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Abstract. Let G be a compact definable C∞ group and 2 ≤ r < ∞. Let X be
a noncompact affine definable CrG manifold and X1, . . . , Xk noncompact codimension
one definable CrG submanifolds of X such that X1, . . . , Xk are in general position in
X and (X; X1, . . . , Xk) satisfies the frontier condition. We prove that (X; X1, . . . , Xk)
admits a unique definable C∞G manifold structure (Y ; Y1, . . . , Yk).

1. Introduction1

Let M = (R, +.·, <, ex, . . . ) denote an exponential o-minimal expansion of the standard
structure R = (R, +.·, <) of the field R of real numbers such that M admits the C∞ cell
decomposition and has piecewise controlled derivatives. The term “definable” means
“definable with parameters in M”. General references on o-minimal structures are [4],
[7], see also [23]. The Nash category is a special case of definable C∞ categories and
it coincides with the definable C∞ category based on R [24]. Further properties and
constructions of them are studied in [5], [6], [8], [21] and there are uncountably many
o-minimal expansions of R [22]. Equivariant definable Cr cases are studied in [12], [13],
[14], [15] when 0 ≤ r < ∞. Everything is considered in M and each manifold does not
have boundary unless otherwise stated.

In this paper we consider simultaneous definable C∞G manifold structures of definable
CrG manifolds and their definable CrG submanifolds when 2 ≤ r < ∞.

Let X be a Cr manifold, X1, . . . , Xk Cr submanifolds of X and r ≥ 1. We say that
{Xi}k

i=1 are in general position in X if for each i ∈ I and J ⊂ I − {i}, Xi intersects
transverse to ∩j∈JXj.

Let G be a compact definable Cr group, X a noncompact affine definable Cr manifold,
X1, . . . , Xk noncompact definable Cr submanifolds of X and 1 ≤ r ≤ ∞. By 2.10 [14]
and 1.3 [17], we may assume that X is a bounded definable CrG submanifold of some
representation Ω of G. We say that (X; X1, . . . , Xk) satisfies the frontier condition if
each Xi −Xi is contained in X −X, where Xi (resp. X) denotes the closure of Xi (resp.
X) in Ω.

Theorem 1.1. Let G be a compact definable C∞ group and 2 ≤ r < ∞. Let X be an affine
definable CrG manifold and X1, . . . , Xk codimension one definable CrG submanifolds of X
such that X1, . . . , Xk are in general position in X. If either X,X1, . . . , Xk are compact, or
X,X1, . . . , Xk are noncompact and (X; X1, . . . , Xk) satisfies the frontier condition, then
there exist an affine definable C∞G manifold Y , definable C∞G submanifolds Y1, . . . , Yk
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of Y and a definable CrG diffeomorphism f : X → Y such that for each i f(Xi) =
Yi. Moreover if Z is an affine definable C∞G manifold, Z1, . . . , Zk are definable C∞G
submanifolds of Z and (X; X1, . . . , Xk) is definably CrG diffeomorphic to (Z; Z1, . . . , Zk),
then (Y ; Y1, . . . , Yk) is definably C∞G diffeomorphic to (Z; Z1, . . . , Zk).

A non-equivariant definable non-relative version of Theorem 1.1 is proved in 1.5 [9] and
a locally definable non-relative version of it is proved in [16] when G is a finite abelian
group.

Corollary 1.2. Let G be a compact definable C∞ group and 2 ≤ r < ∞. Let X be
an affine definable CrG manifold. Then X admits a unique definable C∞G manifold
structure up to definable C∞G diffeomorphism.

If G is a finite abelian group, then every definable C∞G manifold is affine [19]. By a
way similar to the proof of it proves every definable CrG manifold is affine when r is a
non-negative integer. Thus we have the following theorem as a corollary of Theorem 1.1.

Theorem 1.3. Let G be a finite abelian group and 2 ≤ r < ∞. Let X be a definable
CrG manifold and codimension one X1, . . . , Xk definable CrG submanifolds of X such
that X1, . . . , Xk are in general position in X. If either X,X1, . . . , Xk are compact, or
X,X1, . . . , Xk are noncompact and (X; X1, . . . , Xk) satisfies the frontier condition, then
there exist a definable C∞G manifold Y , definable C∞G submanifolds Y1, . . . , Yk of Y and
a definable CrG diffeomorphism f : X → Y such that for each i f(Xi) = Yi. Moreover
if Z is a definable C∞G manifold, Z1, . . . , Zk are definable C∞G submanifolds of Z and
(X; X1, . . . , Xk) is definably CrG diffeomorphic to (Z; Z1, . . . , Zk), then (Y ; Y1, . . . , Yk) is
definably C∞G diffeomorphic to (Z; Z1, . . . , Zk).

As a corollary of Theorem 1.3, we have the following corollary.

Corollary 1.4. Let G be a finite abelian group and 2 ≤ r < ∞. Let X be a definable
CrG manifold. Then X admits a unique definable C∞G manifold structure up to definable
C∞G diffeomorphism.

2. Proof of Theorem 1.1

Suppose that r is a positive integer, ∞ or ω. A definable Cr manifold G is a definable
Cr group if the group operations G × G → G and G → G are definable Cr maps.

Let G be a definable Cr group. A representation map of G is a group homomorphism
from G to some On(R) which is a definable Cr map. A representation means the rep-
resentation space of a representation map of G. In this paper, we assume that every
representation of G is orthogonal. A definable CrG submanifold of a representation Ω
of G is a G invariant definable Cr submanifold of Ω. A definable CrG manifold is a
pair (X,ϕ) consisting of a definable Cr manifold X and a group action ϕ : G × X → X
which is a definable Cr map. We simply write X instead of (X,ϕ). A definable CrG
manifold is affine if it is definably CrG diffeomorphic to a definable CrG submanifold of
some representation of G. Definable CrG manifolds and affine definable CrG manifolds
are introduced in [14].

By a way similar to the proof of 1.3 [18], we have the following theorem.
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Theorem 2.1. Let G be a compact definable Cr group and 1 ≤ r < ∞. Let X,Y be
compact affine definable CrG manifolds, X1, . . . , Xn (reps. Y1, . . . , Yn) compact definable
CrG submanifolds of X (resp Y ) such that X1, . . . , Xn (resp. Y1, . . . , Yn) are in general
position. Suppose that f : (X; X1, . . . , Xn) → (Y ; Y1, . . . , Yn) is a CrG map. Then f is
approximated by a definable CrG map h : (X; X1, . . . , Xn) → (Y ; Y1, . . . , Yn) in the Cr

Whitney topology. Moreover if for 1 ≤ i1 < · · · < ik ≤ n, f |Xi1 , . . . , f |Xik are definable
CrG maps, then we can take h such that h| ∪k

j=1 Xij = f | ∪k
j=1 Xij .

Theorem 2.2 ([10]). Let X,Y be compact Cr manifolds and 1 ≤ r ≤ ∞ The subset of
diffeomorphisms from X to Y is open in the set of Cr maps from X to Y with respect to
the Cr Whitney topology.

Let f : U → R be a definable C∞ function on a definable open subset U ⊂ Rn.
We say that f has controlled derivatives if there exist a definable continuous function
u : U → R, real numbers C1, C2, . . . and natural numbers E1, E2, . . . such that |Dαf(x)| ≤
C|α|u(x)E|α| for all x ∈ U and α ∈ (N∪{0})n, where Dα = ∂|α|

∂x
α1
1 ...∂xαn

n
and |α| = α1+· · ·+αn.

We say that M has piecewise controlled derivatives if for every definable C∞ function
f : U → R defined in a definable open subset U of Rn, there exist definable open sets
U1, . . . , Ul ⊂ U such that dim(U − ∪l

i=1Ui) < n and each f |Ui has controlled derivatives.
G.O. Jones [20] proved the following theorem.

Theorem 2.3 (1.2 [20]). Every definable closed subset of Rn is the zero set of a definable
C∞ function on Rn.

Using Theorem 2.3, we have the following two results [17].

Theorem 2.4 ([17]). Let G be a compact definable C∞ group and Ω a representation of
G. Every G invariant definable closed subset of Ω is the zero set of a G invariant definable
C∞ function on Ω.

Theorem 2.5 ([17]). Let G be a compact definable C∞ group and X an affine definable
C∞G manifold. Suppose that A,B are G invariant definable disjoint closed subsets of X.
Then there exists a G invariant definable C∞ function f : X → R such that f |A = 1 and
f |B = 0.

Using Theorem 2.4 and Theorem 2.5, By a way similar to the proof of 1.3 [18], we have
the following theorem.

Theorem 2.6. Let G be a compact definable C∞ group. Let X,Y be affine definable
C∞G manifolds and X1, . . . , Xn (reps. Y1, . . . , Yn) definable C∞G submanifolds of X
(resp Y ) such that X1, . . . , Xn (resp. Y1, . . . , Yn) are in general position. Suppose that
f : (X; X1, . . . , Xn) → (Y ; Y1, . . . , Yn) is a definable CrG map and 1 ≤ r < ∞. Then
f is approximated by a definable C∞G map h : (X; X1, . . . , Xn) → (Y ; Y1, . . . , Yn) in
the definable Cr topology. Moreover if for 1 ≤ i1 < · · · < ik ≤ n, f |Xi1 , . . . , f |Xik are
definable C∞G maps, then we can take h such that h| ∪k

j=1 Xij = f | ∪k
j=1 Xij .

Theorem 2.7 ([23]). Let X,Y be definable Cr submanifolds of Rn and 0 < r < ∞. Let
f : X → Y be a definable Cr map. If f is an immersion (resp. a diffeomorphism, a
diffeomorphism onto its image), then an approximation of f in the definable Cr topology
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is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image). Moreover if
f is a diffeomorphism, then h−1 → f−1 as h → f .

Let G be a compact definable Cr group, X a noncompact definable CrG manifold,
X1, . . . , Xk noncompact definable CrG submanifolds of X in general position in X and 1 ≤
r ≤ ∞. We say that (X; X1, . . . , Xk) is simultaneously definably CrG compactifiable
if there exist a compact definable CrG manifold Y with boundary ∂Y , compact definable
CrG submanifolds Y1, . . . , Yk of Y with boundary ∂Y1, . . . , ∂Yn, respectively, and a defin-
able CrG diffeomorphism f : X → Int Y such that for any i, f(Xi) = Int Yi, each ∂Yi is
contained in ∂Y , and Y1, . . . , Yk and ∂Y are in general position in Y . Here Int Y (resp.
Int Yi) denotes the interior of Y (resp. Yi).

To prove Theorem 1.1, we have need the following theorem.

Theorem 2.8 ([19]). Let G be a compact definable Cr group, X a noncompact affine
definable CrG manifold, X1, . . . , Xk noncompact definable CrG submanifolds of X in
general position in X such that (X; X1, . . . , Xk) satisfies the frontier condition and 1 ≤
r < ∞. Then (X; X1, . . . , Xk) is simultaneously definably CrG compactifiable.

In Theorem 2.8, we can take r = ∞.

Theorem 2.9 ([17]). Let G be a compact definable C∞ group, X a noncompact affine
definable C∞G manifold and X1, . . . , Xk noncompact definable C∞G submanifolds of X
in general position in X such that (X; X1, . . . , Xk) satisfies the frontier condition. Then
(X; X1, . . . , Xk) is simultaneously definably C∞G compactifiable.

A subset V of Rn is an algebraic subset of Rn if it is the zeros of some polynomial
function on Rn. An algebraic set means an algebraic subset of some Rn. A point x in
an algebraic set V ⊂ Rn is nonsingular of dimension d in V if there exist polynomial
functions pi : Rn → R, (1 ≤ i ≤ n − d), and an open neighborhood U of x in Rn such
that:

(1) pi(V ) = 0, (1 ≤ i ≤ n − d).
(2) V ∩ U = U ∩ (∩n−d

i=1 pi(0)).
(3) The gradients (∇pi)x (1 ≤ i ≤ n − d) are linearly independent on U .

The dimension dim V of V is max{d|there exists an x ∈ V which is nonsingular of di-
mension d}. Nonsing V = {x ∈ V |x is nonsingular of dimension dim V } and Sing V =
V − Nonsing V . An algebraic set is nonsingular if Sing V = ∅. Remark that Sing
V is an algebraic subset of V with dim Sing V < dim V . An algebraic subset W of a
nonsingular algebraic set V is a nonsingular algebraic subset of V if W is nonsingular.

Theorem 2.10 ([1]). Let X be a compact C∞ manifold and X1, . . . , Xn compact C∞

submanifolds of X in general position. Then there exist a nonsingular algebraic set Y and
a C∞ diffeomorphism ϕ : X → Y such that each ϕ(Xi) is a nonsingular algebraic subset
Yi of Y . In particular, (X; X1, . . . , Xn) admits a simultaneous Nash manifold structure
(Y ; Y1, . . . , Yn).
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The equivariant version of Theorem 2.10 is called the relative equivariant algebraic
realization problem and it is not known its complete answer. The following is its partial
answer.

Theorem 2.11 ([3]). Let G be a compact definable C∞ group and X a compact C∞G
manifold. Then the disjoint union X ⨿ X of two copies of X is C∞G diffeomorphic to a
nonsingular algebraic G set.

Using their argument and Exercise in P58 [2], we have the following theorem.

Theorem 2.12. Let G be a compact definable C∞ group, X a compact C∞G manifold and
X1, . . . , Xk codimension one compact C∞G submanifolds of X in general position. Then
there exist a nonsingular algebraic set Y and nonsingular algebraic G subsets Y1, . . . , Yk

such that (X ⨿ X; X1 ⨿ X1, . . . Xk ⨿ Xk) is C∞G diffeomorphic to (Y ; Y1, . . . Yk).

Corollary 2.13. Let G be a compact definable C∞ group, X a compact C∞G manifold
and X1, . . . , Xk codimension one compact C∞G submanifolds of X in general position.
Then there exist an affine definable C∞G manifold Y and definable C∞G submanifolds
Y1, . . . , Yk such that (X; X1, . . . Xk) is C∞G diffeomorphic to (Y ; Y1, . . . Yk).

Using some refinement of the proof of 2.2.9 [10] and [11], we have the following theorem.

Theorem 2.14. Let G be a compact Lie group, X a compact CsG manifold, X1, . . . , Xk

compact CsG submanifolds of X in general position and 1 ≤ s < ∞. Then there exist a
compact C∞G manifold Y and its compact C∞G submanifolds Y1, . . . , Yk of Y such that
(X; X1, . . . , Xk) is CsG diffeomorphic to (Y ; Y1, . . . , Yk).

Theorem 2.15 (1.2 [19]). Let G be a compact definable Cr group and 2 ≤ r < ∞. Let X
be a compact affine definable CrG manifold with boundary ∂X, and X1, . . . , Xk compact
definable CrG submanifolds of X with boundary ∂X1, . . . , ∂Xk, respectively, such that
X1, . . . , Xk, ∂X are in general position, every ∂Xi is contained in ∂X. Then there exists
a relative definable CrG collar ϕ : (∂X × [0, 1]; ∂X1 × [0, 1], . . . , ∂Xk × [0, 1]) → (X; X1,
. . . , Xn) of (∂X; ∂X1, . . . , ∂Xk).

Proof of Theorem 1.1. Assume that X,X1, . . . , Xk are compact. By Theorem 2.14,
there exist compact C∞G manifold X ′ and compact C∞G submanifolds X ′

1, . . . , X
′
k of X ′

such that (X; X1, . . . , Xk) is CrG diffeomorphic to (X ′; X ′
1, . . . , X

′
k). Thus by Corollary

2.13, we can find an affine definable C∞G manifold Y and definable C∞G submanifolds
Y1, . . . , Yk of Y such that (X ′; X ′

1, . . . , X
′
k) is C∞G diffeomorphic to (Y ; Y1, . . . , Yk). Hence

(X; X1, . . . , Xk) is CrG diffeomorphic to (Y ; Y1, . . . , Yk). By Theorem 2.1 and Theorem
2.2 and since X,X1, . . . , Xk are compact, (X; X1, . . . , Xk) is definably CrG diffeomorphic
to (Y ; Y1, . . . , Yk).

Assume that X,X1, . . . , Xk are noncompact and (X; X1, . . . , Xk) satisfies the frontier
condition. By Theorem 2.8, there exist a compact definable CrG manifold X̃ with
boundary ∂X̃, compact definable CrG submanifolds X̃1, . . . , X̃k of X̃ with boundary
∂X̃1, . . . , ∂X̃k, respectively, and a definable CrG diffeomorphism ϕ : X → Int X̃ such
that ϕ(Xi) = Int X̃i, each ∂X̃i is contained in ∂X̃, and X̃1, . . . , X̃k and ∂X̃ are in
general position in X̃. Thus by Theorem 2.15, (X̃; X̃1, . . . , X̃k) admits a relative de-
finable CrG collar. Hence we have the relative definable CrG double (D; D1, . . . , Dk) of
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(X̃; X̃1, . . . , X̃k). Note that D,D1, . . . , Dk and ∂X̃ are compact and D1, . . . , Dk, ∂X̃ are
in general position.

By the argument in the first case, there exist an affine definable C∞G manifold W
and definable C∞G submanifolds W1, . . . ,Wk, U of W such that (D; D1, . . . , Dk, ∂X̃) is
definably CrG diffeomorphic to (W ; W1, . . . ,Wk, U). Therefore we can find some unions
Y, Y1, . . . , Yk of connected components of W − U,W1 − U, . . . ,Wk − U , respectively, such
that Y is an affine definable C∞G manifold, each Yi is a definable C∞G submanifold of
Y and (X; X1, . . . , Xk) is definably CrG diffeomorphic to (Y, Y1, . . . , Yk).

Let Z be an affine definable C∞G manifold and Z1, . . . , Zk definable C∞G subman-
ifolds of Z such that (Y ; Y1, . . . , Yk) is definably CrG diffeomorphic to (Z; Z1, . . . , Zk)
Then there exists a definable CrG diffeomorphism F : (Y ; Y1, . . . , Yk) → (Z; Z1, . . . , Zk).
Applying Theorem 2.6 and Theorem 2.7, we have a definable C∞G diffeomorphism
H : (Y ; Y1, . . . , Yk) → (Z; Z1, . . . , Zk). ¤
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