DEFINABLE $C^{\infty}G$ MANIFOLD STRUCTURES OF DEFINABLE $C^{r}G$ MANIFOLDS

TOMOHIRO KAWAKAMI

ABSTRACT. Let G be a compact definable C^{∞} group and $2 \leq r < \infty$. Let X be a noncompact affine definable C^rG manifold and X_1, \ldots, X_k noncompact codimension one definable C^rG submanifolds of X such that X_1, \ldots, X_k are in general position in X and $(X; X_1, \ldots, X_k)$ satisfies the frontier condition. We prove that $(X; X_1, \ldots, X_k)$ admits a unique definable $C^{\infty}G$ manifold structure $(Y; Y_1, \ldots, Y_k)$.

1. INTRODUCTION¹

Let $\mathcal{M} = (\mathbb{R}, +.., <, e^x, ...)$ denote an exponential o-minimal expansion of the standard structure $\mathcal{R} = (R, +.., <)$ of the field \mathbb{R} of real numbers such that \mathcal{M} admits the C^{∞} cell decomposition and has piecewise controlled derivatives. The term "definable" means "definable with parameters in \mathcal{M} ". General references on o-minimal structures are [4], [7], see also [23]. The Nash category is a special case of definable C^{∞} categories and it coincides with the definable C^{∞} category based on \mathcal{R} [24]. Further properties and constructions of them are studied in [5], [6], [8], [21] and there are uncountably many o-minimal expansions of \mathcal{R} [22]. Equivariant definable C^r cases are studied in [12], [13], [14], [15] when $0 \leq r < \infty$. Everything is considered in \mathcal{M} and each manifold does not have boundary unless otherwise stated.

In this paper we consider simultaneous definable $C^{\infty}G$ manifold structures of definable $C^{r}G$ manifolds and their definable $C^{r}G$ submanifolds when $2 \leq r < \infty$.

Let X be a C^r manifold, X_1, \ldots, X_k C^r submanifolds of X and $r \ge 1$. We say that $\{X_i\}_{i=1}^k$ are in general position in X if for each $i \in I$ and $J \subset I - \{i\}$, X_i intersects transverse to $\bigcap_{j \in J} X_j$.

Let G be a compact definable C^r group, X a noncompact affine definable C^r manifold, X_1, \ldots, X_k noncompact definable C^r submanifolds of X and $1 \le r \le \infty$. By 2.10 [14] and 1.3 [17], we may assume that X is a bounded definable $C^r G$ submanifold of some representation Ω of G. We say that $(X; X_1, \ldots, X_k)$ satisfies the frontier condition if each $\overline{X_i} - X_i$ is contained in $\overline{X} - X$, where $\overline{X_i}$ (resp. \overline{X}) denotes the closure of X_i (resp. X) in Ω .

Theorem 1.1. Let G be a compact definable C^{∞} group and $2 \leq r < \infty$. Let X be an affine definable C^rG manifold and X_1, \ldots, X_k codimension one definable C^rG submanifolds of X such that X_1, \ldots, X_k are in general position in X. If either X, X_1, \ldots, X_k are compact, or X, X_1, \ldots, X_k are noncompact and $(X; X_1, \ldots, X_k)$ satisfies the frontier condition, then there exist an affine definable $C^{\infty}G$ manifold Y, definable $C^{\infty}G$ submanifolds Y_1, \ldots, Y_k

¹2000 Mathematics Subject Classification 14P10, 14P20, 58A05, 58A07, 03C64.

Keywords and Phrases. O-minimal, definable $C^{\infty}G$ manifolds, definable $C^{r}G$ manifolds, definable $C^{\infty}G$ compactifications, raising differentiability.

of Y and a definable C^rG diffeomorphism $f : X \to Y$ such that for each $i f(X_i) = Y_i$. Moreover if Z is an affine definable $C^{\infty}G$ manifold, Z_1, \ldots, Z_k are definable $C^{\infty}G$ submanifolds of Z and $(X; X_1, \ldots, X_k)$ is definably C^rG diffeomorphic to $(Z; Z_1, \ldots, Z_k)$, then $(Y; Y_1, \ldots, Y_k)$ is definably $C^{\infty}G$ diffeomorphic to $(Z; Z_1, \ldots, Z_k)$.

A non-equivariant definable non-relative version of Theorem 1.1 is proved in 1.5 [9] and a locally definable non-relative version of it is proved in [16] when G is a finite abelian group.

Corollary 1.2. Let G be a compact definable C^{∞} group and $2 \leq r < \infty$. Let X be an affine definable C^rG manifold. Then X admits a unique definable $C^{\infty}G$ manifold structure up to definable $C^{\infty}G$ diffeomorphism.

If G is a finite abelian group, then every definable $C^{\infty}G$ manifold is affine [19]. By a way similar to the proof of it proves every definable C^rG manifold is affine when r is a non-negative integer. Thus we have the following theorem as a corollary of Theorem 1.1.

Theorem 1.3. Let G be a finite abelian group and $2 \leq r < \infty$. Let X be a definable C^rG manifold and codimension one X_1, \ldots, X_k definable C^rG submanifolds of X such that X_1, \ldots, X_k are in general position in X. If either X, X_1, \ldots, X_k are compact, or X, X_1, \ldots, X_k are noncompact and $(X; X_1, \ldots, X_k)$ satisfies the frontier condition, then there exist a definable $C^{\infty}G$ manifold Y, definable $C^{\infty}G$ submanifolds Y_1, \ldots, Y_k of Y and a definable C^rG diffeomorphism $f: X \to Y$ such that for each $i f(X_i) = Y_i$. Moreover if Z is a definable $C^{\infty}G$ manifold, Z_1, \ldots, Z_k are definable $C^{\infty}G$ submanifolds of Z and $(X; X_1, \ldots, X_k)$ is definably C^rG diffeomorphic to $(Z; Z_1, \ldots, Z_k)$, then $(Y; Y_1, \ldots, Y_k)$ is definably $C^{\infty}G$ diffeomorphic to $(Z; Z_1, \ldots, Z_k)$.

As a corollary of Theorem 1.3, we have the following corollary.

Corollary 1.4. Let G be a finite abelian group and $2 \le r < \infty$. Let X be a definable C^rG manifold. Then X admits a unique definable $C^{\infty}G$ manifold structure up to definable $C^{\infty}G$ diffeomorphism.

2. Proof of Theorem 1.1

Suppose that r is a positive integer, ∞ or ω . A definable C^r manifold G is a definable C^r group if the group operations $G \times G \to G$ and $G \to G$ are definable C^r maps.

Let G be a definable C^r group. A representation map of G is a group homomorphism from G to some $O_n(\mathbb{R})$ which is a definable C^r map. A representation means the representation space of a representation map of G. In this paper, we assume that every representation of G is orthogonal. A definable C^rG submanifold of a representation Ω of G is a G invariant definable C^r submanifold of Ω . A definable C^rG manifold is a pair (X, ϕ) consisting of a definable C^r manifold X and a group action $\phi : G \times X \to X$ which is a definable C^r map. We simply write X instead of (X, ϕ) . A definable C^rG manifold is affine if it is definably C^rG diffeomorphic to a definable C^rG submanifold of some representation of G. Definable C^rG manifolds and affine definable C^rG manifolds are introduced in [14].

By a way similar to the proof of 1.3 [18], we have the following theorem.

Theorem 2.1. Let G be a compact definable C^r group and $1 \leq r < \infty$. Let X, Y be compact affine definable C^rG manifolds, X_1, \ldots, X_n (reps. Y_1, \ldots, Y_n) compact definable C^rG submanifolds of X (resp Y) such that X_1, \ldots, X_n (resp. Y_1, \ldots, Y_n) are in general position. Suppose that $f: (X; X_1, \ldots, X_n) \to (Y; Y_1, \ldots, Y_n)$ is a C^rG map. Then f is approximated by a definable C^rG map $h: (X; X_1, \ldots, X_n) \to (Y; Y_1, \ldots, Y_n)$ in the C^r Whitney topology. Moreover if for $1 \leq i_1 < \cdots < i_k \leq n$, $f|X_{i_1}, \ldots, f|X_{i_k}$ are definable C^rG maps, then we can take h such that $h| \cup_{i=1}^k X_{i_i} = f| \cup_{i=1}^k X_{i_i}$.

Theorem 2.2 ([10]). Let X, Y be compact C^r manifolds and $1 \le r \le \infty$ The subset of diffeomorphisms from X to Y is open in the set of C^r maps from X to Y with respect to the C^r Whitney topology.

Let $f: U \to \mathbb{R}$ be a definable C^{∞} function on a definable open subset $U \subset \mathbb{R}^n$. We say that f has controlled derivatives if there exist a definable continuous function $u: U \to \mathbb{R}$, real numbers C_1, C_2, \ldots and natural numbers E_1, E_2, \ldots such that $|D^{\alpha}f(x)| \leq C_{|\alpha|}u(x)^{E_{|\alpha|}}$ for all $x \in U$ and $\alpha \in (\mathbb{N} \cup \{0\})^n$, where $D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$. We say that \mathcal{M} has piecewise controlled derivatives if for every definable C^{∞} function $f: U \to \mathbb{R}$ defined in a definable open subset U of \mathbb{R}^n , there exist definable open sets $U_1, \ldots, U_l \subset U$ such that $\dim(U - \cup_{i=1}^l U_i) < n$ and each $f|U_i$ has controlled derivatives. G.O. Jones [20] proved the following theorem.

Theorem 2.3 (1.2 [20]). Every definable closed subset of \mathbb{R}^n is the zero set of a definable C^{∞} function on \mathbb{R}^n .

Using Theorem 2.3, we have the following two results [17].

Theorem 2.4 ([17]). Let G be a compact definable C^{∞} group and Ω a representation of G. Every G invariant definable closed subset of Ω is the zero set of a G invariant definable C^{∞} function on Ω .

Theorem 2.5 ([17]). Let G be a compact definable C^{∞} group and X an affine definable $C^{\infty}G$ manifold. Suppose that A, B are G invariant definable disjoint closed subsets of X. Then there exists a G invariant definable C^{∞} function $f: X \to \mathbb{R}$ such that f|A = 1 and f|B = 0.

Using Theorem 2.4 and Theorem 2.5, By a way similar to the proof of 1.3 [18], we have the following theorem.

Theorem 2.6. Let G be a compact definable C^{∞} group. Let X, Y be affine definable $C^{\infty}G$ manifolds and X_1, \ldots, X_n (reps. Y_1, \ldots, Y_n) definable $C^{\infty}G$ submanifolds of X (resp Y) such that X_1, \ldots, X_n (resp. Y_1, \ldots, Y_n) are in general position. Suppose that $f: (X; X_1, \ldots, X_n) \to (Y; Y_1, \ldots, Y_n)$ is a definable C^rG map and $1 \leq r < \infty$. Then f is approximated by a definable $C^{\infty}G$ map $h: (X; X_1, \ldots, X_n) \to (Y; Y_1, \ldots, Y_n)$ in the definable C^r topology. Moreover if for $1 \leq i_1 < \cdots < i_k \leq n$, $f|X_{i_1}, \ldots, f|X_{i_k}$ are definable $C^{\infty}G$ maps, then we can take h such that $h| \bigcup_{i=1}^k X_{i_i} = f| \bigcup_{i=1}^k X_{i_i}$.

Theorem 2.7 ([23]). Let X, Y be definable C^r submanifolds of \mathbb{R}^n and $0 < r < \infty$. Let $f : X \to Y$ be a definable C^r map. If f is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image), then an approximation of f in the definable C^r topology

is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image). Moreover if f is a diffeomorphism, then $h^{-1} \to f^{-1}$ as $h \to f$.

Let G be a compact definable C^r group, X a noncompact definable C^rG manifold, X_1, \ldots, X_k noncompact definable C^rG submanifolds of X in general position in X and $1 \leq r \leq \infty$. We say that $(X; X_1, \ldots, X_k)$ is simultaneously definably C^rG compactifiable if there exist a compact definable C^rG manifold Y with boundary ∂Y , compact definable C^rG submanifolds Y_1, \ldots, Y_k of Y with boundary $\partial Y_1, \ldots, \partial Y_n$, respectively, and a definable C^rG diffeomorphism $f: X \to Int Y$ such that for any $i, f(X_i) = Int Y_i$, each ∂Y_i is contained in ∂Y , and Y_1, \ldots, Y_k and ∂Y are in general position in Y. Here Int Y (resp. $Int Y_i$) denotes the interior of Y (resp. Y_i).

To prove Theorem 1.1, we have need the following theorem.

Theorem 2.8 ([19]). Let G be a compact definable C^r group, X a noncompact affine definable C^rG manifold, X_1, \ldots, X_k noncompact definable C^rG submanifolds of X in general position in X such that $(X; X_1, \ldots, X_k)$ satisfies the frontier condition and $1 \leq r < \infty$. Then $(X; X_1, \ldots, X_k)$ is simultaneously definably C^rG compactifiable.

In Theorem 2.8, we can take $r = \infty$.

Theorem 2.9 ([17]). Let G be a compact definable C^{∞} group, X a noncompact affine definable $C^{\infty}G$ manifold and X_1, \ldots, X_k noncompact definable $C^{\infty}G$ submanifolds of X in general position in X such that $(X; X_1, \ldots, X_k)$ satisfies the frontier condition. Then $(X; X_1, \ldots, X_k)$ is simultaneously definably $C^{\infty}G$ compactifiable.

A subset V of \mathbb{R}^n is an algebraic subset of \mathbb{R}^n if it is the zeros of some polynomial function on \mathbb{R}^n . An algebraic set means an algebraic subset of some \mathbb{R}^n . A point x in an algebraic set $V \subset \mathbb{R}^n$ is nonsingular of dimension d in V if there exist polynomial functions $p_i : \mathbb{R}^n \to \mathbb{R}$, $(1 \le i \le n - d)$, and an open neighborhood U of x in \mathbb{R}^n such that:

(1) $p_i(V) = 0, (1 \le i \le n - d).$

(2)
$$V \cap U = U \cap (\bigcap_{i=1}^{n-d} p_i(0)).$$

(3) The gradients $(\nabla p_i)_x$ $(1 \le i \le n - d)$ are linearly independent on U.

The dimension dim V of V is max{d|there exists an $x \in V$ which is nonsingular of dimension d}. Nonsing $V = \{x \in V | x \text{ is nonsingular of dimension dim } V\}$ and Sing V = V - Nonsing V. An algebraic set is nonsingular if $Sing V = \emptyset$. Remark that Sing V is an algebraic subset of V with dim $Sing V < \dim V$. An algebraic subset W of a nonsingular algebraic set V is a nonsingular algebraic subset of V if W is nonsingular.

Theorem 2.10 ([1]). Let X be a compact C^{∞} manifold and X_1, \ldots, X_n compact C^{∞} submanifolds of X in general position. Then there exist a nonsingular algebraic set Y and a C^{∞} diffeomorphism $\phi : X \to Y$ such that each $\phi(X_i)$ is a nonsingular algebraic subset Y_i of Y. In particular, $(X; X_1, \ldots, X_n)$ admits a simultaneous Nash manifold structure $(Y; Y_1, \ldots, Y_n)$. The equivariant version of Theorem 2.10 is called the relative equivariant algebraic realization problem and it is not known its complete answer. The following is its partial answer.

Theorem 2.11 ([3]). Let G be a compact definable C^{∞} group and X a compact $C^{\infty}G$ manifold. Then the disjoint union X II X of two copies of X is $C^{\infty}G$ diffeomorphic to a nonsingular algebraic G set.

Using their argument and Exercise in P58 [2], we have the following theorem.

Theorem 2.12. Let G be a compact definable C^{∞} group, X a compact $C^{\infty}G$ manifold and X_1, \ldots, X_k codimension one compact $C^{\infty}G$ submanifolds of X in general position. Then there exist a nonsingular algebraic set Y and nonsingular algebraic G subsets Y_1, \ldots, Y_k such that $(X \amalg X; X_1 \amalg X_1, \ldots, X_k \amalg X_k)$ is $C^{\infty}G$ diffeomorphic to $(Y; Y_1, \ldots, Y_k)$.

Corollary 2.13. Let G be a compact definable C^{∞} group, X a compact $C^{\infty}G$ manifold and X_1, \ldots, X_k codimension one compact $C^{\infty}G$ submanifolds of X in general position. Then there exist an affine definable $C^{\infty}G$ manifold Y and definable $C^{\infty}G$ submanifolds Y_1, \ldots, Y_k such that $(X; X_1, \ldots, X_k)$ is $C^{\infty}G$ diffeomorphic to $(Y; Y_1, \ldots, Y_k)$.

Using some refinement of the proof of 2.2.9 [10] and [11], we have the following theorem.

Theorem 2.14. Let G be a compact Lie group, X a compact C^sG manifold, X_1, \ldots, X_k compact C^sG submanifolds of X in general position and $1 \le s < \infty$. Then there exist a compact $C^{\infty}G$ manifold Y and its compact $C^{\infty}G$ submanifolds Y_1, \ldots, Y_k of Y such that $(X; X_1, \ldots, X_k)$ is C^sG diffeomorphic to $(Y; Y_1, \ldots, Y_k)$.

Theorem 2.15 (1.2 [19]). Let G be a compact definable C^r group and $2 \le r < \infty$. Let X be a compact affine definable C^rG manifold with boundary ∂X , and X_1, \ldots, X_k compact definable C^rG submanifolds of X with boundary $\partial X_1, \ldots, \partial X_k$, respectively, such that $X_1, \ldots, X_k, \partial X$ are in general position, every ∂X_i is contained in ∂X . Then there exists a relative definable C^rG collar $\phi : (\partial X \times [0, 1]; \partial X_1 \times [0, 1], \ldots, \partial X_k \times [0, 1]) \to (X; X_1, \ldots, X_n)$ of $(\partial X; \partial X_1, \ldots, \partial X_k)$.

Proof of Theorem 1.1. Assume that X, X_1, \ldots, X_k are compact. By Theorem 2.14, there exist compact $C^{\infty}G$ manifold X' and compact $C^{\infty}G$ submanifolds X'_1, \ldots, X'_k of X'such that $(X; X_1, \ldots, X_k)$ is C^rG diffeomorphic to $(X'; X'_1, \ldots, X'_k)$. Thus by Corollary 2.13, we can find an affine definable $C^{\infty}G$ manifold Y and definable $C^{\infty}G$ submanifolds Y_1, \ldots, Y_k of Y such that $(X'; X'_1, \ldots, X'_k)$ is $C^{\infty}G$ diffeomorphic to $(Y; Y_1, \ldots, Y_k)$. Hence $(X; X_1, \ldots, X_k)$ is C^rG diffeomorphic to $(Y; Y_1, \ldots, Y_k)$. By Theorem 2.1 and Theorem 2.2 and since X, X_1, \ldots, X_k are compact, $(X; X_1, \ldots, X_k)$ is definably C^rG diffeomorphic to $(Y; Y_1, \ldots, Y_k)$.

Assume that X, X_1, \ldots, X_k are noncompact and $(X; X_1, \ldots, X_k)$ satisfies the frontier condition. By Theorem 2.8, there exist a compact definable $C^r G$ manifold \tilde{X} with boundary $\partial \tilde{X}$, compact definable $C^r G$ submanifolds $\tilde{X}_1, \ldots, \tilde{X}_k$ of \tilde{X} with boundary $\partial \tilde{X}_1, \ldots, \partial \tilde{X}_k$, respectively, and a definable $C^r G$ diffeomorphism $\phi : X \to Int \tilde{X}$ such that $\phi(X_i) = Int \tilde{X}_i$, each $\partial \tilde{X}_i$ is contained in $\partial \tilde{X}$, and $\tilde{X}_1, \ldots, \tilde{X}_k$ and $\partial \tilde{X}$ are in general position in \tilde{X} . Thus by Theorem 2.15, $(\tilde{X}; \tilde{X}_1, \ldots, \tilde{X}_k)$ admits a relative definable $C^r G$ collar. Hence we have the relative definable $C^r G$ double $(D; D_1, \ldots, D_k)$ of $(\tilde{X}; \tilde{X}_1, \ldots, \tilde{X}_k)$. Note that D, D_1, \ldots, D_k and $\partial \tilde{X}$ are compact and $D_1, \ldots, D_k, \partial \tilde{X}$ are in general position.

By the argument in the first case, there exist an affine definable $C^{\infty}G$ manifold Wand definable $C^{\infty}G$ submanifolds W_1, \ldots, W_k, U of W such that $(D; D_1, \ldots, D_k, \partial \tilde{X})$ is definably C^rG diffeomorphic to $(W; W_1, \ldots, W_k, U)$. Therefore we can find some unions Y, Y_1, \ldots, Y_k of connected components of $W - U, W_1 - U, \ldots, W_k - U$, respectively, such that Y is an affine definable $C^{\infty}G$ manifold, each Y_i is a definable $C^{\infty}G$ submanifold of Y and $(X; X_1, \ldots, X_k)$ is definably C^rG diffeomorphic to (Y, Y_1, \ldots, Y_k) .

Let Z be an affine definable $C^{\infty}G$ manifold and Z_1, \ldots, Z_k definable $C^{\infty}G$ submanifolds of Z such that $(Y; Y_1, \ldots, Y_k)$ is definably C^rG diffeomorphic to $(Z; Z_1, \ldots, Z_k)$. Then there exists a definable C^rG diffeomorphism $F : (Y; Y_1, \ldots, Y_k) \to (Z; Z_1, \ldots, Z_k)$. Applying Theorem 2.6 and Theorem 2.7, we have a definable $C^{\infty}G$ diffeomorphism $H : (Y; Y_1, \ldots, Y_k) \to (Z; Z_1, \ldots, Z_k)$.

References

- [1] S. Akbulut and H. King, A relative Nash theorem, Trans. Amer. Math. Soc. 267 (1981), 465–481.
- [2] S. Akbulut and H. King, *Topology of real algebraic sets*, Mathematical Sciences Research Institute Publications, 25 Springer-Verlag, New York, (1992).
- [3] K.H. Dovermann, M. Masuda, and T. Petrie, Fixed point free algebraic actions on varieties diffeomorphic to Rⁿ, Progress in Math. 80, Birkhäuser (1990), 49–80.
- [4] L. van den Dries, *Tame topology and o-minimal structure*, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [5] L. van den Dries, A. Macintyre, and D. Marker, *Logarithmic-exponential power series*, J. London. Math. Soc., II. Ser. 56, (1997), 417-434.
- [6] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. of Math. 140 (1994), 183–205.
- [7] L. van den Dries and C. Miller, Geometric categories and o-minimal structure, Duke Math. J. 84 (1996), 497-540.
- [8] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350, (1998), 4377–4421.
- [9] A. Fischer, Smooth functions in o-minimal structures, Adv. Math. 218, (2008), 496–514.
- [10] M.W. Hirsch, *Differential manifolds*, Springer, (1976).
- [11] S. Illman, Every proper smooth action of a Lie group is equivalent to a real analytic action: a contribution to Hilbert's fifth problem, Ann. of Math. Stud., 138, Princeton Univ. Press, Princeton, NJ, (1995), 189–220.
- [12] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Edu. Wakayama Univ. 54. (2004), 1-15.
- [13] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, Bull. Fac. Edu. Wakayama Univ. 55. (2005), 23-36.
- [14] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [15] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183–201.
- [16] T. Kawakami, Locally definable $C^{\infty}G$ manifold structures of locally definable $C^{r}G$ manifolds, to appear.
- [17] T. Kawakami, Relative Definable C^rG triviality of G invariant proper definable C^r functions, Far East J. Math. Sci. (FJMS) 34 (2009), 141–154.
- [18] T. Kawakami, Relative properties of definable C[∞] manifolds with finite abelian group actions in an o-minimal expansion of R_{exp}, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. **59** (2009), 21–27.

- [19] T. Kawakami, Relative properties of definable C^rG manifolds, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 59 (2009), 11–19.
- [20] G.O. Jones, Zero sets of smooth functions in the Pfaffian closure of an o-minimal structure, Proc. Amer. Math. Soc. 136 (2008), 4019–4025.
- [21] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257–259.
- [22] J.P. Rolin, P. Speissegger and A.J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751–777.
- [23] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser, Boston, 1997.
- [24] A. Tarski, A decision method for elementary algebra and geometry, 2nd edition. revised, Berkeley and Los Angeles (1951).

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail address: kawa@center.wakayama-u.ac.jp