over B and ~a2 ∈

acl(~a1, B). In the same way write ~a′ = ~a′1~a
′
2 with tp(~a1,~a2/B) = tp(~a′1,~a

′
2/B). Notethat dim(~a1~a2~a

′
1~a

′
2) = dim(~a1~a2)+dim(~a′1~a

′
2/~a1~a2) = dim(~a′1~a

′
2)+dim(~a1~a2/~a

′
1~a

′
2),so dim(~a′/~a) = dim(~a/~a′) = dim(~a/B~a′) = dim(~a/B) = |~a1| = |~a′1|. Thus

dim(~a′/~a) = |~a′1| = dim(~a′/B~a) and ~a′ |⌣~a
B. �Proposition 2.6. Let T be a geometri theory and let M |= T be saturated. Thenthe following onditions are equivalent:(1) T is weakly 1-based.(2) Whenever ~a ∈ M , B ⊂ M , there is C |⌣B

~a suh that for all ~a′ |=

tp(~a/ acl(BC)) independent from ~a over BC, we have ~a |⌣~a′
B.(3) Whenever ~a ∈ M , B ⊂ M , there is C |⌣B

~a suh that for all ~a′ |=

tp(~a/ acl(BC)) independent from ~a over BC, we have ~a |⌣~a′
BC.Proof. (1) =⇒ (2). Let ~a ∈ M and B ⊂ M . Sine T is weakly 1-based, thereexists ~a′ |= tp(~a/B) suh that ~a′ |⌣B

~a and ~a′ |⌣~a
B. Let C = ~a′1.Claim Whenever ~c |= tp(~a/ acl(BC)) is independent from ~a over BC, we have

~a is independent from B over ~c. 4



Let ~c |= tp(~a/ acl(BC)) be suh that ~c |⌣BC
~a. Sine ~a |⌣~a′

B, we have ~cB |⌣~a′
~aand thus

B |⌣
~a′~c

~a (∗)Sine ~a |⌣~a′
B and ~c |= tp(~a/BC) we get ~c |⌣~a′

B. Using Lemma 2.5 this implies
~a′ |⌣~c

B and together with (∗) we get B |⌣~c
~a.

(2) =⇒ (3). This diretion is mostly forking alulus. With the assumptionsfrom (3), we an show using ondition (2) that ~a |⌣~a′
B. On the other hand, wehave ~a |⌣BC

~a′ and ~a |⌣B
C, so by transitivity ~a |⌣B

C~a′ and thus ~a |⌣B~a′
BC.This fat together with ~a |⌣~a′

B gives us ~a |⌣~a′
BC as desired.

(3) =⇒ (1) is lear. �Theorem 2.7. Let T be a geometri theory. Then the following onditions areequivalent:(1) T is weakly 1-based.(2) T is weakly loally modular.Proof. (2) =⇒ (1). Let M |= T be saturated. Let ~a1,~a1 ∈ M and B ⊂ M besuh that ~a1 is an independent tuple over B and ~a2 ∈ acl(B,~a1). Sine T is weaklyloally modular, there exists C |⌣~a1~a2B suh that ~a1~a2 |⌣acl(~a1~a2C)∩acl(BC)
BCLet ~a′1~a′2 |= tp(~a1~a2/ acl(BC)) be independent from ~a1~a2 over acl(BC). Then

acl(~a1~a2C) ∩ acl(BC) = acl(~a′1~a
′
2C) ∩ acl(BC), so ~a1~a2 |⌣acl(~a′

1
~a′

2
C)∩acl(BC)

BC. Itis also lear that ~a1~a2 |⌣BC
~a′1~a

′
2BC. Thus

tp(~a1~a2/ acl(~a′1~a
′
2C) ∩ acl(BC)) ⊂ tp(~a1~a2/ acl(BC)) ⊂ tp(~a1~a2/ acl(~a′1~a

′
2BC))is a hain of free extensions, so ~a1~a2 |⌣acl(~a′

1
~a′

2
C)∩acl(BC)

~a′1~a
′
2BC and thus ~a1~a2 |⌣~a′

1
~a′

2
C
B.On the other hand, sine C |⌣~a′1~a

′
2B, we have ~a′1~a′2C |⌣~a′

1
~a′

2

~a′1~a
′
2B, and by sym-metry and transitivity of independene ~a1~a2 |⌣~a′

1
~a′

2

B as we wanted.
(1) =⇒ (2). Let M |= T be saturated. Let ~a,~b ∈M and B ⊂M be suh that ~ais an independent tuple over B and ~b ∈ acl(B,~a). Sine T is weakly 1-based thereexists ~a′~b′ |= tp(~a~b/B) suh that ~a~b |⌣B

~a′~b′ and ~a~b |⌣~a′~b′
B. Let C = ~a′, notiethat C |⌣B~a~b and ~a~b |⌣~a′~b′

BC.Claim ~a~b |⌣acl(~a~bC)∩acl(BC)
B.First note that~b′ ∈ acl(B~a′). Sine ~a~b |⌣~a′~b′

B by Lemma 2.5 we have ~a′~b′ |⌣~a~b
Band thus~b′ ∈ acl(~a′~a~b). Thus ~a′~b′ ∈ acl(~a~bC)∩acl(BC) and we get ~a~b |⌣acl(~a~bC)∩acl(BC)

Bas desired. �Remark 2.8. By Theorem 4.3, [5℄, in the de�nition of weak loal modularity wean assume that one of the two sets is in fat a 2-tuple, i.e. we require that forany ab and a set B suh that a ∈ acl(Bb), there exists a C |⌣∅
Bab suh that

a ∈ acl(Cbd) for some d ∈ acl(BC). Therefore in the proof of ((1) =⇒ (2)) abovewe an assume that ~a and ~b are 1-tuples. Thus in the de�nition of weak 1-basednessand in the onditions (2) and (3) in 2.6 we may assume that ~a is a 2-tuple.5



Now we will onnet weak 1-basedness with the notion of quasidesign. It iswell-known that a stable theory is 1-based if and only if T has no omplete-type-de�nable quasidesign (see [20℄). In our setting, we need to introdue the followingmodi�ation.De�nition 2.9. We say that a partial type r(~x, ~y) over a set A de�nes a partialalmost quasidesign, if(1) there are ~b, ~c suh that |= r(~b,~c), ~b 6∈ acl(~c,A) and ~c 6∈ acl(~b,A);(2) whenever ~c 6∈ acl(~c′, A) and ~c′ 6∈ acl(~c,A), r(~x,~c) ∧ r(~x, ~c′) is �nite.If r is omplete, we refer to suh partial quasidesign as omplete. In the ompletease, we an replae �there are� by �for any� in (1). Clearly, any partial quasidesigngives rise to a omplete one, if we take tp(~b~c/A) where ~b and ~c ome from (1).Proposition 2.10. The following are equivalent for any geometri theory T .(1) T is weakly 1-based(2) T does not have a partial almost quasidesign(3) T does not have a omplete almost quasidesignProof. (1 → 2) Suppose T is weakly 1-based, and r(~x, ~y) de�nes a partial almostquasidesign. Adding the parameters of r to the language, we may assume that r isde�ned over ∅. Take ~b and ~c suh that |= r(~b,~c), ~b 6∈ acl(~c) and ~c 6∈ acl(~b). By weak1-basedness we an �nd ~c′ |= tp(~c/~b) suh that ~c′ |⌣~b
~c and ~c |⌣~c′

~b. Then |= r(~b, ~c′),
~c 6∈ acl(~c′) and ~c′ 6∈ acl(~c), and therefore r(~x,~c) ∧ r(~x, ~c′) is �nite. But this meansthat ~b ∈ acl(~c, ~c′), a ontradition with ~b 6∈ acl(~c′) and ~c |⌣~c′

~b.(2 → 3) Trivial.(3 → 1) Suppose T is not weakly 1-based. Adding onstants to the language ifneessary, by remark 2.8 we may assume that this is witnessed by tp(ab/cd) where
dim(cd) = 2. So for any a′b′ ≡cd ab suh that a′b′ |⌣cd

ab we have dim(aba′b′) = 4.Let r(xy, zt) = tp(ab, cd).We laim that if a′b′ realizes tp(ab) and acl(a′b′) 6= acl(ab) then r(ab, zt)∧r(a′b′, zt)has �nitely many realizations. In other words, if a′b′ ≡cd ab and acl(ab) 6= acl(a′b′),then c, d ∈ acl(aba′b′).Case 1: a |⌣cd
a′. Then a′b′ |⌣cd

ab, so dim(aba′b′) = 4. Now
dim(aba′b′cd) = dim(aba′b′/cd) + dim(cd) = 2 + 2 = 4 = dim(aba′b′),hene c, d ∈ acl(aba′b′).Case 2: acl(acd) = acl(a′cd). Sine acl(ab) 6= acl(a′b′), a′ or b′ is not in acl(ab).Thus either dim(aba′) = 3 or dim(abb′) = 3. Either way, sine dim(aba′b′cd) = 3,we get c, d ∈ acl(aba′b′).Now, r(xy, zt) is a omplete almost quasidesign, as needed. �We an now summarize our results on equivalent de�nitions of weak loal mod-ularity / weak 1-basedness by putting them together with the results form [5℄.6



Theorem 2.11. The following are equivalent for any geometri theory T(1) T is weakly loally modular;(2) T is weakly one-based;(3) T does not have a partial (omplete) almost quasidesign;(4) in any lovely pair (M,P ) of models of T , aclP = acl;(5) in any lovely pair (M,P ) of models of T , the small losure operator scl =
acl(− ∪ P ) indues a modular pregeometryFrom now on we will use the terms weakly 1-based and weakly loally modularinterhangeably.It is known (see e.g.[18℄) that reduts of geometri theories are geometri. It isalso known (see [20℄) that 1-basedness is preserved by reduts in the ases of super-stable theories of �nite U-rank and stable groups (given that the group operation isintat). In the ase of SU-rank 1 strutures, the fat that 1-basedness is preservedby reduts follows from its haraterization in [23℄: redut of a lovely pair is againlovely, and TP having SU-rank ≤ 2 is also preserved. In the o-minimal group ase,it is known (see [15℄) that linear strutures are exatly the reduts of ordered ve-tor spaes over division rings, and thus linearity is preserved under reduts as well.Here we generalize these fats to the ase of geometri theories.Proposition 2.12. Weak 1-basedness is preserved by reduts.Proof. Suppose T− ⊂ T is a redut. We are working in a su�iently saturatedmodel of T . Its redut is a su�iently saturated model of T−. If T− is not weakly1-based, it has a omplete almost quasidesign r(~x, ~y). Adding parameters to thelanguage we may assume that r is over ∅. We laim that r is a partial almostquasidesign in the sense of T . Part (2) of the de�nition is lear sine acl−(A) is asubset of acl(A) for any set A. Suppose part (1) fails in T . Thus in T r(~x, ~y) impliesthat ~x ∈ acl(~y) or ~y ∈ acl(~x). By ompatness, r(~x, ~y) implies (in T ) a formula

φ(~x, ~y) ∨ ψ(~x, ~y), where φ and ψ witness ~x ∈ acl(~y) and ~y ∈ acl(~x) respetively.Now, for any ~b and ~c suh that |= r(~b,~c), ~b 6∈ acl−(~c) and ~c 6∈ acl−(~b) (sine r isomplete in T−). Then for any ~b~c |= r(~x, ~y) we have either |= φ(~b,~c) (i.e. ~b ∈ acl(~c))or |= ψ(~b,~c) (i.e. ~c ∈ acl(~b)), or both.On the other hand, whenever |= r(~b,~c), there are in�nitely many ~c′ and ~b′ suhthat |= r(~b, ~c′) and |= r(~b′,~c). Now, for all but �nitely many ~c′ we have |= φ(~b, ~c′)witnessing ~b ∈ acl(~c′) (sine ψ(~b, ~y) has �nitely many solutions). Similarly, for allbut �nitely many ~b′ we have |= ψ(~b′,~c) witnessing ~c ∈ acl(~b′) (sine ψ(~x,~c) has�nitely many solutions).Thus for any n we an build a sequene ~b0~c0~b1~c1~b2~c2 . . .~bn~cn suh that
|= r(~bi,~ci),

|= r(~bi+1,~ci),

~bi ∈ acl(~ci),

~ci ∈ acl(~bi+1),

~bi+1 6∈ acl(~ci),

~ci 6∈ acl(bi).Thus we have strit embeddings
acl(~b0) ⊂ acl(~c0) ⊂ acl(~b1) ⊂ acl(~c1) ⊂ . . . ⊂ acl(~bn) ⊂ acl(~cn).7



Contradition with �niteness of dim(~c). �Our next goal is to ompare weak loal modularity with linearity. We start byrealling the de�nition from [18℄:De�nition 2.13. Let T be a geometri theory and let M |= T be saturated. Bya urve we mean a one dimensional subset of M2. A family F of plane urves issaid to be de�nable if it an be written as a family of �bers of a de�nable subset of
M2×Mk, where the parameter set is the subset ofMk. A family F of plane urvesis said to be interpretable if it an be written as a family of �bers of a de�nablesubset of M2 × (Mk/E), where E is a de�nable equivalene relation. We say F isnormal if any two urves from F whih are given by di�erent parameters intersetat most �nitely many times. We say that T is linear if every interpretable normalfamily of plane urves has dimension ≤ 1.On has to be areful with the previous de�nition. In order for the dimension ofan interpretable family of plane urves to be de�ned, we need to extend the notionof dimension from real tuples to imaginary tuples. In [13℄ Gagelman showed thatthe geometri theories T where the notion of independene extends to the set ofimaginary elements are those that are surgial. Reall that a geometri theory Tis surgial if whenever X ⊂ Mn is de�nable and dim(X) = m then there is node�nable equivalene relation E on X that has in�nitely many lasses of dimension
m. The results from [13℄ together with the fat that thorn forking is the weakestnotion of independene [12℄, show that T is surgial if and only if T is rosy of thornrank one.We will divide our disussion on normal families of plane urves into two ases.We will �rst deal with de�nable families in the setting of geometri theories. Thenwe will deal with the ase of interpretable families when the underlying theory isrosy of thorn rank one.For the following results we will use the tools of lovely pairs developed in [5℄. Inpartiular, we will use the fat that a theory T is weakly loally modular if andonly if the small losure in a saturated model of TP is modular.Lemma 2.14. Let T be a geometri theory and let M be a saturated model of T .If M has a de�nable normal family of plane urves of dimension ≥ 2 then T is notweakly loally modular.Proof. We may assume that there is N � M suh that (M,N) is a lovely pair ofmodels of T and we write P instead of N . For A ⊂M we write scl(A) for acl(A,P ).Assume that T is weakly loally modular so scl is modular. By hypothesis there is a
2-dimensional normal family of plane urves, say given by {C(x, y,~a,~b) : ~a ∈ θ(~z,~b)}where θ(~z,~b) de�nes a subset of Mk and dim(θ(~z,~b)) = 2. We may assume that θis de�ned over ∅.We may assume that θ(~a) = θ(a1, a2,~a3) and that whenever θ(a1, a2,~a3) holdsthen ~a3 ∈ acl(a1, a2). Let ~a = (a1, a2,~a3) ∈ θ be generi over P , let c, d ∈ Mbe suh that C(c, d, a1, a2,~a3) and hoose c independent from a1a2P . Let X =
scl(c, d), Y = scl(a1, a2). Sine scl is modular and dim(X ∪ Y/P ) = 3 we musthave dim(X ∩ Y/P ) = 1. Let t be real suh that scl(t) = X ∩ Y . Note that
d ∈ scl(c, t) and that dim(a1a2/tP ) = 1. Let ~p ∈ P be suh that d ∈ acl(c, t, ~p),
dim(a1a2/t~p) = 1. Note that by generiity of (a1, a2) we have t ∈ acl(a1, a2, ~p).8



Let (a′1, a
′
2,~a

′
3) |= tp(a1, a2,~a3/t, c, d, ~p) be independent from c, t, a1, a2, ~p over

c, t, ~p. Then whenever c′ |= tp(c/a1, a2,~a3, a
′
1, a

′
2,~a

′
3, ~p) we have that

∃y(C(c′, y, a1, a2,~a3) ∧C(c′, y, a′1, a
′
2,~a

′
3)).Sine the type tp(c/a1, a2,~a3, a

′
1, a

′
2,~a

′
3, ~p) is not algebrai, the family of plane urvesis not normal, a ontradition. �Lemma 2.15. Let T be a thorn rank one rosy theory and let M be a saturatedmodel of T . If M has a interpretable normal family of plane urves of dimension

≥ 2 then scl is not modular.Proof. As before we may assume that (M,P ) is a lovely pair of models of T . Byhypothesis there is a 2-dimensional normal family of plane urves, say given by
{C(x, y, â) : â ∈ θ} where θ(ẑ) de�nes a subset ofM eq and dim(θ(ẑ)) = 2. We mayassume that θ is de�ned over ∅. Let a be a base for â, so â = aE for some de�nableequivalene relation E. We may write a = (a1, . . . , ak, . . . , an), where a1, . . . , akare independent and ak+1, . . . , an ∈ acl(a1, . . . , ak). By the extension property, wemay hoose a suh that dim(a/P ) = k. Let c, d ∈ M be suh that C(c, d, â) andhoose c independent from a, P . Let X = scl(c, d), Y = scl(a). Sine scl is modularand dim(X ∪Y/P ) = 1+dim(Y/P ) we must have dim(X ∩Y/P ) = 1. Let t be realsuh that scl(t) = X ∩ Y . Note that d ∈ scl(c, t) and that dim(a/tP ) < dim(a/P ).Without loss of generality we may assume that ak ∈ acl(a1, . . . , ak−1, t, P ). Let
~p ∈ P be suh that d ∈ acl(c, t, ~p), ak ∈ acl(a<k, t, ~p), by the exhange property wehave t ∈ acl(a1, . . . , ak, ~p).Let b |= tp(a/ acl(t, c, d, ~p)) be independent from c, t, a, ~p over c, t, ~p. Let b̂ =

bE, so we get â |⌣ct~p
b̂ and c 6∈ acl(a, b, t, ~p). Sine dim(â/ct~p) = dim(â/cd~p) =

dim(â/cd) = 1, we must have â 6= b̂. Then whenever c′ |= tp(c/a, b, ~p) we havethat there is y satisfying C(c′, y, â) and C(c′, y, b̂). Sine the type tp(c/a, b, ~p) isnot algebrai, the family of plane urves is not normal, a ontradition. �We will prove below a partial onverse to the previous results using the proof ofProposition 2.10.De�nition 2.16. Let T be a geometri theory and let M be a saturated model of
T . Let F = {ψ(z, t,~a,~b) : ~a |= ϕ(~x,~b)} be a family of plane urves. We say that Fis generially normal if whenever ~a,~a′ |= ϕ(~x,~b) are suh that dim(~a/~a′~b) ≥ 1, wehave that ψ(z, t,~a,~b) ∧ ψ(z, t,~a′,~b) is �nite. We say that T is generially linear ifevery generially normal family of plane urves has dimension ≤ 1.Proposition 2.17. Let T be a geometri theory. If T not weakly 1-based, then Tis not generially linear.Proof. Let M be a saturated model of T . Assume T is not weakly 1-based, sothis fat is witnessed by tp(a1a2/cd~b) where dim(cd/~b) = 2. So for any a′1a′2 ≡

cd~b

a1a2 suh that a′1a′2 |⌣cd~b
a1a2 we have dim(a1a2a

′
1a

′
2) = 4. Let r(zt, x1x2) =

tp(cd, a1a2/~b). As in the proof of Proposition 2.10, we have that if a′1a′2 realizes
tp(a1a2/~b) and acl(a′1a

′
2
~b) 6= acl(a1a2

~b) then r(zt, a1a2) ∧ r(zt, a′1a
′
2) has �nitelymany realizations. By ompatness there is a uniform bound m for these realiza-tions. Choose a formula ψ(z, t, x1, x2,~b) ∈ r(z, t, x1, x2) suh that ψ(z, t, a1, a2,~b) isone dimensional and suh that whenever a′1a′2 realizes tp(a1a2/~b) and acl(a′1a

′
2
~b) 6=9



acl(a1a2
~b) then ψ(z, t, a1a2,~b) ∧ ψ(z, t, a′1a

′
2,
~b) has at most m realizations. Byompatness, there is a formula ϕ(x1, x2,~b) ∈ tp(a1, a2/~b), suh that if a′1a′2 re-alizes ϕ(x1, x2,~b) then ψ(z, t, a′1, a

′
2,
~b) is one dimensional (in the variables z, t).Making ϕ(x1, x2,~b) and ψ(z, t, x1, x2,~b) smaller if neessary, whenever a1a2, a′1a′2are realizations of ϕ(x1, x2,~b) suh that acl(a1a2

~b) 6= acl(a′1a
′
2
~b) we have that

ψ(z, t, a1, a2,~b) ∧ ψ(z, t, a′1, a
′
2,
~b) has at most m realizations. Thus, generially

{ψ(z, t, a1, a2,~b) : (a1, a2) |= ϕ(x1, x2,~b)} is a 2-dimensional family of plane urvesand T is not generially linear. �3. ω-ategorial aseOne of the main onsequenes of one-basedness in (non-trivial) stable, and tosome extent, simple geometri theories was de�nability or type-de�nability of in-�nite groups in T eq. In the o-minimal ase, groups appear naturally in the linearase, as a onsequene of the Trihotomy theorem. It is well-known that the ge-ometry of a non-trivial loally modular (one-based) strongly minimal struture isprojetive or a�ne over a division ring, and the orresponding vetor spae is a-tually de�nable. This is no longer the ase for a non-trivial 1-based SU-rank 1theory, but De Piro and Kim [9℄ show, using anonial bases, that an ω-ategorialnon-trivial 1-based SU-rank 1 theory interprets an in�nite vetor spae over a �-nite �eld. Thus our best hope at this point is to obtain a group in the ase of an
ω-ategorial non-trivial weakly 1-based geometri theory. In the ase of geometritheories, sine anonial bases are not readily available, we use the lovely pairsapproah developed in [23℄.First we note that the weak 1-basedness assumption implies the preservation of
ω-ategoriity when passing to the theory of lovely pairs.The following is a generalization of Proposition 5.15 from [23℄, and its proof alsoimproves the estimate on the size of a P -independent extension from Lemma 5.14.of [23℄.Proposition 3.1. Let T be an ω-ategorial weakly 1-based geometri theory. Then
TP is ω-ategorial.Proof. Let ~a~b be a tuple of length n in a lovely pair, suh that ~a ∈ acl(~bP ) and ~bis independent over P . Let ~p ∈ P be suh that ~a ∈ acl(~b~p). By weak 1-basedness,there is ~a′~b′ |= tp(~a~b/p̄) suh that ~a~b |⌣~p

~a′~b′ and ~a~b |⌣~a′~b′
~p. Then ~b′ is independentover p̄~a~b, so we may assume that ~b′ ∈ P . It follows that ~a′ ∈ P ~a~b |⌣~a′~b′

P . Thusany n-tuple an be extended to a P -independent set of size 2n (in fat, by itsown L-onjugate). Then by uniform loal �niteness of acl in T , there is a funtion
f : ω → ω suh that any n tuple embeds in a P -independent algebraially losed setof size f(n). Sine for suh sets LP -type is determined by quanti�er free LP -type,we have �nitely many n-types in TP for any n. Thus TP is ω-ategorial. �As in [23℄, if T is a non-trivial weakly loally modular geometri theory, then thegeometry of the small losure (the quotient geometry, or the assoiated geometry of
(M, acl(−∪P (M)))) is split into a disjoint union of in�nite-dimensional projetivegeometries over division rings (and possibly a trivial geometry) by the equivalenerelation "x = y or |cl(x, y)| ≥ 3".If T is weakly 1-based and ω-ategorial, then by the above proposition, TPis also ω-ategorial and the relations y ∈ acl(y1, . . . , yn, P ) and the equivalene10



relation acl(x, P ) = acl(y, P ) are LP -de�nable. Thus the geometry of the smalllosure is interpretable in TP and the relations x ∈ cl(y1, . . . , yn) on its elements arede�nable in (TP )eq. Clearly, the equivalene relation "x = y or |cl(x, y)| ≥ 3" is alsode�nable, and thus eah of the projetive geometries over division rings mentionedabove, viewed as a struture where the only relations are given by x ∈ cl(y1, . . . , yn),
n ≥ 1, is de�nable in (TP )eq (as a quotient of the home sort). Note that eah ofthese geometries is an ω-ategorial struture, and in the superrosy thorn-rank 1ase, by Fat 2.2 it is superrosy of thorn-rank at most 2.Let (V,+, λ·)λ∈F be an in�nite dimensional vetor spae over a division ring F .By Geom(V ) we denote the assoiated geometry of (V, Span) viewed as a struture
(G, x ∈ cl(y1, . . . , yn))n≥1. Note that a ∈ cl(b̄) does not imply a ∈ acl(b̄) in thislanguage unless F is �nite.Our goal is to show that the division rings above are atually �nite �elds. Then
Geom(V ) is a non-trivial ω-ategorial strongly minimal struture, and it is well-known that suh a theory interprets an in�nite group (namely, a vetor spae overa �nite �eld).The following proposition shows that for an in�nite F , Th(Geom(V )) has athorn-forking hains of any �nite length. It follows that if T is a weakly 1-basedsuperrosy theory of thorn-rank 1, then all the division rings above are �nite (sine,as noted above, hene Geom(V ), will have thorn-rank at most 2 ), and thus TPinterprets an in�nite group (a vetor spae over a �nite �eld).When working in Geom(V ), for any v ∈ V , by v∗ we denote Span(v) as anelement of Geom(V ).Proposition 3.2. Suppose V is a vetor spae over an in�nite division ring. Let
v1, . . . , vn ∈ V be linearly independent. Let uk = v1+v2+. . .+vk. Then for any 1 <
k ≤ n, tp((u∗n/v∗1 , . . . , v∗n, u∗2, . . . , u∗k) thorn-divides over {v∗1 , . . . , v

∗
n, u

∗
2, . . . , u

∗
k−1}.Proof. Note that u∗n satis�es the formula

φ(x, u∗k, v
∗
k+1, . . . , v

∗
n) = x ∈ cl(u∗k, v

∗
k+1, . . . , v

∗
n) ∧ x 6∈ cl(v∗k+1, . . . , v

∗
n).We will show that φ(x) strongly divides over {v∗1 , . . . , v

∗
n, u

∗
2, . . . , u

∗
k−1}. We arenow working in a saturated elementary extension G of Geom(V ).CLAIM: {φ(x, a, b1, . . . , bn−k)|a~b |= tp(u∗k, v

∗
k+1, . . . , v

∗
n/v

∗
1 , . . . , v

∗
n, u

∗
2, . . . , u

∗
k−1)}is 2-inonsistent.Proof of the Claim: Note that for any a~b as above, b1 = v∗k+1, . . . , bn−k = v∗nand a satis�es ψ(y, u∗k−1, v

∗
k) = y ∈ cl(u∗k−1, v

∗
k) (sine this holds for u∗k). Now, if

a, a′ ∈ G are two distint realizations of ψ(y, u∗k−1, v
∗
k), then

φ(x, a, v∗k+1, . . . , v
∗
n) ∧ φ(x, a′, v∗k+1, . . . , v

∗
n)is inonsistent. Indeed, we may assume that a, a′ ∈ Geom(V ), so a = w∗

1 and
a′ = w∗

2 for some linearly independent w1, w2 ∈ V . Now, if φ(x,w∗
1 , v

∗
k+1, . . . , v

∗
n)∧

φ(x,w∗
2 , v

∗
k+1, . . . , v

∗
n) is realized by some p∗ (where p ∈ V ), then from the de�nitionof φ,

p = γ1w1 + µ1vk+1 + . . .+ µn−kvn = γ2w2 + ξ1vk+1 + . . .+ ξn−1vn,where γ1, γ2 6= 0. Thus, γ1w1 − γ2w2 ∈ Span(vk+1, . . . , vn). On the other hand,
γ1w1 − γ2w2 6= 0 (by linear independene of w1 and w2) and γ1w1 − γ2w2 ∈
Span(v1, . . . , vk−1, vk) sine w∗

1 , w
∗
2 ∈ cl(u∗k−1, v

∗
k). Thus Span(v1, . . . , vk−1, vk)and Span(vk+1, . . . , vn) have a non-zero vetor in their intersetion, a ontradition11



with the linear independene of v1, . . . , vn. This proves the Claim, and hene φ(x)strongly divides over {v∗1 , . . . , v∗n, u∗2, . . . , u∗k−1}, as needed. �Corollary 3.3. If T is a ω-ategorial weakly 1-based thorn rank one theory, then
TP interprets an in�nite group.The assumption of T being superrosy of thorn rank one seems quite arti�-ial, and we therefore onjeture that the above result holds for any ω-ategorialweakly one-based geometri theory. A key issue here is to understand the theory
Th(Geom(V )) when V is in�nite-dimensional over an in�nite division ring. So farwe know that Th(Geom(V )) has in�nite thorn-forking (even thorn-dividing) hains,and any model of Th(Geom(V )) is an in�nite-dimensional projetive geometry overan in�nite (and possibly di�erent) division ring. However the following questionsremain open.Question 3.4. Let V be an in�nite-dimensional vetor spae over an in�nite divi-sion ring, and let T = Th(Geom(V )).(1) Is T ω-ategorial?(2) Is T stable?(3) Does T have trivial algebrai losure?(4) Does T have quanti�er elimination?(5) What happens when we vary the (in�nite) division ring?4. Independene in TP for T weakly 1-basedWe know from Fat 1.3, that for T a rosy theory of thorn rank one, the assoiatedtheory TP of lovely pairs of models of T is again rosy of thorn rank ≤ ω. It is aninteresting question whih other properties of T are preserved in T . We start bygeneralizing the notion of weak 1-based theories to the setting of rosy theories.De�nition 4.1. Let T be a rosy theory. We say that T is weakly 1-based if whenever
M |= T is saturated, B ⊂ M and ~a ∈ M there is a superset C of B independentfrom ~a over B suh that whenever ~a′ |= tp(~a/C) is independent from ~a over C, wehave ~a |⌣~a′

B.Note that for a simple T , a anonial base argument shows that weak 1-basednessoinides with 1-basedness. The goal of this setion is to show that whenever Tis weakly 1-based rosy rank one theory then TP is again weakly 1-based. We onlysueeded in doing this under some extra assumptions.Lemma 4.2. Let T be a weakly 1-based rosy theory. Let M |= T be su�ientlysaturated, let ~a ∈ M , B ⊂ M and let C ⊃ B be suh that ~a |⌣B
C and whenever

~a′ |= tp(~a/C) is independent from ~a over C, we have ~a |⌣~a′
B. Let D |= tp(C/B~a),then whenever ~a′ |= tp(~a/D) is independent from ~a over D, we have ~a |⌣~a′

B.Proof. Clear. �Remark 4.3. Let M |= T be su�iently saturated, let ~a ∈ M , B ⊂ M andassume that there is a set C ⊃ B with ~a |⌣B
C suh that whenever ~a′ |= tp(~a/C)is independent from ~a over C, we have ~a |⌣~a′
B. Also assume that ~b ∈ M andthat there is a set D ⊃ B with ~a~b |⌣B

D suh that whenever ~a′~b′ |= tp(~a~b/D) isindependent from ~a~b over D, we have ~a~b |⌣~a′~b′
B. Let C′ ≡B~a C be suh that12



C′ |⌣B~a
D~b and let E = D ∪ C′. Then whenever ~a′~b′ |= tp(~a~b/E) is independentfrom ~a~b over E, we have ~a~b |⌣~a′~b′

B and ~a |⌣~a′
B.Proof. Let C′ ≡B~a C be suh that C′ |⌣B~a

D~b and let E = D ∪ C′. Note that
C′ |⌣B

~a. By transitivity we get C′ |⌣B
D~a~b and C′ |⌣BD

~a~b. Applying symmetryand transitivity we get ~a~b |⌣B
E. Let ~a′~b′ |= tp(~a~b/E) be suh that ~a′~b′ |⌣E

~a~b.In partiular, sine ~a~b |⌣D
E, we have ~a′~b′ |= tp(~a~b/D) and ~a′~b′ |⌣D

~a~b. Thus
~a~b |⌣~a′~b′

B. We also have ~a′ |⌣E
~a and ~a |⌣C′

E, so ~a′ |⌣C′
~a. By Lemma 4.2

~a |⌣~a′
B. �Notation 4.4. Let (M,P ) |= TP be a saturated model. We use the word indepen-dene for acl-independene and we write |⌣ for the acl-independene relation. Weuse the word TP -independent for þ-independene in models of TP and we write theorresponding independene relation as |⌣

P .We will need the following result from the proof of [5, Proposition 4.8℄Fat 4.5. Let T be a weakly loally modular thorn rank one theory and let (M,P ) |=
TP . Let a ∈ M , A ⊂ B ⊂ M and assume that a ∈ acl(AP ) \ acl(A) and that
a ∈ acl(BP ) \ acl(B). Then tpP (a/B) does not þ-fork over A.Notation 4.6. Let a1, . . . , an ∈M . We write a<1 for ∅ and for 1 < i ≤ n+ 1, wewrite a<i for (a1, . . . , ai−1).We will also assume the following ondition:Assumption 4.7. Let T be a weakly 1-based geometri thorn rank one theory andlet (M,P ) |= TP . Let A ⊂ B ⊂M and let ~a = (a1, . . . , an, an+1, . . . , am, am+1, . . . , al) ∈
M , where (a1, . . . , an) is a P ∪ A-independent tuple, for i = n + 1, . . . ,m ai ∈
acl(a<iPA) \ acl(a<iA) and for i = m+ 1, . . . , l ai ∈ acl(a<iA).Then tpP (~a/B) does not thorn fork over A if and only if (a1, . . . , an) is a P ∪B-independent tuple and for i = n+ 1, . . . ,m ai ∈ acl(a<i, P,B) \ acl(a<i, B).In the above assumption, we know that the right property always implies theleft property, we assume left to right.Proposition 4.8. Assume that T is a weakly 1-based geometri thorn rank onetheory satisfying assumption 4.7. Then TP is also weakly 1-based.Proof. Let (M,P ) |= TP be saturated, let ~a ∈M be a �nite tuple and let A ⊂M bea set. We will write ~a = (a1, . . . , an, an+1, . . . , am, am+1, . . . , al) where (a1, . . . , an)is a P ∪A-independent tuple, for i = n+ 1, . . . ,m ai ∈ acl(a<iPA) \ acl(a<iA) andfor i = m + 1, . . . , l ai ∈ acl(a<iA). We need to �nd a superset E ⊃ A suh that
~a |⌣

P

A
E and whenever ~a′ |= tpP (~a/E) is suh that ~a |⌣

P

E
~a′ then ~a |⌣

P

~a′
A.Let ~p = (p1, . . . , pt) ∈ P be an independent tuple overA suh that an+1, . . . , am ∈

acl(a1, . . . , an, p1, . . . , pt, A). By hypothesis, there is a setD ⊃ A suh that ~a~p |⌣A
Dand whenever ~a′~p′ |= tp(~a~p/D) is suh that ~a~p |⌣D

~a′~p′, then ~a~p |⌣~a′~p′
A. Again byhypothesis, there is a set C ⊃ A suh that ~a |⌣A

C and whenever ~a′ |= tp(~a/C) issuh that ~a |⌣C
~a′, then ~a |⌣~a′

A. By the previous remark, we an �nd E suh that
E |⌣A

~a~p and whenever ~a′~p′ |= tp(~a~p/E) is independent from ~a~p over E, we have
~a~p |⌣~a′~p′

A and ~a |⌣~a′
A. (0) 13



By Lemma 4.2 we may hoose E suh that E |⌣A~a~p
P .Claim ~a |⌣

P

A
EFrom the previous onditions, we have ~a~p |⌣A

E and E |⌣A
~a~pP . Thus a1, . . . , anis a P ∪ E-independent tuple, ai ∈ acl(a<i, p1, . . . , pt, E) \ acl(a<i, E) for i = n +

1, . . . ,m. Sine T is weakly loally modular, the laim follows from Fat 4.5.Now let ~a′ |= tpP (~a/E) be suh that ~a′ |⌣
P

E
~a.Claim ~a |⌣

P

~a′
ABy Assumption 4.7 a1, . . . , an is an E~a′ ∪ P -independent n-tuple, so it is also a

~a′∪P -independent n-tuple. Sine ~a′ |⌣
P

E
~a we have ~a′ |⌣E

~a and thus by (0) ~a |⌣~a′
A.In partiular, this shows that am+1, . . . , al ∈ acl(a1, . . . , am,~a

′). It remains to showthat an+1, . . . , am ∈ acl(a1, . . . , an,~a
′, P ).Let ~q = (q1, . . . , qt) |= tpP (p1, . . . , pt/E~a) be suh that ~q |⌣

P

~aE
~a′. By transitivity,we get ~a~q |⌣

P

E
~a′. Now let ~q′ ∈ P be suh that tpP (~a~q/E) = tpP (~a′~q′/E), we mayhoose ~q′ suh that ~q′ |⌣

P

E~a′
~a~q and by symmetry and transitivity we get ~a~q |⌣

P

E
~a′~q′.From this we onlude ~a~q |⌣E

~a′~q′ and by (0) ~a~q |⌣~a′~q′
A. Sine an+1, . . . , am ∈

acl(a1, . . . , an, ~q, A), we get am+1, . . . , al ∈ acl(a1, . . . , an,~a
′, ~q, ~q′) as desired.

�Corollary 4.9. Let T be the theory of an o-minimal ordered vetor spae and let
TP be the orresponding theory of lovely pairs. Then TP is weakly 1-based.Proof. Sine the algebrai losure oinides with the linear span, assumption 4.7holds and thus by Proposition 4.8 the result follows. �Corollary 4.10. Let T be an SU -rank one theory and let TP be the orrespondingtheory of lovely pairs. Then TP is weakly 1-based.Proof. Sine T is simple of SU -rank one, T is 1-based, TP is supersimple and forkingand thorn forking oinide in models of TP . By [23, Corollary 3.9℄ assumption 4.7holds and thus by Proposition 4.8 the result follows. �Note that the previous result is known in a more general ontext. It is proved in[3℄ that if T is simple 1-based and the theory TP of lovely pairs is �rst order, then
TP is again 1-based.We know from setion 2 that in the geometri ase, weak 1-basedness is preservedby reduts. As we mentioned earlier, it is known that reduts of 1-based superstabletheories of �nite U-rank are 1-based.Question 4.11. Is a redut of a weakly 1-based superrosy theory of �nite thornrank again weakly 1-based?By Fat 2.2, for a weakly 1-based superrosy þ-rank 1 geometri theory T , TP issuperrosy of þ-rank ≤ 2. We also know from [15℄, that linear o-minimal strutureswith global addition are preisely the reduts of ordered vetor spaes. Sine thereduts of lovely pairs are again lovely, a positive answer to the above question, to-gether with Corollary 4.9, would imply preservation of weak 1-basedness (linearity)when passing to TP in the additive o-minimal ase.14



5. Examples5.1. Adding a generi prediate. In this setion we assume the reader is familiarwith the work of Chatzidakis and Pillay in random prediates [8℄. We will showthat if a theory is geometri and weakly 1-based then any of its ompletions witha random prediate is again weakly 1-based.Fix T a omplete theory in a language L. We will assume that L ontains aunary prediate symbol S (whih ould be equality) and we let LR be the language
L augmented with a new unary prediate symbol R (we use the letter R insteadof the usual notation P , sine we use P in earlier parts of the paper to denote aprediate in a lovely pair). It is proved in [8℄ that the theory T∪{∀xR(x) =⇒ S(x)}has a model ompanion TR,S. The theory TR,S may not be omplete.Our results rely heavily on the following fats:Fat 5.1. [8, Corollary 2.6,(3)℄ The algebrai losure in models of TR,S oinideswith the algebrai losure in the sense of T .For models of TR,S we will write acl for the algebrai losure.Fat 5.2. [8, Remark 2.12,(4)℄ If T eliminates ∃∞ then TR,S also eliminates ∃∞.First observe that sine T is geometri, acl has the exhange property in modelsof TR,S and thus TR,S is pregeometri. Also, by the previous fat, TR,S eliminates
∃∞, so in fat TR,S is a geometri theory.Lemma 5.3. Assume that T is a geometri theory whih is weakly 1-based. Thenany ompletion of TR,S is weakly 1-based.Proof. Let M |= TR,S be saturated, let ~a ∈ M and let B ⊂ M be a set. Byhypothesis there is a superset C of B with ~a |⌣B

C suh that whenever~a′ |= tp(~a/C)is acl-independent from ~a over C, we have ~a |⌣~a′
B. Sine algebrai independenein the sense of T and TR,S oinide, C is a witness for the desired property in

TR,S. �5.2. The struture indued on the prediate of a lovely pair. In this setionwe study the struture indued on the prediate of the lovely pair by the large model.Our presentation follows losely the one from Pillay and Vassiliev [22℄. Let T bea geometri theory in a language L with quanti�er elimination and let (M,P ) bea lovely pair of models of T . For eah L-formula ϕ(x) with parameters in M , weintrodue a new prediate symbol Rϕ(x). Let L∗ be the resulting language. Wedenote byM∗ the strutureM with the natural interpretation for the new relationsand P ∗ the substruture with universe P . Finally T ∗ stands for the theory of P ∗.Note that the language L∗ and the theory T ∗ depend on the hoie of M . Wedenote the algebrai losure in models if T by acl and in models of T ∗ by acl∗.We will haraterize acl∗ in terms of acl andM , prove that T ∗ is also a geometritheory and that if T is weakly 1-based then T ∗ is again weakly 1-based.Following [2, 22℄, we say that (M,P ) eliminates the quanti�er ∃y ∈ P if for everyformula ϕ(~x, ~y, ~z) and ~a ∈ M there exists a formula ψ(~x, ~w) and ~b ∈ M suh thatfor all ~c ∈ P ,
M |= ψ(~c,~b) if and only if (M,P ) |= ∃d ∈ Pϕ(~c, d,~a)It is lear that (M,P ) eliminates the quanti�er ∃y ∈ P if and only if T ∗ hasquanti�er elimination. 15



Lemma 5.4. The theory T ∗ eliminates quanti�ers.Proof. Note that T ∗ is a redut of ThM (M,P ), the theory of the pair with all the el-ements ofM added as onstants. Take a saturated extension (N,P ) of ThM (M,P ).Then the redut of P (N) to the language of T ∗ is a saturated model of T ∗.Now, (N,P ) is still a lovely pair, andM is P -independent in (N,P ). So any twotuples in P (N) realizing the same quanti�er free types in T ∗, and hene the same
L-type overM , atually realize the same LP -type overM , and hene the same T ∗-type. By saturation of P (N) as a model of T ∗, T ∗ has quanti�er elimination. �Lemma 5.5. Assume that T is a geometri theory. Then T ∗ is also geometri.Furthermore acl∗ oinides with aclM restrited to P .Proof. Let (N,P ) be a saturated model of ThM(M,P ). Let B ⊂ P (N), a ∈ P (N).Sine T ∗ eliminates quanti�ers, a ∈ acl∗(B) if and only if there is an L-formula
ϕ(x, ~y, ~z) and tuples ~m ∈ M , ~b ∈ B suh that M |= ϕ(a,~b, ~m) and the formula
ϕ(x,~b, ~m) has �nitely many realizations in P (N). The last ondition is equivalentto ϕ(x,~b, ~m) being algebrai in T . It follows that for any B ⊂ P (N), acl∗(B) =
aclM (B)∩P (N), and sine aclM satis�es the exhange property in N , same is truefor acl∗.To show that T ∗ eliminates ∃∞, onsider any L∗-formula ψ(x, ~y). By quanti�erelimination in T ∗, it is equivalent to an L-formula ϕ(x, ~y, ~m) with parameters ~m ∈

M . For any ~b ∈ P (N), ψ(x,~b) is algebrai if and only if ϕ(x,~b, ~m) has �nitelymany solutions in P (N), whih is equivalent to algebraiity of ϕ(x,~b, ~m) in N .Sine T eliminates ∃∞, ϕ(x,~b, ~m) is algebrai if and only if N |= θ(~b, ~m) for some
L-formula θ(~y, ~z). Let Rθ(~y) orrespond to θ(~y, ~m). Thus for any ~b ∈ P (N), ψ(x,~b)is algebrai if and only if Rθ(~b) holds in P (N) viewed as a model of T ∗, as needed.

�Sine T ∗ is again geometri, T ∗ has a notion of independene indued by acl∗. Asbefore, we let (N,P ) be a saturated model of ThM(M,P ). ForA,B,C ⊂ P (N) sets,we write A |⌣
∗

B
C to mean that A is acl∗-independent from C over B. Note thatby [22, Theorem 2.3℄ when T is simple of SU -rank one, our notion of independeneoinides with non-forking in T ∗.Lemma 5.6. Assume that T is a geometri theory whih is weakly 1-based. Then

T ∗ is weakly 1-based.Proof. Let (N,P ) be a saturated model of ThM (M,P ). Let ~a ∈ P (N) and let
B ⊂ P (N) be a set. By hypothesis there is a superset C of BM suh that ~a |⌣BM

Cand whenever ~a′ |= tp(~a/C) is independent from ~a over C, we have ~a |⌣~a′
BM .Sine acl∗ = aclM , C is a witness for the desired property in T ∗. �5.3. Fields expanded with a group having the Mann property. In thissetion we deal with the theory of a dense divisible multipliative subgroup withthe Mann property of a real losed �eld K as presented by van den Dries andGünaydin in [11℄. These strutures are analyzed by adding a prediate G to thereal losed �eld, where G is interpreted as the multipliative group and onsideringthe new struture (K,G). A desription of de�nable sets of K and of G in suh astruture an be found in [11℄. It was proved by Berenstein, Ealy and Günaydin [4℄that suh a pair (K,G) is super-rosy of þ-rank ω and that þ-rank(G) = 1 (seen as a16



de�nable subset of the pair). In partiular, G as a subset of the struture (K,G) isa pregeometry. Our goal is to show that the theory of G with the indued strutureis weakly 1-based.We proeed as in the previous subsetion. For eah L-formula ϕ(x) with pa-rameters in K, we introdue a new prediate symbol Rϕ. Let L∗ be the resultinglanguage. We denote by K∗ the struture K with the natural interpretation forthe new relations and G∗ the substruture with universe G. Finally let T ∗ be thetheory of G∗, it is important to note that the theory T ∗ depends on the underlying�eld K. We denote the algebrai losure in models if T by acl and in models of T ∗by acl∗.As in the previous setion it an be proved that T ∗ has quanti�er eliminationand that acl(− ∪K) = acl∗(−). In partiular T ∗ is a geometri theory.Our work depends on the following fats:Fat 5.7 (Theorem 7.2 [11℄). Let K be a real losed �eld and let G be a densedivisible multipliative subgroup of K>0 having the Mann property. Then if X ⊂
Gn is de�nable, there is Y ⊂ Kn de�nable in K (seen as an ordered �eld) suh
X = Y ∩Gn.This fat remains true in a saturated model of ThK(K,G), sine we only addednew onstants to the language.From the previous fat it easily follows that if ~a ∈ G∗, B ⊂ K ∪ G∗ and
dim(~a/B) < dim(~a), then there is a polynomial f(~y) ∈ Q(B)[y] suh that f(~a) = 0.In partiular, we need to understand the solutions of algebrai varieties in G∗. Thisis haraterized in [11℄De�nition 5.8. For any n-tuple k = (k1, . . . , kn) ∈ Zn onsider the harater χk :

(K×)n → K× given by χk(x1, . . . , xn) = xk1

1 · · ·xkn

n . We let D(n, d) be the �niteolletion of subgroups of (K×)n that are the intersetion of kernels of haraters
χk with |k| = |k1| + · · · + |kn| ≤ d.Proposition 5.9. Let f1, . . . , fm ∈ K[X1, . . . , Xn] have degree ≤ d, and let V =
{x ∈ Kn : f1(x) = · · · = fm(x) = 0}. Suppose G has the Mann property. Then
V ∩Gn is a �nite union of osets of subgroups D ∩Gn of Gn with D ∈ D(n, d).Proof. This proposition is proved in [11, Proposition 5.8℄ whenK is an algebraiallylosed �eld. The same proof, that only depends on the Mann property, holds when
K is a real losed �eld. �The onlusion of the proposition is also true for a saturated model of ThK(K,G)sine the statement is an elementary property.Proposition 5.10. Let K be a real losed �eld and let G be a dense divisiblemultipliative subgroup of K>0 having the Mann property. Then the theory of G∗is weakly 1-based.Proof. We work in a saturated model (K∗, G∗) of ThK(K,G) in the language L∗.Assume as above that ~a ∈ G∗, B ⊂ K ∪ G∗ and dim(~a/B) < dim(~a). Let Vbe a variety of dimension dim(~a/B) de�nable over B suh that ~a ∈ V . Then
V ∩ (G∗)n is equivalent to a disjuntion ∨i≤t~ci(Di ∩ (G∗)n), where eah Di is theintersetion of kernels of haraters and thus Di ∩ (G∗)n is a ∅-de�nable subgroupof (G∗)n. Assume Di is the kernel of the haraters χij(x1, . . . , xn), j ≤ mi andthat ~ci = (ci1, . . . , cin). Then χij(a1, . . . , an) = χij(ci1, . . . , cin) so we may assume17



that ~ci ∈ (G∗)n. After taking a non thorn-forking extension of tp∗(~c1, . . . ,~ct/B) wemay further assume that ~c1, . . . ,~ct are free from a1, . . . , an over B.Let C = B ∪ {~c1, . . . ,~ct} and let (a′1, . . . , a
′
n) |= tp(a1, . . . , an/C) be suh that

(a′1, . . . , a
′
n) |⌣

þ
C
(a1, . . . , an). Then we have χji(a1, . . . , an) = χji(ci1, . . . , cin) =

χji(a
′
1, . . . , a

′
n) for some i ≤ t and all j ≤ mi, so ~ci(Di ∩ (G∗)n) is de�nable over

{a′1, . . . , a
′
n} and dim(a1, . . . , an/a

′
1, . . . , a

′
n) ≤ dim(a1, . . . , an/C) = dim(a1, . . . , an/B).In partiular, (a1, . . . , an) |⌣

þ
(a′

1
,...,a′

n
)
B. �6. Lovely pairs and dense embeddingsIn this setion we relate the notion of lovely pairs of geometri strutures to thatof dense embeddings developed by Maintyre in [16℄. We will review some of thenotions introdued in [16℄ and prove that for the geometri theories T onsideredin [16℄, Maintyre's theory T d of dense embeddings of models of T oinides withthe theory TP of lovely pairs of models of T .We start with reviewing some de�nitions. Let T be a pregeometri theory.De�nition 6.1. Let N,M |= T with N � M , N 6= M . We say that (M,N) is aVaughtian pair if for some formula ϕ(x,~a) with parameters ~a ∈ N with in�nitelymany solutions in N we have ϕ(N) = ϕ(M). We say that T has a Vaughtian pairif there are N,M |= T suh that (M,N) is a Vaughtian pair.Lemma 6.2. Let (M,P ) |= TP . Then (M,P (M) is not a Vaughtian pair.Proof. Let ϕ(x,~a) be an -formula with parameters in P (M) with in�nitely manysolutions, so P (M) |= ∃∞xϕ(x,~a). Let (M ′, P ) � (M,P ) be saturated, so (M ′, P )is a lovely pair of models of T . Let p(x) be a omplete non-algebrai type over ~aontaining ϕ(x,~a). Sine (M ′, P ) is a lovely pair, there is a realization b of p(x) in

M ′ whih is free from P (M ′). In partiular, b ∈ ϕ(M ′) \ ϕ(P (M ′)), so (M ′, P ) |=
∃xϕ(x,~a) ∧ ¬P (x). Thus (M,P ) |= ∃xϕ(x,~a) ∧ ¬P (x) and ϕ(M,~a) 6= ϕ(P (M),~a)as we wanted. �Thus, the lass of models that we onsider when dealing with lovely pairs arenot Vaughtian pairs, but the underlying theory T under onsideration may haveVaughtian pairs as shown by the following example:Example 6.3. Consider the theory DLO of dense linear orders without endpoints.Let M = R and let N = (R ∩ (−∞, 0]) ∪ Q+. Then (M,N) is a Vaughtian pairFat 6.4. Assume that T does not have Vaughtian pairs. Then T eliminates thequanti�ers ∃∞.Proof. See Lemma 5 in [16℄. �The pregeometri theories T onsidered in [16℄ do not have Vaughtian pairs. Firstof all this implies that under this extra assumption T is geometri, so the tools fromlovely pairs developed in [5℄ apply. On the other hand the example above showsthat the family of theories under onsideration in [16℄ is strikly smaller than thelass of geometri theories.The notion of dense pairs in [16℄ is word by word the notion that we all inDe�nition 1.2 the density/oheir property. In order to onlude that the denseembeddings are lovely pairs, we need to show that the extension property holds insaturated models of dense embeddings. 18



Fat 6.5. Suppose T satis�es the assumptions 1−6 listed in [16℄ and let (M,N) |=
T d. Suppose that card(M) = dim(M/N) = dim(N) ≥ |L|. Then there is a basis Xof M over N and a basis Y of N suh that for every in�nite de�nable set D over
M , X ∩D 6= ∅ and Y ∩D 6= ∅.Proof. See Lemma 8 in [16℄. �Lemma 6.6. Suppose T satis�es the assumptions 1 − 6 listed in [16℄. Let (M,N)be a saturated model of T d. Let ~m be a tuple of elements in M and let ϕ(x, ~m)be an L-formula with in�nitely many realizations. Then there is a realization of
ϕ(x, ~m) in M whih is free from ~m ∪N .Proof. Let X be as in the previous fat. Let X0 ⊂ X �nite and Y0 ⊂ Y �nite suhthat ~m ⊂ acl(X0 ∪ Y0). Let ψ(x, ~m,X0, Y0) = ϕ(x, ~m) ∧y∈X0∪Y0

(x 6= y). By thefat there is an a ∈ X satisfying ψ. Sine X is a basis of M over N , a 6∈ acl(X0, N)and M |= ϕ(a, ~m) as we wanted. �Proposition 6.7. Suppose T satis�es the assumptions 1 − 6 listed in [16℄. Let
(M,N) be a saturated model of T d. Then (M,N) is a lovely pair of models of T .Proof. As pointed out earlier, suh theories T are geometri. The assumption that
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