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Abstract. A theory is stable up to ∆ if any ∆-type over a model has a few

extensions up to complete types. I prove that a theory has no the independence

property iff it is stable up to some ∆, where each ϕ(x; ȳ) ∈ ∆ has no the
independence property. Definability of one-types over a model of a stable up

to ∆ theory is investigated.

1. Introduction

Stable theories have a few types. This fact has a very important consequent:
each type has a finite local rank and is definable, so it is possible to classify all
types. Unstable theories have too many types to classify them. What can we do?
Each time when a problem is too complicated to be solved, we can partition this
problem into several more simple subproblems. Let us apply this general principle
to unstable theories. We can partition the set of all 1-types into small pieces. If
some piece has a few types we obtain stability inside this piece. And if a chosen
piece will be quite tame, then types from this piece will have locally a local rank1.
Possibly, a partition can be of any origin, but the most natural is the following: two
types are equivalent iff their ∆-parts are equal, where ∆ is a collection of formulae.
Thus we obtain a notion of a stable up to ∆ theory: each equivalence class is small.
Sufficiently closed notion was suggested by D. Macpherson and Ch. Steinhorn in
[4]. Suppose L ⊂ L+ are languages, and K is an elementary class of L-structures.
We say that an L+-structure M is K-minimal if the reduct M �L ∈ K and every
L+-definable subset of M is definable by a quantifier-free L-formula. A complete
L+-theory is K-minimal if all its models are. Indeed, let ∆ consist of atomic L-
formulae. Then any ∆-type over a model has a unique extension up to a complete
type. Moreover, a ∆-type is definable in L+ iff it is definable in L. So, if we replace
‘a unique extension’ with ‘a few extensions’ we obtain stability up to ∆. If we add
the second property: a ∆-type is definable iff it is definable in L, then a notion of
strong stability up to ∆ arises. O-stability, which is a partial case of stability up
to ∆, has been developed in [2, 7].

In the paper I proved that a theory T does not have the independence property iff
it is stable up to some ∆, where each formula in ∆ does not have the independence
propertry (Theorem 1.12). In the second part of the paper I investigate definability
of 1-types over a model with a stable up to ∆ theory and introduce a variant of
the ϕ-rank (Definition 2.2). In particular, I prove that a one-type over an ℵ0-
saturated model with a stable up to ∆ theory is definable iff its ∆-part is definable
(Theorem 2.6). If a theory does not have the independence property, then the
condition of ℵ0-saturatedness can be omitted.

1That is ϕ-rank inside this piece of a type from this piece is finite.
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Notation 1.1. Let s be a partial n-type, A a set, ∆ a collection of formulae in n
free variables. Then

Sn∆,s(A) , {p ∈ Sn∆(A) : p ∪ s is consistent}
If ∆ = L I omit it and write Sns . Note, s need not be a type over A.

Definition 1.2. Let M be an arbitrary structure, A ⊆ M . Let ∆ and ∇ be sets
of formulae of the form ϕ(x; ȳ).

(1) The model M is stable up to ∆ in (λ,∇) if for all A ⊆ M with |A| ≤ λ,
for any ∆-type p over M there are at most λ ∇-types over A which are
consistent with p, i.e. |S1

∇,p(A)| ≤ λ.
(2) The theory T is stable up to ∆ in (λ,∇) if every model of T is. Sometimes

I write T is (λ,∇)-stable up to ∆.
(3) If ∇ = L I omit it and write that T is stable in λ or λ-stable up to ∆.
(4) T is stable up to ∆ if there exists a λ in which T is stable up to ∆. I write

T is stable up to ϕ meaning that T is stable up to ∆ = {ϕ}.
(5) T is superstable up to ∆ if there exists a λ such that T is stable up to ∆ in

all µ ≥ λ.
(6) Let ϕ(x; y) , x < y and T contain axioms saying that < is a total order.

If T is stable up to ϕ, then T is said to be o-stable.

In a similar way it is possible to define stability up to, say, ϕ(x1, x2; ȳ), but I am
not sure that starting investigating types from two-types (not from one-types) is a
good idea.

Obviously, if T is λ-stable up to ∆ and (λ,∆)-stable, then T is λ-stable. If ∆
consists of a single formula ϕ(x; y) , (x = y), then stability up to ∆ is equivalent
to stability.

Recall that a formula ϕ(x̄, ȳ) has the order property if there are sequences ān
and b̄m for n,m ∈ ω such that ϕ(ān, b̄m) holds iff n ≤ m.

Definition 1.3. A formula ϕ(x̄; ȳ) has the order property over B inside a partial
type s(x̄) over a set A if the following formula (in an extended language)

ϕ(x̄; ȳ) ∧
∧
i

S(xi) ∧
∧
j

B(yj)

has the order property where the unary predicate S names the set of all realization
of the type s in some |A|+-saturated model N .

A theory T has the order property in spite of ∆ if there is a model M of T and
a ∆-type s(x̄) over M such that some formula ϕ(x̄; ȳ) has the order property over
M inside the type s.

Similarly one can define the strict order property inside a partial type and the
strict order property in spite of ∆, the independence property inside a partial type,
and the independence order property in spite of ∆.

Lemma 1.4. A theory T is stable up to ∆ iff T has no the order property in spite
of ∆.

Proof. Let a theory T of a language L is not stable up to ∆. Then for any cardinality
λ there is a modelM of T and a ∆-type s over M which has more than λ extensions
up to complete types. Let λ = 2|L|. Then there is a formula ψ(x̄, ȳ) such that more
than λ different ψ-types over M are consistent with s. Indeed, otherwise the number
of types consisting with s would be restricted by (2|L|)|L| = 2|L|×|L| = 2|L| = λ.
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Let N be an |M |+-saturated elementary extension of M, a predicate S name
the set of all realizations of the type s and P name the set M . Let

ψ+(x̄, ȳ) , ψ(x̄; ȳ) ∧
∧
i

S(xi) ∧
∧
j

P (yj)

Obviously there are more than λ ψ+-types over M which are consistent with the
type s. Then ψ+ has the order property and T has the order property in spite of
∆.

Now let T have the order property in spite of ∆. Then there are a pair (N ,M) of
models of T , a ∆-type s over M and a formula ψ such that ψ has the order property
over M inside s. Let T+ be the elementary theory of (N , P, S), where P names the
set M and S names s(N ). If s is not definable in T I extend the language so that s
in T+ becomes definable. The formula ψ+ has the order property in T+. Then for
any cardinality λ there is a model (N1, P, S) with more than λ ψ+-types and with
P (N1) of cardinality λ. Let M1 = p(N1). Then M1 ≺ N1. In each ψ+-type I can
replace the formula ψ+ with the formula ψ. So there are more than λ ψ-types over
M which are consistent with S(N1), and S(N1) implies some ∆-type s1 over M1,
because s1 is definable. Hence M1 is not λ-stable up to ∆. Since λ is arbitrary,
the theory T is not stable up to ∆. �

By other words Lemma 1.4 says that if T is stable up to ∆ then for any formula
ψ the formula ψ+ in the extended language is stable. This provides a regular way
of constructing stable formulae in the extended language. Claim that if a theory
T has no the independence property, then the formula ψ+ from Lemma 1.4 has no
the independence property for any formula ψ.

Corollary 1.5. A theory T is stable up to ∆ iff for any model M of T , for any
formula ψ(x̄; ȳ) and for any ∆-type s over M the number of ψ-types over M which
are consistent with s is at most |M |.

Proof. If there are a modelM of T , a formula ψ(x̄; ȳ) and a ∆-type s over M such
that the number of ψ-types over M which are consistent with s is bigger than |M |,
then ψ+ has the order property and T is not stable up to ∆.

If T is not stable up to ∆ then for some formula ψ the formula ψ+ has the order
property and the corollary follows. �

Standard compactness’s arguments allow to give a ‘localization’ of the order
property: a formula ϕ(x̄, ȳ; z̄) has the local order property if for any natural number
k there are a tuple c̄k and sequences ān and b̄m for n,m < k such that ϕ(ān, b̄m; c̄k)
holds iff n ≤ m. But for stability up to ∆ the equivalence of the local order
property in spite of ∆ and of the order property in spite of ∆ is not so immediate.
The problem is the following: realizing c̄ω which gives infinite sequences of ān and
b̄m I should consider a ∆-type over a new model. The ∆-type over the old model
can have several extensions, and probably, in each extension a given formula does
not have the order property.

Lemma 1.6. A theory T has the order property in spite of ∆ if there is a formula
ψz̄(x̄; ȳ) = ψ(x̄, ȳ, z̄) such that for some model M of T and for any natural number
k there are a ∆-type sk over M , a tuple c̄k ∈ M , and sequences ān |= sk and
b̄m ∈M for n,m < k such that ψc̄(ān; b̄m) holds iff n ≤ m.
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Proof. Assume that there is a formula ψz̄(x̄; ȳ) = ψ(x̄, ȳ, z̄) such that for some
modelM of T and for any natural number k there are a ∆-type sk over M , a tuple
c̄k ∈ M , and sequences ān |= sk and b̄m ∈ M for n,m < k such that ψc̄(ān; b̄m)
holds iff n ≤ m, and let N be an |M+|-saturated elementary extension ofM. I shall
consider a pair of models (N ,M), where P (N ) = M . Let the cardinality of M be λ.
I extend the language L of T to L+ adding a new relation R(x̄, z, ū) and making each
type sk definable. Let {θk,α : α < λ} be an enumeration of all finite conjunctions
of formulae in sk and {dα : α < λ} an enumeration of all elements in M . I define
the predicate R as follows: R(M,dα, c̄k) = θk,α(M) and if c̄ 6= c̄k for any k then
M |= ∀x̄, z¬R(x̄, z, c̄). Then the defined below partial type p(ū, x̄i, ȳi : i < ω) is
finitely realizable in M. The type p consists of the following formulae: ψ(x̄i, ȳj , ū)
holds iff i ≤ j, P (ȳi) for each i < ω, P (ū), and ∀t(P (t) → R(x̄i, t, ū)). The
last scheme of formulae provides that all x̄i realizes the same ∆-type over a small
model in the elementary theory of the pair (N ,M). Thus ψ(x̄, ȳ, c̄ω) has the order
property inside some ∆-type, where cω realizes (∃x̄iȳi : i < ω)p(ū, x̄i, ȳi : i < ω).
�

The inverse direction of Lemma 1.6 requires some more advanced analysis and
it is still an open question, because standard compactness works with formulae and
here it is necessary to find a formula whose intersection with a type(!) has the order
property.

Question 1. Do the inverse direction of Lemma 1.6 hold?

By standard compactness arguments it is possible to prove a little bit stronger
version of Lemma 1.6

Lemma 1.7. A theory T has the order property in spite of ∆ if there is a formula
ψz̄(x̄; ȳ) = ψ(x̄, ȳ, z̄) such that for some modelM of T and for any natural number k
and for any finite ∆0 ⊆ ∆ there are a ∆0-type sk,∆0 over M , a tuple c̄k,∆0 ∈M , and
sequences ān,∆0 |= sk,∆0 and b̄m,∆0 ∈ M for n,m < k such that ψc̄(ān,∆0 ; b̄m,∆0)
holds iff n ≤ m.

Claim that by compactness a formula ϕ(x; ȳ) has no order property in spite of
∆ iff for some finite ∆ϕ ⊆ ∆ the formula ϕ(x; ȳ) has no order property in spite of
∆ϕ. So the next property is an obvious corollary of Lemma 1.7 and compactness.

Lemma 1.8. If a theory T is stable up to ∆ then for any formula ϕ(x; ȳ) there is
a finite ∆ϕ ⊆ ∆ such that T is ϕ-stable up to ∆ϕ.

Definition 1.9 (S. Shelah). Let T be an L-theory and φ(x̄, ȳ) a formula. The
formula φ is said to have the independence property (relatively T ) if for all n < ω
there is a modelM |= T and two sequences (āi : i < n) and (b̄J : J ⊆ n) in M such
thatM |= φ(āi, b̄J) if and only if i ∈ J . A theory T has the independence property
if some formula has the independence property.

I shall use the following well-known facts.

Fact 1.10. Let T be a theory and φ(x̄, ȳ) be a formula. Then the following are
equivalent:

(1) φ(x̄, ȳ) has the independence property relatively T .
(2) There exists an indiscernible sequence (āi : i ∈ I) in some model M of T

and some tuple b̄ ∈M such that M |= φ(āi, b̄) if and only if i is even.
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Fact 1.11. A theory T has the independence property, i.e. there is a formula ψ(x̄, ȳ)
with the independence property iff there is a formula φ(x, z̄) with the independence
property.

Our aim is to prove the following theorem:

Theorem 1.12. A theory T has no the independence property iff T is stable up to
some ∆, where each ϕ(x; ȳ) ∈ ∆ has no the independence property.

Proof. The direction ‘⇒’ is simple. Let ∆ consist of all formulae ϕ(x; ȳ) with the
strict order property and let M be a model of T of cardinality λ = 2µ for some
µ ≥ max{ℵ0, |T |}. If some ∆-type s has more than λ extensions up to complete
types then by the standard counting type procedure I obtain that there is a formula
ψ(x; ȳ) such that there are more than λ ψ-types which are consistent with s. Then
ψ has order property. Since T has no the independence property, ψ must have the
strict order property. Then ψ ∈ ∆, for a contradiction.

Now I prove the inverse direction. A partial case of Theorem 1.12 saying that
o-stable theories have no the independence property has been proved in [2].

The main idea here is due to Bruno Poizat [5] (or one can see [6]: Theorem
12.28): a theory has the independence property iff there is a type over a model of
cardinality λ which has 2(2λ) coheirs.

From now on I assume that a theory T is stable up to ∆, where ∆ is a collection
of formulae of the form ϕ(x; ȳ).

I say that a Morley sequence 〈ai : i < λ〉 is ∆-indivisible if for any ϕ(x; ȳ) from ∆
and any b̄ exactly one of the following two sets is cofinal in λ: {i < λ :|= ϕ(ai, b̄)},
{i < λ :|= ¬ϕ(ai, b̄)}. Claim that by Fact 1.10 for any formula ϕ without the
independence property any indiscernible sequence is ϕ-indivisible.

Let N be an |M |+-saturated elementary extension ofM, a type p ∈ S1(M) and
a type q ∈ S1(N) extend the type p. Recall, that q is called a special son of p
if for any formula ϕ(x; ȳ) and for any ā and b̄ realizing the same type over M if
q |= ϕ(x, ā) then q |= ϕ(x, b̄).

Lemma 1.13. Let p be a type over M and p1, p2 two special sons of p, whose
Morley sequences have the same type over M and are ∆-indivisible. Then their
∆-parts are equal: p1 �∆ = p2 �∆.

Proof. Let N be a sufficiently saturated elementary extension of M and p1, p2

defined over N . Let 〈ai : i < ω〉 be a Morley sequence of the type p1 and 〈bi : i < ω〉
be a Morley sequence of the type p2. Following Bruno Poizat I construct a third
sequence 〈ci : i < ω〉 over N , using infinite definition of p1 and p2 alternately: c2n+1

realizes a unique M -special son of p1 over N ∪{c0, . . . , c2n}, c2n+2 realizes a unique
M -special son of p2 over N ∪ {c0, . . . , c2n+1}.

I claim that all of these three sequences have the same ∆-type over M . I prove
this by induction. Let 〈c0, . . . , c2n〉, 〈a0, . . . , a2n〉, 〈b0, . . . , b2n〉 have the same type
over M (for the last two it is a hypothesis of the lemma). If ψ(c0, . . . , c2n, c2n+1)
holds, where ψ is a formula with parameters in M , then 〈c0, . . . , c2n〉 satisfies
the infinite definition of p1 over M . Since 〈c0, . . . , c2n〉 and 〈a0, . . . , a2n〉 have
the same type over M , ψ(a0, . . . , a2n, a2n+1) also holds. Then 〈c0, . . . , c2n+1〉 and
〈a0, . . . , a2n+1〉 have the same type over M . On an even step I do similarly using
the infinite definition of p2.
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Then the sequence 〈ci : i < ω〉 is ∆-indivisible (∆-indivisibility is a property of
the type of a sequence over ∅). Since this sequence realizes alternatively p1 and p2,
so their ∆-parts are equal. �

Corollary 1.14. If each formula in ∆ has no the independence property then
the number of different ∆-parts of M -special sons over an arbitrary elementary
extension of M is bounded by |Sω(M)|.

Proof. By Lemma 1.13 the ∆-part of an M -special son q is defined by the type over
M of the Morley sequence of q. �

Lemma 1.15. If a theory T has the independence property witnessed by a for-
mula ψ(x; ȳ) and each formula ϕ(x; ȳ) in ∆ has no the independence property, then
for each cardinality λ there is a ∆-type over a model with cardinality 2λ which is
consistent with 2(2λ) ψ-types.

Proof. I realize Iλ in the following way: there are aα for α ∈ λ and b̄w for w ⊂ λ
such that ψ(aα, b̄w) holds iff α ∈ w. Then there is a model M of cardinality λ
which contains all aα. Let N � M contain all b̄w and with cardinality 2λ. Let
each ultrafilter U over λ correspond to a ψ-type pU over N in the following way:
ψ(x, c̄) ∈ pU iff {α : N |= ψ(aα, c̄)} ∈ U . Claim that each pU is finitely realizable in
M and is contained in some complete type qU over N which coinherits its restriction
to M .

It is easy to check that if U 6= V then pU 6= pV . Since there are 2(2λ) ultrafilters
over λ there are 2(2λ) types qU which coinherit its restriction to M . The number
of types over M is at most 2λ. Since the confinality of 2λ is strictly less than 2(2λ)

there are 2(2λ) types qU whose restrictions rU to M are equal. Since for rU there are
at most 2λ coheirs whose ∆-parts are not equal, there is a type qU whose ∆-part is
consistent with 2(2λ) different qV . By the choice of qV ’s it is clear that the ∆-part
of qU is consistent with 2(2λ) ψ-types pV . �

Proof of Theorem 1.12. Assume that T has the independence property, then
there is a formula ψ(x; ȳ) with the independence property. By Lemma 1.15 there
is a model N of T and a subset A of N with cardinality 2λ such that some ∆-type
p over N is consistent with 2(2λ) ψ-types over A. This contradicts to Corollary 1.5.
�

Theorem 1.12 gives a good measure of complexity of a dependent theory. The
most simple dependent theories are that which are stable up to ϕ(x; y), where y is
a single variable. For instance, an o-stable theory. A theory is more complex if ∆
consists of boundedly many formulae of the form ϕ(x, y). The elementary theory
of Qn with n! different lexicographical orderings is the most simple example of a
theory which is stable up to n! formulae of the form ϕ(x; y). The next level of
complexity is described by ∆ = {ϕ(x; y1, y2)}. And so on.

Another applications of this notion one can see in [2, 7].
I am not sure that the notion of stability up to ∆ is useful for simple theories.

For instance, let T0 be the restriction of a theory T to a sublanguage L0. Let T0

be simple and T stable up to L0. Does it imply that T is simple? It seems to be
that there must be a counterexample to the following question, but it is an open
problem.



ON A CLASSIFICATION OF THEORIES WITH NIP 7

Question 2. Is some dual of Theorem 1.12 holds? That is, let a theory be stable
up to ∆, where each formula in ∆ has the independence property. Does this imply
that the theory has no the strict order property?

2. Definability of one-types

In a stable theory each type is definable. If a theory is not stable in ∆, then
there are ∆-types which are not definable. But if I assume that the ∆-part p∆ of
a type p over a model with a stable up to ∆ theory is definable, does it imply that
the type p is definable? In other words using Algorithm Theory terminology, is
each 1-type over a model with a stable up to ∆ theory is definable with an oracle
which makes each ∆-type over the model definable?

From now on consider a modelM of a stable up to ∆ theory T . Let s ∈ S1
∆(M)

be definable, a type p ∈ S1(M) contain s, and ϕ(x; ȳ) be some formula. My aim is
to find the definition dϕ(ȳ) of the formula ϕ(x; ȳ) for the type p.

By Lemma 1.8 without loss of generality I may assume that ∆ is finite.
The most trivial case is the type s is realized in M. Since s is definable and

∆ is finite, the set of realizations s(M) is definable and I obtain that the formula
ϕ+(x, ȳ) , ϕ(x, ȳ) ∧ s(x) ∧ ȳ ∈ M is definable in the old language. As I claimed
above ϕ+ is a stable formula and it is possible to write dϕ(ȳ) as in stability theory.

Another trivial case is ϕ-rank of the type s is finite. Thus I assume that the
type s is omitted in M and ϕ-rank of s is infinitity.

The following definition is closed to the definition of converging formula in the
context of weak o-minimality given by B. Baizhanov in [1].

Definition 2.1. Let ψ(x, z̄) and θ(z̄) be formulae, and s(x) a partial type. I say
that the formula ψ(x, z̄) converges on θ(z̄) to s(x) if s(x) |= ψ(x, ā) for any ā |= θ(z̄),
and for any finite part s0 of s there is ā |= θ(z̄) such that ψ(x, ā) |= s0(x).

I say that a partial type s(x) over a set A is approximatizable over a set B if
there are B-definable formulae ψ(x, z̄) and θ(z̄), such that ψ(x, z̄) converges on θ(z̄)
to s(x).

A partial type s(x) over a set A is approximatizable if in addition B = A.

Below I prove that if a ∆-type s over a model is approximatizable then it is
possible to express ϕ+-rank by means of the old language.

Definition 2.2. Let ψ(x, z̄) and θ(z̄) be formulae. Now I define (ϕ,ψ, θ)-rank of
ρ(x).

(1) (ϕ,ψ, θ)-rank(ρ) = −1 if ∃z̄(θ(z̄) ∧ ¬∃x(ψ(x, z̄) ∧ ρ(x))).
(2) (ϕ,ψ, θ)-rank(ρ) ≥ 0 if ∀z̄(θ(z̄)→ ∃x(ψ(x, z̄) ∧ ρ(x))).
(3) (ϕ,ψ, θ)-rank(ρ) ≥ 1 if there is ā such that (ϕ,ψ, θ)-rank of each of the

formulae ρ(x) ∧ ϕ(x, ā) and ρ(x) ∧ ¬ϕ(x, ā) is non-negative, that is

∃ȳ∀z̄(θ(z̄)→ ∃x0, x1(ϕ(x0, ȳ) ∧ ¬ϕ(x1, ȳ) ∧
∧
i<2

ψ(xi, z̄) ∧ ρ(xi))

(4) (ϕ,ψ, θ)-rank(ρ) ≥ n+ 1 if there is ā such that (ϕ,ψ, θ)-rank of each of the
formulae ρ(x) ∧ ϕ(x, ā) and ρ(x) ∧ ¬ϕ(x, ā) is at least n.

As usually, (ϕ,ψ, θ)-rank(s) = min{(ϕ,ψ, θ)-rank(ρ) : ρ ∈ s}.
Observe, that as in stability theory there is a formula which says that (ϕ,ψ, θ)-

rank of a formula (or a type) is equal to n.
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Lemma 2.3. Let s be a ∆-type over a model M with a stable up to ∆ theory. Let
ϕ(x; ȳ) be a formula and ϕ+(x; ȳ) , ϕ(x, ȳ) ∧ s(x) ∧ (ȳ ∈ M). If some formula
ψ(x; z̄) converges on θ(z̄) to the type s(x), then ϕ+-rank of s is equal to (ϕ,ψ, θ)-
rank of s.

Proof. It is easy to see that ϕ+-rank of s is less than or equal to (ϕ,ψ, θ)-rank
of s (roughly speaking, because ∃x∀z̄P (x, z̄) implies ∀z̄∃xP (x, z̄)). The inverse
inequality follows by compactness. �

If each ∆-type over a model is approximatizable then by Lemma 2.3 and by
standard stability theory technique one can prove that each one-type over a model
of T is definable iff its ∆-part is definable. If ∆ = {x <1 y, . . . , x <n y} where
each <i is an ordering, then it is clear that each ∆-type over a model (which is the
intersection of cuts relatively <i) is approximatizable. Indeed, let, for simplicity,
∆ = {x < y, y < x} and (C,D) be a cut. Consider a ∆-type s(x) = {c < x : c ∈
C} ∪ {x < d : d ∈ D}. Obviously, the formula y < x < z converges to s on the
formula (y ∈ C) ∧ (z ∈ D). Since neither of x <i y has the independence property,
any stable up ∆ theory T has no the independence property. Taking into account
the strict order property, the following question is quite natural:

Question 3. Let a theory T have no the independence property and be stable up
to (finite) ∆. Is each ∆-type over a model of T is approximatizable?2

In general it is not clear if each ∆-type is approximatizable (and, possibly, it
is not true). Nevertheless it is possible to express ϕ+-rank by means of the old
language under the additional supposition that a considered model is ω-saturated.
But first I prove some auxiliary lemma.

Lemma 2.4. Let T be stable up to ∆, and M a model of T . Let also p ∈ S1(M)
and s be its ∆-part. If s is definable and there are formulae ψ(x, z̄) and θ(z̄) such
that (ϕ,ψ, θ)-rank of s for some formula ϕ(x; ȳ) is equal to ϕ+-rank of s then the
ϕ-part of p is definable.

Proof. Obviously, (ϕ,ψ, θ)-rank(p) ≤ (ϕ,ψ, θ)-rank(s) < ω. Then I write the
definition dϕ(ȳ) for ϕ(x, ȳ) as in stability theory replacing ϕ-rank with (ϕ,ψ, θ)-
rank. �

Theorem 2.5. Let a theory T be stable up to ∆, and M an ℵ0-saturated model of
T . Let s ∈ S∆(M) be definable. Then for any formula ϕ(x; ȳ) there are formulae
ψ(x; z̄) and θ(z̄) such that ϕ+-rank of s is equal to (ϕ,ψ, θ)-rank of s.

Proof. Since the inequality ϕ+-rank(s) ≤ (ϕ,ψ, θ)-rank(s) is obvious, I prove the
inverse ineqaulity. By our agreement ∆ is assumed to be finite, so it is possible to
say that ∆ consists of one formula µ(x; ū). Since s is definable, there is a definition
dµ(ū) of µ(x; ū). Let n and k be natural numbers and let

ψn,k(x, ū0, . . . , ūn−1, v̄1, . . . , v̄k−1) ,
∧
i<n

µ(x, ūi) ∧
∧
j<k

¬µ(x, v̄j)

2Recently, Vincent Guingona in his paper “Dependence and isolated extensions” (preprint, #

212 on Modnet preprint server) gave a positive answer to this question. So the following theorem

holds: Let a theory T do not have the independence property and be stable up to ∆. then any
one-type over a model of T is definable iff its ∆-part is definable.
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θn,k(ū0, . . . , ūn−1, v̄1, . . . , v̄k−1) ,
∧
i<n

dµ(ūi) ∧
∧
j<k

¬dµ(v̄j)

Consider (ϕ,ψn,k, θn,k)-rank of s. Let ϕ+-rank of s be equal to m. Assume
that for each naturals n and k (ϕ,ψn,k, θn,k)-rank of s is at least m + 1. Then
by compactness a binary tree of depth m + 1 representing (ϕ,ψn,k, θn,k)-rank of
s is consistent with s. This can be written as the following partial type q over a
finite set, which consists of parameters I need to define the formulae ϕ,ψ, θ. Below
τ � i ∈ 2i is the restriction to the first i elements of τ ∈ 2m+1, where 2m+1 is the
set of functions π : {1, . . . ,m+ 1} → {0, 1}.

q(ȳ〈〉, ȳ〈0〉, ȳ〈1〉, ȳ〈0,0〉, ȳ〈0,1〉, ȳ〈1,0〉, ȳ〈1,1〉, . . . , ȳ〈1,1,...,1〉) ={
∀z̄

(
θn,k(z̄)→ ∃{xτ : τ ∈ 2m+1}

( ∧
τ∈2m+1

ψn,k(xτ , z̄) ∧
m+1∧
i=1

ϕτ(i)(x, ȳτ �(i−1)

))
:

: n, k < ω

}
Since M is assumed to be ℵ0-saturated, this type is realized in M. Then ϕ+-rank
of s is at least m+ 1, for a contradiction. �

The following theorem is an immediate corollary of Theorem 2.5 and Lemma 2.4.

Theorem 2.6. Let a theory T be stable up to ∆, and M an ℵ0-saturated model of
T . Then a one-type over M is definable iff its ∆-part is definable.
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