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Abstract. Let M be an o-minimal expansion of a densely linearly ordered set and
(S,+, ·, 0S , 1S) be a ring definable in M. In this article, we develop two techniques for the
study of characterizations of S-modules definable in M. The first technique is an algebraic
technique. More precisely, we show that every S-module definable in M is finitely gener-
ated. For the other technique, we prove that if S is an infinite ring without zero divisors,
every S-module definable in M admits a unique definable S-module manifold topology.
As consequences, we obtain the following: (1) if S is finite, then a module A is isomorphic
to an S-module definable in M if and only if A is finite; (2) if S is an infinite ring without
zero divisors, then a module A is isomorphic to an S-module definable in M if and only
if A is a finite dimensional free module over S; and (3) if S is an infinite ring without
zero divisors, then every S-module definable in M is connected with respect to the unique
definable S-module manifold topology.

Throughout this paper, let M be a fixed (but arbitrary) o-minimal expansion of a densely
linearly ordered set (M,<) (that is, every unary definable set is a finite union of open
intervals and points). We assume the reader’s familiarity with basic model theory and o-
minimality. (We refer to [1] and [7] for more on model theory and [2], [13], [5], and [14] for
more on o-minimality). Here, the word “definable” means “definable in M possibly with
parameters” and the word “0-definable” means “definable in M without parameters”. Recall
that we may equip M with the ordered topology induced by <; therefore, every subset of
Mn can be equipped with the subspace topology induced by the product topology on Mn.
Unless indicated otherwise, topological properties on a subset of Mn are considered with
respect to this topology. For natural numbers m ≤ n, let Π(n,m) denote the set of all
coordinate projections from Mn to Mm. For any set X ⊆Mn, let dimX denote the largest
natural number m where there exists π ∈ Π(n,m) such that the image π(X) has nonempty
interior.

Let (G, ∗, e) be a group with the group operation ∗ and the identity e. We say that the
group (G, ∗, e) is a definable group if the set G and the group operation ∗ are definable. We
will simply write G if the group operation and the identity are clear from the context. Note
that every finite group is isomorphic to a definable group. In [12], A. Pillay introduced
definable group manifolds and used them to study characterizations of infinite definable
groups.

Let X be a definable set and τ be a topology on X. We say that τ is a definable topology
if there is a definable collection of subsets of X that generates τ . We call every element of τ
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a τ -open set. A map from Xn to Xm is τ -continuous if the map is continuous with respect
to the product topologies on Xn and Xm generated by τ . Next, let G be a definable group.
Obviously, we may equip G with the subspace topology induced by the ordered topology
on (M,<) or the discrete topology. These topologies are definable topologies on G. In
addition, for each k ∈ N, we say that a definable topology τ on G is a definable group
k-manifold topology if both the group operation and the inversion map are τ -continuous,
and there exist definable τ -open subsets D1, . . . , Dn of G and definable maps ϕ1, . . . , ϕn

such that
∪
{Di : i = 1, . . . , n} = G and each ϕi : Di → Mk is a homeomorphism from

Di onto its image. Interestingly, by [12], we obtained that every definable group admits
a unique definable group dimG-manifold topology, τG. In [15], V. Razenj proved that if
dimG = 1 and G is definably τG-connected, then G is isomorphic to either

⊕
i∈I Q or⊕

p∈P Zp∞ ⊕
⊕

i∈I Q where P is the set of all primes. Characterizations of 2-dimensional
and 3-dimensional definable groups are studied in [8]. We know that if dimG = 2 and G
is a definably τG-connected, non-abelian definable group, then there is a real closed field
T such that G is isomorphic to a semidirect product of the additive group of T and the
multiplicative group of the positive elements of T ; and if dimG = 3 and G is a non-solvable,
centerless, definably τG-connected definable group, then there is a real closed field T such
that G is isomorphic to either PSL2(T ) or SO3(T ). In [3], M. Edmundo introduce a notion
of definable G-modules and used them to study definable solvable groups.

Analogously, definable rings are also studied in [9]. Let (S,+, ·, 0S, 1S) (or simply write
S if it is clear from the context) be a ring. We say that S is a definable ring if the set
S, the addition + and the multiplication · are definable. For each k ∈ N, a topology τ
on S is a definable ring k-manifold topology if the addition, the additive inversion and the
multiplication are τ -continuous and there exist definable τ -open subsets D1, . . . , Dn of G
and definable maps ϕ1, . . . , ϕn such that

∪
{Di : i = 1, . . . , n} = S and each ϕi : Di →Mk is

a homeomorphism from Di onto its image. We also know that S admits a unique definable
ring dimS-manifold topology, τS. In [10], Y. Peterzil and C. Steinhorn proved that if S
is an infinite definable ring without zero divisors, then there is a real closed field T such
that S is definably isomorphic to either T , T (

√
−1), or H(T ) where H(T ) denote the ring

of quaternions over T ; therefore, S is a division ring.
Inspired by these results, we are interested in an intermediate step. To be more precise,

the main question of this article is to find characterizations of definable modules. Let
(S,+, ·, 0S, 1S) be a definable ring and (A,⊕, 0A, λS) be a left (right) S-module where
λS : S × A → A is the left (right) scalar multiplication. We say that A is a definable
left (right) S-module if (A,⊕, 0A) is a definable group and λS is definable. For the sake
of readability, we will write λ instead of λS if the ring S is clear from the context. To
study characterizations of definable S-modules, we develop two techniques. For the first
approach, we consider the generators of A as S-module. The key step is to show that every
definable S-module is finitely generated (see Section 1). As a result, we obtain:

Theorem A. (1) If S is a finite ring and A is an S-module, then A is isomorphic to a
definable S-module if and only if A is finite.
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(2) Suppose S is an infinite definable ring without zero divisors and A is an S-module.
Then A is isomorphic to a definable S-module if and only if A is a finite dimensional
free module over S.

In addition, by the Fundamental Theorem of Finite Abelian Groups, the characterization
of infinite definable rings without zero divisors, and Theorem A, we have:

Corollary A. (1) Suppose S is a finite ring and A is a definable S-module. Then A is
isomorphic to a direct product of cyclic groups of prime-power order.

(2) Suppose S is an infinite definable ring without zero divisors and A is a definable
S-module. Then there exist a definable real closed field T and a natural number
k such that T is a subring of S and A is definably isomorphic (as S-modules) to
either T k, T (

√
−1)k or H(T )k.

Next, since manifold topologies on algebraic structures are important tools to study
characterizations, we also develop a result on the existence of definable module manifold
topologies, which will be introduced in Section 2, and use it to give an alternative proof of
(2) in Theorem A. Interestingly, this proof implies that every definable module over infinite
definable ring without zero divisors is connected with respect to the unique definable group
manifold topology.

Conventions and Notations

Throughout this paper, d, k, m, n and p will range over the set N = {0, 1, 2, 3, . . . } of
natural numbers. Let ā = (a1, . . . , an) ∈ Mn. For notational simplicity, we also use ā to
denote the set {a1, . . . , an}.

1. Generators of Modules

Let a1, . . . , an ∈ A. The span of {a1, . . . , an} is the set

SpanS{a1, . . . , an} = {λ(s1, a1)⊕ · · · ⊕ λ(sn, an) : s1, . . . , sn ∈ S}.

We will say thatA is finitely generated if there exist a1, . . . , an ∈ A such that SpanS{a1, . . . , an} =
A. It is easy to see that if A is a definable S-module, then SpanS{a1, . . . , an} is a definable
subgroup of A.

In [11], Y. Peterzil and S. Starchenko proved:

1.1. Lemma. [11, Lemma 2.16] Suppose M is ℵ0-saturated and G is a definable group.
Then there exist a1, . . . , ak ∈ G such that the only definable subgroup of G containing
a1, . . . , an is G.

Note that such a1, . . . , ak in the above lemma are not generators of the group G in the
sense of classical group theory since every finitely generated group must be countable.
However, when we consider in the context of definable S-modules, the above result gives
us more descriptive information.

Theorem B. Suppose A is a definable S-module. Then A is finitely generated.
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Proof. Let b̄ ∈ Mk and φ(x̄, z̄), ψ(ȳ, z̄) be formulas such that φ(x̄, b̄) defines the ring S
and ψ(ȳ, b̄) defines the S-module A. Let N be an elementary extension of M that is ℵ0-
saturated. Then φ(x̄, b̄) defines a ring S ′ in N and ψ(ȳ, b̄) defines an S ′-module A′ in N.
By Lemma 1.1, there exist d1, . . . , dk ∈ A′ such that the only definable subgroup of A′

containing d1, . . . , dk is A′. Since SpanS′{d1, . . . , dk} is a definable subgroup of A′, we have
SpanS′{d1, . . . , dk} = A′.

Then ȳ ∈ A′ if and only if there exist x̄1, . . . , x̄k ∈ S ′ such that ȳ = λ(x̄1, d1)⊕· · ·⊕λ(x̄k, dk).
Let χ(ȳ, ȳ1, . . . , ȳk) be the formula representing

ψ(ȳ, b̄) ↔ ∃x̄1 . . . ∃x̄k,
k∧

i=1

φ(x̄i, b̄) ∧ ȳ = λ(x̄1, ȳ1)⊕ · · · ⊕ λ(x̄k, ȳk)

Therefore,
N |= ∃ȳ1 . . . ∃ȳk∀ȳ, χ(ȳ, ȳ1, . . . , ȳk).

Since M is an elementary substructure of N and b̄ is in M ,
M |= ∃ȳ1 . . . ∃ȳk∀ȳ, χ(ȳ, ȳ1, . . . , ȳk).

Therefore, A is finitely generated. □
We now give the first proof of Theorem A.

Proof of Theorem A. Obviously, every finite S-module is isomorphic to a definable S-
module. If S is finite and A is a definable S-module, by Theorem B, we have that A
is also finite. Therefore, we obtain (1) in Theorem A.

To prove (2), suppose S is an infinite definable ring without zero divisors. Obviously, each
Sk is a definable S-module and every finite dimensional free module over S is isomorphic to
Sk (for some k) as S-modules. Suppose A is isomorphic to a definable S-module. Without
loss of generality, we assume that A is a definable S-module. Recall that every infinite
definable ring without zero divisors is a division ring and every module over a division ring
is free. By Theorem B, we have A is a finitely generated module over S; hence, A is a finite
dimension free module over S. □

In addition, Theorem B also provides information about definable ideals of S. Observe
that every definable ideal of S is a definable S-module with respect to the induced operators
from S. The following is an immediate consequence of Theorem B and this observation.

Corollary B. Every definable ideal of S is a finitely generated ideal.

2. Definable S-Module Manifold Topologies

From now, we assume A is a definable S-module. For each topology τ , we say a map
f : S × A → A is τ -continuous if f is continuous with respect to the product topology
τS × τ on S × A and the topology τ on A. Let k ∈ N. A definable topology τ on A is a
definable S-module k-manifold topology if the addition, the additive inversion, and the scalar
multiplication are τ -continuous and there exist definable τ -open subsets D1, . . . , Dn of A
and definable maps ϕ1, . . . ϕn such that

∪
{Di : i = 1, . . . , n} = A and each ϕi : Di → Mk

is a homeomorphism from Di onto its image.
4



For a definable topology τ , we say that a set is definably τ -connected if it is not a disjoint
union of two definable τ -open sets. Observe that for definable topologies τ1 and τ2, the
product of a definably τ1-conneced set and a definably τ2-connected set is definably (τ1×τ2)-
connected. We know that, by [12, Corollary 2.10] and Cell Decomposition Theorem, if τ is a
definable group dimA-manifold topology on A, then the definably τ -connected component
containing the identity 0A, denoted by A0, exists.
2.1. Lemma. If A admits a definable S-module dimA-manifold topology, then A0 is a
definable S-submodule of A.
Proof. Let τ be a definable S-module dimA-manifold topology on A. By [12, Proposi-
tion 2.12], we have A0 is the smallest definable subgroup of finite index in A. Therefore,
dimA0 = dimA. Recall that S has only finitely many definably τS-connected compo-
nents. Let S1, . . . , Sk enumerate all definably τS-connected components of S. Therefore,
each Si × A0 is definably (τS × τ)-connected. Since λ is τ -continuous and 0A ∈ A0, each
image λ(Si × A0) is a definably τ -connected set containing 0A. Therefore, λ(S × A0) =∪
{λ(Si × A0) : i = 1, . . . , k} ⊆ A0. It follows immediately that A0 is an S-submodule of

A. □
Recall that definable groups admit the descending chain condition on definable sub-

groups, i.e., every descending family (Gi)i∈N of definable groups is eventually constant (see
e.g. [12, Remark 2.13]). As a consequence of this result, we obtain:
2.2. Lemma. Let G be a definable subgroup of A0. Assume that there is b ∈ A0 such that
kb /∈ G for every positive integer k. Then there exists the smallest definable subgroup G′

of A0 containing G ∪ {b}. In addition, we have dimG < dimG′ ≤ dimA0.
Proof. Suppose to the contrary that there is no smallest definable subgroup of A0 containing
G ∪ {b}. We recursively define a sequence (Ai)i∈N of definable subgroups of A0 as follows:

Set A0 = A0. Suppose A0, . . . , Ai have been constructed. Then there exists a definable
subgroup A′

i of A0 containing G ∪ {b} such that Ai is not a subgroup of A′
i. Set Ai+1 =

Ai ∩ A′
i. Then Ai+1 is a proper definable subgroup of Ai containing G ∪ {b}.

Therefore (Ai)i∈N is an infinite proper descending chain of definable subgroups of A0.
This contradicts the descending chain condition of definable groups.

Let G′ be the smallest definable subgroup of A0 containing G ∪ {b}. Since there is
no positive interger k such that kb ∈ G, we have G is of infinite index in G′. By [12,
Lemma 2.11], we have dimG < dimG′ ≤ dimA0. □

By the above lemmas, we can prove a key step towards an alternative prove of (2) in
Theorem A.
2.3. Lemma. If A admits a definable S-module dimA-manifold topology, then A is a
finitely generated module over S. Moreover, if A is a free module over S, then A is a finite
dimensional free module over S.
Proof. Without loss of generality, we assume that M is ℵ1-saturated. Note that A0 is
infinite and abelian.
Claim. Let G be a definable subgroup of A0. Suppose for any a ∈ A0, there is k ∈ N \ {0}
such that ka ∈ G. Then G = A0.
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Proof of Claim. By saturation and Compactness Theorem, there is no positive integer k
such that ka ∈ G for all a ∈ A0. Since k(a⊕G) = ka⊕G = G for all a ∈ G, the quotient
group A0/G is of bounded exponent. By [16, Lemma 5.7], we have A0/G is finite. Since
A0 is a subgroup of A of finite index, G also has finite index in A. Since G ⊆ A0 and A0 is
the smallest definable subgroup of A of finite index, we have G = A0. □

We recursively construct a sequence (ai)i∈N as follows:
Set a0 = 0A. Suppose a0, . . . , ai have been constructed. If the smallest definable subgroup

of A0 containing a0, . . . , ai is A0, then let ai+1 = 0A. Otherwise, by the above claim, let
ai+1 ∈ A0 such that kai+1 does not contain in the smallest definable subgroup containing
a0, . . . , ai for any positive integer k.

For each i ∈ N, let Ai be the smallest definable subgroup of A0 containing a0, . . . , ai.
By minimality and Lemma 2.2, we have Ai ⊆ SpanS{a0, . . . , ai} and dimAi < dimAi+1 ≤
dimA0 for every i ∈ N. Since dimA0 = n′, we have dimAj = n′ for every j ≥ n′ and it
follows that An′ = A0. Since An′ ⊆ SpanS{a0, . . . , an′} and a0, . . . , an′ ∈ A0, by Lemma 2.1,
we get A0 = SpanS{a0, . . . , an′}. Since A0 is of finite index in A, there exist b0, . . . , bp ∈ A
such that A =

∪p
j=0 bj ⊕ A0. Hence A = SpanS{a0, . . . , an′ , b0, . . . , bp} and therefore A is

finitely generated. □
Remark. Since every finite dimensional free module over S is isomorphic to Sk for some
k ∈ N, if S is definably τS-connected, then A is definably τA-connected.

To complete this alternative proof of (2) of Theorem A, it suffices to prove the following:

Theorem C. If S is an infinite definable ring without zero divisors, then A admits a unique
definable S-module dimA-manifold topology.

Note that, by the uniqueness of definable group dimA-manifold topology on A, the
topologies obtained in Theorem C and [12, Proposition 2.5] coincide. Due to more sophisi-
cated conditions on the scalar multiplication, we refine the construction to guarantee the
continuity of the scalar multiplication. We will explicitly construct the topology of the
module A in Section 3.

We end this section by an immediate consequence of Theorem C and the remark after
Lemma 2.3.

2.4. Corollary. If S is an infinite definable ring without zero divisors, then A is definably
τA-connected.

3. Proof of Theorem C

In [4], E. Hrushovski showed that an algebraic group can be recovered from birational
data. Inspired by this result, A. Pillay gave a construction of definable group manifold
topologies on definable groups (see [12]). In addition, M. Otero et al. showed an analog of
the statement for definable rings in [9]. Here, we adopt these ideas.

Throughout the rest of this section, we assume that M is very saturated. Let B ⊆ M
and ā = (a1, . . . , an) ∈Mn. The definable closure of B (denoted by dclB) is the set

dclB := {x ∈M : {x} is B-definable}.
6



We say that ā is independent over B if ai /∈ dcl(B ∪ (ā \ {ai})) for every i ∈ {1, . . . , n}.
The dimension of ā over B, denoted by dim(ā/B), is the least cardinality of a subset I of
ā such that ā ⊆ dcl(B ∪ I); equivalently, the cardinality of maximal independent subtuples
of ā over B (see [12, Lemma 1.2]). Let X ⊆ Mn be B-definable. By saturation, we have
that

dimX = max{dim(ā/B) : ā ∈ X}.
An element ā ∈ X is a generic of X over B, if dimX = dim(ā/B). We know that if Q ⊆
Mm+n is B-definable, then the set {b̄ ∈Mm : (b̄, ā) ∈ Q for every generic ā of X over b̄} is
B-definable. Let Y ⊆ X ⊆Mn be definable. We say that Y is large in X if dim(X \ Y ) <
dimX.

3.1. Lemma. [12, Lemma 1.12] Let Y ⊆ X be definable. Then Y is large in X if and only
if for every B ⊆M over which X and Y are defined, every generic point of X over B is in
Y .

Recall that (A,⊕, 0A) is a definable abelian group.

3.2. Lemma. [12, Lemma 2.1] Let b ∈ A and let a be a generic of A over b. Then a⊕ b is
a generic of A over b.

3.3. Lemma. [12, Lemma 3.2] Let f : A → A be a B-definable endomorphism of A with
finite kernel (that is, the pre-image f−1(0A) is finite). Then the image f(A) has finite index
in A. In particular, if a is a generic of A over B, then f(a) is also a generic of A over B.

3.4. Lemma. [12, Lemma 2.4] Let V be a large definable subset of A. Then finitely many
translates of V cover A.

In addition, assume A ⊆ Mn is a definable S-module, S ⊆ Mm has no zero divisors,
dimA = n′ ≤ n and dimS = m′ ≤ m. Hence S is a division ring. To construct a definable
left S-module manifold topology on A, we first introduce a special 5-tuple (V,W,X, Y, P ),
which is a main ingredient in our construction. We say that a 5-tuple (V,W,X, Y, P ) of
0-definable sets has the property (∗) if

(i) V is open and large in A, and V is a finite disjoint union of sets that are homeo-
morphic to an open subset of Mn′ under some coordinate projection from Mn to
Mn′ ;

(ii) 	 : V → V is a 0-definable continuous bijection;
(iii) W is open and large in A× A, and ⊕ : W → V is 0-definable and continuous;
(iv) for any v1 ∈ V , if v2 is a generic of A over v1, then (v2, v1) ∈ W and (	v2, v1⊕v2) ∈

W ;
(v) X is open and large in S, and both −,−1 : X → X are 0-definable continuous

bijections;
(vi) Y is open and large in S×S, and both +, · : Y → X are 0-definable and continuous;

(vii) for any x1 ∈ X, if x2 is a generic of S over x1, then (x2, x1) ∈ Y , (−x2, x1+x2) ∈ Y
and (x−1

2 , x2x1) ∈ Y ;
(viii) P is open and large in S × A, and λ : P → V is 0-definable and continuous; and

(ix) for any x ∈ X, if v is a generic of A over x, then (x, v) ∈ P and (x−1, λ(x, v)) ∈ P .
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Recall that the the topological properties in (∗) are considered with respect to the topol-
ogy induced from the ambient space.

3.5. Proposition. There exists a special 5-tuple (V,W,X, Y, P ) with the property (∗).

3.1. Definable manifold topologies on A. We postpone the proof of the above propo-
sition and suppose for now that we have a special 5-tuple (V,W,X, Y, P ) with the property
(∗). We define the topology τA on A and τS on S by

U ⊆ A is τA-open if and only if for any a ∈ A, (a⊕ U) ∩ V is open in V ; and
U ⊆ S is τS-open if and only if for any s ∈ S, (a+ U) ∩X is open in X.

By the same arguments as in [12] and [9], we obtain:

3.6. Lemma. Let U ⊆ V and a ∈ A. Then a⊕U is τA-open if and only if U is open in V .

3.7. Lemma. Let U ⊆ X and s ∈ S. Then s+ U is τS-open if and only if U is open in X.

3.8. Lemma. τA is a definable group n′-manifold topology on A.

3.9. Lemma. τS is a definable ring m′-manifold topology on S.

Next, we show that the scalar multiplication λ : S × A→ A is τA-continuous.

3.10. Lemma. Let s ∈ S be nonzero and a be a generic of A over s. Then λ(s, a) is a
generic of A over s.

Proof. Let f : A → A be a function defined by f(x) = λ(s, x). Then f is a {s}-definable
endomorphism. Since A is a free S-module and s 6= 0, f is injective. So f has a finite
kernel. Since a is a generic of A over s, by Lemma 3.3, λ(s, a) is a generic of A over s. □

For O ⊆ X × V and (t, b) ∈ S × A, let

Γt,b
O := {(t+ s, b⊕ a) ∈ S × A : (s, a) ∈ O}.

3.11. Lemma. Let O ⊆ X × V and (t, b) ∈ S ×A. Then Γt,b
O is (τS × τA)-open if and only

if O is open in X × V .

Proof. Assume Γt,b
O is (τS×τA)-open. We may write Γt,b

O =
∪
{Si×Ai : i ∈ I} where Si ∈ τS

and Ai ∈ τA, for some index set I. Observe that

O =
∪

{
(
(−t) + Si

)
×

(
(	b)⊕ Ai

)
: i ∈ I}.

Since each Si is τS-open and (−t) + Si ⊆ X, by Lemma 3.7, each (−t) + Si is open in X.
Similarly, by Lemma 3.6, each (	b)⊕Ai is open in V . Therefore, O is open in X×V . The
converse can be proved by a similar argument. □
Remark. For O ⊆ X × V , since O = Γ0S ,0A

O , we have O is (τS × τA)-open if and only if O
is open in X × V .

For Q ⊆Mm+n and c ∈Mm, we define the fiber of a set Q over c by
Qc := {y ∈Mn : (c, y) ∈ Q}
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3.12. Lemma. Let a, b ∈ A and s ∈ S. Then the set
D = {(x, v) ∈ X × V : b⊕ λ(x+ s, v ⊕ a) ∈ V }

is open in X × V .
Proof. Fix (x0, v0) ∈ D. Since S is infinite, there exists n0 ∈ S such that x0 + s+ n0 6= 0S
and x0 + s + n0 + 1S 6= 0S. To show that D is open in X × V , we will find an open
neighborhood of (x0, v0) contained in D. Let t be a generic of S over {s, n0, x0} and c be
a generic of A over {a, b, s, t, n0, x0, v0}. Let

U0 = {(x, v) ∈ X × V : (t, x) ∈ Y, tx+ ts+ tn0 ∈ X, (c⊕ a, v) ∈ W},
U1 = {(x, v) ∈ U0 : (tx+ ts+ tn0, c⊕ a⊕ v) ∈ P},
U2 = {(x, v) ∈ U1 : λ(t, c⊕ b)⊕ λ(tx+ ts+ tn0, c⊕ a⊕ v) ∈ V }, and
U3 = {(x, v) ∈ U2 : (t

−1, λ(t, c⊕ b)⊕ λ(tx+ ts+ tn0, c⊕ a⊕ v) ∈ P}.
We define a subset U4 of U3 by (x, v) ∈ U4 if and only if

(	λ(x+ s+ n0 + 1S, c)	 λ(n0, a⊕ v), c⊕ b⊕ λ(x+ s+ n0, c⊕ a⊕ v)) ∈ W .
Since ⊕(W ) ⊆ V , U4 ⊆ D. Next, we will show that (x0, v0) ∈ U4. Since x0 ∈ X,
x0 + s + n0 6= 0S and t is a generic of S over {s, n0, x0}, by (vii), we have (t, x0) ∈ Y and
tx0 + ts + tn0 = t(x0 + s + n0) ∈ X. Note that c ⊕ a ∈ V . Since v0 ∈ V and c ⊕ a is a
generic of A over v0, by (iv), (c ⊕ a, v0) ∈ W , i.e. (x0, v0) ∈ U0. From tx0 + ts + tn0 ∈ X
and c⊕a⊕v0 is a generic of A over {s, t, n0, x0}, by (ix), (tx0+ ts+ tn0, c⊕a⊕v0) ∈ P , i.e.
(x0, v0) ∈ U1. By the genericity of c, we have (x0, v0) lies in both U2 and U3 (we also use
(ix) for the latter result). By Lemma 3.10, λ(x0+s+n0+1S, c) is a generic of A. Note that
c⊕b⊕λ(x0+s+n0, c⊕a⊕v0) = (b⊕λ(x0+s, a⊕v0))⊕λ(x0+s+n0+1S, c)⊕λ(n0, a⊕v0).
It follows that (x0, v0) ∈ U4.

It remains to prove that U4 is open in X × V . Consider g1, g3 : X × V → S × A,
g2 : X × V → A and g4 : X × V → A× A defined by

g1(x, v) = (tx+ ts+ tn0, c⊕ a⊕ v),

g2(x, v) = λ(t, c⊕ b)⊕ λ(tx+ ts+ tn0, c⊕ a⊕ v),

g3(x, v) = (t−1, λ(t, c⊕ b)⊕ λ(tx+ ts+ tn0, c⊕ a⊕ v), and
g4(x, v) = (	λ(x+ s+ n0 + 1S, c)	 λ(n0, a⊕ v), c⊕ b⊕ λ(x+ s+ n0, c⊕ a⊕ v)).

By Lemmas 3.8, 3.9 and 3.11, we have that for each i ∈ {0, 1, 2, 3}, gi is continuous on
Ui+1. Observe that U0 = (X∩Yt∩

(
·−1 ((+−1(X))ts+tn0)

)
t
)×(V ∩Wc⊕a), U1 = U0∩g−1

1 (P ),
U2 = U1∩g−1

2 (V ), U3 = U2∩g−1
3 (P ) and U4 = U3∩g−1

4 (W ). Hence, U4 is open in X×V . □
Remark. Immediately from Lemma 3.12, the definable map (x, v) 7→ b⊕ λ(x+ s, v ⊕ a) is
continuous from D → V .
3.13. Lemma. The scalar multiplication λ is τA-continuous.
Proof. Let U ⊆ A be τA-open. We shall show that λ−1(U) = {(s, a) ∈ S ×A : λ(s, a) ∈ U}
is (τS × τA)-open. By Lemma 3.4, we may assume that U ⊆ c ⊕ V for some c ∈ A.
By Lemma 3.6, (	c) ⊕ U is open in V . To show λ−1(U) is (τS × τA)-open, it suffices to
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prove that for any t ∈ S and b ∈ A, K := {(s, a) ∈ (t + X) × (b ⊕ V ) : λ(s, a) ∈ U} is
(τS × τA)-open. Let O = {(s, a) ∈ X ×V : λ(t+ s, b⊕ a) ∈ U}. Observe that Γt,b

O = K. By
Lemma 3.12, O = {(s, a) ∈ X × V : 	c⊕ λ(t+ s, b⊕ a) ∈ 	c⊕ U} is open in X × V . By
Lemma 3.11, Γt,b

O is (τS × τA)-open. □
Therefore, to complete the proof of Theorem C, we only need to give a construction of

this special 5-tuple with the property (∗).

3.2. Construction of special 5-tuples. We now start our construction. Cell Decom-
position Theorem is a powerful tool in the study of o-minimal structures. The following
result follows immediately from this theorem.

3.14. Lemma. Suppose E ⊆Mn is 0-definable and dimE = n′.
(1) There exist pairwise disjoint 0-definable subsets E1, . . . , Ep of E such that (i) E1 ∪

· · ·∪Ep is large in E; (ii) for each i ∈ {1, . . . , p}, Ei is open in E and is homeomorphic
to an open subset of Mn′ under some coordinate projection from Mn to Mn′ ; and
(iii) for each i 6= j, clEi ∩ Ej = ∅.

(2) For every definable map f : E → Mk, there exists a large open dense 0-definable
subset E ′ of E such that f ↾ E ′ is continuous.

Recall that A ⊆Mn with dimA = n′ ≤ n and S ⊆Mm with dimS = m′ ≤ m. For a set
X ⊆ Mn, we denote by clX the closure of X with respect to the induced topology from
the ambient space.

Throughout the rest of this section, we fix pairwise disjoint 0-definable E1, . . . , Ep ⊆ A
and T1, . . . , Tq ⊆ S such that

(1) each Ei is open in A and is homeomorphic to an open subset of Mn′ under some
coordinate projection from Mn to Mn′ ;

(2) for each i 6= j, clEi ∩ Ej = ∅;
(3) V0 := E1 ∪ · · · ∪ Ep is large in A;
(4) each Tj is open in S and is homeomorphic to an open subset of Mm′ under some

coordinate projection from Mm to Mm′ ;
(5) for each i 6= j, clTi ∩ Tj = ∅; and
(6) X0 := T1 ∪ · · · ∪ Tq is large in S.

3.15. Lemma. There exist 0-definable sets V1,W1, X1, Y1 and P1 such that
(1) V1 ⊆ V0 is a large open subset of A and 	 ↾ V1 is a 0-definable continuous bijection

onto V1;
(2) W1 ⊆ V0×V0 is a large open subset of A×A and ⊕ ↾ W1 is a 0-definable continuous

map from W1 into V0;
(3) X1 ⊆ X0 is a large open subset of S and − ↾ X1 and −1 ↾ X1 are 0-definable

continuous bijections onto X1;
(4) Y1 ⊆ X0 × X0 is a large open subset of S × S and + ↾ Y1 and · ↾ are 0-definable

continuous maps from Y1 into V0; and
(5) P1 ⊆ X0×V0 is a large open subset of X0×V0 such λ ↾ P1 is a 0-definable continuous

map from P1 into V0.
10



Proof. We only focus on the constructions of X1 and Y1. We can follow the following
argument to obtain V1 and W1. By Lemma 3.14, let X̃0 be a 0-definable large open dense
subset of X0 such that − ↾ X̃0 and −1 ↾ X̃0 are continuous. Set X1 = X̃0 ∩ (−X̃0)∩ X̃0

−1 ∩
(−X̃0)

−1. It is clear that X1 is open in X0. To show that X1 is large in S, let s be a generic
of S over ∅. Since X̃0 is large in S, s ∈ X̃0. Note that −s, s−1 and (−s)−1 are also a generic
of S over ∅. We can show that s ∈ (−X̃0)∩ X̃0

−1 ∩ (−X̃0)
−1. Therefore, s ∈ X1 and so we

have that X1 is large in S. This completes the construction of X1.
By Lemma 3.14 again, we obtain a 0-definable large open dense subset Y1 of X0 × X0

such that + ↾ Y1 and · ↾ Y1 is continuous. To obtain P1, just apply Lemma 3.14 to P0 and
λ. □

Fix sets V1,W1, X1, Y1, P1 as in Lemma 3.15. We now construct a 5-tuple (V,W,X, Y, P )
that satisfies the property (∗).

3.16. Lemma. Let s̄, t̄ ∈ S. If s̄ is a generic of S over t̄ and t̄ is a generic of S over ∅, then
t̄ is also a generic of S over s̄.

Proof. Assume s̄ is a generic of S over t̄ and t̄ is a generic of S over ∅. Suppose to the
contrary that t̄ is not a generic of S over s̄. Without loss of generality, we may assume
that s̄ = (s0, s̄′) and t̄ = (t0, t̄′) where t0 ∈ dcl(s̄ ∪ t̄′) but t0 /∈ dcl(s̄′ ∪ t̄′). Since the
Exchange Lemma holds in M (see e.g. [6, Theorem 2.2.2]), we have s0 ∈ dcl(s̄′ ∪ t̄), which
is absurd. □

3.17. Lemma. There exist a tuple (V,W,X, Y ) of 0-definable sets that satisfies (i)− (vii)
in the property (∗).

Proof. We only focus on the constructions of X and Y . We can follow the following argu-
ment to obtain V and W as desired. Let X2 be the subset of S such that t ∈ X2 if and
only if:

(i) t ∈ X1;
(ii) for every generic s of S over t, (s, t) ∈ Y1, (−s, s+ t) ∈ Y1 and (s−1, st) ∈ Y1; and
(iii) for every generic a of A over t, (t, a) ∈ P1 and (t−1, λ(t, a)) ∈ P1.

Note that X2 is 0-definable. To show X2 is large in S, let t be a generic of S over ∅. Since
X1 is 0-definable and large in S, t ∈ X1. Let s be a generic of S over t. Then (s, t) is a
generic point of S × S over ∅. Since Y1 is large in S × S, (s, t) ∈ Y1. By Lemmas 3.16 and
3.2, s is a generic of S over s+ t, and so (−s, s+ t), (s−1, st) ∈ Y1. By the same argument,
if a is a generic of A over t, by Lemma 3.10, (t, a) ∈ P1 and (t−1, λ(t, a)) ∈ P1. So we have
t ∈ X2 and hence X2 is large in S. Apply Lemma 3.14, we obtain a 0-definable subset
X3 ⊆ X2 such that X3 is large in S and open in X0. Set X = X3∩ (−X3)∩X−1

3 ∩ (−X3)
−1.

This completes the construction of X.
Next, define Y = (X × X) ∩ {(s, t) ∈ Y1 : s + t ∈ X and st ∈ X}. Since X is open in

X0, by Lemma 3.15, the + ↾ Y and · ↾ Y are 0-definable continuous maps from Y into X
and Y is open in X0 ×X0. Lastly, we will verify that Y is large in S × S, let (s1, s2) be a
generic of S×S over ∅. Therefore s1+s2 and s1s2 are generics of S over ∅, i.e. (s1, s2) ∈ Y .
It follows that Y is large in S × S. □
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We now complete:
Proof of Proposition 3.5. Let (V,W,X, Y ) be a tuple obtained by Lemma 3.17. Define
P = (X×V )∩{(s, a) ∈ P1 : λ(s, a) ∈ V }. By Lemma 3.15, since X×V is open in X0×V0,
λ ↾ P is a 0-definable continuous map from P into V and P is open in X0 × V0. To verify
that P is large in S × A, let (s, a) be a generic of S × A over ∅. By Lemma 3.10, λ(s, a)
is a generic of A over s. We have λ(s, a) ∈ V and so (s, a) ∈ P , it follows that P is large
in S × A. Next, let t ∈ X and a be a generic of A over t. Since t ∈ X, by Lemma 3.17,
(t, a) ∈ P1 and (t−1, λ(t, a)) ∈ P1. By Lemma 3.10, λ(t, a) ∈ V , i.e. (t, a) ∈ P . Since
λ(t−1, λ(t, a) = a ∈ V ), (t−1, λ(t, a)) ∈ P . □

4. Open questions

4.1. Suppose S is an infinite ring. Here, we obtain a complete characterization of defin-
able S-modules when S has no zero divisors. However, the question is still open when S
(possibly) has zero divisors.
4.2. Suppose A is a definable abelian group. Obviously, if |A| = n for some positive integer
n, then A is an Z/nZ-module. This gives rise to the question:

If A is infinite, how to determine whether A is a definable S-module for some definable
ring S?

Throughout the rest of this paper, we fix a definable ring (S,+, ·, 0S, 1S) and a left
S-module (A,⊕, 0A, λS). Note that the arguments given next will also work for right S-
modules.
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