DEFINABLE C*G MANIFOLD STRUCTURES OF DEFINABLE C"G
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TOMOHIRO KAWAKAMI

ABSTRACT. Let G be a compact definable C* group and 2 < r < oo. Let X be
a noncompact affine definable C"G manifold and Xy, ..., X} noncompact codimension
one definable C"G submanifolds of X such that Xi,..., X are in general position in
X and (X;Xq,...,Xy) satisfies the frontier condition. We prove that (X;Xy,..., Xk)
admits a unique definable C*°G manifold structure (Y;Y1,...,Y:).

1. INTRODUCTION!

Let M = (R, +.-, <, €e”,...) denote an exponential o-minimal expansion of the standard
structure R = (R, +.-, <) of the field R of real numbers such that M admits the C* cell
decomposition and has piecewise controlled derivatives. The term “definable” means
“definable with parameters in M”. General references on o-minimal structures are [4],
[7], see also [23]. The Nash category is a special case of definable C'* categories and
it coincides with the definable C'*>° category based on R [24]. Further properties and
constructions of them are studied in [5], [6], [8], [21] and there are uncountably many
o-minimal expansions of R [22]. Equivariant definable C" cases are studied in [12], [13],
[14], [15] when 0 < r < co. Everything is considered in M and each manifold does not
have boundary unless otherwise stated.

In this paper we consider simultaneous definable C>°G manifold structures of definable
C"G manifolds and their definable C"G submanifolds when 2 < r < 0.

Let X be a C" manifold, Xi,..., X C" submanifolds of X and r > 1. We say that
{X;}t | are in general position in X if for each i € I and J C I — {i}, X; intersects
transverse to Njc;.X;.

Let G be a compact definable C" group, X a noncompact affine definable C" manifold,
Xi, ..., X} noncompact definable C” submanifolds of X and 1 < r < co. By 2.10 [14]
and 1.3 [17], we may assume that X is a bounded definable C"G submanifold of some
representation 2 of G. We say that (X; X,..., Xy) satisfies the frontier condition if
each X; — X is contained in X — X, where X; (resp. X) denotes the closure of X; (resp.
X) in Q.

Theorem 1.1. Let G be a compact definable C* group and2 < r < co. Let X be an affine
definable C"G manifold and X1, ..., Xy codimension one definable C"G submanifolds of X
such that X1, ..., Xy are in general position in X . If either X, Xy, ..., X} are compact, or

X, Xy, ..., Xy are noncompact and (X; X1,..., Xy) satisfies the frontier condition, then
there exist an affine definable C*°G manifold Y, definable C*°G submanifolds Y1, ...,Y}

12000 Mathematics Subject Classification 14P10, 14P20, 58A05, 58A07, 03C64.
Keywords and Phrases. O-minimal, definable C'°°G manifolds, definable C"G manifolds, definable C*°G
compactifications, raising differentiability.
1



2 TOMOHIRO KAWAKAMI

of Y and a definable C"G diffeomorphism f : X — Y such that for each i f(X;) =
Y;. Moreover if Z is an affine definable C*°G manifold, Z1,...,7Z are definable C*G
submanifolds of Z and (X; Xy, ..., Xy) is definably C"G diffeomorphic to (Z; Zy, ..., Zy),
then (Y;Y1,...,Yy) is definably C*°G diffeomorphic to (Z; 21, ..., Z).

A non-equivariant definable non-relative version of Theorem 1.1 is proved in 1.5 [9] and
a locally definable non-relative version of it is proved in [16] when G is a finite abelian

group.

Corollary 1.2. Let G be a compact definable C* group and 2 < r < oco. Let X be

an affine definable C"G manifold. Then X admits a unique definable C*°G manifold
structure up to definable C°G diffeomorphism.

If G is a finite abelian group, then every definable C"°°G manifold is affine [19]. By a
way similar to the proof of it proves every definable C"G manifold is affine when r is a
non-negative integer. Thus we have the following theorem as a corollary of Theorem 1.1.

Theorem 1.3. Let G be a finite abelian group and 2 < r < oo. Let X be a definable
C"G manifold and codimension one Xy, ..., Xy definable C"G submanifolds of X such
that X,..., Xy are in general position in X. If either X, Xq,..., X, are compact, or
X, X1,..., Xy are noncompact and (X; Xy, ..., X}y) satisfies the frontier condition, then
there exist a definable C*°G manifold Y, definable C*G submanifolds Yy, ..., Y of Y and
a definable C"G diffeomorphism f : X — Y such that for each i f(X;) = Y;. Moreover
if Z 1s a definable C*°G manifold, Zy, ..., Zx are definable C*G submanifolds of Z and
(X;X1,...,Xk) is definably C"G diffeomorphic to (Z; Zy, ..., Z), then (Y;Y1,...,Yy) is
definably C*G diffeomorphic to (Z;Zy, ..., Z).

As a corollary of Theorem 1.3, we have the following corollary.

Corollary 1.4. Let G be a finite abelian group and 2 < r < oo. Let X be a definable
C"G manifold. Then X admits a unique definable C°G manifold structure up to definable
C*G diffeomorphism.

2. PROOF OF THEOREM 1.1

Suppose that r is a positive integer, co or w. A definable C" manifold G is a de finable
C" group if the group operations G X G — G and G — G are definable C" maps.

Let G be a definable C" group. A representation map of G is a group homomorphism
from G to some O,(R) which is a definable C" map. A representation means the rep-
resentation space of a representation map of G. In this paper, we assume that every
representation of G is orthogonal. A definable C"G submanifold of a representation 2
of G is a G invariant definable C” submanifold of 2. A definable C"G manifold is a
pair (X, ¢) consisting of a definable C" manifold X and a group action ¢ : G x X — X
which is a definable C" map. We simply write X instead of (X, ¢). A definable C"G
manifold is a f fine if it is definably C"G diffeomorphic to a definable C"G submanifold of
some representation of G. Definable C"G manifolds and affine definable C"G manifolds
are introduced in [14].

By a way similar to the proof of 1.3 [18], we have the following theorem.
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Theorem 2.1. Let G be a compact definable C" group and 1 < r < oco. Let X,Y be
compact affine definable C"G manifolds, X1,..., X, (reps. Y1,...,Y,) compact definable
C"G submanifolds of X (resp Y') such that X1,..., X, (resp. Y1,...,Y,) are in general
position. Suppose that f: (X;Xq,...,X,) — (Y;Y1,...,Y,) is a C"G map. Then f is
approzimated by a definable C"G map h : (X;Xy,...,X,) — (Y;Y1,...,Y,) in the C"
Whitney topology. Moreover if for 1 < iy < --- < i <mn, f|Xi,..., f|X;, are definable
C"G maps, then we can take h such that h| U¥_ X; = fIU_| X; .

Theorem 2.2 ([10]). Let X,Y be compact C" manifolds and 1 < r < oo The subset of
diffeomorphisms from X to 'Y 1is open in the set of C" maps from X toY with respect to
the C™ Whitney topology.

Let f : U — R be a definable C*° function on a definable open subset U C R".
We say that f has controlled derivatives if there exist a definable continuous function
u: U — R, real numbers C}, Cy, ... and natural numbers Ey, Es, ... such that |[D* f(z)| <

Claju(z)Pel for allz € U and a € (NU{0})", where D* = % and |a| = ag+- - Fa,.
z, " ...0Ty

We say that M has piecewise controlled derivatives if for every definable C'**° function

f : U — R defined in a definable open subset U of R", there exist definable open sets

Ui,...,U; C U such that dim(U — Ul_,U;) < n and each f|U; has controlled derivatives.

G.O. Jones [20] proved the following theorem.

Theorem 2.3 (1.2 [20]). Every definable closed subset of R™ is the zero set of a definable
C* function on R™.

Using Theorem 2.3, we have the following two results [17].

Theorem 2.4 ([17]). Let G be a compact definable C* group and ) a representation of
G. FEvery G invariant definable closed subset of €2 is the zero set of a G invariant definable
C* function on €.

Theorem 2.5 ([17]). Let G be a compact definable C* group and X an affine definable
C*°G manifold. Suppose that A, B are G invariant definable disjoint closed subsets of X .
Then there exists a G invariant definable C* function f : X — R such that f|A =1 and
f|B=0.

Using Theorem 2.4 and Theorem 2.5, By a way similar to the proof of 1.3 [18], we have
the following theorem.

Theorem 2.6. Let G be a compact definable C*° group. Let XY be affine definable
C*G manifolds and Xq,..., X, (reps. Y1,...,Y,) definable C*G submanifolds of X
(resp Y ) such that X1,..., X, (resp. Yi,...,Y,) are in general position. Suppose that
f (XX, ., X,) — (V3 Y,...,Y,) is a definable C"G map and 1 < r < co. Then
f is approxzimated by a definable C*°G map h : (X;X4,...,X,) — (Y;Y1,...,Y,) in
the definable C" topology. Moreover if for 1 < iy < --- < i, < n, f|X;,..., f|X;, are
definable C*G maps, then we can take h such that h| Uf_ X; = flUV_| X; .

Theorem 2.7 ([23]). Let X,Y be definable C" submanifolds of R™ and 0 < r < co. Let
f: X — Y be a definable C" map. If [ is an immersion (resp. a diffeomorphism, a
diffeomorphism onto its image), then an approximation of f in the definable C" topology
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is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image). Moreover if
f is a diffeomorphism, then h™' — f~! as h — f.

Let G be a compact definable C" group, X a noncompact definable C"G manifold,
X1,..., X, noncompact definable C"G submanifolds of X in general position in X and 1 <
r < oo. We say that (X; Xq,..., Xx) is simultaneously definably C"G compacti fiable
if there exist a compact definable C"G manifold Y with boundary 0Y’, compact definable
C"G submanifolds Y7, ..., Y, of Y with boundary 0Y7, ..., 0Y,, respectively, and a defin-
able C"G diffeomorphism f : X — Int Y such that for any i, f(X;) = Int Y, each 9Y; is
contained in dY, and Y3, ...,Y, and 9Y are in general position in Y. Here Int Y (resp.
Int Y;) denotes the interior of Y (resp. Y;).

To prove Theorem 1.1, we have need the following theorem.

Theorem 2.8 ([19]). Let G be a compact definable C™ group, X a noncompact affine
definable C"G manifold, Xy,..., X, noncompact definable C"G submanifolds of X 1in
general position in X such that (X; Xy, ..., Xy) satisfies the frontier condition and 1 <
r <oo. Then (X; X1,...,Xy) is simultaneously definably C"G compactifiable.

In Theorem 2.8, we can take r = oo.

Theorem 2.9 ([17]). Let G be a compact definable C* group, X a noncompact affine
definable C*°G manifold and X1, ..., X noncompact definable C*°G submanifolds of X
in general position in X such that (X; Xy, ..., Xg) satisfies the frontier condition. Then
(X; X4, ..., Xg) is simultaneously definably C*°G compactifiable.

A subset V' of R" is an algebraic subset of R™ if it is the zeros of some polynomial
function on R™. An algebraic set means an algebraic subset of some R™. A point z in
an algebraic set V' C R" is nonsingular of dimension d in V if there exist polynomial
functions p; : R" — R, (1 < i < n —d), and an open neighborhood U of z in R" such
that:

(1) p(V) =0, (1 i <n—d).
(2) VNU=Un(N'pi(0)).
(3) The gradients (Vp;), (1 <i < n —d) are linearly independent on U.

The dimension dim'V of V' is max{d|there exists an x € V which is nonsingular of di-
mension d}. Nonsing V = {x € V|z is nonsingular of dimension dim V'} and Sing V =
V — Nonsing V. An algebraic set is nonsingular if Sing V' = (). Remark that Sing
V' is an algebraic subset of V' with dim Sing V' < dim V. An algebraic subset W of a
nonsingular algebraic set V' is a nonsingular algebraic subset of V' if W is nonsingular.

Theorem 2.10 ([1]). Let X be a compact C* manifold and Xi,..., X, compact C*
submanifolds of X in general position. Then there exist a nonsingular algebraic set'Y and
a C* diffeomorphism ¢ : X — Y such that each ¢(X;) is a nonsingular algebraic subset

Y; of Y. In particular, (X;Xy,...,X,) admits a simultaneous Nash manifold structure
(Y:vh,..., Y.
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The equivariant version of Theorem 2.10 is called the relative equivariant algebraic
realization problem and it is not known its complete answer. The following is its partial
answer.

Theorem 2.11 ([3]). Let G be a compact definable C* group and X a compact C*G
manifold. Then the disjoint union X I X of two copies of X is C*°G diffeomorphic to a
nonsingular algebraic G set.

Using their argument and Exercise in P58 [2], we have the following theorem.

Theorem 2.12. Let G be a compact definable C* group, X a compact C*°G manifold and
Xy, ..., X codimension one compact C*G submanifolds of X in general position. Then

there exist a nonsingular algebraic set Y and nonsingular algebraic G subsets Y7, ..., Y}
such that (X T X; Xy I Xy,... X, I Xy) is C*°G diffeomorphic to (Y;Y1,...Y).

Corollary 2.13. Let G be a compact definable C* group, X a compact C*°G manifold
and Xy, ..., Xy codimension one compact C*G submanifolds of X in general position.
Then there exist an affine definable C*°G manifold Y and definable C*°G submanifolds
Yi,...,Ys such that (X; Xq,... Xg) is C°G diffeomorphic to (Y;Y1,...Ys).

Using some refinement of the proof of 2.2.9 [10] and [11], we have the following theorem.

Theorem 2.14. Let G be a compact Lie group, X a compact C*G manifold, X1, ..., Xy
compact C*G submanifolds of X in general position and 1 < s < co. Then there ezist a
compact C*°G manifold Y and its compact C*°G submanifolds Yi,...,Yy of Y such that
(X; Xq,...,Xg) is C°G diffeomorphic to (Y;Y1,...,Yy).

Theorem 2.15 (1.2 [19]). Let G be a compact definable C™ group and 2 < r < co. Let X

be a compact affine definable C"G manifold with boundary 0X, and X, ..., X compact

definable C"G submanifolds of X with boundary 0Xy,...,0Xy, respectively, such that

Xq,..., X, 0X are in general position, every 0X; is contained in 0X. Then there exists

a relative definable C"G collar ¢ : (0X x [0,1];0X; x [0,1],...,0X) x [0,1]) — (X; X7,
X)) of (0X;0Xq,...,0Xy).

Proof of Theorem 1.1. Assume that X, Xy,..., X} are compact. By Theorem 2.14,
there exist compact C°°G manifold X’ and compact C*°G submanifolds X7, ..., X} of X’
such that (X;X,...,X}) is C"G diffeomorphic to (X’; X7,..., X}). Thus by Corollary
2.13, we can find an affine definable C°°G manifold Y and definable C°*°G submanifolds
Yi,..., Y, of Y such that (X'; X7,..., X}) is C*G diffeomorphic to (Y;Y3,...,Y%). Hence
(X;Xq,...,Xg) is C"G diffeomorphic to (Y;Y7,...,Y:). By Theorem 2.1 and Theorem
2.2 and since X, X, ..., X} are compact, (X; Xy,..., X) is definably C"G diffeomorphic
to (Y,Yi, e ,Yk)

Assume that X, X7,..., X} are noncompact and (X; Xi,..., X}) satisfies the frontier
condition. By Theorem 2.8, there exist a compact definable C"G manifold X with
boundary 90X, compact definable C"G submanifolds Xi,..., X, of X with boundary
0X1,...,0Xy, respectively, and a definable C"G' diffeomorphism ¢ : X — Int X such
that gb( ;) = Int Xl, each 0X; is contained in 90X, and Xl,.. , X, and 0X are in
general position in X. Thus by Theorem 2.15, (X;Xi,..., X)) admits a relative de-
finable C"G collar. Hence we have the relative deﬁnable C’TG double (D; Dy, ..., Dy) of
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(X;X1,...,Xx). Note that D, Dy, ..., D, and X are compact and Dy, ..., Dy, 0X are
in general position.

By the argument in the first case, there exist an affine definable C*°G' manifold W
and definable C*°G submanifolds Wy, ..., Wy, U of W such that (D; Dy, ..., Dy, 0X) is
definably C"G diffeomorphic to (W; Wy, ..., Wy, U). Therefore we can find some unions
Y. Y1,..., Y, of connected components of W — U, W, —U,...,W, — U, respectively, such
that Y is an affine definable C°°G manifold, each Y; is a definable C°°G submanifold of
Y and (X; X3, ..., X}) is definably C"G diffeomorphic to (Y,Y3,...,Y).

Let Z be an affine definable C*°G manifold and Zi,..., 7, definable C"°G subman-
ifolds of Z such that (Y;Y7,...,Y}) is definably C"G diffeomorphic to (Z; 7y, ..., Zy)
Then there exists a definable C"G diffeomorphism F' : (Y:;Y3,...,Yy) — (Z; Z1, ..., Zy).
Applying Theorem 2.6 and Theorem 2.7, we have a definable C*°G diffeomorphism
H:(Y;Y,....Y) = (Z; 2y, ..., Z%). O
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