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Abstract. There are strong analogies between groups definable in o-minimal
structures and real Lie groups. Nevertheless, unlike the real case, not every
definable group has maximal definably compact subgroups. We study definable
groups G which are not definably compact showing that they have a unique
maximal normal definable torsion-free subgroup N ; the quotient G/N always
has maximal definably compact subgroups, and for every such a K there is a
maximal definable torsion-free subgroup H such that G/N can be decomposed
as G/N = KH, with K ∩ H = {e}. Thus G is definably homotopy equivalent
to K. When G is solvable then G/N is already definably compact.

In any case (even when G has no maximal definably compact subgroup) we
find a definable Lie-like decomposition of G where the role of maximal tori is
played by maximal 0-subgroups.
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1. Introduction

Since Pillay proved that every n-dimensional group definable in an o-minimal
structure with universe M is a topological group locally definably homeomorphic
to Mn ([Pi1]), many other analogies with real Lie groups have been shown.

Especially in the compact case the algebraic structure of the groups in the two
categories is very similar. For instance the torsion subgroup of abelian groups is the
same ([EdOt, Pe]), every solvable definably compact definably connected group is
abelian ([PeSta1]), every definably connected definably compact group is the union
of the conjugates of any maximal definable torus ([Be], [Ed2]) and the derived
subgroup of a definably connected definably compact group equals the set of its
commutators ([HrPePi2]).
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Moreover, as Pillay first conjectured ([Pi2]), for every definably compact group
G there is a canonical surjective homomorphism π : G → G/G00 into a compact
real Lie group G/G00 ([Pi2, BeOtPePi]) with the same dimension ([HrPePi1, Pe]),
with the same homotopy type ([Ba, BeMa]) and elementarily equivalent to G in
the group structure ([HrPePi2]).

On the other hand, in the non-compact case some outstanding differences come
out. If a connected real Lie group is non-compact, it contains maximal compact
subgroups and admits the following decomposition:

Theorem 1.1. (Iwasawa, [Iw, Theorem 6]). Let L be a connected real Lie group.
Then L has maximal compact subgroups, all connected and conjugate to each other.
If K is one of them, there are subgroups H1, . . . ,Hs of L, all isomorphic to R, such
that any x ∈ L can be decomposed uniquely and continuously in the form

x = kh1 · · ·hs, k ∈ K, hi ∈ Hi.

In particular L is homeomorphic to K × Rs.

Note that if L is solvable then K is abelian, so it is a maximal torus of L.

We remark that in the literature the “Iwasawa decomposition” in general refers
to a decomposition of semisimple groups (see 5.1) which is an intermediate step for
Theorem 1.1.

A fundamental result in order to obtain an o-minimal analogue of 1.1 is the
following theorem of Peterzil and Steinhorn: if a definable group is not definably
compact then it contains a 1-dimensional definable torsion-free subgroup ([PeSte]).

However, unlike the real case, definable groups may not have maximal definably
compact subgroups. One can see for instance [PeSte, 5.6] or Strzebonski’s example
[Str, 5.3], which is a 2-dimensional abelian definably connected group G defined
in the field of the real numbers with infinitely many torsion elements but with no
infinite definably compact subgroup.

Strzebonski’s group G is a 0-group, namely it has the property that for every
proper definable subgroup K (including K = {e}), E(G/K) = 0, where E denotes
the o-minimal Euler characteristic (see [Dr] and section 3). Since definable torsion-
free groups H are such that E(H) = ±1 ([Str]), it follows that any definable
0-group G which is not definably compact cannot be decomposed definably as in
1.1, otherwise E(G/K) = E(H1) · · ·E(Hs) = ±1.

Actually, we show that this is a general fact, in the sense that if a definably
connected group G cannot be decomposed as a product of two definable subgroups
K and H, where K is definably compact and H is torsion-free, then it contains
0-groups which are not definably compact.

More precisely, if a definably connected group G has torsion, then E(G) = 0
([Str, PePiSta1]) and by DCC on definable subgroups it contains some 0-subgroup
([Str]). Each 0-subgroup is contained in a maximal one, called a 0-Sylow (by analogy
with p-Sylow subgroups in finite group theory), and all maximal 0-subgroups are
conjugate to each other ([Str]). Therefore if a 0-Sylow of a definable group G is
definably compact, all 0-subgroups of G are definably compact.

We prove that in this case for every 0-Sylow A of G, there is a definable decom-
position:

G = KH K =
⋃
x∈K

Ax K ∩H = {e},

where K and H are definably connected subgroups, with K maximal definably
compact and H maximal torsion-free. Thus we have a perfect analogy with the
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real case, where for every maximal torus T of a connected Lie group L there is a
maximal compact subgroup K of G which is the union of the conjugates of T in K
and there are subgroups H1, . . . ,Hs as in 1.1.

Otherwise, if A is a 0-Sylow of G which is not definably compact, there is a
definable decomposition (which generalizes the previous one)

G = PH, P =
⋃
x∈P

Ax

where P and H are again definably connected subgroups with H maximal torsion-
free, but P of course is not definably compact (it contains A which is not definably
compact) and there is an infinite intersection P ∩H. It turns out that P contains
a complement K of H in G (abstractly isomorphic to P/(P ∩H) which is definably
compact), but K cannot be definable (since A is a 0-group).

An important tool is the existence of a unique maximal normal definable torsion-
free subgroup N in every definable group G (3.6). It is contained in each maximal
definable torsion-free subgroup H of the above Lie-like decomposition. In general
H is not normal in G and so it contains N properly. (Otherwise H = N).

If G is solvable then G/N is shown to be definably compact (4.3) and the de-
composition above becomes (4.15)

G = AN,

where A is any 0-Sylow of G.
In general, if N is the maximal normal definable torsion-free subgroup of a de-

finably connected group G and A is a 0-Sylow of G, then A ∩ N is the maximal
definable torsion-free subgroup of A and so the quotient A/(A ∩ N), which is de-
finably isomorphic to the 0-Sylow AN/N of G/N , is definably compact. Then, as
we saw above, all 0-subgroups of G/N are definably compact and it follows that
G/N = K̄H̄, where K̄ is definably compact and H̄ is torsion-free. Moreover de-
finable torsion-free groups are definably contractible ([PeSta2]), and therefore K̄
is definably homotopy equivalent to G (11.5). This shows that in the o-minimal
context the homotopy type of a definably connected group is equal to the homotopy
type of a definably compact group, as in the real case. The difference is that in
the Lie case the compact group can be found always within the group, while in the
o-minimal context it can be found always in a canonical quotient (and within the
group if and only if all its 0-subgroups are definably compact).

In the following subsection and in the last section one can find a more detailed
list of the main results. We remark that all of them build on previous theorems
proved by many authors about groups definable in o-minimal structures, such as
those contained in [Be, BeMaOt, BeOtPePi, Ed1, Ed2, EdOt, HrPePi1, HrPePi2,
PePiSta1, PePiSta2, PePiSta3, PeSta1, PeSta2, PeSte, Pi1, Pi2, Str], and on the
well-known structure of real Lie groups.
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1.1. The structure of the paper. In Section 2 we recall basic definitions and we
give a proof of the well-known fact that every definable group has a solvable radical.

In Section 3 we prove that every definable group has a unique maximal normal
definable torsion-free subgroup, and that every definable extension of a definable
torsion-free group by a definably compact group is definably isomorphic to their
direct product.

In Section 4 we consider solvable groups G proving that G/N is definably com-
pact, where N is the maximal normal definable torsion-free subgroup of G. As a
consequence we get a definable Lie-like decomposition G = AN , where A is any
maximal 0-subgroup of G. Moreover it turns out that G is always (abstractly)
isomorphic to a definable semidirect product N o G/N , and the isomorphism is
definable if and only if A is definably compact.

In Section 5 we show a definable Iwasawa-like decomposition first for definably
simple groups, and then for definably connected groups with definably compact
solvable radical.

In Section 6 we use the above decomposition to study properties of the canonical
projection π : G→ G/N by the maximal normal definable torsion-free subgroup N .

In particular it turns out that if G is definably connected then G/N always
has maximal definably compact subgroups (all definably connected and conjugate),
and each of them (let us call it K) has a definable torsion-free complement H, i.e.
G/N = KH and K ∩H = {e}.

In Section 7 we show that if a definably connected group has definable Levi
subgroups, then they are all conjugate to each other.

In Section 8 we consider definably connected subgroups G of the general linear
group GLn(M). They admit a definable decomposition G = KH as a product
of two definably connected subgroups K and H, where K is (maximal) definably
compact and H is (maximal) torsion-free.

In Section 9 we study definable exact sequences

1 −→ N −→ G −→ K −→ 1

where N is torsion-free and K is definably connected and definably compact.
It turns out that every such an exact sequence splits abstractly (i.e. G is ab-

stractly isomorphic to a semidirect product N o K) and it splits definably if and
only if every 0-subgroup of G is definably compact.

In particular, we find that if K is semisimple then the sequence always splits
definably. As a consequence of this last fact, we can show that every definable
group has maximal semisimple definably connected definably compact subgroups
(all conjugate).

In Section 10 we find a definable decomposition in the spirit of 1.1, where max-
imal tori of Lie groups are replaced by maximal 0-subgroups (which are definable
tori whenever they are definably compact).

In Section 11 we consider the homotopy type of a definably connected group G
in an o-minimal expansion of a real closed field M , showing that G is definably
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homeomorphic to K ×Ms, for every maximal definably compact subgroup K of
G/N , where N is the maximal normal definable torsion-free subgroup of G and
s ∈ N is the maximal dimension of a definable torsion-free subgroup of G.

Section 12 is a brief summary of the main results of the paper, focusing on the
structure of a definable group in terms of certain particular definable characteristic
subgroups and their quotients.

2. Preliminaries

We assume M to be an o-minimal expansion of an ordered group. A basic
reference for o-minimality is [Dr]. We remark that we need the assumption that
the structure expands an ordered group only to use the decomposition in 7.2, so
far proved in this setting by Hrushoski, Peterzil and Pillay in [HrPePi2]. However
we believe that Fact 7.2 (and therefore all the results of this paper as well) holds
in an arbitrary o-minimal structure.

By “definable” as usual we mean “definable inM with parameters”.
Many results about definable groups in o-minimal structures and some theorems

about Lie groups are used. In order to make the reading as smooth as possible,
we will recall the most important ones (naming them “facts”) just before we first
need them. One can see [Ot] for an overview about definable groups in o-minimal
structures, and [Kn] for an overview about Lie groups.

We give now some notation and vocabulary (even though they are quite stan-
dard).
Let H,K < G be groups, X ⊂ G a set. For any g ∈ G, Kg denotes the conjugate
of K by g, namely the subgroup made by the elements of the form gxg−1, with
x ∈ K.

Z(G) = {g ∈ G : gx = xg ∀x ∈ G} is the center of G.
CH(X) = {g ∈ H : gx = xg ∀x ∈ X} is the centralizer of X in H.
NH(K) = {g ∈ H : Kg = K} is the normalizer of K in H.

Let G, N , Q be definable groups.
A definable extension of Q by N is a definable groupG containingN , together

with a definable homomorphism π : G→ Q such that the sequence (where i : N → G
is the inclusion map)

1 −→ N
i−→ G

π−→ Q −→ 1

is exact, i.e. π is a surjective definable homomorphism and i(N) = N is the
kernel of π.

A section s of a surjective homomorphism π : G→ Q is a map s : Q→ G such
that π◦s = idQ. We say that a definable extension π : G→ Q splits abstractly, if
there is a section of π which is a homomorphism. We say that it splits definably
if there is such a section which is moreover definable.

Thus if N is a normal definable subgroup of a definable group G, we can always
see G like a definable extension of G/N by N . The exact sequence

1 −→ N
i−→ G

π−→ G/N −→ 1
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splits abstractly if and only if G contains a subgroup K isomorphic to G/N such
that N ∩K = {e} and NK = G, i.e. if and only if G is a semidirect product of
N and K. In this case we will write G = N o K or G = K n N and we will say
that K is a cofactor of N . The exact sequence above splits definably if and only
if there is a definable cofactor K of N .

If H,K < G are groups (no normality assumption here), we say that H is a
complement of K in G whenever G = KH and K ∩H = {e}.

If all groups are definable, then we say that H is a definable complement of
K in G.

As usual, we denote by G0 the definably connected component of the identity
in a definable group G. It is the smallest definable subgroup of finite index in G
([Pi1, 2.12]). We say that a group G is definably connected if it is definable and
G = G0, so if G has no proper definable subgroup of finite index.

A group G is definably compact if it is definable and every definable curve in
G is completable in G. ([PeSte, 1.1]). Saying that a group G is not definably
compact, we assume that it is definable.

Let R = 〈R <,+, ·〉 be a real closed field. If we say that a group is semialge-
braic over R, we mean that it is definable in the structure 〈R,+, ·〉.

If we say that a definable group G is linear, we mean that there is a real closed
fieldR definable inM such that G is definably isomorphic to a subgroup of GLn(R)
definable in R, for some n ∈ N. With an abuse of notation sometimes we will write
G < GLn(M), as the whole structure expands a real closed field (even if we will
not need this assumption), and identifying G with its isomorphic image in GLn(R).

A definable group G is said to be semisimple if it is infinite with no infinite
abelian normal (definable) subgroup.

It is definably simple if it is infinite and non-abelian with no proper non-trivial
normal definable subgroup.

A fundamental theorem due to Peterzil, Pillay and Starchenko about semisimple
definable groups is the following:

Fact 2.1. ([PePiSta1, 4.1], [PePiSta3, 5.1]). Let G be a semisimple definably con-
nected group. Then there are definable real closed fields Ri such that G/Z(G) is
definably isomorphic to a direct product H1×· · ·×Hs, where for every i = 1, . . . , s,
Hi is a semialgebraic (over Ri) definably simple subgroup of GL(ni,Ri).

Remark 2.2. An infinite definable group is semisimple if and only if it has no
infinite solvable normal definable subgroup.

Proof.

(⇒) Let G be a semisimple definable group. We can suppose G definably con-
nected, because G is semisimple if and only if G0 is semisimple. If G
contains an infinite normal solvable definable subgroup, then its image in
G/Z(G) by the canonical projection is an infinite normal solvable definable
subgroup, in contradiction with Fact 2.1.

(⇐) Every abelian group is solvable.

�
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We end the section with a well-known fact: the existence of the solvable radical
in any definable group. Because we could not find a precise reference and we will
use it extensively, we also give a proof of it.

Fact 2.3. Every definable group G has a unique normal solvable definably connected
subgroup R such that G/R is finite or semisimple. The subgroup R contains every
normal solvable definably connected subgroup of G, so it is the unique maximal
normal solvable definably connected subgroup of G. It is said to be the solvable
radical of G.

Proof. To reduce to the definably connected case, observe that if R is the solvable
radical of G0 then R is also the solvable radical of G, since G/G0 is finite and a
finite extension of a semisimple definable group is semisimple.

First we prove that a non-solvable definably connected group G has a normal
solvable definably connected subgroup R such that G/R is semisimple.

We proceed by induction on n = dimG. If n = 1, then G is abelian ([Pi1, 2.15]).
So let n > 1. If G is not already semisimple, let A < G be an infinite abelian
normal definable subgroup. If G/A is semisimple then we set R = A0. Otherwise
we can apply induction on G/A and find a normal solvable definably connected
subgroup S̄ < G/A such that (G/A)/S̄ is semisimple. Therefore we can take R to
be the definably connected component of the identity of the preimage of S̄ in G.

We want now to show that every normal solvable definably connected subgroup S
of G is contained in R. For this it is enough to note that RS/R is a normal solvable
definably connected subgroup of the semisimple definable group G/R. Since it
cannot be infinite (2.2), it follows that RS = R. Hence S ⊆ R.

If S 6= R then dimS < dimR and R/S is an infinite solvable definable subgroup
of G/S. Therefore G/S cannot be semisimple (2.2) and R is the unique normal
solvable definably connected subgroup of G such that G/R is semisimple. �

Remark 2.4. As we will use it in the sequel, let us observe that Z(G)0 ⊆ R, since
Z(G)0 is an abelian normal definably connected subgroup of G.

3. The maximal normal definable torsion-free subgroup

In this section we prove that: (1) every definable group has a normal defin-
able torsion-free subgroup (possibly trivial) which contains each normal definable
torsion-free subgroup (3.6), and (2) every definable extension of a definable torsion-
free group by a definably compact group is definably isomorphic to their direct
product (3.12).

We make use (here and later on) of the o-minimal Euler characteristic, an invari-
ant by definable bijections which plays an important role in the study of definable
groups.

If P is a cell decomposition of a definable set X, the o-minimal Euler char-
acteristic E(X) is the integer defined as the number of even-dimensional cells in
P minus the number of odd-dimensional cells in P. This does not depend on P (see
[Dr, Chapter 4]). When X is finite then E(X) = card(X). Since for every A,B
definable sets, E(A×B) = E(A)E(B), the following holds:

Fact 3.1. ([Str, 2.12]). Let K < H < G be definable groups. Then

(a) E(G) = E(H)E(G/H).
(b) E(G/K) = E(G/H)E(H/K).
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Remark 3.2. In order to have a quotient as a definable set, in general one assumes
that the structure satisfies the definable choice property (as Strzebonski does in
[Str]), namely that each definable equivalence relation on a definable set has a
definable set of representatives (for instance, any o-minimal expansion of an ordered
group satisfies the definable choice property: [Dr, Chapter 6]). In the case of a
quotient of definable groups this is granted by Edmundo’s theorem [Ed1, 7.2]. Since
we always consider E(X), where X = G/H for some definable groups H < G, so
far we can avoid any other assumption on the structure, but o-minimality.

For every definable group G, if p is a prime dividing |E(G)|, then G has an element
of order p ([Str, 2.5]). Therefore:

Fact 3.3. ([Str]). Let G be a definable group. Then

E(G) = ±1 ⇔ G is torsion-free.

Fact 3.4. ([Str, PePiSta1]). Let G be a definable group. If G is definably connected,
then E(G) ∈ {±1, 0}. In particular, if G is definably connected and it is not torsion-
free, then E(G) = 0.

We record now some properties about definable torsion-free groups from [PeSta2]:

Fact 3.5. ([PeSta2, section 2]). Let H be a definable torsion-free group. Then:
(a) H is definably connected.
(b) H is solvable.
(c) H has a normal definable subgroup of codimension 1.
(d) Every definable quotient of H is torsion-free.

Using the facts just mentioned, we can prove that every definable group has a
unique maximal normal definable torsion-free subgroup:

Theorem 3.6. In every definable group G there is a normal definable torsion-free
subgroup N which contains every normal definable torsion-free subgroup of G. It is
the unique normal definable torsion-free subgroup of G of maximal dimension. We
will refer to it as the maximal normal definable torsion-free subgroup of G.

Proof. Let N be a normal definable torsion-free subgroup of G of maximal dimen-
sion and H a normal definable torsion-free subgroup of G. We want to show that
H ⊆ N .

We claim thatHN is a normal definable torsion-free subgroup of G: the definable
groupH/(H∩N) is a quotient of definable torsion-free groups, then it is torsion-free
and it is definably isomorphic to HN/N . Thus E(HN) = E(N)E(HN/N) = ±1
and HN is torsion-free (3.3).

But N is of maximal dimension among the normal definable torsion-free sub-
groups of G, so dim(HN) = dim(N). Since definable torsion-free groups are de-
finably connected, it follows that HN = N , H ⊆ N and dimH < dimN , unless
H = N . �

Remark 3.7. In general N does not contain every definable torsion-free subgroup
of G. For instance if M = 〈M,<,+, ·〉 is a real closed field and G = SL2(M) =
{A ∈ GL2(M) : detA = 1}, then N = {e} but G does contain definable torsion-free
subgroups such as

H =
{(

1 a
0 1

)
: a ∈M

}
,

which is definably isomorphic to (M,+).
But if G/N is definably compact, then N contains every definable torsion-free

subgroup of G:
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Lemma 3.8. A normal definable torsion-free subgroup N of a definable group G
contains every definable torsion-free subgroup of G if and only if G/N is definably
compact.

Proof.
(⇒) If G/N is not definably compact then by [PeSte, 1.2] G/N contains defin-

able infinite torsion-free subgroups, and their preimages in G are definable
torsion-free subgroups containing N properly.

(⇐) Let H be a definable torsion-free subgroup of G. We want to show that
H ⊆ N . If not, H/(H ∩N) is an infinite definable torsion-free group defin-
ably isomorphic to HN/N which is a definable subgroup of the definably
compact group G/N , contradiction (see 4.2).

�

Corollary 3.9. If N is a normal definable torsion-free subgroup of a definable group
G such that G/N is definably compact, then N is the unique maximal definable
torsion-free subgroup of G.

Lemma 3.10. Let N be the maximal normal definable torsion-free subgroup of a
definable group G. If R is the solvable radical of G, then N ⊆ R and R/N is the
solvable radical of G/N .

Proof. Because N is solvable and definably connected (3.5), N ⊆ R.
Since (G/N)/(R/N) is definably isomorphic toG/R which is semisimple or finite,

it follows that R/N is the solvable radical of G/N (2.3). �

In the next section we will show that R/N is always definably compact (4.3), de-
ducing that every definable group is a definable extension of a group with definably
compact solvable radical by a (maximal) definable torsion-free group (4.8).

Lemma 3.11. Let H � G be definable groups. The maximal normal definable
torsion-free subgroup N of H is normal in G as well.

Proof. For every g ∈ G, the definable automorphism H → H given by x 7→ gxg−1,
maps N to Ng, that is a normal definable torsion-free subgroup of H of the same
dimension as N . Therefore Ng = N for every g ∈ G (3.6). �

We show now that every definable extension of a definable torsion-free group
by a definably compact group is definably isomorphic to their direct product. The
case where the torsion-free group is 1-dimensional was proved by Edmundo in [Ed1,
5.1].

The specular case of definable extensions of a definably compact group by a
definable torsion-free group will be studied in section 9.

Theorem 3.12. Let π : G→ Q be a definable extension of a definable torsion-free
group Q by a definably compact group K. Then the definable exact sequence

1 −→ K
i−→ G

π−→ Q −→ 1

splits definably in a direct product. Therefore the maximal normal definable torsion-
free subgroup N of G is definably isomorphic to Q and

G = K ×N.

Proof. We proceed by induction on n = dimQ. For n = 1, see [Ed1, 5.1]. If n > 1,
let Q1 ⊂ Q be a normal definable subgroup of Q of codimension 1 (3.5) and let
G1 = π−1(Q1). By induction, the definable exact sequence
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1 −→ K
i−→ G1

π−→ Q1 −→ 1

splits definably in a direct product. So there is a definable torsion-free subgroup H
normal in G1 such that G1 = K×H. Since G1/H ∼= K which is definably compact,
it follows by 3.9 that H is the maximal normal definable torsion-free subgroup of G1

and by 3.11 H is normal in G as well. Consider now the definable exact sequence

1 −→ G1/H −→ G/H −→ (G/H)/(G1/H) −→ 1

with the obvious maps. Because G1/H ∼= K which is definably compact and
(G/H)/(G1/H) ∼= G/G1

∼= Q/Q1 which is torsion-free, we can apply induction
again and find a definable torsion-free subgroup S normal in G/H such that G/H =
G1/H × S. Therefore the preimage of S in G is a normal definable torsion-free
subgroup which is a direct complement to K in G. �

4. Solvable definable groups

This section is devoted to the study of solvable definable groups. The main
results are that the quotient of a solvable definable group by its maximal normal
definable torsion-free subgroup is definably compact (4.3) and that every solvable
definably connected group can be decomposed as the product of its maximal normal
definable torsion-free subgroup and any of its maximal 0-subgroups (4.18). Many
consequences of these facts are deduced in this and in the subsequent sections.

As we recalled in 3.5, definable torsion-free groups are solvable ([PeSta2, 2.12]).
On the opposite side there are solvable definably compact groups. Peterzil and
Starchenko prove in [PeSta1, 5.4] that they are abelian-by-finite, i.e. that every
solvable definably connected definably compact group is abelian.

We study here the mixed case, where G is a solvable definable group neither
definably compact nor torsion-free, so it contains both definably compact and de-
finable torsion-free subgroups with trivial intersection. Indeed:

Fact 4.1.
(a) Every definable group which is not definably compact contains a definable

1-dimensional torsion-free subgroup ([PeSte, 1.2]).
(b) Every definably compact group has torsion ([HrPePi1, PePiSta1, PePiSta3]).

Remark 4.2. It follows from 4.1(b) that a definable torsion-free group is not de-
finably compact, and so definably compact groups have no definable torsion-free
subgroup. This is because definable subgroups are closed by [Pi1, 2.8], so definable
subgroups of definably compact groups are definably compact.

Therefore if K,H < G are definable subgroups where K is definably compact
and H is torsion-free, then K ∩H = {e}. It follows that if in addition G = KH,
then K is a maximal definably compact subgroup and H is a maximal torsion-free
definable subgroup.

Theorem 4.3. Let G be a solvable definable group and let N be its maximal normal
definable torsion-free subgroup. If G is not definably compact, then N is infinite
and G/N is a definably compact group.

In other words, every solvable definable group is a definable extension of a defin-
ably compact group by a definable torsion-free group.



LIE-LIKE DECOMPOSITION OF DEFINABLE GROUPS 11

Proof. Because N ⊆ G0 (3.5(a)) and G/G0 is finite (so definably compact), we can
suppose G definably connected. We proceed by induction on n = dimG. The case
n = 1 is obvious, so let dimG = n > 1.

If G is abelian, the theorem can be extracted from [PeSta2, 2.6]. The argument
is that if G/N is not definably compact, then by [PeSte] there is a definable 1-
dimensional torsion-free subgroup H in G/N , and its preimage in G would be a
definable torsion-free subgroup of G, in contradiction with the maximality of N .

Let G be now non-abelian. Since G is solvable and definably connected there is
a normal solvable definable subgroup S < G such that G/S is abelian and infinite.
We distinguish the cases where S is definably compact and where S is not definably
compact.

• If S is definably compact then G/S is not. By the abelian case the maximal
normal definable torsion-free subgroup N1 of G/S is infinite and (G/S)/N1

is definably compact. If π : G→ G/S is the canonical projection, let N ′ =
π−1(N1). By 3.12 the definable exact sequence

1 −→ S
i−→ N ′

π−→ N1 −→ 1

splits definably in a direct product, thus G contains a definable subgroup N
definably isomorphic to N1 such that N ′ = S ×N . Since S ∼= N ′/N which
is definably compact, it follows that N is the maximal normal definable
torsion-free subgroup of N ′ (3.9), and it is normal in G as well (3.11).

We claim that G/N is definably compact. To prove it, it is enough
to provide a normal definable subgroup which is definably compact, such
that quotienting by it we obtain a definably compact group. One such a
subgroup is N ′/N which is definably isomorphic to S, and the quotient
(G/N)/(N ′/N) is definably isomorphic to (G/S)/N1, as the following dia-
gram shows by “the 3× 3 lemma”.

1

��

1

��
1 // S // N ′ //

��

N1
//

��

1

1 // S //
��

OO

G //

��

G/S //

��

1

G/N ′ oo //

��

(G/S)/N1

��
1 1

ThusN is the maximal normal definable torsion-free subgroup of G (3.9),
it is infinite and the theorem is proved for the case where S is definably
compact.

• If S is not definably compact, then by induction the maximal normal defin-
able torsion-free subgroup N1 of S is infinite (possibly N1 = S) and S/N1

is definably compact. N1 is normal in G as we showed in 3.11. If G/N1
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is definably compact then N1 is the maximal normal definable torsion-free
subgroup of G and we are done. Otherwise, again by induction, its infinite
maximal normal definable torsion-free subgroup N2 is such that (G/N1)/N2

is definably compact.
If π : G → G/N1 is the canonical projection, then N = π−1(N2) < G is

torsion-free by 3.5 and G/N is definably isomorphic to (G/N1)/N2 which
is definably compact. Again by 3.9 N is the maximal normal definable
torsion-free subgroup of G and it is infinite, since it contains N1.

�

Edmundo proves in [Ed1] that every solvable definable group G has a normal
definable subgroup K1×H1, where H1 is torsion-free and K1 is the maximal normal
definably compact definably connected subgroup of G, such that G/(K1 × H1) is
definably compact ([Ed1, 5.8]). The theorem above shows that his H1 corresponds
to the maximal normal definable torsion-free subgroup of G.

Several corollaries follow from Theorem 4.3:

Corollary 4.4. The maximal normal definable torsion-free subgroup of a solvable
definable group contains any definable torsion-free subgroup of G, so it is the unique
maximal definable torsion-free subgroup of G.

Proof. It follows by 4.3 and 3.9. �

Since N is torsion-free, we can see that G/N is the maximal quotient which is
definably compact:

Corollary 4.5. Let H be a normal definable subgroup of a solvable definable group
G. Then G/H is definably compact if and only if H ⊇ N , where N is the maximal
normal definable torsion-free subgroup of G.

Proof.
(⇒) If not, HN/H is an infinite definable torsion-free group, since it is definably

isomorphic to N/(H ∩N). This is in contradiction with the fact that G/H
is definably compact.

(⇐) If H ⊇ N , then G/H is definably isomorphic to the quotient of G/N by
H/N , so it is definably compact by 4.3.

�

Corollary 4.6. Every definably compact subgroup of a solvable definably connected
group is abelian.

Proof. Let K be a definably compact subgroup of a solvable definably connected
group G. Let N be the maximal normal definable torsion-free subgroup of G. Since
K ∩N = {e} (see 4.2), it follows that K is definably isomorphic (by the canonical
projection π : G → G/N) to a definable subgroup of G/N which is abelian by
[PeSta1, 5.4] (it is a solvable definably connected definably compact group). �

Corollary 4.7. The derived subgroup of a solvable definably connected group is
contained in its maximal normal definable torsion-free subgroup.

Proof. If N is the maximal normal definable torsion-free subgroup of a solvable
definably connected group G, then G/N is abelian and so the derived subgroup
[G,G] ⊆ N , because it is the smallest normal subgroup with abelian quotient. �

Corollary 4.8. Every definable group is a definable extension of a definable group
with definably compact solvable radical by a definable torsion-free group.
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Proof. Let G be a definable group with solvable radical R and maximal normal
definable torsion-free subgroup N . Then G can be viewed as a definable extension
of G/N by N . By 3.10 R/N is the solvable radical of G/N , and by 4.3 R/N is
definably compact. �

4.1. A Lie-like decomposition of solvable groups. In analogy with finite
groups, Strzebonski develops in [Str] a theory of definable p-groups, proving corre-
sponding “Sylow’s theorems”, where the cardinality of finite p-groups is replaced by
the o-minimal Euler characteristic of definable p-groups. In addition he introduces
0-groups, which are further investigated by Berarducci in [Be].

After reviewing facts about 0-groups, we will show that every solvable definably
connected group can be decomposed as the product of its maximal normal definable
torsion-free subgroup and any of its maximal 0-subgroups (4.15).

As a consequence we get that the maximal normal definable torsion-free subgroup
of a solvable definably connected group always has cofactors, and it has definable
cofactors if and only if every 0-subgroup is definably compact (4.18).

Definition 4.9. ([Str]).
- A 0-group is a definable group G such that for every proper definable
subgroup H, E(G/H) = 0 (in particular, E(G) = 0).

- A 0-subgroup is a definable subgroup which is a 0-group.
- A 0-Sylow is a maximal 0-subgroup.

Fact 4.10. ([Str, 2.9, 5.17, 2.21]).
(a) Every definable group G with E(G) = 0 contains a 0-subgroup.
(b) Every 0-group is abelian and definably connected.
(c) Every 0-subgroup is contained in a 0-Sylow.
(d) Any two 0-Sylow are conjugate.
(e) If H is a 0-subgroup of a definable group G, then

H is a 0-Sylow ⇔ E(G/H) 6= 0.

Definition 4.11. ([Str, 5.1]) A group G is said to be a definable torus if it is a
0-group and every definably connected subgroup of G is a 0-group.

First Strzebonski ([Str, 5.3]) and then Peterzil and Steinhorn ([PeSte, 5.6]) provided
examples of 0-groups which are not definable tori, and no one of them is definably
compact. This is not accidental:

Fact 4.12. ([Be, 5.9]). A definable group is a definable torus if and only if it is
abelian, definably connected and definably compact.

In Berarducci’s paper the theorem above is stated for groups defined in an o-
minimal expansion of a real closed field. Nevertheless the same proof holds in every
o-minimal structure, once one has obtained that E(G) = 0 for every G definably
connected and definably compact (which follows from 3.3, 3.4 and 4.1(b)).

Lemma 4.13. Let G be a definable group with E(G) = 0. If H < G is a definable
subgroup such that E(G/H) 6= 0, then every 0-Sylow of H is a 0-Sylow of G.

Proof. Let A be a 0-Sylow of H. Then E(G/A) = E(G/H)E(H/A) 6= 0 and by
4.10(e) A is a 0-Sylow of G as well. �

Lemma 4.14. Let H be a definably connected subgroup of a definable group G with
E(G) = 0. Then H is a 0-Sylow of G if and only if H is of minimal dimension
among the definable subgroups P of G such that E(G/P ) 6= 0.
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Proof.
(⇒) Suppose P is a definable subgroup of G such that E(G/P ) 6= 0 and

dimP < dimH. Because E(G) = 0 and E(G/P ) 6= 0, E(P ) = 0. Let
A be a 0-Sylow of P . Then A is a 0-Sylow of G (4.13) with dimA < dimH,
in contradiction with the fact that any two 0-Sylows are conjugate (4.10(d)).

(⇐) Let H be a definably connected subgroup of G of minimal dimension among
the definable subgroups P of G such that E(G/P ) 6= 0. To see that H is
a 0-Sylow, it is enough to check that it is a 0-group (4.10(e)).

For every definable proper P < H, E(G/H)E(H/P ) = E(G/P ) = 0,
because of minimality and connectedness of H. Since E(G/H) 6= 0, it
follows that E(H/P ) = 0 and thus H is a 0-group.

�

We can show now the existence of a definable Lie-like decomposition (see 1.1) for
solvable definably connected groups, where the role of a maximal torus is played by
a maximal 0-subgroup (which is a maximal definable torus whenever it is definably
compact: see 4.12).

Theorem 4.15. Let G be a solvable definably connected group and let N be its
maximal normal definable torsion-free subgroup. Then for every 0-Sylow A of G

G = AN.

Moreover if A1 < G is a 0-subgroup such that G = A1N , then A1 is a 0-Sylow
as well (and therefore a conjugate of A).

Proof. If G is torsion-free then G = N and there is nothing to prove. So suppose
E(G) = 0 (3.4) and let A be a 0-Sylow of G. We want to show that G = AN .
Consider the following diagram:

G

E 6=0
E=0E 6=0

0-group
AN

{{
{{

{{
{{

DD
DD

DD
DD

A N

Since A is a 0-Sylow, it follows that E(G/A) 6= 0 (4.10) and thus E(G/AN) 6= 0 as
well, since E(G/AN)E(AN/A) = E(G/A).

On the other hand, AN/N is a definable subgroup of the abelian, definably
connected, definably compact group G/N (4.3) which is in particular a 0-group
(4.12), so E(G/AN) = E((G/N)/(AN/N)) = 0, unless G/N = AN/N . Therefore
G = AN .

Let A1 be a 0-subgroup of G such that G = A1N , and let S1 be a 0-Sylow
containing A1. Thus S1/A1 is definably isomorphic to (S1∩N)/(A1∩N), and then
E(S1/A1) = ±1 (3.5(d) and 3.3). But S1 is a 0-group, so S1 = A1. �

Corollary 4.16. Let G be an abelian definably connected group. Then there are
unique definable subgroups N and A with N torsion-free and A 0-group such that
G = AN . A is the only 0-Sylow of G and N is the maximal definable torsion-free
subgroup of G.

Remark 4.17. If A is an abelian definably connected group and H < A is a
torsion-free definable subgroup, then they are both divisible ([Str]) and therefore



LIE-LIKE DECOMPOSITION OF DEFINABLE GROUPS 15

A contains a (possibly non-definable) direct cofactor of H (see for instance [Ro,
10.24]). Thus

A ∼= H × A/H.

In particular this is the case whenever A is a 0-Sylow of a definable group G (not
necessarily solvable) and H is the maximal definable torsion-free subgroup of A.

Proposition 4.18. Let G be a solvable definably connected group and let N be its
maximal normal definable torsion-free subgroup. Then

(a) G is abstractly isomorphic to a semidirect product N oG/N .
(b) N has definable cofactors in G if and only if every 0-subgroup of G is

definably compact.

Proof. Let A be a 0-Sylow of G. Then by 4.15 G = AN .
If A is definably compact, then A ∩ N = {e} and A is a definable cofactor of

N in G. Otherwise, A ∩ N is the maximal definable torsion-free subgroup of A
(because N contains every torsion-free definable subgroup of G: 3.9 and 4.3) and
it is infinite. If T is a cofactor of A∩N in A (see 4.17), i.e. A = (A∩N)×T , then
by 4.15 T is a cofactor of N in G.

If T were definable, then E(A/T ) = E(A ∩N) = ±1, in contradiction with the
fact that A is a 0-group. Then T (and any other cofactor of A ∩ N in A) cannot
be definable.

Suppose now by contradiction that H is a definable cofactor of N in G. Hence
H is a definable torus (it is definably isomorphic to G/N), so a 0-group. Since
G = HN , by 4.15 H is a 0-Sylow, so it is a conjugate of A which is not definably
compact, contradiction. �

5. A definable Iwasawa-like decomposition

In this section we find an o-minimal analogue of the following decomposition of
semisimple Lie groups:

Fact 5.1. (Iwasawa decomposition of semisimple Lie algebras and Lie groups)
([Iw], [Kn, Chapter 6]). For every semisimple Lie algebra g over C there esists a
basis {Xi} of g and subspaces k, a, n such that g is a direct sum g = k⊕ a⊕ n, and
the matrices representing ad(g) with respect to {Xi} have the following properties:

- the matrices of ad(k) are skew-symmetric,
- the matrices of ad(a) are diagonal with real entries,
- the matrices of ad(n) are upper triangular with 0’s on the diagonal.

Let G be a semisimple connected Lie group with finite center and Lie algebra g =
k⊕ a⊕ n as above. If K, A and N are connected analytic subgroups of G with Lie
algebras k, a and n respectively, then:

(a) the multiplication map
K ×A×N −→ G

( k , a , n ) 7→ kan

is a surjective diffeomorphism;
(b) the group K is a maximal compact subgroup of G and any maximal compact

subgroup of G is a conjugate of K;
(c) AN = NA, i.e. AN is a subgroup.

We recall now briefly some theory of Lie algebras for definable groups developed
by Peterzil, Pillay and Starchenko:
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Remark 5.2. (see [PePiSta1] and [PePiSta3]). If G is a definable group in an o-
minimal expansion of a real closed fieldR, denoted by a(g) : G→ G the conjugation
map given by x 7→ gxg−1, we can consider: (1) TeG, the tangent space of G in the
identity e, (2) the adjoint map:

Ad: G −→ GL(TeG)

g 7→ de(a(g))

and (3) the map ad: TeG → End(TeG), ad = de(Ad), where de denotes the differ-
ential at the identity.

The vector space TeG with the binary operation given by [ξ, ζ] = ad(ξ)(ζ) is a
Lie algebra, it is definable, and it is called the Lie algebra of G.

If we denote it by g = Lie(G), then EndR(g), AutR(g) and the maps Ad: G →
AutR(g), ad: g → EndR(g) are all definable. Fixing a basis of g, we may assume
that g = Rm and Ad: G→ GLm(R), for some m ∈ N.

In particular, when G = GLn(R), we can identify Lie(G) with Mn(R), the set
of all matrices n × n, with bracket [A,B] = AB − BA = ad(A)(B), for every
A,B ∈ Mn(R). With this convention the adjoint map Ad: GLn(R) → GLn2(R)
is given by Ad(A)(X) = A−1XA.

5.1. Definably simple groups. Peterzil, Pillay and Starchenko deeply analyse
definably simple groups in [PePiSta1, PePiSta2, PePiSta3]. The following theorem
(which builds on their papers) clarifies the structure of a definably simple group
in terms of definably compact and definable torsion-free subgroups, and it will be
useful later on to understand the structure of any definable group.

Notation 5.3. Let m ∈ N.
- Om(R) = {[xij ] ∈ GLm(R) : [xij ][xji] = I} is the orthogonal group,
- T+

m(R) = {[xij ] ∈ GLm(R) : xij = 0 ∀ i < j and xii > 0 ∀ i} is the group
of upper triangular matrices with positive elements on the diagonal,

- UTm(R) = {[xij ] ∈ GLm(R) : xij = 0 ∀ i < j and xii = 1 ∀ i} is the group
of unipotent upper triangular matrices,

- D+
m(R) = {[xij ] ∈ GLm(R) : xij = 0 ∀ i 6= j, xii > 0 ∀ i} is the group of

diagonal matrices with positive elements on the diagonal.

Theorem 5.4. Let G be a definably simple group. Then there is a definable real
closed field R and some m ∈ N such that G is definably isomorphic to a group
G1 < GLm(R) definable in R, with the following properties:

- G1 = KH, with K = G1 ∩Om(R) and H = G1 ∩ T+
m(R),

- H = AN , with A = G1 ∩D+
m(R) and N = G1 ∩ UTm(R).

Proof. By [PePiSta1, 4.1], there is a definable real closed field R, such that we can
suppose G definable in R and contained in GLn(R), for some n ∈ N.

Let g be the Lie algebra of G. By Theorem 2.36 of [PePiSta1], g is a simple Lie
algebra over R. As noticed in the proof of Theorem 5.1 in [PePiSta3], there is a
first order formula which says that there are finitely many simple Lie subalgebras
g1, . . . , gr ofMn(R), such that any simple subalgebra ofMn(R) is isomorphic to one
of the gi (we suppose to know r). In addition we can require (in the same formula)
that for every i = 1, . . . , r there are subspaces ki, ai, ni of gi, with gi = ki ⊕ ai ⊕ ni,
such that the matrices representing ad(gi) have the following properties:

- the matrices of ad(ki) are skew-symmetric,
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- the matrices of ad(ai) are diagonal,
- the matrices of ad(ni) are upper triangular with 0’s on the diagonal.

All these properties are first order (see 5.2). By the Iwasawa decomposition of
semisimple Lie algebras (5.1), this formula is true in R (with an abuse of notation
we denote by R both the set and the structure of ordered field 〈R, <,+, ·〉 on
it) and therefore it is true in R as well. Hence g is isomorphic to a Lie algebra
gi ∈ {g1, . . . , gr} with the above mentioned properties. Say gi = g1.

By the proof of Theorem 2.37 in [PePiSta1], G is definably isomorphic to AutR(g)0,
the definably connected component of the identity in AutR(g). Therefore G is de-
finably isomorphic also to AutR(g1)0 = G1(R), a semialgebraic linear group defined
over Ralg. So it makes sense to consider the group G1(R) defined in R by the same
formula over Ralg defining G1(R) in R. It is a simple Lie group equal to AutR(g1)0.
If K, A, N are connected subgroups of G1(R) corresponding to the Lie subalgebras
k1, a1 and n1, then by 5.1 AN = NA and G1(R) = KAN . Moreover if m = n2,

- the matrices of ad(k1) are skew-symmetric ⇒ K ⊆ Om(R),
- the matrices of ad(a1) are diagonal ⇒ A ⊆ D+

m(R),
- the matrices of ad(n1) are upper triangular with 0’s on the diagonal ⇒
N ⊆ UTm(R).

Since D+
m(R) ∩ UTm(R) = {I} = Om(R) ∩ T+

m(R), we get that

- K = G1(R) ∩Om(R),
- A = G1(R) ∩D+

m(R),
- N = G1(R) ∩ UTm(R).

Thus the first order formula in the language of ordered fields which says that
every element g ∈ G1 can be written in a unique way as a product g = kan, with
k ∈ G1 ∩ Om, a ∈ G1 ∩ D+

m, n ∈ G1 ∩ UTm and an = na ∀ a ∈ G1 ∩ D+
m,∀n ∈

G1 ∩ UTm is true in R and therefore it is true in R as well. �

Corollary 5.5. Any definably simple group has maximal definably compact sub-
groups, all definably connected and conjugate. Moreover every such a maximal
definably compact subgroup K has a definable torsion-free complement H.

Proof. Let G1 < GLm(R) be a definable group definably isomorphic to G, as in
Theorem 5.4. As we noticed in 4.2, K = G1 ∩ Om(R) is a maximal definably
compact subgroup of G1.

If C is any definably compact subgroup of G1, we want to show that C is con-
tained in a conjugate of K. Since every definably compact subgroup of GLm(R)
is semialgebraic ([PePiSta3, 4.6]), the fact that C is a definably compact (i.e.
closed and bounded by [PeSte]) definable subgroup of GLm(R) can be expressed
by a first order formula in the language of ordered fields. Suppose that now
C = C(y) is defined over a set of parameters y = (y1, . . . , yn). Since every com-
pact (again closed and bounded) subgroup of G1(R) is contained in a conjugate of
K(R) = G1(R) ∩Om(R), the following formula

∀y [C(y) is a closed and bounded subgroup of G1 ⇒ ∃x ∈ G1 (C(y) ⊂ Kx)]

is true in R, so it is true in R as well.
Because G and H are definably connected, also K (and every conjugate of it) is

definably connected.
Note that G = KxHx for every x ∈ G, and then Hx is a definable torsion-free

complement of Kx. �
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5.2. Groups with definably compact solvable radical. Using results of section
3 and 4 together with 5.4 and 5.5, we can prove an analogous definable decompo-
sition for definably connected groups with definably compact solvable radical:

Proposition 5.6. Let G be a definably connected group and let R be its solvable
radical. If R is definably compact then

(1) G has maximal definably compact subgroups and they are all definably con-
nected and conjugate to each other.

(2) Every such a maximal definably compact subgroup K has a definable torsion-
free complement H < G (which is a maximal definable torsion-free subgroup
of G) and H = AN , where A is abelian and N is nilpotent, and both are
definable subgroups.

Proof. We suppose that the definably connected semisimple group G/R is center-
less. Even if it is not, the center of G/R is finite, so its preimage in G is a normal
solvable definably compact subgroup, which is the only assumption we will make
on R.

By [PePiSta1, 4.1], G/R is a direct product of definably simple groups Gi,
i = 1, . . . , s. By the definably simple case (5.4), for every i = 1, . . . , s, Gi = KiHi,
where Ki is definably compact and Hi is torsion-free, and every definably com-
pact subgroup of Gi is contained in a conjugate (in Gi) of Ki (5.5). Let K̄ =
{(k1, . . . , ks) : ki ∈ Ki} and H̄ = {(hi, . . . , hs) : hi ∈ Hi} in G/R. Again by
the simple case, for every i = 1, . . . , s, Hi = AiNi, with Ai abelian and Ni nilpo-
tent definable subgroups. Thus H̄ = ĀN̄ , with Ā the product of the Ai’s and N̄
the product of the Ni’s. Note that K̄ is definably compact, H̄ is torsion-free and
G/R = K̄H̄.

Let π : G → G/R be the canonical projection. Since R is definably compact,
K = π−1(K̄) ⊆ G is definably compact. Define H̄1 = π−1(H̄) ⊆ G. The group
H̄1 is a definable extension of the definable torsion-free group H̄ by the solvable
definably compact group R. Hence by 3.12 the definable exact sequence

1 −→ R
i−→ H̄1

π−→ H̄ −→ 1

splits definably in a direct product H̄1 = R × H, for some definable torsion-free
subgroup H < G definably isomorphic to H̄. It is immediate that G = KH.

As we noticed in 4.2, K is a maximal definably compact subgroup of G and H
is a maximal definable torsion-free subgroup of G. Therefore for every g ∈ G, Kg

is a maximal definably compact subgroup of G = KgHg. We want to show that
they are the only ones, which is equivalent to say that for every definably compact
subgroup C of G, there is some g ∈ G such that C ⊂ Kg.

For every i = 1, . . . , s, let πi : G → Gi be the composition of the canonical
projections, first on G/R and then from G/R to Gi. By the simple case (5.4) we
know that πi(C) ⊂ Kgi

i for some gi ∈ Gi and so π(C) ⊂ K̄ ḡ with ḡ = (g1, . . . , gs) ∈
G/R. Therefore C ⊂ Kg, for every g ∈ π−1(ḡ).

Finally, because G and H are definably connected, also K (and every conjugate
of it) is definably connected. �

Example 5.7. Let R be a real closed field. Every element of the semisimple
definable group G = SL2(R) = {A ∈ GL2(R) : detA = 1} can be written as a
product (

a −b
b a

)(
c 0
0 1/c

)(
1 d
0 1

)
,



LIE-LIKE DECOMPOSITION OF DEFINABLE GROUPS 19

for unique a, b, c, d ∈ R such that a2 + b2 = 1 and c > 0.(
a −b
b a

)
∈ SO2(R) = G ∩O2(R) = K,(

c 0
0 1/c

)
∈ G ∩D+

2 (R) = A,(
1 d
0 1

)
∈ G ∩ UT2(R) = N.

6. The maximal quotient with definably compact solvable radical

In this section we point out some properties of the projection π : G → G/N by
the maximal normal definable torsion-free subgroup N of a definable group G.

First we show that the group G/N is the maximal quotient of G with definably
compact solvable radical:

Lemma 6.1. Let N be the maximal normal definable torsion-free subgroup of a
definable group G. If H is a normal definable subgroup of G such that the solvable
radical of G/H is definably compact, then N ⊆ H.

Proof. Since N is contained in the solvable radical of G, it follows that NH/H
is contained in the definably compact solvable radical R̄ of G/H. But NH/H is
definably isomorphic to N/(N ∩H) which is torsion-free (3.5(d)), so NH = H and
N ⊆ H. �

Corollary 6.2. If N is the maximal normal definable torsion-free subgroup of a
definable group G, then G/N is the maximal quotient of G with definably compact
solvable radical.

Proof. The radical ofG/N is definably compact by 3.10 and 4.3. Maximality follows
by our previous lemma. �

Applying 5.6 to G/N , we get the following theorem:

Theorem 6.3. Let G be a definably connected group and N its maximal normal
definable torsion-free subgroup. Then the definable group G/N has maximal de-
finably compact subgroups and they are all definably connected and conjugate to
each other. Moreover, every such a maximal definably compact subgroup K has a
definable torsion-free complement H in G/N , i.e.

G/N = KH and K ∩H = {e}.

Corollary 6.4. Every definable group has maximal definable torsion-free subgroups.

Proof. Let N be the maximal normal definable torsion-free subgroup of a definable
group G and let π : G→ G/N be the canonical projection. By the theorem above
G0/N = KH, where K is a definably compact subgroup and H is a definable
torsion-free subgroup. We claim that π−1(H) is a maximal definable torsion-free
subgroup of G.

If not, let H̄ ) π−1(H) be a definable torsion-free subgroup of G. Since definable
torsion-free groups are definably connected, it follows that dim H̄ > dimπ−1(H) =
dimN + dimH. So by dimension issues, K ∩ π(H̄) 6= {e}, contradiction (see 4.2).

�
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Remark 6.5. Since every 0-group is abelian and definably connected ([Str]), and
every definable subgroup of a definably compact group is definably compact, it
follows that every 0-subgroup of a definably compact group is a definable torus
([Be], see 4.12).

Therefore a definable subgroup of a definably compact group is a 0-Sylow if and
only if it is a maximal definable torus.

Lemma 6.6. Let G be a definable group such that

G0 = KH,

for some definably compact subgroup K and some definable torsion-free subgroup
H. Then every 0-subgroup of G is definably compact (hence a definable torus).

Proof. Let T be a maximal definable torus of K. Then by 3.1, 3.3 and 4.10(e)

E(G/T ) = E(G/G0)E(G0/T ) = E(G/G0)E(K/T )E(H) 6= 0,

and again by 4.10(e) T is a 0-Sylow of G. �

Corollary 6.7. Let G be a definable group and N its maximal normal definable
torsion-free subgroup. Then all 0-subgroups of G/N are definably compact.

Proof. See 6.3 and 6.6. �

Corollary 6.8. Let G be a definable group, N its maximal normal definable torsion-
free subgroup, and A a 0-Sylow of G. Then A∩N is the maximal (normal) definable
torsion-free subgroup of A.

Proof. Since A/(A ∩N) is definably isomorphic to AN/N which is definably com-
pact (6.7), it follows that A ∩ N is the maximal (normal) definable torsion-free
subgroup of A (3.9). �

Remark 6.9. If H is a definable subgroup of G, then H ∩ N may be strictly
contained in the maximal normal definable torsion-free subgroup ofH. For instance,
one can take a non-normal maximal definable torsion-free subgroup H of G (see
6.4).

Lemma 6.10. Let N be the maximal normal definable torsion-free subgroup of a
definable group G and π : G→ G/N the canonical projection. Then

(a) A is a 0-Sylow of G ⇒ π(A) is a maximal torus of G/N ;
(b) T is a maximal torus of G/N ⇒ there is a 0-Sylow A of G such that

π(A) = T .

Proof.
(a) Define Ā := π(A). By 4.14, Ā is a 0-Sylow of Ḡ := G/N if and only if it

is of minimal dimension among the definable subgroup H̄ of Ḡ such that
E(Ḡ/H̄) 6= 0.

First note that

E(Ḡ/Ā) = E((G/N)/(AN/N)) = E(G/AN) 6= 0,

since E(G/A) 6= 0 and E(G/A) = E(G/AN)E(AN/A) (4.10 and 3.1).
For a contradiction, suppose H̄ is a definable subgroup of Ḡ such that

dim H̄ < dim Ā and E(Ḡ/H̄) 6= 0.
Define H := π−1(H̄). Then dimH = dim H̄+dimN < dim Ā+dimN =

dimA. Then E(G/H) = 0 by 4.14. But also

E(G/H) = E(G/HN)E(HN/H) = E(Ḡ/H̄)E(N/(H ∩N)) 6= 0,
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contradiction.

(b) Let T be now a maximal torus of G/N and define G1 := π−1(T ).
Because G1 is solvable, by 4.15 G1 = A1N , for any 0-Sylow A1 of G1.

Since

E(G/A1) = E(G/G1)E(G1/A1) = E(Ḡ/T )E(G1/A1) 6= 0,

it follows by 4.13 that A1 is a 0-Sylow of G, and π(A1) = T .
�

7. Definable Levi subgroups

It is well-known that connected Lie groups admit the following decomposition:

Fact 7.1. ([GoOnVi, Cap 1, 4]). Let L be a connected Lie group. If R is the
solvable radical of L, then there is a connected semisimple subgroup S of L such
that

L = RS and dim(R ∩ S) = 0.

A subgroup S < L with such a property is said to be a Levi subgroup of L and
the decomposition above is said to be a Levi decomposition of L. Levi subgroups
are all conjugate to each other (see [GoOnVi, 4.3 Cor.3]).

A Levi subgroup needs not be a Lie subgroup, it may be not closed. But if L is
compact, then the derived subgroup [L,L] is a closed Levi subgroup of L ([HoMo,
9.24]).

Hrushovski, Peterzil and Pillay prove in [HrPePi2] the corresponding result for
the o-minimal context:

Fact 7.2. ([HrPePi2, 6.4]). Let G be a definably connected definably compact group.
Then the derived subgroup [G,G] of G is a semisimple definable subgroup and

G = Z(G)0[G,G].

Remark 7.3. In general the derived subgroup [G,G] of a definable group G is a
countable union of definable sets, and it is not necessarily definable.

Definition 7.4. We say that a definably connected group G has a definable Levi
decomposition if G contains a semisimple definably connected subgroup S such
that G = RS, where R is the solvable radical of G. We call such an S a definable
Levi subgroup of G.

As we noticed in 2.2, semisimple definable groups have no infinite solvable nor-
mal definable subgroup. Therefore if R and S are as above, then R∩S is finite and
G is an almost semidirect product of R and S.

Peterzil, Pillay and Starchenko prove in [PePiSta3] that definably connected
linear groups have a definable Levi decomposition:

Fact 7.5. ([PePiSta3, 4.5]). Let G be a definably connected linear group. Then G
is an almost semidirect product G = RS of the solvable radical R and a semisimple
definably connected subgroup S.

As a corollary of results in [HrPePi2], we can find a definable Levi decomposition
also for definably connected groups G such that the quotient by their center Z(G)
is definably compact:
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Proposition 7.6. ([HrPePi2, 6.4, 6.5]). Let G be a definably connected group such
that G/Z(G) is definably compact. If R is the solvable radical of G, then G = RS
for some semisimple definably connected subgroup S of G.

Proof. We proceed by induction on n = dimG. If n = 1 then G is abelian, so
suppose n > 1.

By [HrPePi2, 6.4] G/Z(G) has a definable Levi decomposition G/Z(G) = R1S1,
where R1 is the definably connected component of the identity in the center of
G/Z(G) and S1 is the derived subgroup of G/Z(G). Let π : G → G/Z(G) be the
canonical projection and let H = π−1(S1)0.

If R1 is infinite (i.e. G/Z(G) is not semisimple) then dimH < dimG and by
induction there exists a semisimple definably connected subgroup S of G such that
H = RHS, where RH is the solvable radical of H. Therefore G = RS.

If G/Z(G) is semisimple then Hrushovski, Peterzil and Pillay prove in [HrPePi2,
6.5] that [G,G] is a semisimple definable subgroup of G such that G = Z(G)0[G,G].

�

In 9.8 we find a definable Levi decomposition also when G/N (or equivalently
G/R) is definably compact.

The general problem to characterize definable groups with a definable Levi de-
composition will be considered in another paper where the proof that every definable
group has

∨
-definable (not always definable) “Levi subgroups” will be also given.

We want to show now that (when they exist) definable Levi subgroups are all
conjugate to each other. In the proof we consider several cases. For centerless
groups we use the following theorem due to Peterzil, Pillay and Starchenko which
allow us to reduce to the linear case:

Fact 7.7. [PePiSta1, 3.1, 3.2] Let G be a centerless definably connected group.
Then there are definable real closed fields Ri, i = 1, . . . , s, and definable groups
Hi < GL(ni,Ri), Hi definable in Ri, such that G is definably isomorphic to the
direct product H1 × · · · ×Hs.

Fact 7.8. Every finite normal subgroup of a definably connected group is contained
in its center.

Proof. Let G be a definably connected definable group and F a normal finite sub-
group. We want to show that F ⊆ Z(G). For every x ∈ F , the image of the
continuous map

G −→ F

g 7→ gxg−1

is definably connected, so it has to be constant. Therefore gxg−1 = x for every
g ∈ G and x ∈ Z(G). �

We recall that a group G is said to be perfect if G = [G,G].

Fact 7.9. ([HrPePi2]). Every semisimple definably connected group is perfect.

Remark 7.10. If H < G are groups such that G = Z(G)H, then [G,G] = [H,H].

Proof. Every g ∈ G can be written as g = zh with z ∈ Z(G) and h ∈ H. Therefore
for every g1, g2 ∈ G,

[g1, g2] = [z1h1, z2h2] = [h1, h2].

�



LIE-LIKE DECOMPOSITION OF DEFINABLE GROUPS 23

Proposition 7.11. If a definably connected group has a definable Levi decomposi-
tion, then all definable Levi subgroups are conjugate.

Proof. Let G be a definably connected group and let R be its solvable radical.
Suppose G = RS is a definable Levi decomposition of G. We want to show that
every definable Levi subgroup Ŝ of G is a conjugate of S. Note that dimS =
dim Ŝ = dimG− dimR.

We proceed by induction on n = dimG. If n = 1 then G is abelian, so G = R.
Let n > 1. Our plan is to transfer from the field of the reals the property that
Levi subgroups are all conjugate. We can do it directly in the semialgebraic linear
case by results in [PePiSta1] and [PePiSta3], then we can reduce from the non-
semialgebraic to the semialgebraic case by [PePiSta3, 4.1], and from the non-linear
to the linear case by [PePiSta1, 3.1, 3.2] and induction. In detail:

(1). Suppose first that G is linear: G < GLn(R) for some definable real closed
field R and some n ∈ N. Then by [PePiSta1] and [PePiSta3], S and Ŝ are semial-
gebraic over R with parameters in Ralg.

Let G be semialgebraic, say G = G(x), with x = (x1, . . . , xs) the parameters
over which G is defined. By [PePiSta1] and [PePiSta3] (see 5.2), the formula

∀x [S, Ŝ < G(x) ⇒ ∃ g ∈ G(x) (Ŝ ⊆ Sg) ]

is a first ordered sentence in the language of ordered fields and it is true in the field
of the real numbers, therefore it is true in R as well.

If G is non-semialgebraic, then by [PePiSta3, 4.1] there are definably connected
semialgebraic G1 � G2 < GLn(R) such that G1 � G � G2 and G2/G1 is abelian.
By [HrPePi2] semisimple definably connected group are perfect, so they have no
abelian proper quotient. Therefore S and Ŝ are both contained in G1 and we can
reduce to the semialgebraic case.

(2). Let G be now not necessarily linear. We consider the possible cases
for the center of G:

If Z(G) is infinite then Z(G)0 ⊆ R is infinite too.

(a) Let Z(G)0 = R. Then S = [S, S] = [G,G] = [Ŝ, Ŝ] = Ŝ (see 7.9 and 7.10).

(b) Let Z(G)0 ( R and let π : G→ G/Z(G)0 be the canonical projection. Then
π(S) and π(Ŝ) are definable Levi subgroups of G/Z(G)0. By induction they
are conjugate in G/Z(G)0, so Z(G)0Ŝ = Z(G)0Sg = G1, for some g ∈ G.
Since Ŝ and Sg are definable Levi subgroups of G1, by induction it follows
that they are conjugate in G1, and therefore Ŝ and S are conjugate in G.

If G is centerless then we can reduce to the linear case by [PePiSta1, 3.1, 3.2]
(7.7) and [PePiSta3, 4.5] (7.5).

Let Z(G) be finite but non-trivial and let π : G → G/Z(G) be the canonical
projection.

Since every finite normal subgroup of G is contained in its center (7.8), it follows
that the center of G/Z(G) cannot be finite and non-trivial. So we have to check
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the two cases where Ḡ := G/Z(G) is centerless or with infinite center:

- If Ḡ is centerless then π(S) and π(Ŝ) are conjugate in Ḡ by the linear
case. Thus again Z(G)Ŝ = Z(G)Sg = G1 for some g ∈ G. It follows that
G0

1 = Ŝ = Sg.

- If the center of Ḡ is infinite then π(S) and π(Ŝ) are conjugate in Ḡ for the
case with infinite center. Again Z(G)Ŝ = Z(G)Sg = G1 for some g ∈ G
and G0

1 = Ŝ = Sg.
�

8. Definable groups of matrices

The main result of this section is that every definably connected linear group
G can be decomposed as G = KH, for some definably compact subgroup K and
some definable torsion-free subgroup H (8.8). As we already observed in 4.2, since
K ∩H = {e}, it follows that K is a maximal definably compact subgroup and H
is a maximal definable torsion-free subgroup.

Definable linear groups are studied by Peterzil, Pillay and Starchenko in [PePiSta3].
Among their results, together with [PePiSta3, 1.41] (see 7.5) we will use in an es-
sential way the following:

Fact 8.1. ([PePiSta3]). Every abelian definably connected linear group is definably
isomorphic to

SO2(M)k × (M⊕)s × (M⊗)p

for some integers k, s, p > 0, where M⊕ denotes the additive group (M,+) and M⊗
the multiplicative group (M>0, ·).

Corollary 8.2. Every linear 0-group is definably compact.

Proof. Let G be a linear 0-group. By 4.10(b) and Fact 8.1, there are non-negative
integers k, s, p such that G is definably isomorphic to SO2(M)k × (M⊕)s ×(M⊗)p.
Since for every definable subgroup H of G we have E(G/H) = 0, it follows that
s = p = 0 and G is definably compact. �

Proposition 8.3. Every linear definable torsion-free group is a product of definable
1-dimensional subgroups.

Proof. Let dimG = n. We want to find 1-dimensional definable torsion-free sub-
groups A1, . . . , An such that G = A1 · · ·An.

We proceed by induction on n. If n = 1 there is nothing to prove, so suppose
n > 1.

Let G1 be a normal definable subgroup of G such that dimG1 = n− 1 (3.5(c)).
We want to find a 1-dimensional definable complement of G1 and conclude using
induction on G1.

Let x /∈ G1 and Z := Z(CG(x)), the center of the centralizer of x in G. Being
an abelian subgroup of G, Z is by 8.1 a direct product of 1-dimensional definable
subgroups Z1, . . . , Zs. Since x ∈ Z \ G1, it follows that Z 6⊂ G1 and so there is
some i ∈ {1, . . . , s} such that Zi 6⊂ G1.

The definable 1-dimensional torsion-free group Zi does not contain any proper
definable subgroup and therefore Zi ∩ G1 = {e}. Moreover dimG − dimG1 = 1
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and G is definably connected, thus G = ZiG1. By induction G1 = A2 · · ·An and
therefore G = ZiA2 · · ·An. �

Remark 8.4. Actually the proof of the proposition above shows the more general
fact that if every abelian definable subgroup of a definable torsion-free group G
splits in the product of definable 1-dimensional subgroups, so does G.

Proposition 8.5. Let G be a solvable definably connected linear group and let N be
its maximal normal definable torsion-free subgroup. Then G is definably isomorphic
to a definable semidirect product SO2(M)k nN .

Proof. IfG is not torsion-free, by 4.15G = AN for every 0-Sylow A ofG. By 8.1 and
8.2 A is definably compact and definably isomorphic to SO2(M)dimA. Therefore
A ∩N = {e} and the thesis follows. �

Proposition 8.5 can be viewed as an o-minimal analogue of the fact that every
solvable connected linearizable real Lie group can be decomposed into the semidi-
rect product T n N of a Lie subgroup T isomorphic to SO2(R)d, for some d ∈ N,
and a contractible normal Lie subgroup N (see for example [GoOnVi, 7.1]).

Generalizing Theorem 4.18 about solvable groups, we will see that any definably
connected extension of a definably compact group by a definable torsion-free group
splits abstractly (9.13). In the case of linear groups we prove now that every such
an extension splits definably. In both proofs we will use the following lemma which
gives us a sufficient condition to find a 0-Sylow in the normalizer of a definable
subgroup:

Lemma 8.6. Let N < H < G be definable groups, with N,H both normal in G, N
torsion-free, E(G) = 0. Suppose that N has a definable cofactor K in H such that
every conjugate of K in G is a conjugate of K in H. Then there is some 0-Sylow
of G contained in NG(K), the normalizer of K in G.

Proof. By hypothesis for every g ∈ G there is some x ∈ N such that Kg = Kx.
This gives a well-defined bijective definable map

G/NG(K) ←→ N/NN (K).

Since N is torsion-free, by 3.5(d) and 3.3 it follows that E(N/NN (K)) = ±1 =
E(G/NG(K)), and by 4.13 every 0-Sylow of NG(K) is a 0-Sylow of G as well. �

Proposition 8.7. Let G be a definably connected linear extension of a definably
compact group K by a definable torsion-free group N . Then the definable exact
sequence

1 −→ N
i−→ G

π−→ K −→ 1

splits definably, i.e. N has a definable cofactor in G.

Proof. First note that N is the maximal normal definable torsion-free subgroup of
G (3.9). We consider the possible cases for K:

If K is abelian, then G is solvable and we have already proved in 8.5 that the
maximal normal definable torsion-free subgroup of G has a definable cofactor.

If K is semisimple, then N is the solvable radical of G (2.3) and by 7.5 G con-
tains a semisimple definably connected subgroup S such that G = NS and N ∩ S
is finite. Since N is torsion-free, it follows that N ∩ S = {e} and therefore S is a
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definable cofactor of N .

If K is neither abelian nor semisimple, by [HrPePi2, 6.4] the derived subgroup
[K,K] of K is a semisimple definably connected subgroup and K = Z(K)0[K,K].

Let G2 = π−1([K,K]). It is definably connected because [K,K] and N are
definably connected. By the semisimple case, the definable exact sequence

1 −→ N
i−→ G2

π|G2−→ [K,K] −→ 1

splits definably. Let S be a definable cofactor of N in G2, i.e. a definable subgroup
of G2 definably isomorphic to [K,K]. We need now a definable torus T1 of G
definably isomorphic to Z(K)0 such that T1S is a subgroup. We can find such a T1

in NG(S), the normalizer of S in G. This is because G2 is a normal subgroup of G
(note that [K,K] is normal in K), and any two definable cofactors of N in G2 are
definable Levi subgroups of G2 and they are conjugate (7.11), therefore by Lemma
8.6 the normalizer NG(S) of S in G contains some 0-Sylow of G. Let A be one of
them. Consider the following diagram:

G
π−→ K

∪ ∪
A

π|A←→ T
∪ ∪
T1

π|T1←→ Z(K)0

Because A is definably compact (8.2), the restriction of π to A is a definable iso-
morphism between A and a maximal definable torus T of K (6.10).

We claim that T contains Z(K)0. Since Z(K)0 is a normal definable torus and
all maximal tori are conjugate (4.10(d)), it follows that T (and any other maximal
torus) contains Z(K)0.

Define T1 = (π|A)−1(Z(K)0). Then T1S is a definable subgroup of G (because
T1 ⊂ A ⊂ NG(S)) and it is definably isomorphic to K by the canonical projection
π : G→ G/N .

Since N is torsion-free and G/N is definably compact, it follows that every
definable subgroup ofG which is definably isomorphic toG/N is a definable cofactor
of N . �

Theorem 8.8. Every definably connected linear group G can be decomposed as

G = KH with K ∩H = {e},

for some maximal definably compact subgroup K and some maximal definable torsion-
free subgroup H.

Proof. Let N be the maximal normal definable torsion-free subgroup of G and let
π : G→ G/N be the canonical projection. By 6.3 G/N = K1H1, for some definably
compact subgroup K1 and some definable torsion-free subgroup H1.

Let G1 = π−1(K1). By the previous proposition, the definable exact sequence

1 −→ N
i−→ G1

π−→ K1 −→ 1

splits definably. LetK be a definable cofactor ofN inG1 (so definably isomorphic to
K1) and let H = π−1(H1). Then H is torsion-free (3.3) and G = KH. Maximality
and trivial intersection follow (see 4.2). �
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Remark 8.9. ForH as above, by 8.3 if dimH = s there are definable 1-dimensional
subgroups H1, . . . ,Hs such that H = H1 · · ·Hs. So the previous theorem gives
us a definable decomposition of definably connected linear groups similar to the
decomposition of connected real Lie groups we recalled in 1.1.

9. Splitting extensions

We saw in 3.12 that every definable extension of a definable torsion-free group
by a definably compact group splits definably in a direct product.

In this section we analyse the specular case of a definable extension of a definably
compact definably connected group by a definable torsion-free group. We see that
every such a sequence splits abstractly, and it splits definably if and only if every
0-subgroup (⇔ some 0-Sylow) is definably compact (9.13).

To prove it we first show that when the definably compact group is semisim-
ple, the extension splits definably (9.5). As a consequence we also find maximal
semisimple definably connected definably compact subgroups in every definable
group (9.9).

9.1. Definably connected extensions of a semisimple definably compact
group by a definable torsion-free group.

Lemma 9.1. If the solvable radical R of a definable group G is definably compact,
then there is no normal definable subgroup H of G such that G/H is 1-dimensional
and torsion-free.

Proof. We can suppose G definably connected.
Let H be a normal definable subgroup of G such that G/H is 1-dimensional and

torsion-free. We claim that R ⊆ H.
If not, R/(R∩H) is an infinite torsion-free definable group (because it is definably

isomorphic to RH/H < G/H), in contradiction with the fact that R is definably
compact.

Thus G/H is definably isomorphic to (G/R)/(H/R). But the semisimple de-
finably connected group G/R is perfect ([HrPePi2, 3.1(v)]), so G/R does not have
proper abelian quotients, in contradiction with the fact that definable 1-dimensional
torsion-free groups are abelian. �

Corollary 9.2. Let G be a definable group and let N be its maximal normal de-
finable torsion-free subgroup. Then there is no normal definable subgroup H̄ of
Ḡ := G/N such that Ḡ/H̄ is 1-dimensional and torsion-free.

Proof. By 3.10 and 4.3 the solvable radical of G/N is definably compact. �

Proposition 9.3. Let G be a definably connected group and let N be its maximal
normal definable torsion-free subgroup. If dimN = 1 then N ⊆ Z(G).

Proof. We use additive notation + for the commutative group operation of N . Let
s : G/N → G be a definable section of the canonical projection. For every g ∈ G
there is a unique couple (a, x), with a ∈ N and x ∈ G/N , such that g = s(x)a. So
there is a definable homomorphism

ϕ : G/N −→ Aut(N)

x 7→ (a 7→ s(x)as(x)−1).

This is because for every g ∈ G, the conjugation map fg : N → N mapping
a 7→ gag−1 is a definable automorphism of N , so there is a homomorphism Φ: G→
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Aut(N), given by g 7→ fg, and N ⊆ ker Φ, being N abelian. Thus Φ induces the
above definable homomorphism ϕ : G/N → Aut(N) which does not depend on the
choice of the section.

We want to show that ϕ(G/N) = {e}, and so N ⊆ Z(G). If not trivial,
ϕ(G/N) < Aut(N) is an infinite definable subgroup, since G is definably connected.

Because N does not have any proper definable subgroup, by [PeSta1, 4.3] there
is a definable operation · over N , such that (N,+, ·) is a field.

We claim that Aut(N) is a definable group (in general it is an
∨
-definable group)

definably isomorphic to (N\{0}, ·). Let f ∈ Aut(N) and let f(1) = a ∈ N\{0}.
The set {x ∈ N : f(x) = a · x} is a definable subgroup of (N,+) containing 0 and
1; but (N,+) does not have any proper definable subgroups, so f(x) = a · x for
every x ∈ N . On the other hand, every definable function N → N of the form
f(x) = a · x, with a ∈ N\{0}, is a definable automorphism of (N,+), so we have
done.

Therefore, if not trivial, ϕ(G/N) is definably isomorphic to (G/N)/ kerϕ which
is a 1-dimensional definable torsion-free group, contradicting our previous corollary.

�

Remark 9.4. If dimN > 1, the proposition above may no longer be true, even
when N is abelian. For dimN = 2, take for instance G = R2 oϕ SO2(R), with
ϕ(A)(x) = Ax, for every A ∈ SO2(R) and x ∈ R2. Then G is a centerless definable
group.

Theorem 9.5. Let G be a definably connected extension of a semisimple definably
compact group K by a definable torsion-free group N . Then the definable exact
sequence

1 −→ N
i−→ G

π−→ K −→ 1

splits definably. Moreover any two definable cofactors of N in G are conjugate.

Proof. Since K is semisimple, it follows that N is the solvable radical of G (2.3).
Thus any definable cofactor of N in G is a definable Levi subgroup and they are
all conjugate by 7.11.

To find a definable cofactor of N we distinguish the cases where Z(G) is finite
and Z(G) is infinite.

First suppose Z(G) is finite. We claim that G/Z(G) is centerless. Otherwise:

- If the center of G/Z(G) is finite and non-trivial, then its preimage in G
would be a normal finite subgroup and being G definably connected it
should be contained in Z(G) (7.8), contradiction.

- If the center Z of G/Z(G) is infinite, then let Z1 be the preimage in G of
Z0 by the canonical projection p : G→ G/Z(G).

Since Z(G) is definably compact and Z1/Z(G) ∼= Z0 which is torsion-
free, it follows by 3.12 that Z1 = Z(G) × N1, where N1 is the maximal
normal definable torsion-free subgroup of Z1.

Let us see that N1 should be contained in Z(G). For every g ∈ N1 and
x ∈ G, gx = xgz for some z ∈ Z(G). By 3.11, N1 is normal in G as well,
hence g−1x−1gx ∈ Z(G) ∩N1 = {e}. Therefore N1 ⊆ Z(G), contradiction.

So we have proved that if Z(G) is finite then G/Z(G) is centerless.
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By 7.7 and 8.7, we can reduce then to the linear case. Therefore G/Z(G) =
N ′ oK ′, where N ′ is definably isomorphic to N (Z(G) finite ⇒ N ∩ Z(G) = {e})
and K ′ is definably isomorphic to K/Z(G). Hence the preimage of K ′ in G is a
definable cofactor of N .

If Z(G) is infinite, we proceed by induction on n = dimN . Note that since N is
the solvable radical of G, it follows that it contains Z(G)0 which is infinite as well.

• n = 1. By 9.3N ⊆ Z(G) and soN = Z(G)0. Thus by [HrPePi2, 5.6], [G,G]
is a definable subgroup of G such that G = Z(G)0[G,G] and Z(G)0∩ [G,G]
is finite. Therefore Z(G)0 ∩ [G,G] = {e} (Z(G)0 is torsion-free) and [G,G]
is definably isomorphic to K. In this case [G,G] is the unique definable
cofactor of N in G (see 7.10).

• m < n ⇒ n. If Z(G)0 = N , see above. If Z(G)0 ( N , by induction the
definable exact sequence

1 −→ N/Z(G)0 −→ G/Z(G)0 −→ K −→ 1

(with the obvious maps) splits definably. Let K1 be a definable subgroup
of G/Z(G)0 definably isomorphic to K and let G1 be its preimage in G.
The definable exact sequence

1 −→ Z(G)0 i−→ G1
π−→ K1 −→ 1

splits definably again by induction (or by [HrPePi2, 5.6]) and G1 (so G)
contains a definable subgroup definably isomorphic to K1 (and so to K).

�

Remark 9.6. While every definable extension of a definable torsion-free group by
a definably compact group is definably isomorphic to their direct product (3.12),
in general the proposition above yields a definable semidirect product that might
be not direct: take for instance R3 oϕ SO3(R) with an analogous ϕ as in 9.4.

Corollary 9.7. If G is a definable extension of a semisimple definably compact
group by a definable torsion-free group, then all 0-subgroups of G are definably
compact.

Proof. By 9.5 G0 = KN , where N is the maximal normal definable torsion-free sub-
group of G and K is a semisimple definably compact group. Then all 0-subgroups
of G are definably compact by 6.6. �

Proposition 9.8. Let G be a definably connected extension of a definably compact
group K by a definable torsion-free group N . Then G has definable Levi subgroups,
all definably isomorphic to [K,K].

Proof. By [HrPePi2], K = Z(K)0[K,K]. Then the solvable radical R of G is
π−1(Z(K)0), where π : G→ G/N is the canonical projection (2.3).

Define G1 := π−1([K,K]). By 9.5, N has a definable cofactor S in G1. Thus
G = RG1 = RS, and S is a definable Levi subgroup of G definably isomorphic to
[K,K].

Since all definable Levi subgroups of G are conjugate (7.11), the thesis follows.
�
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9.2. Maximal semisimple definably connected definably compact sub-
groups. To semplify our statements, from now on we include the trivial group
G = {e} among semisimple definable groups. With this convention, we show now
that every definable group G has maximal semisimple definably connected definably
compact subgroups, and they are all conjugate. It turns out that each of them is
definably isomorphic by the canonical projection π : G→ G/N to the derived sub-
group of a maximal definably compact subgroup of G/N , where N is the maximal
normal definable torsion-free subgroup of G.

Theorem 9.9. Every definable group has maximal semisimple definably connected
definably compact subgroups, and they are all conjugate to each other.

Proof. Let G be a definable group and let N be its maximal normal definable
torsion-free subgroup. We can suppose G definably connected.

By 6.3 G/N has maximal definably compact subgroups, all definably connected
and conjugate. Let K1 be one of them. Then by [HrPePi2], K1 = Z(K1)0[K1,K1]
and [K1,K1] is definable and semisimple. Note that [K1,K1] is the unique maximal
semisimple definably connected definably compact subgroup of K1.

Let π : G → G/N be the canonical projection and define G1 = π−1([K1,K1]).
By 9.5, the definable exact sequence

1 −→ N
i−→ G1

π|G1−→ [K1,K1] −→ 1

splits definably. If S1 is a definable cofactor of N in G1 (and so also a Levi subgroup
of G1), we claim that S1 is a maximal semisimple definably connected definably
compact subgroup of G.

If not, let S be a semisimple definably connected definably compact subgroup
containing properly S1. Since S ∩ N = {e}, it follows that π(S) is a semisim-
ple definably connected definably compact subgroup containing properly [K1,K1],
contradiction.

Let S2 be another maximal semisimple definably connected definably compact
subgroup of G. We want to show that S2 is a conjugate of S1. Again, since
S2 ∩ N = {e} it follows that π(S2) is a maximal semisimple definably connected
definably compact subgroup of G/N . Let K2 be a maximal definably compact
subgroup containing π(S2). Then π(S2) = [K2,K2]. Define G2 = π−1([K2,K2]).

Since K2 is a conjugate of K1, it follows that [K2,K2] = [K1,K1]ḡ for some
ḡ ∈ G/N . Therefore for every g ∈ π−1(ḡ), denoted by a(g) the conjugation map
given by x 7→ gxg−1, the following diagram commutes:

S1

π|S1

��

a(g) // Sg1
π|

S
g
1

��

i // G2 = N o S2

π|G2

��
[K1,K1]

a(ḡ) // [K1,K1]ḡ oo id // [K2,K2]

Thus Sg1 is a Levi subgroup of G2 and therefore a conjugate of S2 in G2. This
proves that S1 and S2 are conjugate in G. �

Remark 9.10. The proof above shows that if N is the maximal normal definable
torsion-free subgroup of a definable group G and π : G → G/N is the canonical
projection, then

(a) if S is a maximal semisimple definably connected definably compact sub-
group of G, then π(S) = [K,K], where K is a maximal definably compact
subgroup of G0/N containing π(S);
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(b) conversely, for every maximal definably compact subgroupK of G0/N there
is a maximal semisimple definably connected definably compact subgroup
S of G such that π(S) = [K,K].

Corollary 9.11. Let G be a definable group. Then:
(i) for every maximal semisimple definably connected definably compact sub-

group S of G, there is a 0-Sylow A of G such that A ⊂ NG(S);
(ii) for every 0-Sylow A of G there is a maximal semisimple definably connected

definably compact subgroup S of G such that A ⊂ NG(S).

Proof. We can suppose G definably connected.
Note that (i) ⇔ (ii) since all 0-Sylows are conjugate (4.10) and all maximal

semisimple definably connected definably compact subgroups are conjugate as well
(9.9). Indeed for every g ∈ G,

A ⊆ NG(S) ⇔ Ag ⊂ NG(Sg).

We show as (i) follows from 9.9 and 8.6.
Let N be the maximal normal definable torsion-free subgroup of G and let

π : G→ G/N be the canonical projection. Let K be a maximal definably compact
subgroup of G/N containing π(S), and define G1 := π−1([K,K]). Therefore S
is a definable cofactor of N in G1, and we can apply 8.6 to find a 0-Sylow of
G2 := π−1(K) in NG(S). Note that E(G/G2) = E(H) = ±1 (where H is a torsion-
free definable complement of K in G/N : 6.3), so any 0-Sylow of G2 is a 0-Sylow of
G as well (4.13). �

9.3. Definably connected extensions of a definably compact group by a
definable torsion-free group.

Fact 9.12. ([Be, 6.11], [Ed2, 1.2]). Let G be a definably connected definably compact
group, and let T be a maximal definable torus of G (i.e. T is a 0-Sylow of G). Then

G =
⋃
g∈G

T g.

Theorem 9.13. Let G be a definably connected extension of a definably compact
group K by a definable torsion-free group N . Then

- the definable exact sequence

1 −→ N
i−→ G

π−→ K −→ 1

splits abstractly, and it splits definably if and only if every 0-subgroup of G
is definably compact;

- for every 0-Sylow A of G and for every direct complement T of A ∩ N in
A (see 4.17), there is a cofactor KT of N in G such that

KT =
⋃
x∈K

T x;

- the derived subgroup [KT ,KT ] of KT is definable and it is a maximal
semisimple definably connected definably compact subgroup of G.
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Proof. Let us consider the possible cases for K:

If K is abelian, then G is solvable and the thesis follows by 4.18. In this case of
course KT = T and [KT ,KT ] = {e}.

If K is semisimple, then the extension above splits definably (9.5) and every
0-subgroup of G is definably compact (9.7). Thus A ∩N = {e}.

Note that every maximal semisimple definably connected definably compact sub-
group of G is also a maximal definably compact subgroup of G.

Let S be one of them such that A ⊆ NG(S) (9.11(ii)). Therefore AS is a
definably compact subgroup of G. By maximality of S it follows that A ⊂ S. By
9.12,

KA := S =
⋃

x∈KA

Ax.

Moreover by [HrPePi2] KA = [KA,KA].

If K is neither abelian nor semisimple, then by [HrPePi2] K = Z(K)0[K,K],
where [K,K] is definable and semisimple.

Let A be a 0-Sylow of G, and T a direct complement of A ∩N in A. We want
to find a cofactor KT of N in G of the form

KT =
⋃

x∈KT

T x.

By 9.9, 9.10 and 9.11 there is a maximal semisimple definably connected definably
compact subgroup S of G definably isomorphic to [K,K] (by π|S : S → [K,K]) such
that A ⊂ NG(S). In particular T ⊂ NG(S) and therefore KT := TS is a subgroup.
It is easy to check that π|KT

: KT → K is an isomorphism, [KT ,KT ] = S, and
π(A) = π(T ) is a maximal torus of K (6.10). By 9.12,

K =
⋃
x∈K

π(T )x,

and therefore

KT =
⋃

x∈KT

T x.

If A is definably compact (and therefore every 0-subgroup of G is), then N ∩A =
{e}, and KT is definable.

Otherwise, suppose that there is a definable cofactor of N in G. Then all 0-
subgroups of G are definably compact (6.6), in contradiction with the fact that A
is not. �

9.4. An abstract decomposition. As a consequence of previous results about
splitting extensions we obtain the following abstract decomposition of definably
connected groups:

Theorem 9.14. Let G be a definably connected group and N its maximal normal
definable torsion-free subgroup.

(a) For every 0-Sylow A of G and for every direct complement T of A∩N in A,
there are a subgroup K of G and a maximal definable torsion-free subgroup
H of G such that
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K =
⋃
x∈K

T x, G = KH, K ∩H = {e}.

The derived subgroup [K,K] of K is definable, and it is a maximal
semisimple definably connected definably compact subgroup of G.

(b) For every maximal semisimple definably connected definably compact sub-
group S of G there are a subgroup K of G and a maximal definable torsion-
free subgroup H of G such that

S = [K,K], G = KH, K ∩H = {e}.

The subgroup K is the union of conjugates of a complement of A∩N in A,
for some 0-Sylow A of G.

(c) In both (a) and (b) above the restriction to K of the canonical projection
π : G→ G/N is an isomorphism with a maximal definably compact subgroup
of G/N , and K is definable if and only if A is definably compact (⇔ every
0-subgroup of G is definably compact).

Proof.
(a) Let K1 be a maximal definably compact subgroup of G/N containing π(A)

and let H1 be a definable torsion-free subgroup such that G/N = K1H1

(6.3).
Let G1 = π−1(K1). Note that A ⊆ G1. By 9.13 there is an abstract

cofactor K of N in G1 such that

K =
⋃
x∈K

T x,

and [K,K] is a maximal semisimple definably connected definably compact
subgroup of G1 (and of G as well).

Let H = π−1(H1); then G = KH and K ∩H = {e}. As we showed in
6.4, H is a maximal definable torsion-free subgroup of G.

(b) Let K1 be a maximal definably compact subgroup of G/N containing π(S),
and let H1 be a torsion-free definable complement of K1 in G/N (6.3).

Let H = π−1(H1) and G1 = π−1(K1). Then π(S) = [K1,K1] (9.10) and
by Theorem 9.13 applied to G1, for every 0-Sylow A of G1 and for every
cofactor T of A ∩ N in A there is an abstract subgroup K of G with the
required properties. Because

E(G/G1) = E(H) = ±1,

A is a 0-Sylow of G as well (4.13).

(c) In both cases G = KH, where H = π−1(H1) for some maximal definable
torsion-free subgroup of G/N such that G/N = K1H1, where K1 is a
maximal definably compact subgroup of G/N . Since K ∩ N = {e}, it
follows that π|K : K → K1 is an isomorphism.

By 9.13 applied to G1 := π−1(K1) = KN , K is definable if and only if
every 0-subgroup of G1 is definably compact. Since E(G/G1) = E(H1) =
±1, every 0-Sylow of G1 is a 0-Sylow of G as well (4.13) and the proof is
completed.
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�

Corollary 9.15. Let G, N , A, T , K be as in 9.14(a). Then

K = T [K,K].

Proof. Let K1 be the maximal definably compact subgroup of G/N such that

π|K : K −→ K1

is an isomorphism 9.14(c). Then T1 := π(A) is a maximal definable torus of K1

(6.10) and it contains Z(K1)0 (which is a normal definable torus, so it is contained
in every maximal definable torus, because they are all conjugate to each other).

Since K1 = Z(K1)0[K1,K1], it follows that K1 = T1[K1,K1] (note that T1 =
π(T )) and then K = T [K,K]. �

10. A definable Lie-like decomposition

In this section we find a definable o-minimal analogue of the decomposition in
1.1 of connected real Lie groups, where maximal tori are replaced by maximal
0-subgroups.

Proposition 10.1. Let G be a definably connected group and N its maximal normal
definable torsion-free subgroup. Let A be a 0-Sylow of G, T a cofactor of A ∩N in
A, and

G = KH

an abstract decomposition with K and H as in 9.14(a), i.e. K =
⋃
x∈K T

x and
K ∩H = {e}.

Then the smallest definable subgroup P of G containing K is such that:

(1) P = AS, where S = [K,K] is a maximal semisimple definably connected
definably compact subgroup of G;

(2) P =
⋃
x∈P A

x;

(3) A ∩ N is the unique maximal definable torsion-free subgroup of P and
P/(A ∩N) is definably compact;

(4) Z(P )0 = CP (S)0 = (A∩N)× (π|K )−1(Z(π(K))0) is the solvable radical of
P and S = [K,K] is a definable Levi subgroup of P ;

(5) P = (A ∩N)×K;

(6) Z(P ) = (A ∩N)× Z(K).

Proof. Let π : G → G/N be the canonical projection. Define G1 := KN and
observe that G1 = π−1(K1), for some maximal definably compact subgroup K1 of
G/N and

π|K : K −→ K1

is an isomorphism (9.14(c)). So P ⊆ G1 and π|P : P → K1 is a definable surjective
homomorphism.
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We consider the possible cases for K1.

If K1 is abelian, then K = T and we claim that the smallest definable subgroup
P of G containing T is A.

If not, T ⊆ P ( A. Since A = T × (A ∩ N), it follows that A/P is definably
isomorphic to (A ∩ N)/(P ∩ N), so E(A/P ) = E((A ∩ N)/(P ∩ N)) = ±1, in
contradiction with the fact that A is a 0-group.

The other statements follow trivially.

If K1 is semisimple, then K is definable (9.5), so P = K. In this case A is
definably compact (6.6) and K = P is the union of conjugates of A (9.14). By
[HrPePi2] K = [K,K] and the other statements are obvious.

Suppose now K1 is neither abelian nor semisimple.
(1) We want to show that P = AS, where S := [K,K].

We claim that A ⊂ NG(S). Since S � K and T ⊂ K, of course
T ⊂ NG(S). As we showed above, the smallest definable subgroup contain-
ing T is A, so A ⊂ NG(S) as well. Therefore AS is a definable subgroup and
P ⊆ AS. On the other hand, by 9.15 K = TS, and since A is the smallest
definable subgroup containing T , it follows that A ⊂ P , so AS ⊆ P and
AS = P .

(2) We want to show that

P =
⋃
x∈P

Ax.

(⊆) Since P = AS and P is a subgroup, it is enough to verify that S ⊂⋃
x∈P A

x. We claim that

S =
⋃
x∈S

(A ∩ S)x.

Actually we can show that (A∩ S)0 is a 0-Sylow of S, from which the
claim follows by 9.12. Since (A∩S)0 is definably connected (obviously),
definably compact (it is a definable subgroup of S which is definably
compact) and abelian (it is a subgroup of A which is abelian), it follows
that it is a definable torus (4.12) and then a 0-group. It is also a 0-
Sylow of S by 4.10, because

E(S/(A ∩ S)0) = E(S/(A ∩ S))E((A ∩ S)/(A ∩ S)0) 6= 0,

since S/(A ∩ S) is in definable bijection with P/A and E(P/A) 6= 0,
being A a 0-Sylow.

(⊇) A ⊆ NG(S) ⇒ Ay ⊆ AS = P ∀ y ∈ S ⇒ Ax ⊆ P ∀ x ∈ P .

(3) P = AS = (A∩N)TS = (A∩N)K (9.15). Therefore the kernel of the map

π|P : P −→ K1

is A ∩ N . This shows that P ∩ N = A ∩ N and thus A ∩ N � P . Since
P/(A ∩N) is definably compact, A ∩N is the maximal (normal) definable
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torsion-free subgroup of P (3.9).

(4) Since P/π−1(Z(K1)) is semisimple (being definably isomorphic to a quo-
tient of [K1,K1]), it follows that π−1(Z(K1))0 = (A∩N)o(π|K )−1(Z(K1)0)
is the solvable radical of P (2.3). Call it RP .

We claim that RP = CP (S)0. First we show that A ∩N ⊂ CP (S). Let
a ∈ A ∩N ⊂ NG(S). For every s ∈ S, we have asa−1s−1 ∈ N ∩ S = {e}.
Therefore RP ⊂ CP (S)0.

For every x ∈ CP (S), π(x) ∈ CK1([K1,K1]) = Z(K1). Thus RP =
CP (S)0.

We claim that actually RP ⊂ Z(P ). Note that each x ∈ RP can be
written as x = a1y, with a1 ∈ A ∩ N and y ∈ Z(K), and each p ∈ P can
be written as p = a2ts (see (3)), with a2 ∈ A ∩ N , t ∈ T and s ∈ S. So
xp = px for every x ∈ RP and every p ∈ P .

Therefore RP = Z(P )0 and P = RPS, so S is a Levi subgroup of P .

(5) By (4), P = RPS = (A ∩N)K. We have seen in (3) that A ∩N is normal
in P . Also K is normal in P , since A ∩N ⊂ Z(P ).

(6) It is immediate from (4) and (5).
�

Theorem 10.2. Let G be a definably connected group and N its maximal normal
definable torsion-free subgroup. Let A be a 0-Sylow of G. Then there are definably
connected subgroups P,H < G, H ⊇ N (maximal) torsion-free, such that

G = PH and P =
⋃
x∈P

Ax,

where P ∩ H = P ∩ N = A ∩ N is the maximal (normal) definable torsion-free
subgroup of P .

Proof. See 10.1. Note that P is definably connected since Ax is definably connected
for every x ∈ P , and therefore Ax ⊂ P 0 for every x ∈ P . Being torsion-free, also
H is definably connected (3.5(a)).

Moreover P ∩ H = P ∩ N , since P ∩ N is the maximal definable torsion-free
definable subgroup of P . �

11. Homotopy equivalence

In this last section we show (as a consequence of results in [PeSta2] and in the
previous sections) that every definably connected group G in an o-minimal expan-
sion of a field is definably homotopy equivalent to any maximal definably compact
subgroup of G/N , where N is the maximal normal definable torsion-free subgroup
of G (11.6).

So let M = 〈M,<,+, ·, . . . 〉 be an o-minimal expansion of a real closed field.
Definable groups of this section are supposed to be definable inM.

We recall first the definitions of definable homotopy and homotopy equivalence:
Let X,Y be definable sets and f, g : X → Y definable continuous maps. A defin-

able homotopy between f and g is a definable continuous mapH : X×[0, 1]→ Y
such that f(x) = H(x, 0) and g(x) = H(x, 1) for every x ∈ X.
A definable set X is called definably contractible to the point x̄ ∈ X if there is
a definable homotopy H : X × [0, 1] → X between the identity map on X and the
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map X → X taking the constant value x̄.

Two definable sets X and Y are definably homotopy equivalent if there are
definable continuous maps f : X → Y , g : Y → X such that there exist definable
homotopies HX between (f ◦ g) : X → X and the identical map on X, and HY
between (g ◦ f) : Y → Y and the identical map on Y .

Fact 11.1. ([PeSta2, 5.7, 5.1]).
(a) Every n-dimensional definable torsion-free group H is definably homeomor-

phic to Mn (and so definably contractible).
(b) For every definably contractible definable subgroup H of a definable group

G, there is a definable continuous section s : G/H → G.

Corollary 11.2. Let G be a definable group and let N be a normal definable torsion-
free subgroup of G. Then G is definably homeomorphic to G/N ×N .

Proof. Let s : G/N → G be a definable continuous section of the canonical projec-
tion π : G→ G/N . Then the map

G −→ G/N ×N
g 7→ ( π(g), s(π(g))−1g )

is a definable continuous bijection with definable and continuous inverse

G/N × N −→ G

( π(g) , x ) 7→ s(π(g))x.

�

Proposition 11.3. Every solvable definably connected group is definably homotopy
equivalent to any of its 0-Sylow.

Proof. Let G be a solvable definably connected group and let N be its maximal
normal definable torsion-free subgroup. By 11.2 G is definably homeomorphic to
G/N × N . On the other hand G = AN , for any 0-Sylow A of G (4.15). If NA
is the maximal definable torsion-free subgroup of A, then again A is definably
homeomorphic to A/NA × NA. Because N , NA are definably contractible and
G/N and A/NA are definably isomorphic, we get that both G and A are definably
homotopically equivalent to G/N . �

Remark 11.4. The proposition above can be viewed as an o-minimal analogue of
the fact that avery connected solvable Lie group is homotopy equivalent to any of
its maximal torus.

Theorem 11.5. Let G be a definably connected group, N its maximal normal
definable torsion-free subgroup and K a maximal definably compact subgroup of
G/N . Then G is definably homeomorphic to K ×Ms, where s ∈ N is the maximal
dimension of a definable torsion-free subgroup of G.

Proof. By 11.2, G is definably homeomorphic to N × G/N . By 6.3, G/N = KH,
with K definably compact and H definable torsion-free subgroups. Thus G/N is
definably homeomorphic to K ×H and G is definably homeomorphic to K ×Ms,
s = dimN + dimH.



38 ANNALISA CONVERSANO

We claim that s is the maximal dimension of a definable torsion-free subgroup
of G. First note that if π : G→ G/N is the canonical projection, then π−1(H) is a
definable torsion-free subgroup with dimension equal to s.

Suppose dimH1 > s, for some H1 definable torsion-free subgroup of G. Then
π(H2) ∩K = {e} and dimπ(H2) + dimK > dimH + dimK = dimG/N , contra-
diction. �

Corollary 11.6. Every definably connected group G is definably homotopy equiva-
lent to each maximal definably compact subgroup of G/N , where N is the maximal
normal definable torsion-free subgroup of G.

Corollary 11.7. A definably connected group is definably contractible if and only
if it is torsion-free.

Proof. The (⇐) implication is [PeSta2, 5.7]. For the other one, by 11.6 it is
enough to show that a definably compact definably connected group is definably
contractible if and only if it is trivial. This is a consequence of Theorem 3.7 in
[BeMaOt] which proves that the homotopy groups of a definably compact defin-
ably connected group K are isomorphic to the homotopy groups of the connected
compact Lie group K/K00. �

12. Summary

In this last section we give a brief overview of the main results proved above,
hoping to make the picture more clear.

Many of the assertions of the following theorem were actually already known.
We put them here to stress the structure of a definable group in terms of certain
particular normal (maximal) definable subgroups and related quotients:

Theorem 12.1. Let G be a definable group. Then there exists a sequence of char-
acteristic (i.e. invariant by definable automorphisms of G) definable subgroups

N � R � Z � G0 � G

such that:

(1) G0 is the definably connected component of the identity,
(2) Z is the maximal normal solvable definable subgroup of G0,
(3) R is the solvable radical of G and R = Z0,
(4) N is the maximal normal definable torsion-free subgroup of G,
(5) G/G0 is finite,
(6) G0/Z is a direct product of definably simple groups,
(7) Z/R is the finite center of the semisimple definably connected group G0/R,
(8) R/N is a definable torus, and the solvable radical of G/N ,
(9) G0/N = KH, for some H definable torsion-free and K definably compact.

Proof.
(1) and (5) are [Pi1, 2.12].
(3) is 2.3.
(4) is 3.6.
(2) and (7): since G0/R is semisimple, it follows that its center is finite. Let

Z be its preimage in G0. Then Z is solvable and we claim that it is the maximal
normal solvable definable subgroup of G0. If not, let Z ( Z1�G0, with Z1 definable
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and solvable. Then Z1/R � G0/R is solvable and by 2.2 it cannot be infinite, so
Z1/R = Z/R because every finite normal subgroup of a definably connected group
is contained in its center (7.8).

(6) is [PePiSta1, 4.1] (see 2.1).
(8) see 4.3, [PeSta1, 5.4] and 3.10.
(9) see 5.6. �

Corollary 12.2. Every definably connected group G in an o-minimal expansion of
a real closed fieldM = 〈M,<,+, ·, . . . 〉 is definably homeomorphic to

K ×Ms,

where K is any maximal definably compact subgroup of G/N , and s ∈ N is the
maximal dimension of a definable torsion-free subgroup of G.

Proof. It follows from 12.1(9) and [PeSta2]. See 11.5. �

Corollary 12.3. Every definable group has maximal definable torsion-free sub-
groups.

Proof. Again it is a consequence of 12.1(9) and [PeSta2]. See 6.4. �

In terms of definable extensions, Theorem 12.1 turns into the following list of
definable exact sequences:

- Every definable group is a definable extension of a finite group by a defin-
ably connected group:

1 −→ G0 i−→ G
π−→ G/G0 −→ 1.

- Every definably connected group is a definable extension of a direct product
of definably simple groups by a solvable definable group:

1 −→ Z
i−→ G0 π−→ G0/Z −→ 1.

- Every definably connected group is a definable extension of a semisimple
definably connected group by a solvable definably connected group:

1 −→ R
i−→ G0 π−→ G0/R −→ 1.

- Every definable group is a definable extension of a definable group with
definably compact solvable radical by a definable torsion-free group:

1 −→ N
i−→ G

π−→ G/N −→ 1.

- Every solvable definable group is a definable extension of a definably com-
pact group by a definable torsion-free group:

1 −→ N
i−→ Z

π−→ Z/N −→ 1.

- Every solvable definably connected group is a definable extension of a de-
finable torus by a definable torsion-free group:

1 −→ N
i−→ R

π−→ R/N −→ 1.
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We remark that all groups involved in the list are maximal with the mentioned
properties.

Theorem 12.4. Let G be a definably simple group. Then
(a) there is a definable real closed field R and some m ∈ N such that G is

definably isomorphic to a definable group G1 < GLm(R), definable in R,
with the following properties:
(i) G1 = KH, with K = G1 ∩Om(R) and H = G1 ∩ T+

m(R);
(ii) H = AN , with A = G1 ∩D+

m(R) and N = G1 ∩ UTm(R);

(b) G has maximal definably compact subgroups, all definably connected and
conjugate to each other, and every such a maximal definably compact sub-
group has a definable torsion-free complement.

Proof. See 5.4 and 5.5. �

Proposition 12.5. Let G be a definably connected group and let N be its maximal
normal definable torsion-free subgroup.

(a) If G/Z(G) or G/N is definably compact, then G has a definable Levi de-
composition.

(b) If G has a definable Levi decomposition, then all definable Levi subgroups
are conjugate to each other.

Proof.
(a) See [HrPePi2], 7.6 and 9.8.
(b) See 7.11.

�

Theorem 12.6. Let G be definably connected, K definably compact, N definable
torsion-free groups. Then

(i) Every definable exact sequence

1 −→ K
i−→ G

π−→ N −→ 1

splits definably in a direct product. Namely G is definably isomorphic to

K ×N.

(ii) Every definable exact sequence

1 −→ N
i−→ G

π−→ K −→ 1

splits abstractly, i.e. G is abstractly isomorphic to a semidirect product

N oK.

It splits definably if and only if every 0-subgroup of G is definably compact
(in particular, the last condition holds when K is semisimple or G is linear).

Proof.
(i) If dimN = 1, it is proved in [Ed1, 5.1]. If dimN > 1, see 3.12.

(ii) See 9.13.
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�

Theorem 12.7. Let G be a definably connected group, N its maximal normal de-
finable torsion-free subgroup and π : G→ G/N the canonical projection.

• For every 0-Sylow A of G:

(1) A ∩ N is the maximal definable torsion-free subgroup of A and π(A) is a
maximal definable torus of G/N .

(2) For every direct complement T of A ∩N in A, there is a subgroup K of G
such that

(a)
K =

⋃
x∈K

T x, G = KH, K ∩H = {e},

where H is a maximal definable torsion-free subgroup of G;

(b) the derived subgroup [K,K] of K is definable, it is a maximal semisim-
ple definably connected definably compact subgroup of G, and any max-
imal semisimple definably connected definably compact subgroup of G
is a conjugate of [K,K];

(c) the restriction to K of the canonical projection π : G→ G/N is an ab-
stract isomorphism between K and a maximal definably compact sub-
group of G/N ;

(d) One can find such a K definable if and only if A is definably compact
(⇔ every 0-subgroup of G is definably compact);

(e) the smallest definable subgroup of G containing T is A, and the small-
est definable subgroup P containing K is such that:

(i)
P =

⋃
x∈P

Ax;

(ii) the maximal (normal) definable torsion-free subgroup of P is

P ∩H = P ∩N = A ∩N

and P/(A ∩N) is definably compact;

(iii) P = AS, where S = [K,K];

(iv) P = (A ∩N)×K;

(v) Z(P )0 = CP (S)0 = (A∩N)× (π|K )−1(Z(π(K))0) is the solvable
radical of P , and S is a definable Levi subgroup of P ;

(vi) Z(P ) = (A ∩N)× Z(K).

(3) G is solvable ⇔ P = A ⇔ K = T .
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• For every maximal semisimple definably connected definably compact subgroup
S of G there is a subgroup K of G with S = [K,K], and there are a 0-Sylow A of
G and a direct complement T of A∩N in A such that (a), (c), (d), (e) above hold.

Proof. See 6.8, 6.10, 9.10, 9.14, 10.1. �

We conclude with a little scheme about the parallelism between definable groups
in o-minimal structures and real Lie groups:

Definable groups Lie groups

definable homomorphisms ←→ smooth homomorphisms

definable subgroups ←→ closed subgroups

solvable radical ←→ solvable radical

0-subgroups ←→ tori

0-Sylows ←→ maximal tori

max. subgr. which is union of 0-Sylows ←→ max. compact subgr.
|| ||

union of the conj. of a 0-Sylow union of the conj. of a max. torus
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