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Abstract

This paper continues the work started in [4], where we showed that

each class of finite Moufang polygons forms an asymptotic class, in the

sense of [9] and [6]. Here, we show that all (infinite) Moufang polygons

whose first order theory is supersimple of finite rank are characterized

as those inherited from the finite, i.e. if Γ is a supersimple finite rank

Moufang polygon, then Γ belongs to one of the families of Moufang

polygons which also has finite members. The proof rests on the classi-

fication of Moufang polygons due to Tits and Weiss, [15].

1 Introduction

Among the families of Moufang polygons, which have been classified in [15],

there are, up to duality, six which include arbitrary large finite ones; namely,

families whose members are either Desarguesian projective planes, symplec-

tic quadrangles, Hermitian quadrangles in projective space of dimension 3

or 4, split Cayley hexagons, twisted triality hexagons or Ree-Tits octagons,
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with the latter arising over difference fields (see Example 3.7). We call the

members of these families (whether finite or infinite) good Moufang polygons.

In this paper, we show that these are the only families whose members can

be supersimple of finite rank (a model-theoretic hypothesis). We state our

main result as follows, where by Γ(K) we mean a Moufang polygon whose

associated algebraic structure (in terms of Section 3) arises over some field

K.

Theorem 1.1 Let Γ = Γ(K) be a supersimple finite rank Moufang polygon.

Then:

(i) the (difference) field K is definable in Γ;

(ii) Γ is good.

A proof of this theorem, which also appears as Corollary 9.3, is given

throughout Sections 6, 7, 8 and 9. Notice that if Γ is a good Moufang

polygon over a supersimple (difference) field of finite rank, then Γ is super-

simple finite rank; this was not explicitly proved in [4], but it follows from

the main results of [13] on classes of finite Chevalley groups, or finite twisted

groups of fixed Lie type and Lie rank, generalised to the infinite case (by

checking [2], they go through for infinite fields) and Theorem 8.2(ii) of [4].

The work in this paper, as well that in [4], is extracted from [5]. It

originated from [8]; in fact, our results are a generalization of those in [8]

from the superstable context (under the extra assumption of finite Morley

rank, a model-theoretic notion of dimension) to the supersimple context.

As for [8], the motivation is group-theoretic: there is a well-known project,

the ‘Algebraicity Conjecture’, see [1], to give a model-theoretic classification

of simple 1 algebraic groups by showing that they are the simple groups

of finite Morley rank; a very important tool in [1] is the classification of
1Notice the unfortunate clash of terminology between (super)simplicity in the model-

theoretic sense, and simplicity intended in the usual group-theoretic sense.
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simple groups of finite Morley rank with a spherical Moufang BN-pair of

Tits rank at least 2, see [8], which relies on the classification of Moufang

generalized polygons of finite Morley rank, also achieved in [8]. The finite

Morley rank condition is extremely strong, and eliminates many interesting

Moufang generalized polygons; for example, those associated with twisted

simple groups. Some of the latter, instead, do enter into the picture under

the supersimplicity assumption (for instance, Moufang octagons).

Our work makes use of the classification of Moufang polygons, [15], and

the key point is to interpret the (skew) field associated with the underlying

algebraic structure of each Moufang polygon. In many of the cases this

is done by using techniques from [8] - for example, in Section 5, when we

recover the additive structure of the (skew) field.

We assume that the reader is familiar with the basic model-theoretic

notions treated in this paper, i.e. supersimple structures, finite rank as-

sumption, first-order interpretability, and so on; all the relevant information

can be found in Section 5 of [4]. In particular, in Section 4 we recall the def-

inition of S1-rank, and we also provide a list of some of the main properties

which are satisfied by a supersimple finite rank field; for more on supersim-

plicity see, for instance, Chapter 5 of [17]. Good Moufang polygons have

already been described in some detail in Section 3 of [4]. Here, in Section

2, we will introduce the remaining Moufang polygons, namely those which

are not good; these will also be called bad Moufang polygons. Also, Section

3 gives some background on the algebraic structures associated with the

Moufang polygons. Section 4 then gives some model-theoretic facts related

to these algebraic structures which will be used in order to prove the main

theorem above. Section 5 deals with the key points regarding the interpre-

tation of the underlying field K of Γ in Theorem 1.1(i); this is done almost

exactly as in Section 1 of [8].
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Finally, Sections 6, 7, 8 and 9 deal, respectively, with the families of pro-

jective planes, quadrangles, hexagons and octagons, which are not good; we

will show that if Γ = Γ(K) is a bad Moufang polygon, then Γ cannot arise

over a supersimple finite rank (difference) field. Basically, once we define

the underlying field K inside the polygon Γ, we use some model-theoretic

facts in order to prove that the configuration cannot be supersimple of fi-

nite rank; for instance, in most of the cases we can define a field extension

of K having a non-surjective norm map, which by the main result of [12]

contradicts supersimplicity.
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2 Bad Moufang polygons

We view generalized polygons as first-order structures as follows. By Linc =

(P,L, I) we mean a language with two disjoint unary relations P and L and

a binary relation I, where I ⊆ P × L ∪ L × P is symmetric and stands for

incidence; an Linc-structure is called an incidence structure and, usually, the

elements a satisfying P are called points, those satisfying L are called lines,

and pairs (a, l), or (l, a), satisfying I are called flags. Also, by a k-chain

we mean a sequence (x0, x1, ..., xk) of elements xi ∈ P ∪ L such that xi is

incident with xi−1 for i = 1, 2, .., k and xi 6= xi−2 for i = 2, 3, ..., k, and by

distance d between any two elements x, y ∈ P ∪ L, denoted by d(x, y), we

mean the least k such that there is a k-chain joining them.
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Definition 2.1 A generalized n-polygon, or generalized n-gon, is an inci-

dence structure Γ = (P,L, I) satisfying the following three axioms:

(i) every element x ∈ P∪L is incident with at least three other elements;

(ii) for all elements x, y ∈ P ∪ L we have d(x, y) ≤ n;

(iii) if d(x, y) = k < n, there is a unique k-chain (x0, x1, ..., xk) with

x0 = x and xk = y.

A subpolygon Γ′ of Γ is an incidence substructure Γ′ = (P ′, L′, I ′) ⊆ Γ,

i.e. P ′ ⊆ P , L′ ⊆ L and I ′ = I ∩ (P ′ × L′), satisfying the axioms (i)-(iii)

above.

Sometimes, the definition of a generalized polygon is allowed to include,

as well as (i), the condition (i)′: every element x ∈ P ∪ L is incident with

exactly two other elements; if so, we then distinguish between thick and thin

n-gons, namely, we say that an n-gon Γ is thick if it is as in Definition 2.1

above, while we call it thin if it is as in Definition 2.1 with axiom (i) replaced

by (i)′. Also, if Γ′ is a subpolygon of Γ which satisfies (i)′, then we also call

Γ′ an ordinary subpolygon of Γ. Moreover, we recall that a duality of an

n-gon Γ1 = (P1, L1, I1) onto an n-gon Γ2 = (P2, L2, I2) is an isomorphism (a

map which sends points to points, lines to lines, and preserves incidence and

non-incidence) of Γ1 onto Γdual
2 := (L2, P2, I2), i.e. the polygon obtained by

interchanging points and lines of Γ2.

We recall the definition of perspectivity maps. Let Γ = (P,L, I) be a

generalized n-gon, and for some fixed k ≤ n and for every x ∈ P ∪ L let

Bk(x) := {y : d(x, y) = k}. Consider now two elements x, z ∈ P ∪ L such

that d(x, z) = k for some k < n. Then it follows from Definition 2.1(iii)

that there exists a unique element y ∈ Bk−1(x)∩B1(z), which will be called
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the projection of x over z and denoted by projzx or projk(x, z), when we

want to specify the distance between x and z. In particular, if d(x, z) = n

then there exists a bijection [z, x] := B1(x) −→ B1(z) such that [z, x](y) =:

projn−1(y, z) for every element y ∈ B1(x). We will call it the perspectivity

map from x to z. We also recall the definition of a root group. Given a

generalized n-gon Γ, by a root α we mean an n-chain (x0, x1, ..., xn), and by

the interior of α we mean the set ᾱ := ∪n−1
i=1 B1(xi). For each root α, we

define the root group Uα to be the subgroup consisting of elements of Aut(Γ)

which fix ᾱ pointwise. By the little projective group of Γ we mean the group

Σ := 〈Uα : α root 〉.

As done in Section 4 of [4], given a generalized n-gon Γ, we fix an ordinary

subpolygon A = (x0, x1, ..., x2n−1) ⊂ Γ, a root α = (x0, x1, ..., xn) ⊂ A, and

the (positive) root groups Ui associated to the roots αi = (xi, xi+1, ..., xi+n)

for i = 1, ..., n, as well the (negative or opposite) root groups Uj associated

to the roots αj = (xj , xj+1, ..., xj+n) for j = n + 1, n + 2, ..., 2n (here, as in

[15], on the indices we use a modulo 2n sum and thus, for example, U0 is

the same thing of U2n), so that the coordinatization procedure of Definition

2.8 of [4] makes sense; as a remark, this means that, model-theoretically, Γ

is in the definable closure of the hat-rack (see Proposition 2.3 of [8]). We

say that the root α is called Moufang if the group U0 acts transitively on

B1(x0); in particular, Γ is said to be Moufang 2 if all its roots are Moufang.
2The classification of generalized polygons is not currently possible, and therefore one

needs a stronger condition arising from the group action, called the Moufang condition, in

order to classify them (see [15], which gives the complete list of Moufang generalized poly-

gons); it is a strong homogeneity condition for buildings. In fact, the Moufang condition

was first introduced for irreducible, spherical buildings of rank ≥ 3; it was shown that if

such buildings are thick, then they are automatically Moufang. Generalized polygons are

nothing but rank 2 residues of irreducible, spherical buildings of rank ≥ 3; in particular,

if the latter are Moufang, so are their rank 2 residues. As a consequence, every thick

irreducible spherical building of rank at least 3 is an amalgamation, in a certain precise

sense, of Moufang generalized polygons.
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Moreover, we call (U[1,n], U1, U2, ..., Un) a root group sequence of Γ, where

U[1,n] := 〈Ui : 1 ≤ n〉.

We will need the following result throughout Sections 6-9.

Lemma 2.2 (Proposition 5.6 of [15]) Let Γ be a Moufang n-polygon. Then

there exists a bijection ϕ from the set theoretic product U1 × U2 × ...× Un

to U[1,n] given by ϕ(u1, u2, ..., un) = u1u2...un; that is, every element u of

U[1,n] is uniquely expressible as u = u1u2...un, for ui ∈ Ui.

In the following table we list the good Moufang polygons up to duality.

By a quadric of type D4 over a field K in a 7-dimensional projective space

PG(7,K) we mean the quadric containing projective 3-spaces whose stan-

dard equation is X0X1 + X2X3 + X4X5 + X6X7 = 0 (see Section 2.4.2 of

[16]). Also, by a metasymplectic space we mean that the octagon comes from

a spherical building of type F4; see Theorem 2.5.2 of [16].

n notation from [4] ambient info little proj. group duality

3 PG(2,K) projective plane PSL3(K) self-dual

4 W (K) 4-dim projective space PSp4(K) Q(5,K)

4 HQ(4,K) 5-dim projective space PSU4(K) Q(6,K)

4 HQ(5,K) 6-dim projective space PSU5(K) Q(8,K)

6 H(K) Quadric of type D4 G2(K) self-dual

6 H(K3,K) Quadric of type D4
3D4(K) self-dual

8 O(K,σ) metasymplectic space 2F4 self-dual

Table 2.1

Remark 2.3 Here we give a sort of geography of the content of [15], and

also build a bridge between this current section and the following one. All

the results on Moufang polygons that we mention from [15] are intended up
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to duality. In [15], Moufang polygons are uniquely determined by their root

group sequences, and they are also uniquely identified with some associated

algebraic structures arising from the classification. In this section we list

Moufang polygons from their root group sequences point of view, by speci-

fying their root groups together with the associated commutator relations,

while in the next section we list the algebraic structures associated to such

Moufang polygons.

As it is shown by [15, Uniqueness Lemma 7.5], the class of Moufang poly-

gons isomorphic to Γ is uniquely determined by a fixed root group sequence

of Γ. In fact, suppose that an (n + 1)-tuple (U[1,n], U1, U2, ..., Un) from an

abstract group is given (therefore not necessarily from a little projective

group of a Moufang polygon), and that it satisfies the conditionsM1−M4

as in [15, Definition 8.7] which are also satisfied by any root group sequence;

then, from such an (n+ 1)-tuple, in [15, Chapters 7 and 8] is shown how to

construct a graph, or more precisely a point-line incidence structure, which

turns out to be isomorphic to some Moufang polygon; see [15, Existence

Lemma 8.11].

In [15, Chapters 19-31], all Moufang polygons are classified. Basically,

given a Moufang polygon Γ, its root group sequence is described in terms of

some commutator relations defining U[1,n] inside the little projective group

Σ, and these data are described in terms of some underlying algebraic struc-

tures; the latter are all described in [15, Chapters 9-15] (see also the following

Section 3). Therefore, a classification of such algebraic structures provides

a classification of the associated Moufang polygons.

Following the remark above, this and the next section are organized as

follows: in this section we give examples of bad Moufang polygons in terms

of their root group sequences and commutator relations, by only mentioning

the associated algebraic strucuters; then in the following section we intro-
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duce the relevant algebraic structures in some detail (see also Remark 3.1).

However, in the following examples, and elsewhere, we do not specify how

the polygon is determined by its root group sequence. Below, throughout

Examples 2.4 - 2.9, we will denote the elements of the root groups Ui by

xi(s) for s ∈ Si, where the Si are the arising algebraic structures and are

given case by case.

Example 2.4 Moufang projective planes (n = 3): We recall that general-

ized triangles are nothing but projective planes. As shown in Chapter 19

of [15], the underlying algebraic structure arising from a Moufang projec-

tive plane is an alternative division ring, i.e. a structure A satisfying all

the axioms of division rings except associativity of multiplication, which is

replaced by: x(xy) = (xx)y and (yx)x = y(xx) for all x, y ∈ A. Also, every

alternative division ring yields a Moufang projective plane. An alternative

division ring is associative if and only if it is a field or a skew field, by which

we mean a non-commutative division ring.

By the Bruck-Kleinfeld Theorem, a proof of which can be found in Chap-

ter 20 of [15], the only non-associative alternative division rings are the

Cayley-Dickson algebras; see Example 3.2.

In terms of its root group sequence and underlying algebraic structure,

a Moufang projective plane PG(2, A) has the following commutator relation

(see 16.1 of [15]), where A is the underlying alternative division ring and

xi ∈ Ui are the elements of the (positive) root groups U1, U2 and U3, which

are all isomorphic to the additive group of A:

[x1(t), x3(u)] = x2(tu), for all t, u ∈ A.

With this data, a bad Moufang projective plane is a projective plane PG(2, A)

whose associated alternative division ring A is isomorphic to a Cayley-
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Dickson algebra.

Example 2.5 Moufang orthogonal and Hermitian quadrangles (n = 4): A

description of Moufang orthogonal/Hermitian quadrangles has already been

given in Example 3.2 of [4]; according to Definition 3.6 of [4], the Moufang

orthogonal quadrangles Q(5,K) and Q(6,K), and the Moufang Hermitian

quadrangles HQ(4,K) and HQ(5,K), are good Moufang polygons. Thus,

throughout the rest of this paper, by a bad orthogonal or Hermitian quad-

rangle we mean, respectively, Q(l,K) for l ≥ 7, and HQ(l,K) for l ≥ 6.

From the classification results given in [15] (see Chapters 23, 25 and 26),

orthogonal and Hermitian Moufang quadrangles depend on some algebraic

structures given by Example 3.3 below; thus, we will denote a Moufang

orthogonal quadrangle Q(l,K) by Q(K,L0, q), for some quadratic space

(K,L0, q), and a Moufang Hermitian quadrangleHQ(l,K) byQ(K,K0, σ, L0, q),

for some pseudo-quadratic space (K,K0, σ, L0, q). Then Q(K,L0, q) has a

root group sequence (U[1,4], U1, U2, U3, U4) whose root groups U1 and U3 are

isomorphic to the additive group of K, the root group U2 and U4 are iso-

morphic to the additive group of L0, and the following commutator relations

hold (see 16.3 of [15]):

[x2(a), x4(b)−1] = x3(f(a, b))

[x1(t), x4(a)−1] = x2(ta)x3(tq(a))

for all t ∈ K and a, b ∈ L0, where f is the bilinear form associated to

the quadratic form q.

Likewise, the root group sequence (U[1,4], U1, U2, U3, U4) ofQ(K,K0, σ, L0, q)

satisfies the following commutator relations (see 16.5 of [15]), where the

group T is defined to be T = (T, ·) := {(a, t) ∈ L0 ×K : q(a)− t ∈ K0} and

(a, t) · (b, u) = (a+ b, t+ u+ f(b, a)) for all (a, t), (b, u) ∈ T :
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[x1(a, t), x3(b, u)−1] = x2(f(a, b))

[x2(v), x4(w)−1] = x3(0, vσw + wσv)

[x1(a, t), x4(v)−1] = x2(tv)x3(av, vσtv)

with the root groups U1 and U3 being isomorphic to T , and the root groups

U2 and U4 to the additive group of K. In the particular case in which L0 = 0

we obtain HQ(4,K).

Example 2.6 Moufang mixed quadrangles (n = 4) These quadrangles are

associated with indifferent sets, with the latter defined in Example 3.4.

Thus, given a Moufang mixed quadrangle Γ, we will denote it byQ(L,L0,K,K0).

Then, according to Chapter 24 of [15], Q(L,L0,K,K0) has a root group se-

quence (U[1,4], U1, U2, U3, U4) whose root groups U1 and U3 are isomorphic

to the additive group of K0, the root groups U2 and U4 are isomorphic to

the additive group of L0, and the following commutator relation holds (see

16.4 of [15]):

[x1(t), x4(a)] = x2(t2a)x3(ta)

for all t ∈ K0 and a ∈ L0.

These quadrangles are subquadrangles of symplectic quadrangles W (K ′)

(i.e. quadrangles whose points and lines are, respectively, 1 and 2-dimensional

subspaces of a 4-dimensional vector space V over a field K ′ of characteristic

2, with V equipped with a symplectic form), and contain orthogonal quad-

rangles as subpolygons; the latter are associated with a subfield K ′′ of K ′,

e.g. K ′ = K and K ′′ = K0. We say that Q(L,L0,K,K0) is a bad mixed

quadrangle unless L = K0 = K, in which case we obtain nothing but the

associated orthogonal subquadrangle.

Example 2.7 Moufang exceptional quadrangles (n = 4): There are four

types of exceptional quadrangles, and they are all bad. Following the no-
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tation from [15], we will denote by Qi(K,L0, q) the Moufang exceptional

quadrangle of type Ei, for i = 6, 7 and 8, and by QF4(L,K,L′,K ′) the

Moufang exceptional quadrangle of type F4; or, when it is clear from the

context, we will sometimes denote them by, respectively, Qi and QF4 , for

ease.

Since for our purposes we will only make use of dimensionality data of the

algebraic structures associated to such quadrangles (see Example 3.5), we

refer to Chapters 12, 13 and 14 of [15] for their description, and to Examples

16.6 and 16.7 of [15] for the associated commutator relations.

Example 2.8 Moufang hexagons (n = 6): As shown in Chapters 15 and

30 of [15], Moufang hexagons are classified by studying their underlying

algebraic structures called hexagonal systems (J, F,N, ], T,×, 1) (with the

notation of [15]). For the split Cayley hexagon and the twisted triality

hexagon, we already defined them in Example 3.4 of [4], since they are

good hexagons; thus, by a bad Moufang hexagon we will mean an hexagon

whose underlying hexagonal system is one of those summarized and listed

in Example 3.6.

According to 16.8 of [15], a Moufang hexagon has a root group sequence

(U[1,6], U1, U2, ..., U6) whose groups U1, U3, U5 are isomorphic to the additive

group of J , the root groups U2, U4, U6 are isomorphic to the additive group

of the field F , and the following commutator relations hold:

[x1(a), x3(b)] = x2(T (a, b)),

[x3(a), x5(b)] = x4(T (a, b)),

[x1(a), x5(b)] = x2(−T (a], b))x3(a× b)x4(T (a, b])),

[x2(t), x6(u)] = x4(tu) and

[x1(a), x6(t)] = x2(−tN(a))x3(ta])x4(t2N(a))x5(−ta),

for all a, b ∈ J and t, u ∈ F .
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Example 2.9 Moufang octagons (n = 8): They are classified in Section 31

of [15]. The classification depends on some mixed quadrangle arising from

the octagon, and it also depends on a polarity (i.e. automorphism of order

two) of this quadrangle. This polarity gives rise to the Tits endomorphism

σ (see Example 3.7) associated with the field K coordinatizing the octagon,

as well as the associated mixed quadrangle. Thus, with the notation of [15],

we will denote a Moufang octagon by O(K,σ).

By 16.9 and 17.7 of [15], the root groups U1, U3, U5 and U7 are isomorphic

to the additive group of K, and the root groups U2, U4, U6 and U8 are isomor-

phic to the group K(2)
σ := (K×K, ·), where (t, u) ·(s, v) = (t+s+uσv, u+v)

for all (t, u), (s, v) ∈ K(2)
σ ; for the commutator relations, see 16.9 of [15].

By a bad Moufang octagon O(K,σ) we mean that either K is not perfect,

σ is not bijective, or possibly both.

3 Underlying algebraic structures of Moufang poly-

gons

In Section 2 of [4] we explained the coordinatization procedure in order

to give coordinates (with respect to a fixed ordinary subpolygon) to all

point/line elements of a Moufang polygon; this is the viewpoint of [8] and

[16]. This is a generalization of the usual coordinatization procedure of (Mo-

ufang) projective planes to n-gons for n ≥ 4; see Chapter 3 of [16]. However,

the classification results obtained in [15] are purely group-theoretic, and also

the coordinatization procedure is given group-theoretically.

Throughout the remaining part of this paper, we will sometimes use the

following informal meaning of coordinatization: given a generalized polygon

Γ, we say that Γ and S are associated if S is one of the algebraic structures

listed in Chapters 9-15 of [15] and arising from Γ as proved in Chapters

19-31 of [15]; see also the remark below. This is not used in a precise model-
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theoretic sense. In the examples below, we only give the main algebraic

structures which will be relevant to our proofs later on.

Remark 3.1 Typically, there is an algebraic structure S (e.g. an alterna-

tive division ring, a vector space over a field, a Jordan division algebra, and

so on), two subsets S1 and S2 of S, and functions from S1×S1, S1×S2 and/or

S2×S1 to S1 and/or S2 (e.g. a bilinear form, a quadratic form, a norm map,

and so on) which ‘determine’, up to duality, the associated generalized poly-

gon, and vice versa. For instance, sometimes S1 has the structure of a field,

S2 that of a vector space over S1, and the map S2 −→ S1 is given by a

quadratic form (this is the case of an orthogonal quadrangle - see Section

2.3 of [16]).

As done in [15], we will identify the domains of the Si (as in the remark

above) with the corresponding root groups Ui, via maps xi : Si −→ Ui, say.

Then, model-theoretically, as done in [4, Section 4], the Si play the role of

parameter sets in the coordinatization procedure as in Definition 5.4 and,

in the polygon language Linc, we definably identify them with the associ-

ated root groups Ui, which are definable (together with their action) in the

polygon language Linc. However, sometimes the algebraic structures S, and

therefore the Si, carry more structure than the Ui, and we thus need to define

this extra-structure; for instance, in the case of Moufang projective planes,

the structure S = Si, for all i, is an alternative division ring A = (A,+, ·),

and (A,+) is definably isomorphic to Ui together with its root group action,

but we also need to define the ring multiplication · in the language Linc; see

Section 6.

Example 3.2 Cayley Dickson algebra (n = 3): Let E be a field, let σ be

an automorphism of E of order 2 and let K =FixE(σ) be the subfield of E
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fixed by σ. Then E/K is a separable quadratic extension, and we denote by

N and T , respectively, the norm and trace maps of this field extension. We

then consider a quaternion algebra Q = (E/K, β) ⊆M(2, E), as defined by

[15, Definition 9.3], with dimK(Q) = 2 and M(2, E) being the set of 2 × 2

matrices with entries from E, and β ∈ K?; then Q is associative but not

commutative. There is a unique way of extending σ to an anti-automorphism

of Q whose order is two, and as shown by 9.2 of [15] in terms of σ we can

extend N and T to Q so that these maps turn out to be the restriction to

Q of, respectively, the norm and trace maps of M(2, E). Then, by 9.3 and

9.4 of [15], Q is a division algebra if and only if β /∈ N(E).

In a similar fashion, for some γ ∈ K?, we can construct an algebra

A ⊆ M(4, Q) of dimension 4 over Q, and therefore of dimension 8 over K,

so that we still have a unique way of extending N to A; see 9.8 of [15].

We denote this algebra by A = (Q, γ), and call it Cayley-Dickson algebra.

This algebra A is not necessarily associative. The key point is that A is an

alternative division ring if and only if Q is a division algebra and γ /∈ N(Q);

see 9.9(v) of [15].

Example 3.3 Quadratic and pseudo-quadratic spaces (n = 4): We recall

that the notation used in Example 2.5 is that from [16]; in particular, there

is an ambient right vector space V over some (skew) field K and a field

anti-automorphism σ of order at most 2, so that V is equipped with a σ-

quadratic form q : V −→ K/Kσ, with Kσ := {t− tσ : t ∈ K} and q defined

ad follows: q(a+ b) ≡ q(a) + q(b) + g(a, b)( mod Kσ), q(at) ≡ tσq(a)t (mod

Kσ), for all a, b ∈ V and all t ∈ K, and q(a) ≡ 0 (mod Kσ) if and only

if a = 0, for all a ∈ V , where g is either the bilinear or Hermitian form

associated to q according to whether, respectively, σ is the identity map or

not. Below by the vector space L0 of a (pseudo)quadratic space associated

to an orthogonal or Hermitian quadrangle, we mean the vector space V0 of

V satisfying the following: by Proposition 2.3.4 of [16], if q is such a non-
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degenerate σ-quadratic form (which is also assumed to have Witt index 2),

then there exist four vectors ei, i ∈ {−2,−1, 1, 2}, a subvectorspace V0 of

V , a direct sum decomposition V = e−2K ⊕ e−1K ⊕ V0 ⊕ e1K ⊕ e2K and a

non-degenerate anisotropic σ-quadratic form q0 : V0 −→ K/Kσ such that for

all v = e−2x−2 + e−1x−1 + v0 + e1x1 + e2x2, with xi ∈ K, i ∈ {−2,−1, 1, 2}

and v0 ∈ V0, we have q(v) = xσ−2x2 + xσ−1x1 + q0(v0).

A quadratic space is a triple (K,L0, q) where K is a field, L0 a vector

space over K and q a quadratic form on L0. Also, it is called anisotropic if

q(a) = 0 if and only if a = 0.

In the following we consider the σ-quadratic form q : L0 −→ K/K0 rather

than just K/Kσ, for some additive subgroup K0 of K such that Kσ ⊆ K0 ⊆

FixK(σ) := {a ∈ K : aσ = a}. Let L0 be a right vector space over K

equipped with an anisotropic σ-quadratic form q on L0 whose values are in

the quotient K/K0. An anisotropic σ-quadratic space, or pseudo-quadratic

space, is a quintuple (K,K0, σ, L0, q) such that Kσ ⊆ K0 ⊆ FixK(σ),

aσK0a ⊆ K0, for all a ∈ K, and 1 ∈ K0.

Example 3.4 Indifferent sets (n = 4): Let K be a field of characteristic 2,

and K0 be a subfield of K such that K0 contains K2 := {k2 : k ∈ K}. Then

we say that a quadruple (L,L0,K,K0) is an indifferent set if L and L0 are

vector subspaces of, respectively, K and K0, and viewed as vector spaces

over, respectively, K0 and K2; moreover, we also require that 1 ∈ L ∩ L0,

and that L and L0 generate, respectively, K and K0 as rings.

Example 3.5 Exceptional quadratic spaces (n = 4): Exceptional quadran-

gles of type Ei, for i = {6, 7, 8}, are associated to certain quadratic spaces

(K,L0, q) which are a generalization of those defined above, in terms of a

so-called norm splitting (basically, q is uniquely defined in terms of a fixed

chosen basis of L0 over E, with E/K being a separable quadratic extension);

see Definition 12.9 of [15]. These quadratic spaces are very much related to
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Clifford algebras C(q) := K⊕L0⊕ (L0⊕K L0)⊕ (L0⊕K L0⊕K L0)⊕ .../(u⊕

u− q(u) · 1); see Definition 12.21 of [15]. The key fact, to us, is that for E6,

E7 and E8, the dimension of L0 over K is, respectively, 10, 12 and 15.

Exceptional quadrangles of type F4 are related to mixed quadrangles

as explained by the following. Let K be a field of characteristic 2, L be

a separable quadratic extension of K, and σ be a non-trivial (‘involutary’)

field automorphism of L fixing K pointwise; let also K ′ be a subfield of

K containing K2, and L′ be the subfield of L generated by L2 and K ′, so

that L′/K ′ is still a separable quadratic extension (this comes free, since σ

restricts to an automorphism of L′, and its fixed subfield is K ′). If QF4 is an

exceptional quadrangle of type F4 associated with a quadratic space of type

F4, which we denote by (L,K,L′,K ′), then the root groups U1 and U3 are

isomorphic to the direct product L′×L′×K, and the root groups U2 and U4

isomorphic to the direct product L×L×K ′ (both additively); by restricting

the coordinates to {0} × {0} ×K and {0} × {0} ×K ′, we obtain the mixed

quadrangle Q(K,K ′,K,K ′), which is thus an orthogonal quadrangle if and

only if K = K ′.

Example 3.6 Hexagonal systems (n = 6): As proved in Chapters 29 and

30 of [15], hexagonal systems are the underlying algebraic structures arising

from Moufang hexagons; a complete list of hexagonal systems is given in

Chapter 15 of [15]. They are denoted by (J, F,N, ], T,×, 1), where F is a

commutative field, J a vector space over F , N is a function from J to F

called the norm of J/F , ] is a function from J to itself called adjoint, T is a

symmetric bilinear form from J × J to J , and 1 is a distinguished element

of J? called the identity; we are not going to give the precise definition

(see 15.15 of [15]), but we just quote 15.16 of [15], which says that in an

hexagonal system (J, F,N, ], T,×, 1) the functions N,T and ×, as well the

identity 1, are all uniquely determined by the function ]. It follows that we

can restrict our attention to triples (J,K, ]).
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Apart from the split Cayley hexagon and the twisted triality hexagon

(see Section 2.4 of [16]), already treated in Example 3.4 of [4] since they

are good hexagons (see also Section 2.4 of [16]), there are four other exam-

ples of Moufang hexagons; throughout this paper we will refer to them with

the same notation from [15]. However, below we also include the other two

cases: Type 1/F corresponds to split Cayley hexagons when E = F , and

Type 3/F corresponds exactly to twisted triality hexagons.

TYPE 1/F: Let E/F be a field extension such that E3 := {x3 : x ∈ E} ⊂ F .

We have two possibilities: F = E or char(F ) = 3 and the extension E/F is

purely inseparable. If ] is defined so that a] = a2 for all a ∈ E, then (E,F, ])

is an hexagonal system with N(a) = a3, a × b = 2ab and T (a, b) = 3ab for

all a, b ∈ E.

TYPE 3/F: Let E/F be a separable field extension of degree three. We

denote by L/F the normal closure of E/F , and by σ the element of order

three in Gal(L/F ). We define the function ] as follows: a] = aσaσ
2

for all

a ∈ E. Then (E,F, ]) is an hexagonal system with N and T , respectively,

the norm and trace maps of the extension E/F .

TYPE 9/F: Let E/F be a separable cubic field extension. Suppose that

the extension is normal. Let also σ be an element of the Gal(E/F ). Choose

γ ∈ F ?. We then consider the cyclic algebra of degree three D ⊆ M(3, E)

determined by E, σ and γ, with M(3, E) being the set of 3×3 matrices on

E; see Example 15.5 of [15]. It is an algebra of dimension 9 over its centre

F = Z(D). The key point is that D is a division algebra if and only if

γ /∈ N(E), where N (]) coincides with the restriction to D of the norm map

(adjoint map) of M(3, E); see 15.7, 15.8 and 15.28 of [15]. Here, by γ ∈ D

we mean its image under the map E −→ D which sends a to the diagonal
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matrix diag(a, aσ, aσ
2
), and in particular γ to diag(γ, γ, γ).

If D is a cyclic division algebra of degree three with centre F , norm map

N and adjoint map ] as above, then D is an hexagonal system; see 15.27 of

[15].

TYPE 27/F: Let D be a cyclic division algebra of degree three with cen-

tre F and norm map N , as above. Suppose that there exists an element

γ ∈ F\N(D). Then, as shown by 15.23 of [15], we can extend the maps ],N

and T to J = D⊕D⊕D, so that J is still an hexagonal system, and it has

dimension 27 over F .

TYPE 9K/F: Let D be a cyclic division algebra of degree three over a field

K, as above (which was defined of type 9/F), and let τ be an involution of

D of the second kind, i.e. an anti-automorphism of order 2 which operates

non-trivially on Z(D) = K. Let N,T and ] denote, respectively, the norm,

trace and adjoint maps of D. Let σ denote the restriction of τ to K and let

F = FixK(σ) be the fixed field of σ in K. Then τ is a σ-involution of D,

i.e. an automorphism of D as a vector space over F such that τ2 = 1 and

(ad)τ = aσdτ for all a ∈ K and d ∈ D. Finally, let J = FixD(τ). Then, by

15.30 of [15], J is closed under ] and is an hexagonal system with dimF (J) =

dimK(D) = 9.

TYPE 27K/F: Let J0 be an hexagonal system of type 27/K (rather than

F as in the notation above). It is then possible to construct from J0 a new

hexagonal system in the same fashion we constructed the haxagonal system

of type 9K/F from that of type 9/F: let σ be an automorphism of K of order

2 and let F = FixK(σ); then suppose that τ is a σ-involution of J0 which

commutes with ], and define J = FixJ0(τ). By 15.30 of [15], it follows that

J is an hexagonal system with dimFJ = 27.
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Example 3.7 Octagonal sets (n = 8): According to Definition 10.12 of

[15], an octogonal set is a pair (K,σ), where K is a field of characteristic 2

and σ is an endomorphism of K such that σ2 is the Frobenius endomorphism

which sends x to x2. In the particular case in which σ is an automorphism,

we also call the pair (K,σ) a difference field. For example, if K is a finite field

F22k+1 , then the Tits endomorphism is always the automorphism x −→ x2k
,

and the pair (F22k+1 , x −→ x2k
) is a finite difference field; see Lemma 7.6.1

of [16].

4 Some model-theoretic facts for supersimplicity

related to the algebraic structures of Section 3

The crucial model-theoretic concept in this paper is that of supersimplicity.

Supersimple theories represent a subclass of simple theories equipped with a

rank on types. A nice account of supersimple theories can be found in Chap-

ter 5 of [17]. As examples of supersimple structures, we mention pseudofinite

fields and also smoothly approximable structures; for the latter, see [3].

The appropriate rank for supersimple theories is the so-called SU-rank

(see, for instance, Definition 5.1.1 of [17]), which also makes sense for arbi-

trary first-order theories; also, supersimple theories allow a further notion of

rank called D-rank (see, for instance, Definition 5.1.13 of [17]). However, we

define the S1-rank which seems to be more suitable in a finite rank situation;

besides, in any supersimple theory T and for any formula ϕ(x̄), SU(ϕ(x̄)) =

D(ϕ(x̄)) = S1(ϕ(x̄)) whenever one of the three is finite (Lemma 6.13 and

Proposition 6.14 of [7]). Therefore, since all these notions of ranks agree if

and only if they are finite, throughout the rest of this paper we will just talk

about supersimple structures of finite rank.
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Definition 4.1 Given a formula ϕ(x̄) in a language L, with parameters

contained in a set A, we define the S1-rank of ϕ(x̄) as follows:

(i) S1(ϕ(x̄)) = −1 if ϕ(x̄) is inconsistent; otherwise S1(ϕ(x̄)) ≥ 0;

(ii) for n ≥ 0, S1(ϕ(x̄)) ≥ n + 1 if there is a formula ψ(x̄, ȳ) ∈ L

and an A-indiscernible sequence (c̄i : i < ω) such that |= ψ(x̄, c̄i) −→

ϕ(x̄) for some (any) i, and such that if i 6= j then S1(ψ(x̄, c̄i)) ≥ n and

S1(ψ(x̄, c̄i) ∧ ψ(x̄, c̄j)) < n.

Moreover, we say that a first order theory is an S1-theory if every formula

has finite S1-rank, and for every formula ψ(x̄, ȳ) and every m ≥ 0 the set

{b̄ : S1(ψ(x̄, b̄)) = m} is definable.

We now list some model-theoretic facts which will be used later on in order

to prove our main Theorem 1.1.

Proposition 4.2 (4.7 of [12]) Let F be a supersimple field, and D a finite

dimensional division algebra over F . Then D is a field.

The following is the main result from [12].

Proposition 4.3 Let L be a finite Galois extension of a supersimple field

K. Then, the norm map NL/K : L? −→ K? is surjective.

In Section 7 we will need the following proposition, which is adapted

from the proofs of 34.2 and 34.3 of [15] with almost no change; basically, we

just need to replace the finite field assumption with a supersimple field, and

make sure that all the methods used for finite fields in the proof of [15] are

also applicable for supersimple fields of finite rank.
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Proposition 4.4 Let (K,L0, q) be an anisotropic quadratic space, where

K is a supersimple field of finite rank. Then dimKL0 ≤ 2.

Proof: Suppose that dimKL0 = l ≥ 2 and let f denote the bilinear form

associated with q. Let ε be an arbitrary element of L∗0. Replacing q by

q/q(ε), we can assume that q(ε) = 1. Choose an arbitrary 2-dimensional

subspace M0 of L0 containing ε and let M⊥0 = {a ∈ L0 : f(a,M0) = 0},

where f(a,M0) = {f(a,m) : m ∈ M0}. It is clear that, by fixing a basis of

M0 over K, and by restricting q to M0, the whole structure (K,M0, q|M0),

where q|M0
denotes the restriction of q to M0, is interpretable in K, and

therefore supersimple of finite rank. We now need the following; to ease the

notation, we will still denote q|M0
by q.

Claim: M0 can be identified with a field E containing K in such a way

that q corresponds to the norm of the extension E/K.

For let δ be a vector such that ε and δ span M0 over K and let p(x) =

x2 − f(ε, δ)x + q(δ) ∈ K[x]. Also, let E be a splitting field of p over K,

let N denote the norm function of the extension E/K and let η be a root

of p in E. Since q is anisotropic and tε − δ 6= 0 for all t ∈ K, it follows

that 0 6= q(tε − δ) = q(tε) + q(−δ) + f(tε, δ) = t2 + q(δ) − tf(ε, δ) for

all t ∈ K. Thus, the polynomial p has no root in K. Then since E is the

splitting field of p over K, for the non-trivial element σ ∈ Gal(E/K) we have

N(s+tη) = (s+tη)(s+tη)σ = (s+tη)(s+tησ) = (s+tη)(s+t(f(ε, δ)−η)) =

s2 + stf(ε, δ) + t2q(δ) = q(sε + tδ), for all s, t ∈ K; notice that the second

equality follows from the fact that σ fixes K, while the third equality follows

from the fact that since η is a root of p, which implies that q(δ) = ηησ and

f(ε, δ) = ησ−η, we have N(η) = ηησ = q(δ) = ηf(ε, δ)−η2 = η(f(ε, δ)−η),

thus that ηδ = f(ε, δ)−η. Therefore, q and N correspond under the K vector

space isomorphism from M0 to E sending ε to 1 and δ to η. This ends the

claim.

Therefore, by the claim, there is a field E containing K and an iso-
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morphism from M0 to E such that q restricted to M0 corresponds to the

norm of the extension E/K under the isomorphism. Thus, by the choice

of p and by the construction of E as the splitting field of p, the restric-

tion of f to M0 corresponds to the trace of E/K (i.e. the vectors ε and δ

generate M0, and the trace of the minimal polynomial of E/K is f(ε, δ),

since the minimal polynomial of the extension E/F is p). Since K is

supersimple, it is perfect (see Fact 4.1(ii) of [12]); hence, every finite de-

gree extension of K is separable. Thus, the extension E/K is separable

and its trace is non-degenerate (if not, by the claim, E could not be the

splitting field of p). This implies that M0 ∩ M⊥0 = 0. By Proposition

4.3, q(M0) = K. Let b ∈ M⊥0 . Then q(a + b) = q(a) + q(b) for all

a ∈ M0. Since q(M0) = K, we can choose a ∈ M0 such that q(a + b) = 0.

Since q is anisotropic, it follows that a + b = 0, so b ∈ M0 ∩ M⊥0 =

0. Thus, M⊥0 = 0. Hence, L0 = M0. This proves that dimKL0 ≤ 2.

(Q.E.D.)

Applying similar methods from the study of finite Moufang polygons as

we did for the above proposition, we can prove the following; again, this

is a result which derives from [15] (see pages 377 and 378) with almost no

change. We omit the proof.

Proposition 4.5 Let (K,K0, σ, L0, q) be an anisotropic σ-quadratic space,

where (K,σ) is a supersimple difference field of finite rank. Then dimK(L0) ≤

1.

Remark 4.6 Since the main objective of the remaining sections will be to

prove Theorem 1.1(i), we mention some properties which are satisfied by

fields whose first-order theory is supersimple of finite rank. At the moment

it is not yet clear how to characterize a supersimple finite rank field, but we

do have examples: for instance, measurable fields (in the sense of Definition
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5.1 of [9]) which are indeed supersimple of finite rank. Measurable fields are

conjectured to be pseudofinite, that is to be perfect, to have a unique Galois

extension of each finite degree, and to be PAC (pseudo-algebraically closed),

i.e. every absolutely irreducible variety has a rational point; the first two

properties are satisfied by measurable fields, while we do not know about

the PAC condition. More generally, perfect PAC fields with a small Galois

group are also known to be supersimple of finite rank (where by ‘small’ we

mean that for each natural number n there is a bounded number of non-

isomorphic extensions of degree n). Among other results on supersimple

fields, also oriented towards the above conjecture, we mention [10] and [11].

If the measurable field conjecture were true, by the main result from [4]

and Theorem 1.1, it would follow that measurable Moufang polygons are

just those infinite Moufang polygons which arise over pseudofinite fields.

5 Definability of the field from the polygon and

restriction of coordinates

In this section we focus on Moufang polygons whose associated algebraic

structures arise over some field K (for instance, here we do not consider

projective planes over Cayley Dickson algebras). When this happens, we

aim to define the field K. For given x ∈ P ∪ L, it is sometimes possible

to define a multiplication ·, say, on the right loop structure (B,+) = ({y ∈

P ∪ L : d(x, y) = 1},+) defined as in Section 1 of [8], so that (B,+, ·)

becomes a field. We have a very useful result which allows us to define a

multiplication on (B,+). The idea comes from [8] and makes use of some

results stated in Section 8.4 of [16]. First, we need to collect a series of facts.

Proposition 5.1 (Lemma 4.9 of [8]) Let K be a field and G ⊆ PGL(2,K)

be a 2-transitive subgroup with respect to the usual action on the projective
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line P1
K = K ∪ {∞}. Then PSL2(K) ⊆ G; in particular, PSL2(K) has no

proper 2-transitive subgroups.

Proposition 5.2 (Lemma 3.3 of [8]) Let Γ be a Moufang polygon. Suppose

that one of the groups of projectivities Π(x) is (as a permutation group)

isomorphic to a subgroup of PGL(2,K), for some field K. Then PSL2(K)

is a definable subgroup of Π(x).

Proposition 5.3 (Lemma 3.1 of [8]) Let K be a field. Then in the group

PSL2(K) a copy K ′ of the field K is definable.

Recall from Section 8.4 of [16] the notion of projectivity groups. For many

Moufang polygons Γ = (P,L, I) the group of projectivities Π(x), for some

x ∈ P ∪ L, satisfies the assumption on G in Proposition 5.2. Therefore, in

such cases, the field is definable by the propositions above; to see this, we

quote the Table 8.2 on page 378 of [16], which gives the representations of

the projectivity groups of some Moufang polygons as groups acting on the

set B(x) for some x ∈ P ∪ L. For ‘representation’ we mean the equivalence

class of the permutation representation (Π(x), B1(x)), which depends only

on the sort of element x, i.e. the permutation representation (Π(x), B1(x))

may differ from (Π(x′), B1(x′)) only if x is a point (line) and x′ is a line

(point); see Lemma 1.5.1 of [16]. Notice that, in particular, all the good

Moufang polygons are covered in the table below, though some of them

only over finite fields.

The representation of the projectivity group associated to any line l is

denoted by (Π(Γ), X(Γ)), while that associated to any point x is denoted by

(Π∗(Γ), X∗(Γ)). Notice that the labelling used to denote the polygons differs

from that of Table 8.2 of [16], since we want consistency with our notation.

Apart from the classical notation (i.e. PG(1,K), PGL2(K), PSL2(K),

etc.), for the ‘mysterious’ groups PSLK
′

2 (K), PGLq2(q2), and so on, we refer

to Section 8.4 of [16]; likewise, see Section 7.5.3 of [16] for the Hermitian
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unital UH(q), and Section 7.6 of [16] for the Suzuki quadrangle Sz(K,σ) and

its Suzuki-Tits ovoid ΘST (K,σ). Also, H(K,K ′,K,K ′) denotes the mixed

hexagon as defined in 3.5.3 of [16], which is, in our notation, the hexagon of

Type 1/K over a field K of characteristic 3.

n the polygon Γ (Π(Γ), X(Γ)) (Π∗(Γ), X∗(Γ))

3 PG(2,K) (PGL2(K), PG(1,K)) (PGL2(K), PG(1,K))

4 Q(K,K ′,K,K ′) (PSLK
′

2 (K), PG(1,K)) (PSLK
2

2 (K ′), PG(1,K ′))

4 W (K) (PGL2(K), PG(1,K)) (PSL2(K), PG(1,K))

4 HQ(4, q2) (PSLq2(q2), PG(1, q2)) (PGL2(q), PG(1, q))

4 HQ(5, q2) (PGLq2(q2), PG(1, q2)) (PGU3(q), UH(q))

6 H(K,K ′,K,K ′) (PGL2(K), PG(1,K)) (PGL2(K ′), PG(1,K ′))

6 H(K) (PGL2(K), PG(1,K)) (PGL2(K), PG(1,K))

6 T (q3, q) (PGL2(q3), PG(1, q3)) (PGL2(q), PG(1, q))

8 O(K,σ) (PGL2(K), PG(1,K)) (Sz(K,σ), θST (K,σ))

Table 5.1

We close this section by giving some further information on the coor-

dinatization procedure of Moufang polygons; this will be relevant is some

steps through Sections 6-9. First, we recall Definition 2.8 of [4], but we

rephrase it in a more self-contained way, and refer the reader to Section 2 of

[4] for more details. In particular, below, by a Schubert cell we mean the set

Bk(x, y) := Bk(y)\Bk−1(x) for some x, y ∈ Γ and sone fixed k < n. For ease

of notation, from now on we will denote by Ui the root group Uαi associated

to the root αi = (xi, xi+1, ..., xi+n).

Definition 5.4 Let Γ be a Moufang n-polygon. We fix an ordinary sub-

polygon A = (x0, x1, ..., x2n−1) ⊂ Γ and a root α0 = (x0, x1, ..., xn) ⊂ A, and

label the corrisponding root groups U1, U2, ..., Un, as well the opposite root
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groups Un+1, Un+2, ..., U2n. We then consider an element x ∈ Bk(x2n−1, x0),

for some k < n, and let (x2n−1, x0, x
′
1, x
′
2, ..., x

′
k = x) denote the correspond-

ing (k + 1)-chain. Note that d(x′i, xn+i) = n for i = 1, 2, ..., k, so we may

put ti(x) = projn−1(x′i, xn+i−1) ∈ Ti, where Ti = B1(xn+i−1)\{xn+1} are

the parameter sets of the coordinatization of Γ. We have therefore attached

coordinates t1(x), t2(x), ..., tk(x) ∈ T1 × T2 × ...× Tk to the element x.

Let Γ be a Moufang n-polygon, and let us fix A,α and Ui as in the

definition above. In the language Linc of Γ, we can define a (right) left loop

(B0,+0) on the set B1(x0) = {y : d(x, y) = 1}, as done in Section 1 of [8];

see also Section 4 of [4], where we definably identify (with parameter from

A) the root groups U2i with (B0,+0). Also, by Lemma 4.1 of [4] we can

definably extend the group action of U2i to the whole of Γ; this expands

the proof of [8, Lemma 3.2] by making use of the Beth’s Definability The-

orem. Similarly, we can define another (right) left loop (B1,+1) on the set

B1(x1) = {y : d(x1, y) = 1}, and then definably identify it with the root

groups U2i+1. Moreover, by Lemma 2.2, every element u of U[1,n] is uniquely

expressible as u = u1u2...un, for ui ∈ Ui. Then, we can see U[1,n] as living

in the little projective group Σ associated to Γ. Since we have defined each

Ui, for i = 1, 2, ..., n, and because of the uniqueness assumption of Lemma

2.2, it follows that U[1,n] is definable too by just specifying for every element

u = u1u2...un ∈ U[1,n] the action of each ui on the whole of Γ. Finally, as

already discussed in Section 3, from the root sequence (U[1,n], U1, U2, ..., Un)

and the commutator relations which characterize the polygon in terms of

Chapter 16 of [15], some algebraic structures Si arise, and their underlying

sets will form the parameter sets Ti of the coordinatization of Γ: there will

be definable maps ui which associate to each ti ∈ Ti the (unique) corrispond-

ing element ui = ui(ti), for each i.
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Discussion 5.5 We now discuss how to construct, in a definable way, a

certain (sub)polygon Γ′ associated with some Moufang polygon Γ; below,

we list all the possible cases where such a situation arises.

(1) All the Moufang Hermitian quadrangles Γ = HQ(l,K) for l ≥ 5

are extensions of the Moufang Hermitian quadrangle Γ′ = HQ(4,K). This

is Theorem 21.11 of [15], which is proved in Chapter 25 of [15]. See also

Remark 21.16 of [15]. An important point is that given a Moufang Her-

mitian quadrangle HQ(l,K) for l ≥ 4, with associated σ-quadratic space

(K,K0, σ, L0, q) as defined in the last paragraph of Example 3.3, by ex-

cluding either L0 = 0 or σ = 1 we can have any Hermitian quadrangle

Γ but Γ′ = HQ(4,K). We are in the situation in which we can label

the root groups of Γ′ exactly as those of Γ; namely, we fix an apartment

A′ = (x′0, x
′
1, ..., x

′
7) ⊂ Γ′ and a root α′0 = (x′0, x

′
1, ..., x

′
4) ⊂ A′, and la-

bel the corresponding root groups by U ′i such that if Ui is the root group

of Γ associated with the root αi = (xi, xi+1, ..., xi+4), then U ′i is the root

group of Γ′ associated with the root α′i = (x′i, x
′
i+1, ..., x

′
i+4). Then we know

that the root groups U ′2i are all equal to the roots U2i and isomorphic to

the additive group of K, while the root groups U ′2i+1 are subgroups of the

U2i+1 and isomorphic to a certain group (T, ·) as given in Example 2.5. In

particular, as shown in the proof of [15, Theorem 21.11], the root groups

U ′2i+1 are identified with Yi := U
[2]
[1,4], i.e. the pointwise stabilizer in U[1,4] of

{x ∈ Γ : d(x, x0) ≤ 2}, which is a definable set in Γ. We can now consider

the new root group sequence (U[1,4], U
′
1, U2, U

′
3, U4), which is thus definable

in Γ. From the latter, we can then reconstruct the Moufang Hermitian quad-

rangle Γ′ via coordinatization as in Definition 5.4, where the coordinates of

every element will be a string of alternating coordinates from the underlying

sets of K and K0; the latter, as well the anti-automorphism σ associated to

K, is also definable as FixK(σ) (see Proposition 7.2 for more details).
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(2) We have a similar result to the above also for Moufang mixed quad-

rangles and exceptional quadrangles of type Ei, for i = 6, 7 and 8. In both

cases the arising subpolygon is a Moufang orthogonal quadrangle. With

similar notation, we recover the root groups U ′i as U ′i = [Ui−1, Ui+1].

(3) Slightly different is the case of a Moufang octagon Γ. We need to

reconstruct a mixed Moufang quadrangle Γ′ which is associated to Γ as

explained in Section 9. We recall from Example 3.7 that Γ is uniquely

associated to an octagonal set (K,σ), and from Example 2.9 that its root

groups U2i+1 are isomorphic to the additive group of K while the root groups

U2i are isomorphic to a certain group K
(2)
σ . To define Γ′, we first restrict

the coordinates (t1, t2, ..., t8) of the elements of Γ to (t1, t3, t5, t7), via the

coordinates restriction procedure from U1 × U2 × ... × U8 to U1 × {1U2} ×

U3 × {1U4}...U7 × {1U7}, and then reconstruct Γ′ from the new root group

sequence (U ′[1,4], U
′
1, U

′
2, U

′
3, U

′
4) as in Chapter 24 of [15]. In general, from

the latter, it does not follow that U ′[1,4] = 〈U1, U3, U5, U7〉 and U ′i = Ui,

but this is indeed the case for supersimple Moufang octagons, since the

arising Moufang mixed quadrangle Γ′ will be an orthogonal quadrangle; see

Proposition 7.6.

6 Moufang projective planes

Let Γ = PG(2, A) be a Moufang projective plane associated with an al-

ternative division ring A = (A,+, ·), as in Example 2.4. Fix an ordinary

subpolygon Γ0 = (x0, x1, ..., x6) ⊂ Γ, a root α = (x0, x1, x2, x3) ⊂ Γ0, and

label the corresponding positive root groups by U1, U2 and U3, and the op-

posite root groups by U4, U5 and U6.
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Lemma 6.1 Let Γ = PG(2, A) be a Moufang projective plane over an al-

ternative division ring A. Then A is definable in PG(2, A).

Proof: We fix the above setting: Γ0, α, Ui, and so on. It follows from Section

1 of [8] that all the root groups, together with their action on the whole of

Γ, are parameter definable (with parameters from Γ0) and isomorphic to

(A,+), and that there exists a parameter definable identification between

any two of them; see also Section 4 of [4].

We now aim to define the multiplication · of A. By Lemma 2.2, with

n = 3, there exists a bijection ϕ from the set theoretic product U1×U2×U3 to

U[1,3] := 〈U1, U2, U3〉; that is, every element u of U[1,3] is uniquely expressible

as u = u1u2u3, for ui ∈ Ui. Then, we can see U[1,3] as living in the little

projective group Σ, say, associated to Γ. Since we have defined each Ui,

for i = 1, 2, 3, then U[1,3] is definable. Let now [ , ] denote the group

theoretic commutator, interpreted in the little projective group Σ. Then,

again by Lemma 2.2, for every a, b ∈ A there exists a unique c ∈ A such that

[u1(a), u3(b)] = u2(c) and c = ab; thus, the multiplication · is interpreted in

U[1,3] by the following first-order definable operation ×:

u1(a)× u3(b) := [u1(a), u3(b)] = u2(c)

where u1(a), u2(c) and u3(b) are the unique elements which identify, respec-

tively, a, c and b. (Q.E.D)

Corollary 6.2 Any supersimple Moufang projective plane of finite rank is

necessarily associated with a supersimple field of finite rank.

Proof: Let Γ = PG(2, A) be a supersimple Moufang projective plane of finite

rank over an alternative division ring A. Then, by Lemma 6.1, A is definable

in Γ. Hence, A is a supersimple alternative division ring of finite rank. We

have two possibilities: if A is associative, then A is a either a field or a

skew-field, but in this case A is necessarily a field (i.e. A is commutative)
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because every supersimple division ring is commutative (from [12]); if A is

non-associative, then A has to be isomorphic to a Cayley Dickson algebra

Q = (Q, σ) = ((E/K), β) (see Example 3.2), with K a subring of Q, and

therefore of A, as well the centre of Q. Hence, K is definable in A, and so in

Γ, and therefore supersimple of finite rank. Moreover, since the quaternion

division algebra Q is an algebra of degree 4 over K, we can also define Q

(making use of a basis over K).

We may thus assume that A is a Cayley Dickson algebra, otherwise the

assertion follows. Then, A, K and Q are definable. In particular, see Ex-

ample 3.2, Q is a supersimple division algebra over the field K. With this

proviso, it follows from Proposition 4.2 that Q is a field, therefore commu-

tative. This contradicts the construction of Q (and therefore of A), which is

non-commutative. Hence, A cannot be a Cayley Dickson algebra, and Γ can

only be associated with fields (which are therefore supersimple because defin-

able). (Q.E.D)

7 Moufang quadrangles

We start with orthogonal and Hermitian quadrangles. In the following, and

later on, we should not confuse the vector space L0 with the ambient vector

space V as given by Example 3.2 of [4] (see also Example 3.3); in particular,

care must be taken about the respective dimensions, over the base field, of

L0 and V .

Proposition 7.1 Let Q(l,K) be a supersimple Moufang orthogonal quad-

rangle of finite rank over a field K in an l-dimensional vector space V , with

l ≥ 5. Then:

(i) K is definable, and therefore supersimple of finite rank;
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(ii) Q(l,K) is, up to duality, isomorphic to either Q(5,K) or Q(6,K).

Proof: Let Γ = Q(K,L0, q) be a Moufang orthogonal quadrangle associated

with an anisotropic quadratic space (K,L0, q) as defined in Example 2.5;

then L0 is a vector subspace of V , and it is, up to isomorphism, V0 in

the decomposition V = e−2K ⊕ e−1K ⊕ V0 ⊕ e1K ⊕ e2K, as explained in

the last sentence of the first paragraph of Example 3.3. It follows that

V0 6= 0 (otherwise, dimK(V ) ≤ 4 and so Γ would not be thick, contradicting

Corollary 2.3.6 of [16]). Since the elements of the root groups of Γ are

induced by linear maps of the ambient vector space V (see Chapter 8 of

[16], and also Proposition 3.5 of [8]), the little projective group induces a

subgroup of PGL2(K) on any line pencil/point row of Γ; thus, the induced

group of projectivities satisfies the assumption of Propositions 5.1 and 5.2

(see Section 8.5 of [15] for more details about projective embeddings of

generalized quadrangles). Then, by Proposition 5.3, we can define the field

K, which is therefore supersimple of finite rank; hence, we can define the

vector space L0 over K (basically making use of a chosen basis over K). It

follows, by Proposition 4.4, that dimK(L0) ≤ 2.

If dimK(L0) = 1, then L0 = K and the quadrangle Γ is, up to dual-

ity (see Proposition 3.4.13 of [16]), the orthogonal quadrangle Q(5,K) in

some 5-dimensional vector space V over the field K. If dimK(L0) = 2,

then there exists a 2-dimensional vector space E over K (and the associ-

ated σ, q and N) as in the proof of Proposition 4.4. In this case Γ is, up to

duality (see Proposition 3.4.9 of [16]), the orthogonal quadrangle Q(6,K).

(Q.E.D)

Next, we give an analogue of Proposition 7.1 for Moufang Hermitian

quadrangles; however, attention must be paid to the case in which we have

a skew field K. We need to make sure that no Moufang Hermitian quadran-
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gle H(4,K) over a skew field K can be supersimple of finite rank. Hence,

we just need to show that K is definable in the polygon. For the latter

would imply that K is commutative, contradicting the fact that a skew field

is non-commutative. Recall that, see Section 2, by Linc we denote the lan-

guage of polygons.

Proposition 7.2 Let K be a (skew) field with an antiautomorphism σ, and

consider a Moufang Hermitian quadrangle H(4,K) over K. Then we have

the following:

(i) K and σ are definable in the language Linc of H(4,K);

(ii) if K is a skew field, then H(4,K) is not supersimple of finite rank.

Proof: A proof of (i) is given by [8, Proposition 3.7], which explicitly handles

only the case of a skew field (in [8] the authors refer to skew fields as ‘proper’

skew fields); however, the proof is also valid for fields. Notice that in [8] the

statement of the proposition refers to the finite Morley rank case; however,

the proof makes no use of finite Morley rank. Thus, we use their proof to

define the (skew) field also in the supersimple case. Then (ii) follows from

(i). (Q.E.D)

Remark 7.3 This can be used as an alternative to the proof above. Since

we are classifying Moufang quadrangles (whose first order theory is super-

simple of finite rank) up to duality, we refer to Propositions 3.4.9, 3.4.11

and 3.4.13 of [15], for the only three existing cases of an isomorphism be-

tween an orthogonal quadrangle and the dual of an Hermitian one, and vice

versa, and between a symplectic quadrangle and the dual of an orthogonal

quadrangle, and vice versa; in particular, Proposition 3.4.11 tells us that the

Hermitian quadrangle H(4, L), for some skew field L over its centre K (as a

quaternion algebra), is isomorphic to the dual of an orthogonal quadrangle
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Q(8,K) associated with an anisotropic quadratic space (K,L0, q) where the

dimension of L0 over K is 4. Hence, by Proposition 4.4 such an orthogonal

quadrangle cannot be supersimple of finite rank.

As we said in Discussion 5.5, all the Moufang Hermitian quadranglesHQ(l,K)

for l ≥ 5 are extensions of the Moufang Hermitian quadrangle HQ(4,K).

We next prove that the latter together with HQ(5,K) are the only supersim-

ple Moufang Hermitian quadragles of finite rank; first, we need the following

lemma.

Lemma 7.4 Let Γ = HQ(l,K), for l ≥ 5, be a supersimple Moufang Her-

mitian quadrangle of finite rank which extends Γ′ = HQ(4,K). Then Γ′ is

interpretable in Γ.

Proof: This is just Discussion 5.5(1). (Q.E.D)

Corollary 7.5 Let HQ(l,K) be a supersimple Moufang Hermitian quad-

rangle of finite rank over a (skew) difference field (K,σ) in an l-dimensional

vector space V , l ≥ 4. Then:

(i) K and σ are definable, and therefore (K,σ) is a supersimple difference

field of finite rank;

(ii)HQ(l,K) is isomorphic, up to duality, either toHQ(4,K) orHQ(5,K).

Proof: Let Γ = HQ(l,K), l ≥ 4, be a supersimple Moufang Hermitian

quadrangle associated with an anisotropic σ-quadratic space (K,K0, σ, L0, q)

as in Example 2.5. Suppose first that Γ = HQ(4,K). Then, by Proposition

7.2, (K,σ) is definable and therefore supersimple of finite rank. Suppose

now that Γ = HQ(l,K), for l ≥ 5. Then, it follows from Lemma 7.4 that

Γ′ = HQ(4,K) is parameter definable in Γ, hence supersimple of finite rank.

Therefore, as before, (K,σ) is definable in Γ. This proves (i).
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Thus, (K,σ) is a supersimple difference field of finite rank, and we can

apply Proposition 4.5; it follows that dimK(L0) ≤ 1. Recall now that we

have the decomposition of the ambient vector space V in V = e−2K⊕e−1K⊕

V0 ⊕ e1K ⊕ e2K, as in Example 3.3, where V0 is L0. Hence, we have only

two cases: if dim(L0) = 0 then Γ is HQ(4,K), and if dim(L0) = 1 then Γ is

HQ(5,K); the latter has actually two subcases, according to the character-

istic of K, but we refer to Section 5.5.5, Step II, of [16], and Remark 21.16 of

[15], for the details. (Q.E.D)

We now turn to Moufang mixed quadrangles, see Example 2.6. The

following is similar to [8, Proposition 3.6], which states that a Moufang

mixed quadrangle Γ has finite Morley rank if and only if K is algebraically

closed, in which case Γ is exactly an orthogonal quadrangle; and, more

precisely, it is in fact Q(5,K). As usual, the task is to define K in Γ.

Since the definability of K in Proposition 3.6 of [8] makes no use of finite

Morley rank (although the latter assumption implies that K is algebraically

closed), we apply it below with our supersimple finite rank assumption; since

the proof is practically identical to that of [8], we do not give all the details,

but we do indicate the key point.

Proposition 7.6 Let Q(L,L0,K,K0) be an infinite supersimple Moufang

mixed quadrangle of finite rank. Then:

(i) K coincides with K0 and is definable;

(ii) Q(L,L0,K,K0) is, up to duality, definably isomorphic to either

Q(5,K) or Q(6,K).

Sketch of the proof: Let Γ be a Moufang mixed quadrangle Q(L,L0,K,K0)

as in Example 2.6, and suppose that its first-order theory is supersim-

ple of finite rank. There is an orthogonal quadrangle Γ′ associated to

Γ, and the argument of restricting coordinates and definably reconstruct-
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ing it is identical to that of the Hermitian case in Lemma 7.4. We omit

the details. Since Γ′ is definable in Γ, and therefore supersimple of fi-

nite rank, it follows by Proposition 7.1 that Γ′ is, up to duality, either

Q(5,K ′) or Q(6,K ′), where K ′ is the definable underlying field of Γ′, there-

fore supersimple of finite rank. Since, by [12], every supersimple field is

perfect, it follows that (K ′)2 = K ′. Hence, K2 ⊆ K ′ = (K ′)2 ⊆ K2,

namely K ′ = K2; thus, since K2 = K ′ = (K ′)2 = (K2)2, it follows that

K = K2, and therefore K and K ′ coincide, and so K is definable. So Γ

and Q(5,K ′) (or Q(6,K ′)) coincide, since they arise from the same alge-

braic structure and have the same parameter sets. Thus, we conclude that

Γ is an orthogonal quadrangle over a supersimple field K of finite rank.

(Q.E.D)

Finally, we are left with Moufang exceptional quadrangles of type Ei,

with i ∈ {6, 7, 8}, and F4. They can be handled all together in the next

proposition.

Proposition 7.7 Let Γ be an exceptional Moufang quadrangle either of

type Ei, for i = 6, 7, 8, or F4. Then Γ cannot be supersimple of finite rank.

Proof: Suppose first that Γ is of type Ei. As in Example 3.5, we know that

the underlying algebraic structure of Γ is some generalization of a quadratic

space (K,L0, q), and that the dimension of L0 over K is, respectively, 10, 12

and 15. However, by Theorem 21.12(ii) of [15], we also know that Γ extends

an orthogonal quadrangle Γ′, and that Γ′ is definable in Γ by Discussion

5.5(2). In particular, we reconstruct Γ′ over a quadratic space (K ′, L′0, q
′)

with K ′ = K. Then, by Proposition 7.1, Γ′ is either Q(5,K) or Q(6,K).

We can thus define the field K, which is then supersimple of finite rank.

However, since the dimKL0 is either 10, 12 or 15, and since we can define
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the vector space L0 over K, it follows from Proposition 4.4 that Γ cannot

be of type Ei.

Suppose now that Γ is of type F4; then, from the description in [15],

Γ has two kind of mixed subquadrangles up to isomorphism. Let Γ′ de-

note such a subquadrangle of Γ. Then, again with the same argument

of restricting coordinates, Γ′ is definable in Γ. Hence, as in the previ-

ous cases, we can also define the field K, say, corresponding to Γ′. How-

ever, by Chapter 28 of [15], the Moufang quadrangle QF4(L,K,L′,K ′) can

only be associated with a field K that is not perfect, which contradicts

the assumption of supersimplicity; see Fact 4.1(ii) of [12], and Remark 4.6.

(Q.E.D)

Corollary 7.8 Let Γ be a supersimple Moufang quadrangle of finite rank.

Then Γ is, up to duality, either Q(5,K), Q(6,K), H(4,K) or H(5,K), for

some supersimple field K of finite rank.

Proof: This is an immediate consequence of Propositions 7.1, 7.2, 7.6 and

7.7, and Corollary 7.5. (Q.E.D)

8 Moufang hexagons

We do have Moufang hexagons whose first order theory is supersimple of

finite rank. Indeed, as a result of the main theorem from [4], there are

two examples inherited from the corresponding classes of finite Moufang

hexagons as non-principal ultraproducts of these classes; namely, with the

notation of Example 3.6, the split Cayley hexagon associated with an hexag-

onal system of type 1/F (only the case in which E = F ) and the triality

twisted hexagon associated with an hexagonal system of type 3/F. There-

fore, we are left with the Moufang hexagons whose hexagonal systems are
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of type 9/F, 27/F, 9K/F, 27K/F and the case of type 1/F in characteristic

three. We prove in the following that these remaining Moufang hexagons

cannot be supersimple of finite rank.

Theorem 8.1 Let H be a supersimple Moufang hexagon of finite rank.

Then H is either isomorphic to a split Cayley hexagon or a twisted triality

hexagon over a supersimple field of finite rank.

Proof: Let H be a supersimple Moufang hexagon of finite rank, which

we also suppose to be bad (one of those listed above). Fix an ordinary

subpolygon A = (x0, x1, ..., x11), a root α = (x0, x1, ..., x6) ⊆ A, and the

corresponding root groups U1, U2, ..., U6. Suppose first that H is associated

with any of the hexagonal systems of type 9/F, 27/F, 9K/F or 27K/F.

These four cases can be treated all together since all of them arise over an

hexagonal system J which depends on the construction of a cyclic division

algebra D of degree three as given in the case of type 9/F of Definition 3.8;

notice that, in particular, the latter case is the only situation in which J is

exactly D. Then, as explained in the beginning of Section 5, we can define

(with parameters) the root groups Ui given in Example 2.8; in particular,

we can define the additive group (F,+) of the field F and the additive group

(J,+) of the vector space J . Therefore, we can definably identify the root

groups Ui, for i = 2, 4, 6, with (F,+).

We now proceed with exactly the same argument we used in Lemmas

6.1 and 7.4, by applying Lemma 2.2 (with n = 6): there exists a bijection ϕ

from the set theoretic product U1×U2× ...×U6 to U[1,6] := 〈U1, U2, ..., U6〉;

that is, every element u of U[1,6] is uniquely expressible as u = u1u2...u6, for

Ui ∈ Ui. Then we can see U[1,6] as living in the little projective group Σ, say,

of H. Hence, by the fourth commutator relation in Example 2.8, since we

can define the commutator operation in Σ, we can define the multiplicative

operation ×, say, of the field F as follows: for all t, u ∈ F , we define t×u = v,
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where v is the unique element of F such that x2(t)× x6(u) = x4(v). Hence,

the whole field structure of F is definable, and so F is a supersimple field

of finite rank. From F we can therefore definably recover the structure of

J as a 9-dimensional vector space over F ; in particular, we can also define

the corresponding norm map N . Then, by Proposition 4.3, N has to be

surjective, but this is a contradiction since N is not surjective; see again

Example 3.6.

Hence, we may assume that H is associated with a hexagonal system of

type 1/F with char(F ) = 3. We know by definition that F is not perfect.

We can proceed exactly as in the previous cases, and so define F . Since F is

supersimple, the field F is perfect (by Fact 4.1(ii) of [12]), which is a contra-

diction. (Q.E.D)

9 Moufang Octagons

Let Γ = O(K,σ) be a Moufang octagon as defined in Example 2.9. We

assume that Γ is supersimple of finite rank. We fix an ordinary suboctagon

A = (x0, x1, ..., x15) ⊆ Γ and a root α = (x0, x1, ..., x8) ⊆ A. Also, associated

to A, we label the corresponding root groups by Ui, for i = {1, 2, ..., 8}. By

Section 4 of [4], we can define all the root groups Ui together with their action

on the whole of Γ. In particular, we can define (inside the little projective

group associated to Γ) the group U[1,8] := 〈U1, U2, ..., U8〉, which by Lemma

2.2 (with n = 8) is in bijection with the product U1 × U2 × ... × U8; also,

by restricting only to the units 1Ui ∈ Ui for i = {2, 4, 6, 8}, we can define

U ′[1,4] := 〈U1, U3, U5, U7〉 ≤ U[1,8] (recall that, see Example 2.9, the root

groups U1, U3, U5 and U7 are chosen and labelled in a way that they all are

isomorphic to the additive group of K).

In Chapters 7 and 8 of [15] is shown how to construct from the definable

quintuple (U ′[1,4], U1, U3, U5, U7) a Moufang quadrangle, which is of mixed
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type by 31.8 of [15]. Since, by the data above, this construction is first

order definable, the resulting mixed Moufang quadrangle is definable in Γ.

Denote this quadrangle by Γ′ = Q(L,L0,K,K0). It follows by Proposition

7.6 that Γ′ is eitherQ(5,K) orQ(6,K); in particular, the fieldK is definable,

therefore K is supersimple of finite rank. It remains to prove the definability

of the endomorphism σ of K.

We need the following proposition from 6.1 of [15], which is also valid for

every Moufang n-polygon, so not just for octagons (replacing 8 by n and the

labelling of the root groups accordingly); below, we label the root groups by

elements of the integers modulo 8, i.e. Ui = Ui+8 for all i ∈ Z (see Definition

4.14 of [15]).

Proposition 9.1 For each i, there exist unique functions κi, λi : Ui\{1Ui} −→

Ui+8\{1Ui+8} such that xaiλi(ai)
i−1 = xi+1 and x

κi(ai)ai

i+1 = xi−1 for all ai ∈

Ui\{1Ui}. The product µi(ai) := κi(ai)aiλi(ai) fixes xi and xi+8, reflects A,

and U
µi(ai)
j = U2i+8−j for each ai ∈ Ui\{1Ui} and each j.

Proposition 9.2 Let Γ = O(K,σ) be a Moufang octagon. Then:

(i) (K,σ) is definable in Γ;

(ii) if Γ is supersimple of finite rank, then (K,σ) is definable difference

field.

Proof: Let Γ = O(K,σ) be a Moufang octagon, and let us fix the above

setting, namely A,α and Ui. To prove (i), we need to show that (K,σ) is

definable in the language Linc of Γ. By the uniqueness property of Proposi-

tion 9.1, the functions κi and λi are A-definable, hence µi, as an element of

U[1,8] := 〈U1, U2, ..., U8〉, is A-definable. By 31.9(i) of [15] there exists an ele-

ment e8 ∈ U8\{1U8} such that µ8(e8)2 = 1. The element e8 will play the role

of a parameter. It follows from the proposition above that Uµ8(e8)
i = U8−i

for every i ∈ {1, 3, 5, 7}. Therefore µ8(e8) acts on the mixed quadrangle
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Γ′ = Q(L,L0,K,K0) associated with Γ; as remarked above, we can define

both Γ′ and K in Γ, and that K = K0. Put now α := µ8(e8). It then follows

by 24.6 of [15] that there exist an endomorphism σ of K such that (K,σ)

is an octagonal set as defined in Example 3.7, and that x3(t)α = x2(tσ)

for all t ∈ K. Since α is definable, from the equation x3(t)α = x2(tσ) it

follows that σ is definable. This proves (i). For (ii), if Γ is a supersimple

Moufang octagon of finite rank, it then follows from (i) that (K,σ) is defin-

able. Thus, to show that (K,σ) is a difference field (see Example 3.7), we

have to show that the endomorphism σ of K is actually an automorphism.

By definition of a Tits endomorphism, we know that Kσ2
= K2. Since

K is of characteristic 2, it follows that Kσ2
= K2 = K, and therefore that

Kσ = K. (Q.E.D)

We summarize the results of Sections 6, 7, 8 and 9 into the following main

result.

Corollary 9.3 Let Γ = Γ(K) be a supersimple finite rank Moufang poly-

gon. Then:

(i) the (difference) field K is definable in Γ;

(ii) Γ is good.

Proof. It follows immediately from Corollaries 6.2 and 7.8, and Proposition

8.1 and 9.2. (Q.E.D)
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