
A PROPERTY OF SMALL GROUPS
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Abstract. A group is small if it has countably many pure n-types for each
integer n. It is shown that in a small group, subgroups which are definable with
parameters in a finitely generated algebraic closure satisfy local descending
chain conditions. An infinite small group has an infinite abelian subgroup,
which may not be definable. A nilpotent small group is the central product
of a definable divisible group with one of bounded exponent. In a group
with simple theory, any set of pairwise commuting elements is contained in a
definable finite-by-abelian subgroup. As a corollary, a group with small and
simple theory has an infinite definable finite-by-abelian subgoup.

A connected group of Morley rank one is abelian [20, Reineke]. Better, a connected
omega-stable group of minimal Morley rank is abelian, from which it follows that
every infinite omega-stable group has a definable infinite abelian subgroup [6, Cher-
lin]. Berline and Lascar generalised this to superstable groups in [4]. More recently,
Poizat introduced d-minimal structures which englobe minimal ones, and proved
a d-minimal group to be abelian-by-finite [17]. He went further showing that an
infinite group of finite Cantor rank has a definable abelian infinite subgroup [18].
More generally, we show that an infinite weakly small group has an infinite abelian
subgroup, which may however not be definable.
We then turn to groups definable in a small and simple theory. Recall that an
omega-categorical superstable group is abelian-by-finite [3, Baur, Cherlin and Mac-
intyre]. In [23], Wagner showed any small stable infinite group to have an infinite
abelian subgroup. Later on, Evans and Wagner proved that an omega-categorical
supersimple group is finite-by-abelian-by-finite and has finite SU-rank [7]. We show
that an infinite group the theory of which is small and simple has an infinite defin-
able finite-by-abelian subgroup. However it is still unknown whether a stable group
must have an infinite abelian subgroup.

Definition 1. A theory is small if it has countably many n-types without param-
eters for every integer n. A structure is small if its theory is so.

Note that smallness is preserved by interpretation, and by adding finitely many
parameters to the language. Small theories arise when one wishes to count the
number of pairwise non-isomorphic countable models of a complete first order the-
ory in a countable language. Such a theory having fewer than the maximal number
of pairwise non-isomorphic models is small indeed.
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Definition 2. (Belegradek) A structure is weakly small if it has countably many
1-types over a for any finite tuple a coming from the structure.

Weakly small structures were introduced by Belegradek to give a common general-
isation of small and minimal structures.

Definition 3. (Poizat [17]) An infinite structure is d-minimal if any of its partitions
has no more than d infinite definable subsets.

Every d-minimal structure in a countable language is weakly small, as there are
at most d non algebraic types over every finite parameter set. Note that weak
smallness neither is a property of the theory, nor allows the use of compactness,
nor guarantees that the set of 2-types be countable. It allows arguments using
formulae in one free variable only. Those formulae, the parameters of which lie in
a fixed finite set, are ranked by Cantor rank and degree.

Examples. Let G be the sum over all prime numbers p of cyclic groups of order p.
For every set of primes P , the type saying that x is p-divisible if and only if p ∈ P
is finitely consistent. So G is not weakly small.
Let p be a prime, and H the sum over all natural numbers n of the cyclic groups
of order pn. The theory of H eliminates quantifiers up to pp-formulae, so every
definable subset of H is a boolean combination of cosets of subgroups of the form
pnH, or pnx = 0. This allows only countably many 1-types over every finite subset,
so H is weakly small. But Fact 4.1 and Remark 4.3 show that it is not small.

1. Cantor rank

Given a structure M , a set A of parameters lying inside M , and an A-definable
subset X of M , we define the Cantor rank of X over A by the following induction :

CBA(X) ≥ 0 if X is not empty,
CBA(X) ≥ α + 1 if there are infinitely many disjoint A-definable subsets
of X having Cantor rank over A at least α.
CBA(X) ≥ λ for a limit ordinal λ, if CBA(X) is at least α for every α less
than λ.

If the structure is weakly small, this process eventually stops, and X has ordinal
Cantor rank over A. The Cantor degree of X over A is the greatest integer d such
that there is a partition of X into d A-definable sets having maximal Cantor rank
over A. We shall write dCBA(X) for this degree. It is also the number of complete
types over A having maximal Cantor rank over A.
Definable bounded-to-one maps preserve Cantor rank, and the degree variations
can be bounded by the maximal size of the finite fibres :

Lemma 1.1. Let X and Y be A-definable sets, and f an A-definable map from X
to Y , then

(1) If f is onto, CBA(X) ≥ CBA(Y ).
(2) If f is n-to-one, CBA(Y ) ≥ CBA(X).
(3) If f is n-to-one and onto, then X and Y have the same Cantor rank over

A, and
dCBA(Y ) ≤ dCBA(X) ≤ n · dCBA(Y )
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Remark 1.2. The first two points appear for one-to-one maps together with the
introduction of Morley’s rank [12, Theorem 2.3]. Poizat extends them for n-to-one
maps to groups with finite Cantor rank [18, Lemme 1]. To the author’s knowledge,
the result concerning the degree is new.

Proof. We may add A to the language. For point one, we show inductively that
CB(X) is at least CB(Y ). If CB(Y ) ≥ α + 1, there are infinitely many disjoint
definable sets Yi in Y of rank at least α. Their pre-images are disjoint and have
rank at least α by induction, so CB(X) ≥ α+ 1.
For point two, we show inductively that CB(Y ) is at least CB(X). Suppose
CB(X) ≥ α + 1. In X, there are infinitely many disjoint definable sets Xi of
rank at least α. As f is n-to-one, f(X1) intersects only finitely many of the sets
f(Xi). One may remove those sets and assume f(X1) intersects none. Iterating,
we may assume that all the sets f(Xi) are disjoint. By induction hypothesis, their
rank is at least α, so CB(Y ) ≥ α+ 1.
For the third point, if Y has degree d, then there is a partition of Y in definable
sets Y1, . . . , Yd with maximal rank. The pre-images of the sets Yi have maximal
rank according to the first point and form a partition of X, so the degree dCB(X)
is at least dCB(Y ).
For the converse inequality, let Y have degree d, and let Y1 be a subset of Y of
degree one. It is enough to show that f−1(Y1) has degree at most n. Suppose
there are n + 1 disjoint definable subsets X0, . . . , Xn of f−1(Y1) with maximal
rank. As the map f is n-to-one, the intersection

⋂n
i=0 f(Xi) is empty, so there is

a least intersection
⋂
i∈I f(Xi) having same rank as Y . Thus, the intersection of⋂

i∈I f(Xi) and f(Xi) has small rank for every i out of I, and dCB(Y1) is at least
two, a contradiction. �

Remark 1.3. In point (3), to deduce that X and Y have the same Cantor rank, the
fibres of f must be bounded, and not only finite. Consider for instance Y to be
the set of all natural numbers together with the ordering, and X to be the set of
pairs of integers (x, y) so that y ≤ x. When projecting on the second coordinate,
every fibre is infinite, so CBN(X) = 2 ; when projecting on the first coordinate,
the fibres are finite, but still CBN(Y ) = 1.

If A is a subset of B and X an A-definable set, then CBA(X) is less or equal to
CBB(X). Note that the Cantor rank (respectively degree) of X over A or over the
definable closure of A are the same. The Cantor rank over A also does not change
when adding algebraic parameters to A, and the degree variation can be bounded :

Lemma 1.4. Let X be a definable set without parameters, and a an algebraic tuple
of degree n over the empty set, then

(1) CBa(X) = CB∅(X)
(2) dCB∅(X) ≤ dCBa(X) ≤ n · dCB∅(X)

Proof. For the first point, let us show inductively that CB∅(X) is at least CBa(X).
Suppose CBa(X) is at least α+1. There are infinitely many disjoint a-definable Xi

of rank at least α. By induction hypothesis, for every i, the setXi and a conjugate of
X1 have same rank (computed over the set ā of all conjugates of a). So a conjugate
of X1 intersects only finitely many Xi in a set of maximal rank over ā. One can
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take off these Xi, cut off a small ranked subset of the remaining Xi and assume
that the conjugates of X1 do not intersect any Xi. Iterating, one may assume that
no conjugate of Xi intersects Xj when i differs from j. Let Xi denote the finite
union of the conjugates of Xi under the action of the automorphisms group of the
structure. CBa(Xi) equals CBa(Xi), so by induction hypothesis, CB∅(Xi) is at
least α. As the sets Xi are disjoint, CB∅(X) ≥ α+ 1. Conversely, the Cantor rank
of a set increases when one allows new calculation parameters, so the first point is
proved.
For the second point, we may assume that X has degree one over the empty set.
Suppose that X has degree at least n+ 1 over a. Let X1 be a subset of X definable
over a with maximal rank over a and degree one. The union X1 of its conjugates
has degree at most n over a, so X1 and its complement in X both have maximal
rank over a, hence over the empty set, a contradiction. �

Remark 1.5. As the degree may increase when adding algebraic parameters, X may
not have ordinal Cantor rank over the algebraic closure of a. We shall call local
Cantor rank of X over acl(a) its Cantor rank over any parameter b defining X and
having the same algebraic closure as a.

Remark 1.6. Lemmas 1.1 and 1.4 are both corollaries of the following topological
result, the proof of which follows exactly the one of Lemma 1.1 : if X and Y are
two compact Hausdorff topological spaces and f is an open continuous n-to-one
surjection from X onto Y , then X and Y have the same Cantor-Bendixson rank
and the inequalities dCB(Y ) ≤ dCB(X) ≤ n ·dCB(Y ) hold. Let R be a continuous
equivalence relation on a topological space X, that is a relation such that the
canonical map X → X/R be open. If every equivalence class of R has size at most
n, as the map X → X/R is also continuous by definition, it follows that X has
the same Cantor-Bendixson rank as the quotient space X/R and the inequalities
dCB(X) ≤ dCB(X/R) ≤ n · dCB(X) hold. Applied to the space of types over the
algebraic parameter a of a given structure M , modulo the equivalence relation "to
be conjugated under the action of the automorphisms group of M fixing a", the
latter yields Lemma 1.4.

2. General facts about weakly small groups

As an immediate corollary of Lemma 1.1 we obtain a result of Wagner :

Corollary 2.1. (Wagner [23]) If f is a definable group homomorphism of a weakly
small group G, the kernel of which has at most n elements, then f(G) has index at
most n in G.

Proof. Otherwise, one can find a finite tuple a over which at least n + 1 cosets
of f(G) are definable, so G has degree over a at least (n + 1) · dCBa(f(G)), a
contradiction with Lemma 1.1. �

Corollary 2.2. In a weakly small group, there are at most n conjugacy classes of
elements the centraliser of which has order at most n.

Proof. Otherwise, let us pick n+ 1 conjugacy classes C1, . . . , Cn+1 of elements the
centraliser of which has order at most n, and choose a finite tuple a over which



A PROPERTY OF SMALL GROUPS 5

these classes are definable. According to Lemma 1.1, each class Ci has maximal
Cantor rank over a and degree at least dCBa(G)/n, a contradiction. �

For any set X definable in an omega-stable group, one can define the stabiliser of
X up to some small Morley ranked set. In a weakly small group, we can define a
local stabiliser, where local means "in a finitely generated algebraic closure".

Definition 2.3. Let X be a definable set without parameters in a weakly small
group G, and let Γ stand for the algebraic closure of a finite tuple g in G. One
defines the local almost stabiliser of X in Γ to be

StabΓ(X) = {x ∈ Γ : CBx,g(xX∆X) < CBg(X)}

Corollary 2.4. StabΓ(X) is a subgroup of Γ. If X is invariant under conjugation
by Γ, then StabΓ(X) is normal in Γ.

Proof. Let a and b be in StabΓ(X). The sets X, aX and bX have the same types of
maximal rank computed over g, a, b, so CBg,a,b(aX∆bX) is smaller than CBg(X).
As the rank is preserved under definable bijections, and when adding algebraic
parameters,

CBg,a,b(aX∆bX) = CBg,a,b(b−1aX∆X) = CBg,b−1a(b−1aX∆X)

so b−1a belongs to StabΓ(X). �

Recall that for a definable generic set X of an omega-stable group G, the stabiliser
of X has finite index in G. For a weakly small group, we have a local version of
this fact :

Proposition 2.5. Let G be a weakly small group, g a finite tuple of G, and X a
g-definable subset of X. If δ is a subgroup of dcl(g) and if X has maximal Cantor
rank over g, then Stabδ(X) has finite index in δ.

Proof. Let m and l be the degree of G, and X. There are m types of maximal rank
in G, which we call its generic types. Thus, for a translate of X by an element of
δ, there are at most Clm choices for its generic types. If one chooses Clm + 1 cosets
of X, at least two of them have the same generic types. �

Weakly small groups definable over a finitely generated algebraic closure satisfy a
local descending chain condition :

Lemma 2.6. Let G be a weakly small group, and H2 ≤ H1 two subgroups of G
definable without parameters. If H2 ∩ acl(∅) is properly contained in H1 ∩ acl(∅),
then either CB(H2) < CB(H1), or dCB(H2) < dCB(H1). If H1 and H2 have
same Cantor rank, then H2 ∩ acl(∅) has finite index in H1 ∩ acl(∅).

Proof. If b is an element of acl(∅) in H1 \H2, the finite union b.H2 of conjugates of
b.H2 under the action of automorphisms group ofG is definable without parameters,
and is disjoint fromH2. IfH1 andH2 have the same Cantor rank, b.H2 has maximal
Cantor rank in H1, so there must be only finitely many choices for b.H2, and thus
for b.H2. �

Theorem 2.7. In a weakly small group, the trace over acl(∅) of a descending chain
of acl(∅)-definable subgroups becomes stationary after finitely many steps.
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Proof. Let G1 ≥ G2 ≥ . . . be a descending chain of acl(∅)-definable subgroups.
After finitely many steps, the local Cantor rank becomes constant according to
Lemma 1.4, so we may assume it is constant. Then Gi ∩ acl(∅) has finite index
in G1 ∩ acl(∅) for every i after Lemma 2.6. We may add finitely many algebraic
parameters to the language and assume that G1 be definable over the empty set.
We write G̊i∩acl(∅) for the intersection of conjugates of Gi∩acl(∅) under the action
of the automorphisms group of the structure. The intersection of the G̊i ∩ acl(∅)
is the intersection of finitely many of them by Lemma 2.6 : it is a subgroup of
G0 ∩ acl(∅) the index of which is finite, and which belongs to every Gi. The
sequence of indexes [G0 ∩ acl(∅) : Gi ∩ acl(∅)] is thus bounded, and bounds the
length of the chain G1 ∩ acl(∅) ≥ G2 ∩ acl(∅) ≥ . . . . �

Remark 2.8. We shall call this result the weakly small chain condition. Note that
Theorem 2.7 is trivial for an ℵ0-categorical group, as well as if one replaces the
algebraic closure by the definable closure. Also, the same proof shows that in
a weakly small structure, the trace over acl(∅) of a descending chain of acl(∅)-
definable equivalence relations becomes constant, provided that all two classes of
each relation be in definable bijection.

3. A property of small groups

Proposition 3.1. An infinite group whose centre has infinite index, and with only
one non-central conjugacy class, is not weakly small.

Remark 3.2. This is the analogue of the stable case [16, Théorème 3.10] stating
that an infinite group with only one non-trivial conjugacy class is unstable, which
itself comes from the minimal case [20, Reineke].

Proof. Note that the group has no second centre. Moding out the centre, we may
suppose that the centre is trivial. If there is a non-trivial involution, every element
is an involution and the group is abelian, a contradiction. Any non-trivial element
g is conjugated to g−1 by some element, say h. So h is non-trivial and conjugated
to h2, which equals hk for some k. Write δ for the definable closure of h and k.
The chain

C(C(h)) ∩ δ > C(C(hk)) ∩ δ > C(C(hk
2
)) ∩ δ > · · ·

is infinite, contradicting the weakly small chain condition 2.7. �

Proposition 3.3. An infinite non-abelian weakly small group has arbitrary large
proper centralisers.

Proof. For a contradiction, suppose all the centralisers be finite of bounded size.
Note that the group has finite exponent, for otherwise it would have arbitrary large
proper centralisers.
(1) The group G has finitely many conjugacy classes. As the centralisers have
bounded size, we apply Corollary 2.2. We may add a member ai of each class to
the language.
(2) We may assume every proper normal subgroup of G to be trivial. A normal
subgroup must be central or have finite index in G. One may replace G by H ∪{1},
where H is a minimal union of conjugacy classes stable under multiplication.
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(3) G is not locally finite. A group of bounded exponent cannot have finitely
generated subgroups of arbitrary large finite size, as the size of a Sylow of every finite
subgroup is bounded (a Sylow subgroup has a non-trivial centre, the centraliser of
any element of which contains the whole Sylow). Moreover, as the group has finite
exponent, the number of Sylow subgroups of a finite group is bounded. So, let Γ
be a finitely generated infinite algebraic closure.
(4) Γ has finitely many conjugacy classes. Every x in Γ can be written ayi , with y
algebraic over ai and x as the centralisers are finite.
(5) One may assume the proper normal subgroups of Γ to be trivial. No proper sub-
union of conjugacy classes of G is stable by multiplication. We may add finitely
many parameters witnessing this fact to the language.
(6) For every conjugacy class aG, the group StabΓ(aG) equals Γ. The local stabiliser
of aG in Γ is a normal subgroup of Γ, non-trivial by Proposition 2.5.
(7) G has only one non-central conjugacy class. We use an argument of Poizat
in [17], which we shall call Poizat’s symmetry argument. Let a and b be non-central
elements. For every conjugate xbx−1 of b except a set of small Cantor rank over
a and b, the elements axbx−1 and b are conjugates. As a surjection with bounded
fibres preserves the rank, for all x except a set of small rank, axbx−1 and b are
conjugates. Symmetrically, for all x except a set of small rank, x−1axb and a are
conjugates : one can find some x such that axbx−1 and x−1axb are conjugated
respectively to b and a. Thus, b and a lie in the same conjugacy class.
(8) Final contradiction. G is a group with bounded exponent and only one non-
trivial conjugacy class. Such a group does not exist [20, 17, Reineke]. For instance,
as a group of exponent 2 is abelian, the group should have exponent a prime p 6= 2.
If x 6= 1, the elements x and x−1 would be conjugated by some element y of order 2
modulo the centraliser of x, which prevents the group from having exponent p. �

Theorem 3.4. A small infinite omega-saturated group has an infinite abelian sub-
group.

Proof. If it is not abelian, by compactness and saturation, it has an infinite proper
centraliser. Iterating, one either ends on an infinite abelian centraliser, or builds
an infinite chain of pairwise commuting elements. �

Appealing to Hall-Kulatilaka-Kargopolov, who use Feit-Thomson’s Theorem, one
can say much more. Recall that Hall-Kulatilaka-Kargopolov state that an infinite
locally finite group has an infinite abelian subgroup [10].

Theorem 3.5. An infinite weakly small group has an infinite abelian subgroup.

Proof. Let G be a counter-example. We may assume that its centre is trivial.
According to Hall-Kulatilaka-Kargopolov, the group G is not locally finite. An
infinite finitely generated subgroup γ splits into finitely many conjugacy classes
(in the sense of G). The almost stabiliser of every class is a normal subgroup of
finite index in γ. After Poizat’s symmetry argument, it is the union of the neutral
element and only one class C, which we shall call the privileged class, as it is the
same for every finitely generated group γ.
Let g be an element in the algebraic closure Γ of γ. The almost stabiliser of gG in
Γ is a normal subgroup of Γ containing one element of the privileged class C ; as
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two elements in C ∩ Γ are conjugated in Γ, this almost stabiliser contains C ∩ Γ.
It follows that the almost stabiliser of every conjugacy class of elements in Γ is
C ∩Γ plus the neutral. As this holds for every finitely generated Γ, the set C ∪{1}
is a subgroup of G. Replacing G by the later, we are back to the case where all
centralisers are bounded, a contradiction with Proposition 3.3. �

Remark 3.6. The initial proof of Theorem 3.4 used Hall-Kulatilaka-Kargopolov.
The author is grateful to Poizat who adapted the proof to a weakly small group
and made clarifying remarks.

Remark 3.7. One cannot expect the infinite abelian group to be definable, as
Plotkin found infinite ℵ0-categorical groups without infinite definable abelian sub-
groups [15].

4. Small nilpotent groups

We now switch to small nilpotent groups. Let us first recall that the structure of
small abelian pure groups is already known :

Fact 4.1. (Wagner [24]) A small abelian group is the direct sum of a definable
divisible group with one of bounded exponent.

Remark 4.2. This does not hold for a weakly small abelian group : consider the
sum over n of cyclic groups of order pn. One just has that for every n, any element
is the sum of an n-divisible element with one of finite order.

Remark 4.3. Since Prüfer and Baer, one knows that a divisible abelian group is iso-
morphic to direct sums of copies of Q and Prüfer groups, whereas an abelian group
of bounded exponent is isomorphic to a direct sum of cyclic groups [9]. It follows
that the theory of a small pure group has countably many denumerable pairwise
non-isomorphic models ; thus, Vaught’s conjecture holds for the theory of a pure
abelian group. More generally, Vaught’s conjecture holds for every complete first
order theory of module over a countable Dedekind ring (and thus for a module over
Z), as well as for several classes of modules over countable rings [19, Puninskaya].

In an abelian group, every divisible group is a direct summand [2, Theorem 1].
This may not be true for a central divisible subgroup of an arbitrary group, even
if the ambient group is nilpotent. For instance, consider the subgroup of GL3(C)
the elements of which are upper triangular matrices with one entries on the main
diagonal ; it is a nilpotent group whose center Z is divisible, isomorphic to C×, but
Z is no direct summand. However, we claim the following :

Proposition 4.4. Let G be a group, and D a divisible subgroup of the centre. There
exists a subset A of G, invariant under conjugation and containing every power of
its elements, with in addition

G = D ·A and D ∩A = 1

Proof. If A1 ⊂ A2 ⊂ · · · is an increasing chain of subsets each of which contains all
its powers and such that Ai ∩D be trivial, then

⋃
Ai still contains all its powers

and
⋃
Ai ∩ D is trivial too. By Zorn’s Lemma there is a maximal subset A with

these properties. We show that D ·A equals G. Otherwise, there exists an x not in
D ·A. By maximality of A, there is an integer n greater than one, and some d in D
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so that xn equal d. We may chose n minimal with this property. Let e be an nth
root of d−1 in D, and let y equal xe. Then yn equals one, and y does not belong to
D ·A either. But the set of powers of y intersects D : there is some integer m < n
such that ym lie in D, a contradiction. �

In [13, Nesin], it is shown that an omega-stable nilpotent group is the central
product of a definable group with one of bounded exponent. We show that this
also holds for a small nilpotent group. Recall that a group G is the central product
of two of its subgroups, if it is the product of these subgroups and if moreover their
intersection lies in the centre of G. For a group G and a subset A of G, we shall
write An for the set of nth-powers of A, and G′ for the derived subgroup of G. The
following algebraic facts about nilpotent groups can be found in [5, Chapter 1].

Fact 4.5. In a nilpotent group, any divisible subgroup commutes with every element
of finite order.

Fact 4.6. A nilpotent group G is divisible if and only if G/G′ is so.

Proposition 4.7. Let G be a nilpotent small group, and D a divisible subgroup
containing Gn. Then G equals the product D · F where F has bounded exponent.

Proof. By induction on the class of nilpotency of G. If G is abelian, Baer Theorem
[2] concludes. Suppose that the result hold for any small nilpotent group of class
c, suppose that G be nilpotent of class c+ 1, and let Z(G) be the center of G. The
group G/Z(G) is nilpotent of class c. The quotient D · Z(G)/Z(G) is a divisible
subgroup and contains (G/Z(G))n. By induction, G/Z(G) equals the product
(D ·Z(G)/Z(G)) · (C/Z(G)) with C/Z(G) of finite exponent, say m. On the other
hand, the centre is the sum of a divisible subgroup D0 with a subgroup F0 of finite
exponent,say l, so Clm is included in D0. By Proposition 4.4, D0 is a "direct
summand" of C by some set A say ; but Alm is included in D0 ∩A, so A has finite
exponent, and

G = D · Z(G) ·D0 ·A = (D ·D0) · (F0 ·A)
Note that D contains D0, so G equals D ·B where B is a set having finite exponent.
As the Sylow p-subgroups are normal in G, the subgroup generated by B has
bounded exponent. �

Theorem 4.8. A small nilpotent group is the central product of a definable divisible
group with one of bounded exponent.

Proof. If the group is abelian, the result follows from Fact 4.1. If G is nilpotent
of class c+ 1, then G/Z(G) is the central sum of some divisible A/Z(G) and some
B/Z(G) of exponent n. Besides, Z(G) equals D0 ⊕ F0 where F0 has exponent m.
The product Am · D0 is a divisible part that we call X. Let D be the subgroup
generated by X. The abelian group D/D′ generated by X ·D′/D′ is divisible, and
so is D by Fact 4.6 ; so D equals X. As Gmn is included in D, we may apply
Proposition 4.7 and conclude by Fact 4.5. �

5. Groups in a small and simple theory

We shall not define what a simple structure is, but refer the interested reader to [25,
Wagner]. We just recall the uniform descending chain condition up to finite index
in a group with simple theory :
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Fact 5.1. (Wagner [25, Theorem 4.2.12]) In a group with simple theory, let H1, H2 . . .
be a family of subgroups defined respectively by formulae f(x, a1), f(x, a2) . . . where
f(x, y) is a fixed formula. Any descending chain of definable intersections of Hi

becomes stationary after finitely many steps, up to finite index.

Recall that two subgroups of a given group are commensurable if the index of their
intersection is finite in both of them.

Fact 5.2. (Schlichting [21, 25]) Let G be a group and H a family of uniformly com-
mensurable subgroups. There is a subgroup N of G commensurable with members
of H and invariant under the action of the automorphisms group of G stabilising
the family H setwise. If the members of H are definable, so is N . More precisely,
N is a finite extension of a finite intersection of elements in H.

We now turn to small simple groups. The first step is to appeal to Theorem 3.5.
Note that in a stable group, every set of pairwise commuting elements is trivially
contained in a definable abelian subgroup. Shelah showed that this also holds in a
dependent group [22]. The second step is the following :

Proposition 5.3. In a group with simple theory, every set of pairwise commuting
elements is contained in a definable finite-by-abelian subgroup.

Proof. As the hypothesis and conclusion are properties of the theory, we may as-
sume the group to be sufficiently saturated. Let G be this group, and A this
abelian set. By Fact 5.1, there exists a finite intersection H of centralisers of el-
ements in A such that H be minimal up to finite index. The group H contains
A, and the centraliser of every element in A has finite index in H. Consider the
almost centre Z∗(H) of H consisting of elements in H the centraliser of which
has finite index in H. It is a subgroup containing A. According to [25, Lemma
4.1.15], a definable subgroup B of G has finite index in G if and only if the equality
DG(B,ϕ, k) = DG(G,ϕ, k) holds for every formula ϕ and integer k. So we have the
following equality

Z∗(H) = {h ∈ H : DG(CH(h), ϕ, k) ≥ DG(H,ϕ, k), ϕ formula, k integer}

Recall that for a partial type π(x,A), the sentence "DG(π(x,A), ϕ, k) ≥ n" is a
type-definable condition on A [25, Remark 4.1.5], so the group Z∗(H) is type-
definable. By compactness and saturation, every centraliser has bounded index
in H, and every conjugacy class of H is boundedly finite. So Z∗(H) is definable.
According to [14, Theorem 3.1], the derived subgroup of Z∗(H) is finite. �

Corollary 5.4. An infinite group the theory of which is small and simple has an
infinite definable finite-by-abelian subgroup.

Proof. Follows from Theorem 3.4 and Proposition 5.3. �

Remark 5.5. The result is best possible as there are omega-categorical simple groups
without infinite abelian definable subgroups. For instance, infinite extraspecial
groups of exponent p are omega-categorical [8, Felgner], supersimple of SU rank
one as they can be interpreted in an infinite dimensional vector space over Fp
endowed with a non degenerate skew-symmetric bilinear form. They have no infinite
definable subgroup by [15, Plotkin].



A PROPERTY OF SMALL GROUPS 11

Corollary 5.6. A small supersimple group of SU rank one is finite-by-abelian-by-
finite.

As noticed by Aldama in his thesis [1], Shelah’s result concerning abelian subsets of
a dependent group extends to a nilpotent subset of a dependent group. In a group
definable in a simple theory, we may say the following :

Definition 5.7. A group G is almost solvable of class n if there is a decreasing
sequence of subgroups Gi so that G0 = G D G′ D G1 D G′1 · · · D G′n D Gn+1 = {1}
and so that the indexes [G′i : Gi+1] be finite for all i.

An almost solvable group of class zero is a finite-by-abelian group.

Corollary 5.8. In a group with simple theory, let n be an integer, and A be a
solvable subgroup of class n. Then A is contained in a definable almost solvable
group of class n.

Proof. By induction on the integer n, let us show that there is some definable almost
solvable group N of class n containing A. When n equals zero, this is Proposition
5.3. Suppose that the result hold until n − 1. By induction hypothesis, the group
A′ is contained in a definable almost solvable group H of class n − 1. We shall
now use an argument of Wagner in [11]. Let I be an intersection of conjugates of
H by elements in A, minimal up to finite index. I does exist by Fact 5.1. Let us
write H for the set of conjugates of I by elements in A. After Fact 5.2, there is
a group N commensurable with I and invariant by conjugation under elements of
A. Moreover, N is a finite extension of a finite intersection of elements in H, so
it contains A′, and is a finite extension of an almost solvable group of class n− 1.
The group NA/A is abelian : according to the preceeding Proposition, there is a
definable group M so that

NA/A ≤M/N ≤ NG(N)/N

where M ′/N is finite. Thus, M is almost solvable of class n. �

Question. We may define a group G to be almost nilpotent of class n if there exists
a decreasing sequence of subgroupsGi so thatG0 = G D G1 D G2 · · · D Gn+1 = {1}
and such that the indexes [[G,Gi] : Gi+1] be finite for all i. In a group with simple
theory, is any nilpotent subgroup of class n contained in a definable almost nilpotent
group of class n?
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