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Abstract. Here we work in an arbitrary (but fixed) o-minimal expansion of a dense
linearly ordered set. We say that a definable ring is definably semiprime if squares of
nontrivial two-sided ideals definable in the expansion are non-trivial. We prove a definable
version of Wedderburn-Artin Theorem and give a characterization of definably semiprime
rings.

Througout this article, d, k,m, n will range over the set N = {0, 1, 2, 3, . . . } of natural
numbers and let S = (S, 0S, 1S,+S, ·S) denote an associative unitary ring with 1S 6= 0S
(not necessarily commutative). For a, b ∈ S, we simply write a + b instead of a +S b; and
ab instead of a ·S b if it is clear from the context. For subsets X and Y of S, we define the
product of X and Y by

XY = {
n∑

i=1

xiyi : n ∈ N, xi ∈ X, yi ∈ Y }

(where
n∑

i=1

xiyi = 0S when n = 0). Recall that a left (right) S-module is simple if it has

no nontrivial left (right) submodules. For each ring T , let Mn(T ) denote the ring of n× n
matrices over T .

We say that that S is simple if every two-sided ideal of S is either the zero ideal or
S; semisimple if S considered as a left module over itself is a direct sum of simple left
S-modules; and semiprime if for every nontrivial two-sided ideal I of S, I2 is not the zero
ideal. Note that S is semisimple if and only if S is semiprime and satisfies the descending
chain condition on principal left ideals.

The study of characterization of classes of algebraic objects has been of interests of math-
ematicians. Wedderburn-Artin Theorem, which is a fundamental theorem in representation
theory and noncommutative ring theory, provides a characterization of semisimple rings.
By Maschke’s Theorem (see e.g. [5]), the Wedderburn-Artin Theorem also gives a struc-
ture of group rings SG when G is a finite group and S is a field of characteristic zero.
Historically, this theorem was first proved for finitely generated algebras over a field by
J.H.M. Wedderburn in 1908 [13]; and later generalized by E. Artin [1] in 1927. Many
variations of proofs of Wedderburn-Artin Theorem have been invented since then (see e.g.
[3, 4, 6, 7]).
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Next, we will discuss more model theoretic perspectives of the article. Let R be an
expansion of a densely linearly ordered set without endpoints (R,<). Here, the word
“definable” always means “definable with parameters”. We say that R is o-minimal if
every subset of R definable in R is a finite union of open intervals and points. For more
information on o-minimality, we refer to [2]. The ring S is said to be a definable ring in R if
the set S, the addition +S, and the multiplication ·S are definable in R. In 1988, A. Pillay
proved that every infinite definable field is either real closed or algebraically closed (see
[11]). A generalization of the above result proved by Y. Peterzil and C. Steinhorn in [10]
provides a characterization of infinite definable rings without zero divisors, that is, if S
is an infinite ring without zero divisors definable in an o-minimal structure R, then S is
a division ring and there is a definable ring K in R such that K is real closed and S is
isomorphic to either K, K(

√
−1), or H(K) (the quaternion ring over K). Note that the

above theorem cannot be applied to all semisimple rings. Therefore, the main goal of this
article is to study characterization of semisimple definable rings in an o-minimal stucture.

Assume that R is an o-minimal structure. Suppose S is a definable ring in R. The ring
S is said to be definably simple if every two-sided ideal of S definable in R is either the
zero ideal or S; and definably semiprime if for every nontrivial two-sided ideal I definable
in R, I2 is not the zero ideal. Obviously, if S is simple (semiprime), then S is definably
simple (respectively, definably semiprime). Here we obtain:

Theorem A (Definable Wedderburn-Artin Theorem). Suppose S is a definable ring in R.
(1) If S is definably simple, then S is definably isomorphic to Mk(D) where k ∈ N and

D is either a finite field, K, K(
√
−1), or H(K) for some definable real closed field

K.
(2) If S is definably semiprime, then S is definably isomorphic to a finite direct sum of

Mk1(D1), . . . ,Mkl(Dl) where k1, . . . , kn ∈ N and each Di is either a finite field, K,
K(

√
−1), or H(K) for some definable real closed field K.

As a consequence, we obtain that if S is definable in R and definably semiprime, then
every ideal of S is definable in R. In [11], A. Pillay proved the descending chain condition on
definable subgroups of a definable group in R. We have the descending chain condition on
definable left (right) ideals of S. Since every principal left ideal is definable, by Theorem A,
we immediately obtain:

Theorem B. Suppose S is a definable ring. Then the following are equivalent:
(1) T is semisimple;
(2) T is semiprime;
(3) T is definably semiprime.

Conventions and notations

Throughout the rest of this article, let R be an arbitrary (but fixed) o-minimal structure
and assume that S is a definable ring in R. For each ideal I of S and a ∈ I, we denote by
Ia the left ideal {sa : s ∈ I} of S.
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1. Ideals definable in R

Observe that from the definition of the product of two ideals, there is no guarantee
whether the product of two ideals definable in R is also definable. We can see that the
products of ideals is contained in the definition of definably semiprime ring. To understand
definably semiprime rings, we first study properties of ideals of S definable in R.

Let I be a left ideal of S. (Note that the discussion below will work when I is a right
ideal of S.) We say that I is finitely generated if there exist a1, . . . , an ∈ I such that

I = {
n∑

i=1

siai : s1, . . . , sn ∈ S} =
n∑

i=1

Sai.

First, we will show that every left ideal definable in R is finitely generated. This is a special
case of Theorem B in [12]. We include the proof of this special case for the sake of readers.

A group G = (G, eG, ∗G) is a definable group in R if the set G and the group operation
∗G are definable in R. In [9], Y. Peterzil and S. Starchenko showed that:

1.1. Lemma. If R is ℵ0-saturated and G is a group definable in R, then there exists a
finite collection a1, . . . , an ∈ G, where n ≤ dimG + [G : G0], such that the only definable
subgroup of G containing these element must be G.

Obviously, every left ideal definable in R is a definable group.

1.2. Lemma. Suppose I is a left ideal of S definable in R and T ⊆ S is a definable ring
with respect to the induced ring operations on S.

(1) Then there exist a1, . . . , an ∈ I such that

I = {
n∑

i=1

tiai : t1, . . . , tn ∈ T} =
n∑

i=1

Tai.

(2) If It ⊆ I for every t ∈ T , then there exist b1, . . . , bk ∈ I such that

I = {
k∑

i=1

biti : t1, . . . , tk ∈ T} =
k∑

i=1

biT.

In particular, I is finitely generated.

Proof. Let R′ be an elementary extension of R that is ℵ0-saturated. Suppose S ⊆ Rm.
Let x̄ = (x1, . . . , xm) be an m-tuple of pairwise distinct variables. By definability, there
exist b̄ ∈ Rk and φS(x̄, ȳ), φT (x̄, ȳ), ψ(ȳ, z̄) be formulas such that (1) ȳ = (y1, . . . , yk) is
a k-tuple of pairwise distinct fresh variables, (2) φS(x̄, b̄) defines S, (3) φT (x̄, b̄) defines T ,
and (4) ψ(x̄, b̄) defines I in R. Since R′ is an elementary extension of R, we have that (1)
φS(x̄, b̄) defines a ring S ′ in R′, (2) φT (x̄, b̄) defines a ring T ′ in R′ and T ′ ⊆ S ′, (3) ψ(x̄, b̄)
defines a left ideal I ′ of S ′ in R′. By Lemma 1.1, there exist a′1, . . . , a′n ∈ I ′ such that the
only definable subgroup of the additive group of I ′ containing a′1, . . . , a′n is I ′. Observe that∑n

i=1 T
′a′i is a definable subgroup of I ′ containing a′1, . . . , a

′
n. Therefore, I ′ =

∑n
i=1 T

′a′i.
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Let χ(x̄, x̄1, . . . , x̄n, b̄) be the formula representing

ψ(x̄, b̄) ↔ ∃z̄1 . . . ∃z̄n,
n∧

i=1

φT (z̄i, b̄) ∧ x̄ =
n∑

i=1

z̄ix̄i.

Hence

R′ |= ∃x̄1 . . . ∃x̄n(
n∧

i=1

ψ(x̄i, b̄) ∧ ∀x̄, χ(x̄, x̄1, . . . , x̄n, b̄)).

Since R is an elementary substructure of R′ and b̄ ∈Mk,

R |= ∃x̄1 . . . ∃x̄n(
n∧

i=1

ψ(x̄i, b̄) ∧ ∀x̄, χ(x̄, x̄1, . . . , x̄n, b̄)).

Therefore, I =
∑n

i=1 Tai.
By a similar argument, we obtain that if It ⊆ I for every t ∈ T , then there exist

b1, . . . , bk ∈ I such that I =
∑k

i=1 biT. □

Next, we will show that if R is sufficiently saturated, then the product of a definable left
ideal and the ring itself is definable in R.

1.3. Lemma. Suppose R is ℵ0-saturated. Let I be a left ideal of S definable in R. Then
IS is a two-sided ideal of S definable in R.

Proof. Obviously, IS is a two-sided ideal of S. It suffices to prove that IS is definable. By
Lemma 1.1, there exist a1, . . . , an ∈ I such that the only definable subgroup of the additive
group of I containing a1, . . . , an is I. Observe that

∑n
i=1 aiS = {

∑n
i=1 aisi : si ∈ S} is a

definable group in R. Hence it is enough to prove that IS =
∑n

i=1 aiS. It is easy to see
that a1, . . . , an ∈

∑n
i=1 aiS ⊆ IS. Since a1, . . . , an ∈

∑n
i=1 aiS, we have I ⊆

∑n
i=1 aiS.

Therefore,

IS ⊆ (
n∑

i=1

aiS)S ⊆
n∑

i=1

aiS.

Hence IS =
∑n

i=1 aiS. □

We end this section by the following definable analogue of Brauer’s Lemma.

1.4. Lemma. Let S be a definably semiprime ring and I be a nonzero left ideal definable
in R. Then there exists a nonzero idempotent e (that is, e2 = e) in I such that eSe is a
definable division ring.

Proof. By a similar argument as in the proof of Lemma 1.2, we may assume that R is
ℵ0-saturated. Suppose S is definably semiprime and I is a nonzero left ideal definable in
R. By the descending chain condition on definable ideals of S, we may assume further that
I is minimal among left ideals of S that are definable in R. By Lemma 1.3, we know that
IS is a two-sided ideal of S that contains I and is definable in R. Since S is definably
semiprime and SI = I,

{0} 6= (IS)2 = (I(SI))S ⊆ I2S.
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Therefore, I2 6= {0S}. Then there is a ∈ I such that Ia is a nonzero left ideal of S that
is definable in R. By the minimality of I, we have Ia = I. Let e ∈ I such that ea = a.
Hence, e2a = ea, that is, (e2 − e)a = 0S. Let J = {s ∈ I : sa = 0S}. Then e2 − e ∈ J and
J is a left ideal of S that is definable in R. Since ea = a 6= 0S and e ∈ I, we have J is a
proper subset of I. Therefore, J = {0S} and so e2 = e. Thus, e is an idempotent. Next,
we prove that Se = I. Since e2 = e and e ∈ I, we have Se ⊆ I and Se is a nonzero left
ideal of S that is definable in R. It follows from the minimality of I that Se = I.

To prove that eSe is a definable division ring, it is enough to show that eSe has a
left multiplicative identity and every nonzero element has a left multiplicative inverse.
Obviously, e(ese) = e2se = ese for every s ∈ S. Then e is a left multiplicative identity. Let
b ∈ eSe be nonzero. Then there exists t ∈ S such that b = ete. Note that {0S} 6= Sb ⊆
Se = I. By the minimality of I, we have Sb = Se. Let s ∈ S such that e = sb. Then

(ese)b = (ese)(ete) = ese2te = es(ete) = e(sb) = e2 = e

Therefore, ese ∈ eSe is a left inverse of b. □

2. Proof of Theorem A

In this section, we will give the proof of Theorem A. Note that, by an argument similar
to the proof of Lemma 1.2, it suffices to proof Theorem A when R is ℵ0-saturated. First,
let us consider when S is definably simple.

2.1. Theorem. Suppose R is ℵ0-saturated and S is definably simple. Then S is definably
isomorphic to Mk(D) where k ∈ N and D is either a finite field, K, K(

√
−1), or H(K) for

some definable real closed field K.

Proof. By Lemma 1.4, let e ∈ S be a nonzero idempotent such that D := eSe is a definable
division ring. Let I = Se. Since e is an idempotent and D = eSe, we have that ID =
(Se)(eSe) ⊆ I. By Lemma 1.2 and the fact that D is a division ring, there exist b1, . . . , bk ∈
I such that I =

∑k
i=1 biD and for each j if bj =

∑
i ̸=j bidi, then di = 0S for all i 6= j. In

other word, we consider I as a right D-module with base {b1, . . . , bk}.
We will show that S is definably isomorphic to Mk(D). Note that we may identify the

matrix Mk(D) by Dk×k. Define a homomorphism h : S → Dk×k by

h(a) = the matrix representation of the homomorphism x 7→ ax : I → I with respect to
the base {b1, . . . , bk}.

Observe that h is definable.
To prove that h is injective, let a ∈ S such that h(a) = 0. Then aI = {0S}; and so

aIS = {0S}. By Lemma 1.3, IS is a two-sided ideal of S that is definable in R. Since S is
definably semisimple and e ∈ (Se)S = IS, we have IS = S. Hence aS = {0}. Therefore,
a = 0S.

To prove the surjectivity, let Λ ∈ Mk(D). For notational simplicity, we also denote
the corresponding homomorphism of Λ by Λ itself. Since 1S ∈ S = IS = SeS, we write
1S =

∑k
i=1 sieti where si, ti ∈ S. Let a =

∑k
i=1 Λ(sie)eti. It remains to show that h(a) = Λ.
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Let x ∈ I. Since I = Se and D = eSe, we have etix ∈ D for every i ∈ {1, . . . , k}. By the
D-linearity of Λ, we have

(h(a))(x) = ax =
k∑

i=1

Λ(sie)etix = Λ((
k∑

i=1

(sieti)x) = Λ(x).

Hence, h(a) = Λ.
Therefore, h is a definable isomorphism from S to Mk(D). We can see that if S is finite,

then D = eSe is a finite division ring; hence, a field. Suppose S is infinite. Then D is an
infinite definable division ring. Therefore, there is a definable real closed field K such that
D is definably isomorphic to K, K(

√
−1) or H(K). This completes the proof. □

Let X ⊆ S. We say that X is orthogonal if ab = 0S for all distinct a, b ∈ X. Suppose X
is a set of idempotents in S. We now define a partially order relation ≼ on X by

a ≼ b if and only if ab = a = ba.

We say that X has the maximum condition if for every ascending ≼-chain (an)n∈N in X,
there exists n ∈ N such that an = ak for all k ≥ n.

2.2. Lemma. Let X be a set of idempotents in S. Then
(1) if X is orthogonal, then X is finite; and
(2) X has the maximum condition.

Proof. To prove (1), suppose to the contrary that X is infinite. Without loss of generality,
assume X = {an : n ∈ N} and 0S /∈ X. For each n ∈ N, let In = S(1S −

∑n
i=1 ai) be the

left ideal of S generated by 1S −
∑n

i=1 ai. By the descending chain condition on definable
left ideals, it suffices to show that In+1 is a proper subset of In for every n ∈ N. Let n ∈ N.
Since X is an orthogonal set of idempotents, we have

(1S −
n+1∑
i=1

ai)(1S −
n∑

j=1

aj) = 1S −
n+1∑
i=1

ai −
n∑

j=1

aj +
n+1∑
i=1

ai

n∑
j=1

aj

= 1S −
n+1∑
i=1

ai −
n∑

j=1

aj +
n∑

j=1

aj

= 1S −
n+1∑
i=1

ai.

Therefore, In+1 ⊆ In. Next, suppose that 1S −
∑n

j=1 aj ∈ In+1. Then there exists t ∈ S

such that 1S −
∑n

j=1 aj = t(1 −
∑n+1

i=1 ai). Hence, an+1 = (1S −
∑n

j=1 aj)an+1 = t(1S −∑n+1
i=1 ai)an+1 = tan+1− tan+1 = 0S which is absurd. Thus, In+1 is a proper subgroup of In.
We now begin the proof of (2). Observe that if 0S ∈ X, then 0S is the ≼-least element

in X. Therefore, we may assume that 0S /∈ X. Suppose (an)n∈N is an infinite ascending
≼-chain in X where an’s are pairwise distinct. For each n ∈ N, let bn = an − an−1 where
a−1 = 0S. Let Y = {bn : n ∈ N}. By (1), it is enough to prove that Y is an infinite
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orthogonal set of idempotents in S. Obviously, Y ⊆ S and each bn is nonzero. For each
n ∈ N, we have

b2n = (an − an−1)
2 = a2n − anan−1 − an−1an + a2n−1 = an − an−1 − an−1 + an−1 = bn,

that is, bn is an idempotent in S. If n < m, then
bnbm = (an − an−1)(am − am−1)

= anam − an−1am − anam−1 + an−1am−1

= an − an−1 − an + an−1

= 0S,

and, similarly, bmbn = 0S. Since all bn’s are nonzero idempotents in S and bnbm = 0S for
distinct n,m, we have bn 6= bm for all distinct n,m. Therefore, Y is an infinite orthogonal
set of idempotents in S, which is absurd. □

As a consequence of the above lemma, we know that every set of idempotents has a
≼-maximal element. We are now ready to complete the proof of Theorem A.
2.3. Theorem. Suppose R is ℵ0-saturated and S is definably semiprime. Then S is defin-
ably isomorphic to a finite direct sum of Mk1(D1), . . . ,Mkl(Dl) where k1, . . . , kn ∈ N and
each Di is either a finite field, K, K(

√
−1), or H(K) for some definable real closed field K.

Proof. By Theorem 2.1, it is enough to prove that S is a finite direct sum of definably
simple rings. In addition, by the descending chain condition and mathematical induction,
it suffices to prove that S is a direct sum of a definably simple ring T and a definably
semiprime ring J . Let I be minimal among nonzero left ideals of S that are definable in
R. Set T = IS and J = {a ∈ S : Sa = {0S}}. Observe that J is a two-sided ideal of
S that is definable in R and TJ = {0S}. By Lemma 1.3, T is minimal among two-sided
ideals of S that contain I and are definable in R. Since (T ∩ J)2 ⊆ TJ = {0S}, we have
T ∩ J = {0S}. To prove that S is a direct sum of T and J , it now remains to prove that
S = T + J . Since S is definably semiprime and I is a nonzero left ideal definable in R, by
Lemma 1.4, I contains nonzero idempotents. Let X be the set of all nonzero idempotents
in T . Since I ⊆ T , X 6= ∅. By Lemma 2.2, let e ∈ X be a ≼-maximal idempotent in X.
Note that if 1S − e ∈ J , then 1S ∈ T + J and so S = T + J . Suppose to the contrary
that 1S − e /∈ J . Then T (1S − e) is a nonzero left ideal of S that is definable in R and
T (1S − e) = (IS)(1S − e) ⊆ T . By Lemma 1.4, let g be a nonzero idempotent in T (1S − e).
Let h = e+ g − eg ∈ T . Since (1S − e)e = 0S and g ∈ T (1S − e), we have ge = 0S. Then

h2 = (e+ g − eg)2

= e2 + g2 + egeg + eg + ge− e2g − ege− geg − eg2

= e+ g + 0 + eg + 0− eg − 0− 0− eg

= h

and
he = e2 + ge− ege = e = e+ eg − eg = e2 + eg − e2g = eh.

Hence, e ≼ h. By the maximality of e in X, we have e = h = e + g − eg. Hence g = eg.
Therefore, g = g2 = g(eg) = 0 which is absurd. Therefore, S is the direct sum of T and J .
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To complete the proof it remains to show that T is a definably simple ring and J is a
definably semiprime ring. Since T, J are two-sided ideals of S and T ∩ J = {0S}, for all
x ∈ T ,

x(1S − e) = (1S − e)x = 0S; and so
xe = xe+ x(1S − e) = x(e+ 1S − e) = x = (e+ 1S − e)x = ex+ (1S − e)x = ex.

In addition, for all y ∈ J , we have

ye = ey = 0S; and
y(1S − e) = y(1S − e) + ye = y(1S − e+ e)

= y

= (1S − e+ e)y = (1S − e)y + ey = (1S − e)y.

Hence, e is the multiplicative identity of T and (1S − e) is the multiplicative identity of J .
With respect to the ring operations on S, we have that T is a definable ring with unit e
and J is a definable rings with unit (1S − e).

To show that J is definably semiprime, let I ′ be a nonzero two-sided ideal of J that is
definable in R. Since S is the direct sum of T and J , I ′ is also a nonzero two-sided ideal of
S. Since S is definably semiprime, we have (I ′)2 6= {0S}. Hence J is definably semiprime.
Therefore, it remains to show that T is definably simple. Observe that every two-sided
ideal of T that is definable in R is also a two-sided ideal of S. Hence, it suffices to prove
that T is minimal among two-sided ideals of S that is definable in R.

Let I ′′ be a nonzero two-sided ideal of S such that I ′′ is definable in R and I ′′ ⊆ T . Since
S is definably semiprime, we have

{0S} 6= (I ′′)2 ⊆ I ′′(IS) ⊆ (I ′′ ∩ I)S.

Therefore, I ′′ ∩ I is a nonzero left ideal of S that is definable in R. By the minimality of
I, we have I = I ′′ ∩ I ⊆ I ′′. Hence T = IS ⊆ I ′′S = I ′′.

This completes the proof. □

3. Remarks

Suppose R is an o-minimal expansion of a real closed field (R,<, 0, 1,+, ·). In [8],
M. Otero, Y. Peterzil and A. Pillay proved that every infinite definable ring without zero
divisors is definably isomorphic to either R, R(

√
−1), or H(R). Therefore, we obtain the

following corollary to Theorem A.

3.1. Corollary. Suppose R is an o-minimal expansion of a real closed field (R,<, 0, 1,+, ·)
and S is a definable ring in R.

(1) If S is definably simple, then S is definably isomorphic to Mk(D) where k ∈ N and
D is either a finite field, R, R(

√
−1), or H(R).

(2) If S is definably semiprime, then S is definably isomorphic to a finite direct sum of
Mk1(D1), . . . ,Mkl(Dl) where k1, . . . , kn ∈ N and each Di is either a finite field, R,
R(

√
−1), or H(R).
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