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Abstract

This thesis explores an approach to Hilbert's twelfth problem for real quadratic
number �elds, concerning the determination of an explicit class �eld theory for such
�elds. The basis for our approach is a paper by Manin proposing a theory of Real
Multiplication realising such an explicit theory, analogous to the theory of Complex
Multiplication associated to imaginary quadratic �elds. Whereas elliptic curves play
the leading role in the latter theory, objects known as Noncommutative Tori are the
subject of Manin's dream.

In this thesis we study a family of topological spaces known as Quantum Tori
that arise naturally from Manin's approach. Our aim throughout this thesis is to
show that these non-Hausdor� spaces have an �algebraic character�, which is unex-
pected through their de�nition, though entirely consistent with their envisioned role
in Real Multiplication.

Chapter 1 is a general introduction to the problem, providing a historical and
technical background to the motivation behind this thesis. Chapter 2 deals with
the problem of de�ning continuous maps between Quantum Tori using ideas from
Nonstandard Analysis, culminating in a description of the action of a Galois group
on certain isomorphism classes of these spaces. Chapter 3 concerns the problem
of de�ning a nontrivial notion of line bundles over Quantum Tori, while Chapter 4
concerns the existence of sections of these line bundles. We show that such sections
have applications to the null values of the derivatives of L-functions attached to real
quadratic �elds, which in the context of Stark's conjectures is seen to be relevant to
Hilbert's problem.
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Chapter 1

Introduction

Class Field Theory attempts to classify the abelian extensions of a �eld K, in terms
of data intrinsic to K, namely the idele class group. When K is a number �eld, the
celebrated �Existence Theorem� asserts a bijection between the �nite abelian exten-
sions over K, and open subgroups of �nite index in the idele class group. Fields
arising in this way are known as class �elds for K. Despite ensuring the existence of
such �elds for K, the proof of this result is in general nonconstructive1, not providing
a set of generators for the abelian extension. In the early twentieth century Hilbert
listed the need for such an explicit class �eld theory as the twelfth in a list of twenty
three problems he deemed to be of importance to mathematics.

A century later Hilbert's twelfth problem remains unanswered, except in a few
special circumstances. In 1896 Hilbert himself gave the �rst complete answer to the
case when K is the �eld Q of rational numbers following the work of Kronecker and
Weber. By the end of the nineteenth century a solution was known for the case when
K is an imaginary quadratic �eld, ful�lling Kronecker's Jugendtraum, or �dream of
youth�. This was achieved by generating abelian extensions of K by adjoining spe-

1The proof is constructive for a certain type of extensions, known as Kummer type extensions.
Such extensions can be characterised as being abelian extensions of a �eld K over which the poly-
nomial Xn − 1 splits, with abelian Galois group of exponent n. For more details see Chapter IV �3
of [37].
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2

cial values of certain functions on elliptic curves with Complex Multiplication. Much
later in the 1970's, this result inspired the construction of the Lubin-Tate formal
group, which was used to establish a solution when K is a local �eld [22].

The simplest class of number �elds for which the problem remains unsolved is
the case when K is a real quadratic �eld.

Some progress has been made in obtaining solutions for isolated classes of real
quadratic �elds by Shimura [51, 52] and Shintani [55]. Shimura uses a similar philos-
ophy to that of the theory of Complex Multiplication, generating abelian extensions
of certain real quadratic �elds (of class number one) by the torsion points of cer-
tain abelian varieties. Shintani's work is motivated by the ability to express the
L-function of a real quadratic �eld in terms of certain special functions studied by
Barnes in [4]. However, neither of these provides a systematic way of giving a solu-
tion for a general real quadratic �eld.

The quest for such a solution is the subject of Manin's paper �Real Multiplica-
tion and Noncommutative Geometry� [32] where he poses his Alterstraum - a theory
of Real Multiplication. The theory laid out in Manin's paper is connected to the
development of Noncommutative Geometry studied by A.Connes in the early 1980's.
His book [9], considered one of the milestones in mathematics, studied the analytical
theory of non-Hausdor� spaces using C*-algebra and operator theory. Such �Non-
commutative spaces� have a noncommutative C*-algebra associated to them which
is an analogue to the algebra of C-valued functions on a Hausdor� space.

The ideas contained within Manin's paper form the basis for this thesis. In
this chapter we will state the problem of obtaining an explicit class �eld theory in
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more detail, and explain the problems which arise when attempting to derive such a
theory for real quadratic �elds. The framework of Manin's proposed theory of Real
Multiplication is introduced, as well as some basic concepts from Noncommutative
Geometry, which is fundamental to his approach. Finally we explain how this is
related to our work, and give a brief description of the structure of this thesis.

1.1 Explicit Class Field Theory

Let K be a number �eld, and let v be a valuation on K corresponding to a place of
K. The completion of K at v is a discrete valuation �eld which we denote by Kv.
The adele ring of K is de�ned to be

AK :=
∏̂

v
Kv

where v ranges over all places of K. The product ∏̂ implies that if (av) ∈ AK then
the following condition is satis�ed:

For all but �nitely of the �nite places v, we have ordv(av) ≥ 0, where

ordv(x) = − log(v(x))
log(NK/Qp)

and p is the prime corresponding to the valuation v.

There is a natural embedding of K∗ in to A∗K , and the idele class group of K is
de�ned to be the quotient CK := A∗K/K∗. When L is a �nite extension of K, and w
is a place of L lying above v in K, we have a natural norm map between local �elds

NLw/Kv
: Lw −→ Kv.
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These induce a global norm on the idele class group of L, which can be de�ned by

NL/K : CL → CK

(aw)w 7→
(∏

w|vNLw/Kv
(aw)

)
v
.

Central to Class Field Theory is the reciprocity map, which exhibits a homomor-
phism:

ψK : CK −→ GabK ,

where GabK denotes the Galois group Gal(Kab/K) and Kab is the maximal abelian
extension of K over K. When L is a �nite abelian extension of K, this map supplies
an isomorphism

ψL/K :
CK

NL/K(CL)
−→ Gal(L/K).

The groups NL/K(CL) are open in a certain natural topology on CK . The following
result uses these ideas to give a classi�cation of the abelian extensions of a number
�eld:

Theorem 1.1.1 (Existence Theorem of Global Class Field Theory, Theo-
rem 6.1 of [37]2). Let K be a number �eld. The map

L 7→ NL/K(CL)

establishes a one-to-one correspondence between the �nite abelian extensions L/K
and the open subgroups of �nite index in CK . The �eld LU corresponding to the
subgroup U of CK is called the class �eld of U , and we have

Gal(LU/K) ∼= CK/U.

2In Neukirch's treatment, he uses the complementary topology on the ideles to the one we refer
to here, so in his terminology the subgroups NL/K(CL) are closed in CK . Neukirch's treatment
describes all abelian extensions (possibly of in�nite degree) while in Theorem 1.1.1 we concentrate
on those of �nite degree.
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As mentioned previously, this construction is not explicit in general, since it does
not explicitly de�ne the �eld LU corresponding to an open subgroup U of CK . A
complete solution to Hilbert's twelfth problem requires

1. A set of generators {a1, . . . , an} for the �eld LU for each open subgroup U of
CK ;

2. An explicit action of CK on the generators {a1, . . . , an}.

To illustrate these concepts let us consider those number �elds for which Hilbert's
problem has been solved.

When K is equal to the �eld Q of rationals, it is proved that every abelian
extension of Q is contained within the cyclotomic �eld Kn := Q(ζn) for some nth
root of unity ζn. Considering the �nite extension Kn it can be shown that

CQ
NKn/Q(CKn)

∼= (Z/nZ)∗.

If σ ∈ Gal(Kn/Q), then by the above isomorphism we have ψKn/Q(σ) ∈ (Z/nZ)∗.
Let m be an integer such that m ≡ ψKn/Q(σ) mod n. The reciprocity law is given
explicitly on roots of unity by

ζσn = ζmn .

Since the �eld Kn is generated over Q by roots of unity this serves to provide an
explicit reciprocity law on the whole of Kn.

The maximal abelian extension of Q is the extension generated by all the roots
of unity. Let S denote the algebraic subvariety of R2 de�ned by

S : x2 + y2 − 1 = 0.
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This has an embedding in to the complex plane by (x, y) 7→ x+ iy whose image we
also denote by S. This gives S an abelian group structure induced by the law of
multiplication in C, allowing us to view S as an abelian variety. We let Stors denote
the torsion points of S with respect to this group law and observe that we can write

Qab = Q(Stors).

We notice that Stors is isomorphic to the quotient K/OK = Q/Z via the injective
homomorphism

exp : K/OK −→ S

x+OK 7→ exp(2πix).

Hence we may write Qab = Q(exp(K/OK)).

Let σ : Q ↪→ R denote the in�nite (real) place of Q, and let Kσ denote the
completion of K at σ. Then Kσ ' R, and the map exp extends to one on Kσ/OK

whose image is S.

WhenK is an imaginary quadratic �eld, the torsion points of of an abelian variety
play a fundamental role in describing the maximal abelian extension of K, as the role
of S does in the cyclotomic theory. In this case the algebraic variety considered is
an elliptic curve E whose endomorphism ring satis�es a certain property. An elliptic
curve over C can be de�ned by those points of C2 satisfying the equation

E : y2 = 4x3 − g2x− g3 (1.1)

for some g2, g3 ∈ C, together with a speci�ed �point at in�nity� O. These points
form a group with the point at in�nity acting as the identity.
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An important result concerning such curves is given by the Uniformization Theo-
rem. To each elliptic curve E de�ned by an equation as in (1.1), there exists a lattice
Λ in C such that E is isomorphic as a complex Lie group to the complex torus C/Λ.
This construction underlies the following:

Theorem 1.1.2 (Uniformisation Theorem). We have an equivalence between the
following categories:

EC The category whose objects are elliptic curves over C, and whose morphisms
are isogenies (rational homomorphisms);

L The category whose objects are lattices in C, and whose morphisms between
lattices Λ1 and Λ2 are nonzero complex numbers α such that αΛ1 ⊆ Λ2.

As a corollary we deduce that every elliptic curve is isomorphic (as a complex
Lie group) to a torus C/(Z + τEZ) for some representative τE of a unique element of
H/SL2(Z). Here the matrix group SL2(Z) acts on the upper half plane H by möbius
transformations. The j-invariant of the elliptic curve E is de�ned to be j(τE) where
j denotes the modular j-function [26]. This is well de�ned since the function j is
invariant under the action of SL2(Z).

An elliptic curve E is said to have Complex Multiplication if there exist non-
integral scalars α ∈ C∗ such that αΛτE ⊆ ΛτE where ΛτE = Z + τEZ. This is
equivalent to stating that the endomorphism ring of E contains a proper subring
isomorphic to Z. In this case it can be shown that Q ⊗Z End(E) is isomorphic to
an imaginary quadratic �eld K, and we say that E has Complex Multiplication by
K. In this situation the �eld K(j(E)) is shown to be equal to Hilbert Class �eld of
K - the maximal abelian unrami�ed extension of K [56]. The culminating result in
the theory of Complex Multiplication is that if E has Complex Multiplication by K
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then
Kab = K(j(E), Etors).

The elliptic curve may be chosen such that it corresponds (under the association of
Theorem 1.1.2) to the lattice OK - the ring of integers of K. The group of torsion
points Etors of E is isomorphic to the quotient K/OK via the injective homomor-
phism:

φ : C/OK −→ E

x+OK 7→

 (℘(x), ℘′(x)) if x 6= 0

O if x = 0,

where ℘ denotes the Weierstrass ℘-function.

Let σ : K ↪→ C denote a complex place of K, and let Kσ denote the completion
of K at σ. The isomorphism φ extends to one on Kσ/OK whose image is E.

Now let K be a real quadratic �eld. The previous two examples serve to
provide a philosophy we keep in mind when attempting to solve Hilbert's prob-
lem for K. We may naïvely expect that in this case abelian extensions of K
are generated by the torsion points of a suitable abelian variety N , isomorphic
to Kσ/OK for some in�nite place σ : K ↪→ R of K. We would expect an anal-
ogous function to the j-invariant for elliptic curves to exist for the variety N ,
which classi�ed its isomorphism type, and provided a generator for the Hilbert
Class Field of K. In summary, using the perspective gained by the functions exp

and ℘, we would be interested in �nding a function J with domain R/SL2(Z)

and for each real quadratic �eld K a function WK with domain R/OK such that:
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1. For each k ∈ K, J(k) is algebraic and generates the Hilbert Class �eld of K
over K;

2. WK : K/OK → C2 and Kab = K(J(k),WK(K/OK)) for some k ∈ K;

3. WK extends to an isomorphism WK : Kσ/OK → N where σ : K ↪→ R is an
in�nite place of K and N is an abelian variety.

Since K is a real �eld this leads us to consider functions on the space R/OK .

An immediate problem which faces us is that in the natural quotient topology
induced from the Euclidean one on R, the quotient R/OK is non-Hausdor�. This
arises because the group OK is dense in R, and presents problems when we try to use
usual techniques for studying topological spaces. For example, there are no nontriv-
ial continuous functions on this space. The study of such pathological spaces using
analytic methods was initiated by Connes [9], who pioneered the subject that has
been termed Noncommutative Geometry .

1.2 Real Multiplication and Noncommutative Geometry

The philosophy underlying Noncommutative Geometry is to generalise notions valid
on Hausdor� spaces to yield nontrivial results when applied to non-Hausdor� spaces.
For example, the Gelfand-Naimark theorem establishes a bijection between compact
Hausdor� topological spaces and commutative C*-algebras (Theorem I.9.12 of [10]),
associating to such a space X the C*-algebra C(X) of continuous C-valued func-
tions on X. Hence compact Hausdor� topological spaces may be de�ned to be
commutative C*-algebras. Noncommutative Geometry generalises this notion by as-
sociating noncommutative C*-algebras to non-Hausdor� commutative spaces. These
noncommutative C*-algebras are then viewed as the function space of a virtual �non-
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commutative space� associated to the non-Hausdor� space [30].

For another example, we consider vector bundles over a compact Hausdor� space
X. A vector bundle over X is a topological space E together with a projection
π : E → X satisfying certain local conditions. A section of a vector bundle is a map
σ : X → E such that π ◦ E = 1X . The set of sections of E over X is denoted by
Γ(X,E) and is a �nitely generated projective C(X)-module. A theorem of Swan [61]
states that the map E 7→ Γ(X,E) establishes a bijection between vector bundles E
over X, and �nitely generated projective C(X)-modules. Hence given a noncommu-
tative C*-algebra A, the vector bundles over the �noncommutative space� associated
to A are de�ned as �nitely generated projective right (or left) modules over A.

De�nition 1.2.1 (Noncommutative Tori). Let θ ∈ R \ Q. De�ne Aθ to be the
universal C*-algebra generated by unitary operators U and V such that

V U = e2πiθUV. (1.2)

In the context of Noncommutative Geometry this is known as the Noncommutative,
or Quantum Torus. Throughout this thesis we will call Aθ a Noncommutative Torus,
reserving the term Quantum Torus for a topological space to be de�ned shortly.

In Noncommutative Geometry [9], the C*-algebra Aθ is viewed as the algebra of
continuous C-valued functions on a certain non-Hausdor� �commutative� space Tθ.
The space Tθ is the quotient of the standard torus by a foliation consisting of a line
of constant slope known as the Kronecker foliation.

From our previous discussion, when investigating Hilbert's twelfth problem for a
real quadratic �eld K we expect to study the space R/OK . If K is a real quadratic
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�eld then there exists θ ∈ K such that OK = Z + Zθ, reducing our study to those
spaces R/Lθ where Lθ = Z + Zθ.

De�nition 1.2.2 (Quantum Tori). For θ ∈ R \ Q, de�ne Zθ to be the quotient
R/(Z + Zθ). We say Zθ is a Quantum Torus with parameter θ. More generally we
say that Z is a Quantum Torus if Z = R/L where L is a dense additive subgroup of
R of rank two.

It can be shown (as discussed in �3.6.1 of Chapter 3) that the space of leaves of
the Kronecker foliation Tθ is isomorphic to Zθ. Hence the algebra Aθ also serves to
act as the space of �continuous functions� on Zθ.

In [32], Manin describes a framework in which Noncommutative Tori serve as
an analogue to elliptic curves in a potential solution to Hilbert's twelfth problem
for real quadratic �elds. His approach relies on the existence of Noncommutative
Tori whose endomorphism rings are isomorphic to orders in a real quadratic �eld F .
Such Noncommutative Tori are said to have Real Multiplication by F , and the (as
yet undeveloped) theory of these relating to a solution of Hilbert's problem for real
quadratic �elds is known as the theory of Real Multiplication. One important result
described in his paper is a duality between Noncommutative Tori and dense additive
subgroups of R of rank two, mirroring the relationship between elliptic curves and
complex lattices given by the Uniformization Theorem. We will give a short account
of this relationship, and how it relates to the approach we take in this thesis.

Let A be a C*-algebra, and for each n ∈ N let Mn(A) denote the algebra of
n×n matrices with coe�cients in A. We let MA denote the union of Mn(A) for all
n. Classical theory gives a bijection between idempotents (elements e ∈ MA such
that e2 = e) and �nitely projective right (or left) A-modules. A projection is an
idempotent e such that e∗ = e, where ∗ denotes the convolution induced on MA by
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that on the C*-algebra A. In Manin's paper, only those right (or left) A-modules
which correspond to projections are considered.

De�nition 1.2.3 (Morita Category of Noncommutative Tori). Let NT de-
note the category such that:

• The objects of NT are Noncommutative Tori Aθ.

• A morphism between two Noncommutative Tori Aθ1 and Aθ2 is an Aθ1 −Aθ2-
bi-module M(Aθ1 , Aθ2) such that

1. As a left Aθ1-module, M(Aθ1 , Aθ2) corresponds to a projection in MAθ1 ;
2. As a right Aθ2-module,M(Aθ1 , Aθ2) corresponds to a projection inMAθ2 .

The composition of the morphisms M(Aθ1 , Aθ2) and M(Aθ2 , Aθ3) is the tensor
product M(Aθ1 , Aθ2)⊗Aθ2

M(Aθ2 , Aθ3).

The Uniformization Theorem is fundamental in many calculations concerning el-
liptic curves, reducing those calculations to ones on lattices, which are often easier
to handle. This is crucial in the development of the theory of Complex Multiplica-
tion, which forms the cornerstone to the solution of Hilbert's problem for imaginary
quadratic �elds. In the proposed theory of Real Multiplication, the Morita category
of Noncommutative Tori assumes the role that the category EC (as de�ned in Theo-
rem 1.1.2) plays in Complex Multiplication. A candidate for the Real Multiplication
analogue of the category L is given by the following:

De�nition 1.2.4 (Category of Pseudolattices). Let PL denote the category
such that:

• The objects of PL are dense additive subgroups L of R of rank two.

• A morphism between two pseudolattices L1 and L2 is a nonzero positive real
number β such that βL1 ⊆ L2.
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To describe the relationship between the categories NT and PL we recall some
basic elements of the K-theory of C*-algebras.

Given a semi-group S, there exists a construction (known as the Grothendieck
construction) of completing S to form a group GS . Given a C*-algebra A, the set of
isomorphism classes of �nitely generated projective right (or left) A-modules forms
a semi-group [47]. The group obtained by the Grothendieck construction is denoted
K0(A). Due to the nature of the construction, elements of K0(A) can be represented
as the di�erences of certain classes of matrices. The trace of the matrix is indepen-
dent of its class, allowing the existence of a canonical trace on K0(A) induced by the
canonical trace on matrices. This trace is unique if we insist that Tr(1) = 1.

In the case of Noncommutative Tori, we have K0(Aθ) ∼= Z2 and Tr(K0(Aθ)) =

Z + Zθ [44]. Those elements of K0(Aθ) which have positive trace are precisely those
elements arising from �nitely generated projective right (or left) Aθ-modules as op-
posed to those �virtual� elements which are added in the Grothendieck construction.
Via Swan's result in [61], we can view these elements as representing isomorphism
classes of vector bundles over the noncommutative space attached to Aθ. Observe
that we can recover the pseudolattice Z + Zθ from the K-theory of Aθ as the image
of K0(Aθ) under the canonical trace.

The following is the result of many di�erent peoples e�orts, and provides a weak
analogy to the Uniformization Theorem for elliptic curves:

Theorem 1.2.5. 3 Let K : NT → PL be the functor de�ned in the following way:

• On objects K(Aθ) = Tr(K0(Aθ)). Hence by the comments above, K(Aθ) = Lθ.
3This is Theorem 1.7.1 of [32]. Manin's statement di�ers slightly from the one we give here,

since he considers pairs (L, s) where L is a pseudolattice and s is an orientation of L.



1.2 Real Multiplication and Noncommutative Geometry 14

• To de�ne K on morphisms let M(Aθ1 , Aθ2) be a morphism in NT . The trace
gives a bijection between K0(Aθ1) and Lθ1 . This bijection allows us to assign
to each l ∈ Lθ1 a unique element [N l

Aθ1
] ∈ K0(Aθ1). We de�ne

K(M(Aθ1 , Aθ2))(l) := Tr([N l
Aθ1

⊗Aθ1
M(Aθ1 , Aθ2)]).

Since N l
Aθ1

⊗Aθ1
M(Aθ1 , Aθ2) is a �nitely generated projective right Aθ2-module,

the right hand side of the above equation lies in Lθ2 . This map is a morphism
Lθ1 → Lθ2 .

Then the functor K is essentially surjective4 on objects and morphisms.

Among those bi-modules which give rise to morphisms in NT are those which
are isomorphisms. Such a bi-module is said to be a Morita equivalence between the
corresponding Quantum Tori. A bi-module M is a Morita equivalence between two
C*-algebras A and B if it is �nitely generated as a module over A and B separately.
For such an A−B-bi-module the map

N 7→ N ⊗AM

de�nes a bijection between �nitely generated projective right modules over A and
�nitely generated projective right modules over B. The following result of Rie�el
describes the moduli space of Noncommutative Tori up to Morita equivalence.

Theorem 1.2.6. Let Aθ1 and Aθ2 be Noncommutative Tori. Then Aθ1 and Aθ2 are
Morita equivalent if and only if there exist integers a, b, c, d such that ad − bc = ±1

and
θ2 =

aθ1 + b

cθ1 + d
.

4The term essentially surjective in this context implies that every element of PL is isomorphic
to an object in the image of K.
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The space P1(R)/SL2(R) therefore plays an analogous role in the theory of Non-
commutative Tori to that of the modular curve H/SL2(R) in the theory of elliptic
curves. The following result constructs a map in the reverse direction to K which
respects the notion of isomorphism.

Theorem 1.2.7 (Schwarz, Dieng [11]). Consider the map from PL to NT de-
�ned on objects by E : Lθ 7→ Aθ. This map can be extended to be de�ned on iso-
morphisms between pseudolattices. If Lθ1 ∼= Lθ2 then E(Lθ1) and E(Lθ2) are Morita
equivalent. Moreover the composition K ◦ E is the identity on isomorphism classes
of pseudolattices.

1.3 The structure of this Thesis

One of the main aims of this thesis is to show that we can attach meaning to certain
objects associated with Noncommutative Tori, which one would normally associate
with the theory of abelian varieties. If Noncommutative Tori are to play an in-
strumental role in a solution to Hilbert's twelfth problem for real quadratic �elds,
this should not be surprising given the roles of the circle and elliptic curves in the
solutions for the rational and imaginary quadratic �elds. In our approach we will
focus on viewing Noncommutative Tori as Quantum Tori - topological spaces R/L

where L is a pseudolattice. Indeed, in [32] Manin comments that Theorems 1.2.5
and 1.2.7 should provide a strong enough duality between Noncommutative Tori and
pseudolattices to �su�ce for the envisioned applications to Real Multiplication�.

Many �di�cult� problems in number theory involve describing the relationship be-
tween algebraic, analytic and topological objects. Examples include the Uniformiza-
tion Theorem, the Selberg-Trace formula5 and the explicit reciprocity laws for the

5The Selberg-Trace formula describes the dimension of the space of cusp forms (analytic data)
in terms of the volume of a fundamental domain (topological data) [15].
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rational and imaginary quadratic �elds. Recently, a branch of logic known as Model
Theory has been used to great e�ect to prove number theoretic problems requir-
ing just such a bridge between analysis and algebra. In [18] Hrushovski proves the
Mordell-Lang conjecture6 for function �elds using these techniques, and used Model
Theory in his proof of the Manin-Mumford conjecture7 in 2001 [19].

Model theory provides a way to �algebraize� analytic theories. The concept of
Nonstandard Analysis is an example of this, seeming to supply purely algebraic in-
terpretations of analytic concepts such as continuity, di�erentiation and integration.
A model theoretical interpretation of Noncommutative Geometry would potentially
provide an algebraic interpretation to Connes' analytical theory. This algebraic the-
ory may be more readily applicable for applications in number theory. The appli-
cation of Model theoretic techniques to the study of Quantum Tori has been the
subject of a recent study by Zilber [64, 66], whose work has inspired many of the
ideas behind our study.

This thesis is split in to three chapters, each of which highlights an aspect of
Quantum Tori that one �nds in the theory of abelian varieties.

Chapter 2 can be thought of as having two parts, the �rst developing a notion of
morphism between Quantum Tori, and the second the application of these ideas in
�2.6.

As we have already remarked, the non-Hausdor� nature of Quantum Tori implies
6The Mordell-Lang conjecture describes the intersection of a closed subvariety X of an abelian

variety A with certain subgroups Γ ≤ A in terms of the intersection of Γ with a �nite number of
translates of subvarieties Xi of A.

7The Manin-Mumford conjecture describes the intersection of a closed subvariety X of an abelian
variety A over a number �eld with the torsion points Ators(K) of A in terms of the intersection of
A(K) with a �nite number of translates of subvarieties Xi of A.
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that any continuous function de�ned on such an object is constant. We introduce
and demonstrate the use of Nonstandard Analysis to introduce a Hausdor� topologi-
cal space TL, which we aim to use to de�ne a suitable notion of continuous functions
on Quantum Tori yielding nontrivial results. Section 2.2 describes the terminology
we will need to de�ne what we mean by Nonstandard Analysis, and in �2.2.3 we
introduce the topological space TL, known as a Hyper Quantum Torus. We aim to
induce nontrivial morphisms between Quantum Tori by continuous morphisms be-
tween Hyper Quantum Tori.

Section 2.3 de�nes the category LIQ of locally internal quotient spaces, which
Hyper Quantum Tori can be viewed as objects in. Our de�nition of morphisms in
this category insists that morphisms lift to certain maps between covering spaces of
objects in LIQ and allows us to compute the fundamental group of a Hyper Quan-
tum Torus. We observe that Hyper Quantum Tori can be viewed as objects in a a
subcategory LIQlim of LIQ, and Proposition 2.3.13 shows that in this category we
can recover the pseudolattice L from the fundamental group of the Hyper Quantum
Torus TL. The �nal part of �2.3 is a detailed investigation in to our de�nition of
morphisms, and whether we can weaken our de�nition and maintain the lifting prop-
erties we require.

The work of the previous sections allows us to de�ne the category HQT of Hyper
Quantum Tori in �2.4, and Lemma 2.4.2 explicitly computes the morphisms between
these objects in this category. Our motivation for studying Hyper Quantum Tori was
to use morphisms between these objects to de�ne nontrivial maps between Quantum
Tori. This is the subject of �2.5, in which we formulate a philosophy as to what the
morphisms between topological spaces with Hausdor� covers should be, and show
how this is related to the work of �2.3. In particular we calculate the possible ho-
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momorphisms between Quantum Tori in Corollary 2.4.2 and in Proposition 2.5.5
classify those continuous morphisms between Quantum Tori.

The �nal section of Chapter 2 applies the de�nitions of the previous sections,
proving a structure result for the endomorphism ring of a Quantum Torus in Theo-
rem 2.4. This asserts the existence of a class of Quantum Tori whose endomorphisms
rings are strictly greater than Z. Such Tori are said to have Real Multiplication, and
are the subject of the main result of this section in Theorem 2.6.6. This is a simple
yet remarkable result showing that we have an action of a Galois group on isomor-
phism classes of certain Quantum Tori with Real Multiplication. The action of such
a group is common place when we are considering algebraic varieties over a number
�eld, but there is no reason to expect such an action on Quantum Tori. We discuss
the possible rami�cations of this result, including a mysterious relationship between
isomorphism classes of such Tori and the Hilbert class �eld of a real quadratic �eld.

In Chapter 3 we investigate and develop a notion of line bundles over a Quantum
Torus. A line bundle over a topological space is usually de�ned to be a topological
space X subject to some �local conditions�. As a consequence of this de�nition, if X
is non-Hausdor� then the only line bundles over X are so called trivial line bundles.
The introduction of nontrivial line bundles over Quantum Tori assigns to these ob-
jects a concept which is usually only associated to Hausdor� spaces.

Like Chapter 2, this chapter has two main themes. The �rst three sections con-
sider the problem of de�ning line bundles in terms of algebraic data, before proving
a structure theorem for the group of isomorphism classes of such bundles. In the
second half of this chapter we view line bundles as topological spaces, and study var-
ious objects arising from this viewpoint in relation to the algebraic de�nition given
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previously.

In �3.2, motivated by the theory of line bundles over elliptic curves, we de�ne
line bundles over Quantum Tori as elements of a group of cocycles. Isomorphic line
bundles correspond to cocycles that have the same image in the associated cohomol-
ogy group. Section 3.3 concerns a structure result for this cohomology group, which
is proved in Theorem 3.3.12. The proof of this result relies on the introduction of the
Chern class of a line bundle, arising from the long exact sequence of cohomology. By
examining the kernel and image of the map taking a line bundle to its Chern class we
prove the split exactness of a certain short exact sequence. Using the theory of such
sequences our structure theorem is deduced. This result is used in �3.3.4 to prove
Theorem 3.3.18 - a result analogous to the Appel-Humbert Theorem for Complex
Tori, describing isomorphism classes of line bundles over Quantum Tori in terms of
pairs of alternating forms and characters.

In �3.4 we consider a di�erent approach to de�ning line bundles over Quantum
Tori, viewing them as topological spaces. The philosophy behind our approach is
underpinned by the existence of a surjection

π : R → ZL,

and that if ZL was a Hausdor� space, any line bundle over ZL would pull back to
one on R. In order to make sense of this notion for Quantum Tori, we introduce the
Heisenberg group H(L) associated to a line bundle L over a topological space. This
leads us to a topological de�nition of a line bundle over Quantum Tori in De�nition
3.4.9, which we see agrees with the previous de�nition of �3.2 in Proposition 3.4.10.

Viewing line bundles as topological spaces leads us to consider a pairing eL de-
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�ned on a certain subgroup K(L). Section 3.5 is concerned with the relationship
between these objects and the Chern class of a line bundle introduced in �3.3. The
main result of this section is Theorem 3.5.7, which shows that the behaviour of eL
is governed by the Chern class of L, and gives an explicit formula for eL when the
Chern class is nontrivial. The proof of this result demonstrates that we can view
line bundles over Quantum Tori as the limit (in an appropriate sense) of line bundles
over a sequence of Complex Tori. We discuss the signi�cance of this result in �3.6.2.

Throughout our research, we have drawn on the work of many others for inspira-
tion. In �3.6 we focus on two aspects of our work which have links to the approaches
to Real Multiplication of other mathematicians. We described previously how Model
Theory has become a new force in tackling problems in Number Theory. This extends
to other areas of Mathematics, and Zilber's research in to Quantum Tori promises to
shed new light on Noncommutative Geometry using Model Theory. His work views
Quantum Tori as de�nable groups in a certain class of structures. In �3.6.1 we ask
whether the objects eL and K(L) associated to line bundles over Quantum Tori can
be viewed as lying in such structures, and the current obstructions to this being
the case. Section 3.6.2 explores how Theorem 3.3.18 hints at a relationship between
Quantum Tori and elliptic curves, and discusses how this phenomenon is already
present in the work of Manin [32], Nikolaev [40] and Zilber.

In [60], Stark proved a special case of Hilbert's twelfth problem for imaginary
quadratic �elds. Although at the time of publication a complete solution already ex-
isted for such �elds, Stark's case is unique in that it provides generators for abelian
extensions in terms of holomorphic theta functions, which can be viewed as sections
of line bundles over elliptic curves. Chapter 4 is concerned with the existence of sec-
tions of the line bundles which formed the subject of Chapter 3, and their potential
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application to Real Multiplication. The existence of such functions for line bundles
over Quantum Tori is the subject of �4.2 and �4.3, where we conclude that any such
holomorphic function is a scalar multiple of the function z 7→ e2πiαz for some α ∈ R.
However, drawing on the work of Barnes [4] and Shintani [54] we are able to exhibit
a meromorphic theta function corresponding to a section over a Quantum Torus.

The result of Stark mentioned above appears in the last of a series of papers
[57�60] in which he formulates a series of conjectures. These conjectures propose a
precise relationship between the L-function attached to a number �eld K, and units
lying in an abelian extension of K. We discuss Stark's conjectures in �4.4, as well
as Shintani's work, which provides a solution to these conjectures in speci�c cases
for real quadratic �elds in terms of the double gamma function introduced in [4] by
Barnes. In [43], Ramachandra gives an expression for the L-function associated to an
imaginary quadratic �eld at s = 1 in terms of theta functions associated to elliptic
curves, which is used by Stark.

Ramachandra's result, together with Shintani's work motivates us in the second
half of this chapter to investigate the values at s = 0 of the higher derivatives of
L-functions associated to real quadratic �eld F . In �4.5 we de�ne two families of
functions Gr2 and Hk,q indexed by r, k, q ∈ N. We show that the �rst of these de�nes
a family of meromorphic theta functions for a certain pseudolattice, and are a direct
generalisation of the double gamma function. The functions Hk,q seem to have no
such analogue in the literature, and having proved their analyticity in some half
plane, we conjecture that they too are meromorphic theta functions for a speci�c
pseudolattice.

The main result of chapter 4 is Theorem 4.6.1, which states that the value when
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s = 0 of the derivatives of an L-function attached to a real quadratic �eld F lie in a
certain �eld over F , whose generators include the special values of certain meromor-
phic theta functions for pseudolattices contained within F . The proof of this result is
the content of �4.7. Shintani's results of [54] supply the basis to our induction argu-
ment, and the inductive step is proved via the calculation of various contour integrals.

Although Theorem 4.6.1 speci�es a �eld in which the null values of derivatives
of L-functions associated to a real quadratic �eld F lie in, it has no immediate
application to a veri�cation of Stark's conjectures and Hilbert's twelfth problem.
The �eld is not algebraic over F , containing transcendental generators such as 2πi

and γ. Theorem 4.8.1 uses a technique from Shintani's paper [55], introducing an
expression concerning the null values of derivatives of L-functions, which lies in a
�eld that may be algebraic over F . This �eld is generated by special values of the
theta functions introduced in �4.5. Via the proof of Theorem 4.6.1, this result could
be used to construct terms, which according to Stark's conjectures are units in some
abelian extension of F .



Chapter 2

Hyper Quantum Tori

2.1 Introduction

The central object in the proposed theory of Real Multiplication is the Quantum
Torus Zθ := R/(Z + θZ) where θ is an irrational element of a real quadratic �eld F .
The non-Hausdor� nature of this space implies that the space of continuous C-valued
functions on Zθ is trivial. In [13] and [14], Fesenko suggests the use of Model Theory,
and more speci�cally Nonstandard Analysis as a tool for studying such topological
spaces.

The potential relevance of these techniques to Real Multiplication is apparent
when we observe that we can write Zθ as the limit of complex tori

C/(Z + τnZ)

for some sequence τn ∈ C with positive imaginary part tending to θ. Further observe
that the sequence may be chosen such that each element τn of it lies within a �xed
imaginary quadratic �eld K. Via the Uniformization Theorem (Theorem 1.1.2) we
may view each Complex Torus in this sequence as an elliptic curve with Complex

23
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Multiplication by K. The construction of Nonstandard Models by Robinson [45]
also concerns the behaviour of objects in the tail end of a limit, and enables us to
�algebraize� analytic concepts. It is conceivable that the explicit class �eld theory of
K supplied by Complex Multiplication may induce a theory of Real Multiplication
for the Quantum Torus.

Although this was the motivation behind Fesenko's application of Nonstandard
Analysis to Real Multiplication, this is not the idea we explore in this chapter.
We concentrate on another aspect of the theory, which allows us to view Quantum
Tori as the images of a Hausdor� space. Let L be a pseudolattice, and ZL the
corresponding Quantum Torus. Due to the non-Hausdor� property of ZL, the space
of continuous functions on ZL is trivial. Using Nonstandard Analysis, in �2.2.3 we
de�ne a Hausdor� space TL together with a surjection

pL : TL → ZL. (2.1)

One of the �rst aims of this chapter is to de�ne morphisms on the spaces TL in such
a way so that they �push forward� continuous functions on TL to nontrivial functions
on ZL.

Nonstandard Analysis was originally a construction of A.Robinson in [45] in the
1960's. Robinson's work serves to give a logical foundation to the idea of an in-
�nitesimal - a number which is smaller in magnitude than any real number. The
notion of in�nitesimals was used extensively by both Leibniz and Newton in their
formulations of calculus. However, their arguments would not be considered rigorous
by today's standards, and it was left to Weierstrass to formulate the epsilon-delta
notion of calculus we are now familiar with. Robinson's work provides alternative
(and some would say conceptually simpler) de�nitions for analytical ideas such as
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limits and continuity.

Nowadays, Nonstandard Analysis is viewed as a branch of logic, and Robinson's
ideas are incorporated in a subject known as Model Theory. We begin this chapter in
�2.2, de�ning some of the basic objects in mathematical logic with a view to de�ning
a Nonstandard model in De�nition 2.2.13. Nonstandard Analysis is the process of
doing mathematical analysis within such Nonstandard models. Many properties of
Nonstandard Analysis follow from those of �standard� analysis by a property known
as ∗-transform. The introduction of this property leads on to the idea that there are
some subsets of a Nonstandard model which are intrinsically nonstandard. These are
known as internal sets, and will go on to play a crucial role in our study of Quantum
Tori.

When we consider the application of these ideas to Quantum Tori, we will be
concerned with a Nonstandard model of the real numbers, and in �2.2.2 we exhibit
some basic properties of such a model. In particular we demonstrate the existence
of in�nitesimals, and their use in an �algebraic� description of limits and continuity.

In �2.3 we de�ne the category LIQ of locally internal quotient spaces. Hyper
Quantum Tori can be viewed as objects in this category, and we use our de�nitions
to calculate the fundamental group of TL in �2.3.4. Morphisms are de�ned in this
category, motivated by the desire that we should be able to lift such morphisms to
internal maps of various covering spaces. This allows us to de�ne paths in Hyper
Quantum Tori, and in Proposition 2.3.11 we show that the fundamental group of
TL is isomorphic to ∗Z⊕ Z where ∗Z denotes a Nonstandard model of the integers.
This motivates the introduction of a certain subcategory LIQlim of LIQ and of the
limited fundamental group, which for a Hyper Quantum Torus TL is shown to be
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isomorphic to the pseudolattice L.

Section 2.3.5 is a discussion concerning the de�nition of morphisms in LIQ we
gave in De�nition 2.3.3. In making this de�nition we imposed some strong condi-
tions concerning the lifts of morphisms to internal covering spaces. We investigate
whether we can obtain an equivalent de�nition which does not refer to an ambient
internal covering space. We consider the speci�c problem of de�ning paths in Hyper
Quantum Tori, provisionally allowing paths which are de�ned on every in�nitesimal
neighbourhood of a point. Through our discussion we conclude that this de�nition
does not su�ce to give the property of path lifting to internal covers that we require.

In �2.4 we calculate the homomorphisms between Hyper Quantum Tori when
viewed as objects in LIQ, showing that the subcategory HQT of these objects is
equivalent to the category PL of pseudolattices of De�nition 1.2.4.

Our motivation for using Nonstandard Analysis and the study of Hyper Quan-
tum Tori TL was to provide a nontrivial notion of continuous morphisms on these
objects, which using the map of (2.1) we could �push forward� to de�ne nontrivial
functions between Quantum Tori. If f is a morphism between Hyper Quantum Tori
satisfying a property known as S-continuity, then we show in �2.5 that using the
projection pL we can give a well de�ned map between Quantum Tori. Generalising
this notion we de�ne the standardisation of a morphism in LIQlim, which leads us
to pose a philosophy as to what the morphisms �should be� between two standard
topological spaces with Hausdor� covers. In Lemma 2.5.2 we show that when two
standard topological spaces are obtained as the shadow images of objects in LIQlim

then this philosophy gives rise to the same set of morphisms as that obtained by
the standardisation of morphisms between the associated objects in LIQlim. Based
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on this result, De�nition 2.5.3 de�nes a notion of continuous maps between gen-
eral (Hausdor� or non-Hausdor�) standard topological spaces which we use for the
remainder of the thesis. These ideas allow us to de�ne a classi�cation result for
continuous maps between Quantum Tori in Proposition 2.5.5.

The work of the preceding two sections allows us to de�ne a category QT , whose
objects are Quantum Tori, and whose morphisms are continuous homomorphisms.
This is entirely analogous to the category EL of elliptic curves with isogenies between
them in the statement of Theorem 1.1.2. It is an easy consequence of our de�nitions
that the category QT is equivalent to both the category PL in De�nition 1.2.4, and
the category HQT of De�nition 2.2.3. We use this fact to prove a structure theorem
for the endomorphism ring of an Quantum Torus in Theorem 2.6.1. The �nal sec-
tion of this chapter is dedicated to those Quantum Tori for which this ring is strictly
larger than Z. In this case the endomorphism ring is isomorphic to an order in a real
quadratic �eld F , and we say such Quantum Tori have Real Multiplication by F.

Motivated by Silverman's approach to Complex Multiplication in [56], the main
object we study in this section is the set QT (OF ) of isomorphism classes of Quantum
Tori which have endomorphism ring isomorphic to the ring of integers of a prede�ned
real quadratic �eld F . We show in Lemma 2.6.5 that Quantum Tori whose endomor-
phism ring is isomorphic to the ring over integers of such a �eld F correspond (in
the equivalence between QT and PL) to fractional ideals1 of F . In Theorem 2.6.6
we use this correspondence to de�ne a simply transitive action of the class group of
F on QT (OF ). As a corollary we �nd that the cardinality of QT (OF ) is equal to
the class number of F .

1A fractional ideal a is an OF -module of �nite rank.
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These last two results represent an important step in the use of Quantum Tori in
Real Multiplication. In Chapter 1 we noted that many di�cult problems in number
theory arise from a need to unify algebraic and analytical theories. The reciprocity
map of class �eld theory induces an isomorphism between the class group of a number
�eld K, and the Galois group of the Hilbert class �eld HK of K over K. The result of
Theorem 2.6.6 can be interpreted as describing an action of Gal(HF /F ) on QT (OF ),
and its corollary links QT (OF ) to the arithmetic of the �eld F . In the �nal part
of �2.6 we discuss how these results hint that Quantum Tori have an �algebraic
character�, and how this may be of use in Real Multiplication.

2.2 Nonstandard Models

The use of Nonstandard Analysis to give an algebraic description of analytic con-
cepts such as those of a limit, continuity and di�erential relies on the existence of so
called in�nitesimals. As we mentioned before, the notion of such �in�nitely small�
numbers were used in a non-rigorous manner by Newton and Leibniz in their for-
mulation of the di�erential and integral calculus. Their approach was formalised
by Weierstrass who introduced the epsilon-delta de�nition of limits, establishing the
branch of mathematics we now know as Analysis. In Nonstandard Analysis, tools
from mathematical logic are used to give rigorous de�nitions of analytical concepts.

In this section we give a very brief introduction to the notation and terminology
used in basic logic, for which our main reference has been [34]. This will enable us
to de�ne what we mean by a Nonstandard model, and the notion of Nonstandard
analysis. The language of logic is also that used by Zilber, whose work has been an
inspiration to many of the ideas contained within this thesis.
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2.2.1 Elements of Model Theory

We begin with some basic de�nitions and examples:

De�nition 2.2.1. A language L is given by the following data:

• a set of function symbols F and positive integers nf for each f ∈ F ;

• a set of relation symbols R and positive integers nR for each R ∈ R;

• a set of constant symbols C.

We write L = (F ;R; C). The positive integers express the arity of the function or
relation.

For example, the language of �elds is Lf = {+,×; 0, 1}. The symbols + and ×
are binary function symbols (so n+ = n× = 2), and 0 and 1 are constants. If we
wish to talk about the language of ordered �elds we need to add the relation symbol
< (with n< = 2). Hence the language of ordered �elds is Lof = {+,×;<; 0, 1}.

De�nition 2.2.2. Let L be a language. An L-structureM is given by the following
data:

• a nonempty set M called the universe of M;

• a function fM : Mnf →M for each f ∈ F ;

• a set RM ⊆MnR for each R ∈ R;

• an element cM ∈M for each c ∈ C.

The objects fM, RM and cM are referred as the interpretations of the symbols f,R
and c. We write M = (M ;L).

Continuing with our previous example, the real numbers R are an Lf -structure.
We interpret + and × as the operations of addition and multiplication respectively,
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and the symbols 0 and 1 as the additive and multiplicative identities. The real
numbers are also an Lof -structure, where < (a, b) with a, b ∈ R is interpreted to
mean a < b.

De�nition 2.2.3. Suppose that M and N are L-structures with universes M and
N respectively. An L-embedding η : M→ N is a one-to-one map η : M → N that
preserves the interpretation of all the symbols of L.

Consider the language of groups Lg = {◦; e}. Then both (R; +; 0) and (R∗;×; 1)

are Lg-structures. In R the composition ◦ is interpreted as addition, in R∗ it is
interpreted as multiplication. The map

η : R → R∗

x 7→ ex

de�nes an Lg-embedding of (R; +; 0) in to (R∗;×; 1).

De�nition 2.2.4. The set of L-terms is the smallest set T such that

• c ∈ T for each constant symbol c ∈ C;

• each variable vi ∈ T for i = 1, 2, . . .;

• if t1, . . . , tnf
∈ T and f ∈ F then f(t1, . . . , tnf

) ∈ T .

For example, consider Lf = {+,×; 1, 0} - the language of �elds. Then
+(1,+(1, 1)) is an Lf term. We usually denote it by 3. Out of terms we build
formulae, the simplest of which are the atomic formula.

De�nition 2.2.5. φ is an atomic formula of L if φ is either

1. t1 = t2 where t1 and t2 are terms, or

2. R(t1, . . . , tnR), where R ∈ R and t1, . . . , tnR are terms.
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The set of L-formals is the smallest setW containing the atomic formula's such that
1. if φ is in W then ¬φ is in W;

2. if φ, ψ ∈ W then φ ∧ ψ and φ ∨ ψ are in W;

3. if ψ is in W then ∃viφ and ∀viφ are in W.
We say that a variable v occurs freely in a formula φ if it does not occur inside

a ∃v or ∀v quanti�er, otherwise we say it is bound.

For example, in the language Lof = {+,×;<; 0, 1} of ordered �elds, the following
are atomic formulae:

< (1,+(1, 1, )) = (1,+(1, 1)) < (+(1, 1), 1).

We would usually write

1 < 2 1 = 2 2 < 1.

Formula are built up from terms using boolean operations and existential quanti�ers.
The following are examples of Lof formula's:

∃v(3 < v) ∀v((1 < v) ∧ (v < 1)).

Note that if φ is an L-formula, we know nothing about its validity. Indeed, the truth
of a formula φ depends crucially on the structure in it is interpreted in. For example,
consider the following formula in Lr = {+,×; 0, 1} - the language of rings:

φ : ∀v1(= (v1, 0) ∨ ∃v2(= (1,×(v1, v2)))). (2.2)

This statement expresses the property that every non-zero element has a multiplica-
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tive inverse. While this is certainly true in the Lr-structure M := (R; +,×; 0, 1), it
does not hold in the Lr-structure N := (Z; +,×; 0, 1).

De�nition 2.2.6. Let φ be a formula with free variables v̄ = (vi1 , . . . , vim), and let
ā = (ai1 , . . . , aim) ∈M im . We inductively de�ne M |= φ(ā) by

1. If φ is t1 = t2, then M |= φ(ā) if tM1 (ā) = tM2 (ā);

2. If φ is R(t1, . . . , tnR), then M |= φ(ā) if (tM1 (ā), . . . , tMnR
(ā)) ∈ RM;

3. If φ is ¬ψ, then M |= φ(ā) if M 2 ψ(ā);

4. If φ is ψ ∧ θ, then M |= φ(ā) if M |= ψ(ā) and M |= θ(ā);

5. If φ is ψ ∨ θ, then M |= φ(ā) if M |= ψ(ā) or M |= θ(ā);

6. If φ is ∃vjψ(v̄, vj), then M |= φ(ā) if there is a b ∈M such that M |= ψ(ā, b);
If φ is ∀vjψ(v̄, vj), then M |= φ(ā) if M |= φ(ā, b) for all b ∈M .

If M |= φ(ā) we say that φ(ā) is true in M.

Looking back to (2.2) we note that φ has no free variables. We haveM |= φ, but
N 2 φ. Now consider the Lr-formula

ψ(v1) : ∃v2(= (1,×(v1, v2))).

The statement ψ(a) expresses the notion that a has a multiplicative inverse. Since
M |= φ we have M |= ψ(r) for every r ∈ R. More interestingly perhaps, we have

N |= ψ(1) but N 2 ψ(2).

De�nition 2.2.7. Let L be a language. An L-theory is a set of L-sentences. We
say that M is a model of T if M |= φ for all sentences φ ∈ T . We write M |= T .
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For example, consider the set T of Lg sentences

∀g(= (e,= (◦(e, x), ◦(x, e))))

∀g1g2g3(◦(g1, ◦(g2, g3)) = ◦(◦(g1, g2), g3)

∀g1∃g2(= (e,= (◦(g1, g2), ◦(g2, g1))))

These express the group axioms of identity, associativity and inverses respectively.
Given an group G, with law of composition ? and identity 1 we have (G; ?; 1) |= T ,
where ◦ and e are interpreted in G to be ? and 1 respectively. The addition of another
binary operation + and identity element extends Lg to the language of rings. Adding
sentences to T expressing the notion that ◦ is distributive over + gives a theory whose
models are rings. We say that a theory T is satis�able if there exists a model of T .
For example, the Lr theory

T = {(∃x)(= (x, 0) ∧ ¬ = (x, 0))}

is not satis�able. A basic result in model theory is the Compactness Theorem:

Theorem 2.2.8 (Compactness Theorem). T is satis�able i� every �nite subset
of T is satis�able.

If M is an L-structure, we consider subsets of M which arise naturally from its
description as an L-structure:

De�nition 2.2.9. Let M be an L-structure. A set A ⊂ Mn is de�nable if there
exists an L-formula φ(v̄, w̄) and b̄ such that

A = {ā ∈Mn : M |= φ(ā, b̄)}. (2.3)

For example, if M = (K; +,×; 0, 1) is an Lf -structure, then the set of units is
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de�nable in M by
UK = {x ∈ K : M |= ψ(x)}

where
ψ(v) : (∃y)(= (×(x, y), 1)).

Suppose M is an L-structure, and A ⊆M . Let LA be the language obtained by
adjoining constant symbols for each a ∈ A. Then M is naturally a LA-structure.
We let ThA(M) denote the set of LA-sentences φ such that M |= φ.

De�nition 2.2.10 (Types). Let p be a set of LA-formula's in free variables
v1, . . . , vn. Then p is an n-type if p ∪ ThA(M) is satis�able. We say that p is
complete if for all LA-formula's φ, either φ ∈ p or ¬φ ∈ p. The set of all complete
n-types is denoted by SMn (A).

If p is an n-type over A, then we say that ā ∈Mn realises p if M |= φ(ā) for all
φ ∈ p. We say that a type p is isolated if it can be described by a single formula.

De�nition 2.2.11 (Saturated Models). Let κ be an in�nite cardinal. A structure
M |= T is κ-saturated if for all A ⊆M , if |A| < κ and p ∈ SMn (A), then p is realised
in M. We say that M is saturated if it is |M |-saturated.

For example, consider the L<-structure M = (Q;<), where L< = {<}. By
Proposition 4.3.2 of [34], to show thatM is ℵ0-saturated it is su�cient to show that
for every �nite A ⊆ Q, given p ∈ SM1 (A), p is realised in M.

Let A ⊆ Q be the �nite set {a1, . . . , am} with a1 < . . . < am, and suppose
p ∈ SM1 (A). Due to the completeness of p, for each a ∈ A exactly one of v = a,
v < a and v > a is in p. If p is realised in A, then p consists of the single formula
v = a for some a ∈ A. Otherwise each formula is either v < a or a < v for each
a ∈ A. Hence ∣∣SM1 (A)

∣∣ = 2m+ 1.
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Each type is isolated by one of the following:

v = ai v < a0 ai < v < ai+1 am < v i = 0, . . . ,m− 1.

All these are realised in Q. Hence M is (ℵ0-) saturated.

De�nition 2.2.12. SupposeM and N are L-structures. An L-embedding j : M→

N is called an elementary embedding if

M |= φ(a1, . . . , an) ⇔ N |= φ(j(a1), . . . , j(an)) (2.4)

for all L-formula's φ(v1, . . . , vn) and all a1, . . . , an ∈ M . We say that N is an
elementary extension of M.

De�nition 2.2.13 (Nonstandard Model). Let M be a L-structure. A Nonstan-
dard model of M is a saturated elementary extension of M. We usually denote it
by

∗ : M→ ∗M.

In [45], A.Robinson demonstrates the existence of Nonstandard Models of struc-
tures associated to a topological space, explicitly constructing such models using
ultra�lters.

Since ∗ : M→ ∗M is an elementary embedding we have

M |= φ(a1, . . . , an) ⇔ ∗M |= ∗φ(∗a1, . . . ,
∗an).

This property is known as ∗-transform. An essential concept in Nonstandard Analysis
is that of an internal element of the Nonstandard Model:
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De�nition 2.2.14 (Internal sets and formulae, [6]). De�ne

I :=
⋃

A∈M\M

∗A ⊆ ∗M, (2.5)

where the union ranges over those de�nable sets A in M\M . An internal element
of ∗M is one which is an element of I. A set S is therefore internal if and only if it
is an element of ∗A, where A is a de�nable set in M. Similarly, an internal formula
is one which lies in the image of L under ∗.

Note that it is only possible to use ∗-transform to deduce properties of internal
sets. As we shall see, those sets which are not internal may have properties which
di�er signi�cantly from those that are. It is an easy consequence of the de�nitions
that to show that internal formulae de�ne internal sets:
Proposition 2.2.15 (Internal Set De�niton Principle). Let φ(v̄, w̄) be an in-
ternal formula. For every m ∈ ∗N and b̄ ∈ ∗Mm

Aφ := {ā ∈ ∗Mn : (n ∈ ∗N) ∧ (∗M |= φ(ā, b̄))}

is an internal set.
Proof. Robinson's' construction of Nonstandard models using ultra�lters provides a
simple proof of this result. See �11.7 of [16].

Corollary 2.2.16 (Permenance). Let φ be an internal statement in n variables.
Then the set of ā ∈ ∗Mn for which ∗M |= φ(ā) is an internal set.

This property is important, since it shows that the set of elements satisfying an
internal formula must be internal. We will use this fact in Proposition 2.3.16

It is natural to ask whether we obtain anything new by studying a Nonstandard
model. IfM is an L structure with universeM , does ∗M contain any elements which
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are not contained within M? The fact that ∗M is saturated implies the following
result, which if the cardinality of M is not �nite provides us with the existence of
�new elements�:

Proposition 2.2.17. Let I be a set of cardinality less than that of M . Let {Ui}
be a family of nonempty de�nable internal subsets of Mn with the �nite intersection
property - for all �nite subsets J ⊆ I the intersection ⋂j∈J Uj is non-empty. Then

⋂
i∈I

∗Ui 6= ∅.

Proof. Let ψi be the formula v̄ ∈ Ui then p = {ψi : i ∈ I} is a complete n-type.
(Because every �nite subset is satis�able, p is by Theorem 2.2.8). Consider the image
of the type p under ∗:

∗p = {∗ψi : i ∈ I}.

The saturation property of ∗M implies that ∗p is realised in M, and therefore

⋂
i∈I

∗Ui

is nonempty.

We will see how this gives rise to �in�nitesimal� elements in a Nonstandard Model
of the real numbers in the next section.

2.2.2 A Nonstandard model of R

When we study Quantum Tori, we shall be concerned with a Nonstandard model ∗R
of the real numbers. In this section we introduce some terminology speci�c to the
study of topological spaces using Nonstandard Analysis, and show how Nonstandard
Analysis can be used to give alternative de�nitions to familiar analytic concepts. We
assume we work with a suitably large language L, and let R be an L-structure with
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universe R. We start by exhibiting the existence of in�nitesimal elements:

Proposition 2.2.18. There exists an element ε ∈ ∗R such that ε > 0 and for all
r ∈ R we have 0 < ε < |r|. Such an element is said to be an in�nitesimal and we
write ε ' 0.

Proof. In accordance with the notation of the previous section, we assume that our
language L extends the language Lor of linear orders. For each r ∈ R let Ur be the
set

Ur := {x ∈ R : 0 < x < r}.

The family of sets {Ur}r∈R has the �nite intersection property. Therefore the inter-
section of their image in ∗R is non-empty.

In the same way, by considering the family of sets Vr := {x ∈ R : r < x} we
exhibit the existence of in�nitely large elements. We can extend these ideas to a
general topological space:

De�nition 2.2.19. Let L be a language, and suppose X is an L-structure whose
universe is a topological space X. Let ∗X denote a Nonstandard model of X.

• An element of ∗X which lies in the image of ∗ : X → ∗X is called standard.

• Let x be an element of ∗X, and suppose that y ∈ ∗X is such that y lies in
the image under ∗ of every open set U of X containing x. Then we say y is
in�nitesimally close to x, and write x ' y.

• If y ∈ ∗X is in�nitesimally close to a standard element we say y is near standard
or limited.

Hence every real number can be viewed as a standard element of ∗R, but the
existence of in�nitely large elements ensures that not all elements of ∗R are limited.
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In fact, it is shown in [45] that a topological space X is compact if and only if every
element of ∗X is near standard.

In (2.5) we de�ned an important class of sets in a nonstandard structure - the
internal sets. Those sets which are not internal are called external.

Lemma 2.2.20. Let µ(0) = {ε ∈ ∗R : ε ' 0}. Then µ(0) is an external set.

Proof. Let A be a set, and consider the sentence

β : (∀x)((x ∈ A) ⇒ (∃N)(x < N))

expressing the property that A has an upper bound. Now consider the sentence

ψ : (∃v1)(((x ∈ A) ⇒ (x < v1))∧

(∀v2)((x ∈ A) ⇒ (x < v2) ⇒ ((v1 < v2) ∨ (v1 = v2))))

expressing the property that A has a least upper bound. Hence R |= (β ⇒ ψ). By
(2.4) ∗R |= (∗β ⇒ ∗ψ). But observe that this statement only holds for sets lying in
the image of ∗ - the internal ones. The set µ(0) is bounded above by 1, but possesses
no supremum, therefore it is not internal.

Essentially the same proof is used to show that the set of limited elements of ∗R is
external. A popular use of Nonstandard Analysis is to provide conceptually simpler
proofs of analytical results to those using the epsilon-delta method. The shadow,
or standard part map provides the bridge between the Nonstandard and �standard�
models:

De�nition 2.2.21 (Shadow Map). Let X be a topological space, and let ∗X lim
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denote the limited elements of a Nonstandard model ∗X of X. Let

sh : ∗X lim → X

denote the map sending x ∈ ∗X lim to the unique standard element x0 of X such
that x ' x0. Following [16] we will call this map the shadow map. When X = R

it can be shown that sh is an additive homomorphism, and if x, y ∈ ∗Rlim then
sh(xy) = sh(x)sh(y).

To illustrate the use of Nonstandard Analysis, consider the problem of de�ning
the limit of a sequence (an). The sequence (an) can be viewed as a function a : N →

R. We consider this as a map between two structures N and R over universes N and
R respectively, and consider it as part of a single (two sorted) structureM. Consider
a Nonstandard model ∗M ofM, and the image ∗a : ∗N → ∗R of the function a. The
statement �ai converges� is equivalent to the statement (Theorem 6.1.1 of [16])

�for all n ∈ ∗N \ N, ∗an ∈ ∗Rlim� .

If the limit exists, then it is equal to sh(an) for some n ∈ ∗N \ N.

With similar notation, to say that a function f : R → R is continuous is captured
in the statement

(∀x)(∀y)(x ' y ⇔ ∗f(x) ' ∗f(y)).

It is tempting to look at this de�nition of continuity and think how much simpler
it looks to the familiar one involving epsilons and deltas. However, the use of the
shadow map hides much of the analysis and much of the �simpli�cation� achieved
in Nonstandard statements is done by using the shadow map to absorb the messy
analysis.



2.2 Nonstandard Models 41

Finally we note the existence of two natural topologies on ∗R. The �rst is simply
the ∗-transform of the natural topology on R and has a basis of open sets given by

BQ := {(x− r, x+ r) : (x ∈ ∗R) ∧ (r ∈ ∗R)}.

The topology for which this is a basis is called the Q-topology on ∗R. The S-topology
is a coarser topology on ∗R which has a basis of open sets given by

BS := {(x− r, x+ r) : (x ∈ ∗R) ∧ (r ∈ R)}.

Given a continuous map f : R → R, its image ∗f in a nonstandard model over R will
always be S-continuous.

2.2.3 Hyper Quantum Tori

Let Lor be the language of ordered rings, and let L be a language containing Lor. Let
M be an L-structure that contains both R and Z as de�nable sets with the inclusion
Z ⊆ R. We let ∗R denote the Nonstandard model of R within a Nonstandard model
∗M of M.

De�nition 2.2.22 (Hyper Quantum Torus). For a pseudolattice L ⊆ R, de�ne
the Hyper Quantum Torus associated to L by TL := ∗Rlim/L. If θ ∈ R then we let
Tθ = TLθ

where Lθ = Z + Zθ.

Proposition 2.2.23. Let TL be a Hyper Quantum Torus endowed with the induced
quotient topology from the Q-topology on ∗R. Then T is a Hausdor� space.

Proof. We �rst observe that L is not dense in ∗Rlim. Given x ∈ ∗Rlim consider the
monad µ(x) = {y ∈ ∗Rlim : y ' x}. Suppose z ∈ (x+ L) ∩ µ(x). Then z = x+ l for
some l ∈ L, but x ' x+ l, and hence l ' 0. Since every element of L is standard we
have l = 0.
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Now suppose x+ L, y + L ∈ TL. Because ∗Rlim is Hausdor� and L is not dense
in ∗Rlim, there exist open sets Ux and Uy of ∗Rlim containing x and y respectively
such that

Ux ∩ (x+ L) = {x}

U + y ∩ (y + L) = {y}

Ux ∩ Uy = ∅.

Now put Ux = Ux + L and Uy = Uy + L. These are open disjoint subsets of TL
containing x+ L and y + L respectively.

Observe that we have a natural projection

πlim
L : ∗Rlim → TL

x 7→ x+ L.

This induces a well de�ned map pL on TL whose image is a Quantum Torus:

pL : TL → ZL

πlim
L (x) 7→ sh(x) + L.

The rest of this section is motivated towards an appropriate de�nition of contin-
uous morphism between Hyper Quantum Tori with the following property:

Suppose α : TL → TM is a map of Hyper Quantum Tori. Then α induces
a well de�ned map ᾱ on Quantum Tori such that the following diagram
is commutative:

TL

pL

��

α // TM

pM

��
ZL

ᾱ // ZM .

We will use this property in �2.5 to de�ne morphisms between Quantum Tori.
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2.3 Locally Internal Topological Spaces

The proof of Proposition 2.2.23 shows that any point of TL has a neighbourhood
which is isomorphic to an internal subset of ∗Rlim - if x+ L ∈ TL, then the set

Vεx := {y + L : (y ∈ ∗Rlim) ∧ (|y − x| < ε)}

is isomorphic to the open interval (−ε, ε) for any in�nitesimal ε. This inspires the
following de�nition:

De�nition 2.3.1 (Locally Internal Topological Space). Let S be a topological
space in a Nonstandard structure such that

For every s ∈ S there exists an open neighbourhood Vs of S such that Vs
is isomorphic to an internal topological space.

We say that S is a locally internal topological space.

The previous section shows that Hyper Quantum Tori are locally internal topo-
logical spaces. Our goal is to derive a notion of functions between these spaces with
two aims in mind:

• A morphism α between Hyper Quantum Tori lifts to an internal function be-
tween internal covering spaces for Hyper Quantum Tori;

• We can recover the pseudolattice L from TL as a �fundamental group� associ-
ated to TL.

There are several ideas in these statements that need clari�cation. In this section
we explore the concepts of covering space, and the fundamental group for a general
locally internal space, before considering the special case of Hyper Quantum Tori.
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2.3.1 Internal Covering Spaces

Suppose X is a standard topological space. Basic results in topology [1] imply that
if γ is a path in X, and X̃ is a covering space for X, then γ lifts to a path γ̃ in X̃.
This result implies that a continuous map between topological spaces X and Y lifts
to a map between covers X̃ and Ỹ of these respective spaces.

We wish to have an analogous situation for locally internal topological spaces,
where the covering space is an internal topological space.
De�nition 2.3.2 (Internal Covering space). An internal cover of a locally in-
ternal space S is a pair (S̃, p) such that

• S̃ is an internal topological space;

• p is a surjective map from S̃ to S satisfying the following condition:

For every s ∈ S, there exists an open neighbourhood Us of s; an
isomorphism ψs of Us on to an internal topological space Us, and a
decomposition of p−1(Us) as a family {Vs,i} of disjoint open internal
subsets of S̃ such that the restriction of φs ◦ p to Vs,i is an internal
homeomorphism from Vs,i to Us.

We say that S is a locally internal quotient space.
Internal covering spaces are not unique, as the following examples show:
1. Let L = Zω1 + Zω2 be a pseudolattice, and let ∗S1 ∼= ∗Rlim/Zω1 denote the

unit circle. Consider the pair (∗S1, p1), where p1 is the map

p1 : ∗S1 → TL

x+ Zω1 7→ x+ L.

Then (∗S1, p1) is an internal covering space for TL.
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2. Suppose L = Zω1 + Zω2 is a pseudolattice. Let L : ∗R → ∗Rlim be a map of
the form

L(x) = x+m(x)ω1

where m(x) is some integer (depending on x) such that x+m(x)ω1 is limited.
Then the pair (∗R, p2) is an internal covering space for TL, where

p2 : ∗R → TL

x 7→ L(x) + L.

2.3.2 Morphisms between locally internal quotient spaces

Given a Hausdor� locally internal space S, in general S will be an external object in
our Nonstandard structure. As a consequence the space of continuous functions on
such a space can be very big. When S has an internal cover, we use this to restrict
the space of such functions by the following de�nition:

De�nition 2.3.3. Let S and T be locally internal quotient spaces. Let pS : S̃ → S

and pT : T̃ → T denote the respective covering maps. A morphism between S and T
is a map f : S → T such that there exists an internal function f̃ : S̃ → T̃ such that

pT ◦ f̃(s̃) = f ◦ pS(s̃)

for all s̃ ∈ S̃. We say that a morphism f is Q-continuous if f̃ is Q-continuous.

From this de�nition it is clear that the composition of two morphisms is again a
morphism.

De�nition 2.3.4 (Category of Locally Internal Quotient spaces). Let LIQ
be the category such that
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• The objects of LIQ are locally internal quotient spaces;

• A morphism between locally internal quotient spaces S and T is as de�ned in
De�nition 2.3.3.

We are aware that in this de�nition we are giving morphisms precisely the prop-
erty which is nontrivial to prove in the standard Hausdor� case - that we can lift
morphisms of quotients to their covering spaces. It would be desirable to determine
an equivalent de�nition of morphisms which does not refer to an ambient internal
covering space. We discuss this possibility in �2.3.5.

In the next section we use the ideas developed to de�ne the fundamental group
of a locally internal quotient space. We apply these ideas to the Hyper Quantum
Torus to show that we can recover the underlying pseudolattice as the fundamental
group. We view this as analogous to the determination of the pseudolattice Lθ from
the K-theory of the Noncommutative Torus Aθ in Noncommutative Geometry.

2.3.3 The fundamental group of a locally internal space

For a standard topological space X, a path in X is a continuous map γ : I → X

where I is the unit interval. Taking the ∗-transform of this de�nition, and internal
path in an internal topological space Y in a Nonstandard structure is a Q-continuous
map γ : ∗I → Y where

∗I := {x ∈ ∗R : 0 ≤ x ≤ 1}.

We note that ∗I is trivially a locally internal quotient space (covered by itself) and
extend the above notion to de�ne paths in objects in LIQ.

De�nition 2.3.5. Let S be a locally internal topological space. A path in S is a
Q-continuous morphism γ in LIQ from the hyper-unit interval ∗I to S. We say that
a path γ is a loop based at s ∈ S if γ(0) = γ(1) = s.
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Similarly we can extend the notion of homotopies between paths in locally internal
quotient spaces:

De�nition 2.3.6. Let γ1 and γ2 be paths in a locally internal quotient space S. A
homotopy F between γ1 and γ2 is a Q-continuous morphism in LIQ from ∗I2 to S
such that

• F (t, 0) = γ1(t) for all t ∈ ∗I;

• F (t, 1) = γ2(t) for all t ∈ ∗I.

We say the two paths γ1 and γ2 are homotopic and write γ1 ' γ2. If we wish to refer
explicitly to the homotopy F we may write γ1 'F γ2. If γ1 and γ2 agree on some
subset A of ∗I, we say that F is a homotopy between γ1 and γ2 relative to A if we
have the additional condition

• F (a, s) = γ1(a) = γ2(a) for all a ∈ A.

It is easily shown that the relation ' is an equivalence relation. If γ is a path in
S we let 〈γ〉 denote the equivalence (or homotopy) class of γ. Given s ∈ S, we denote
the set of homotopy classes relative to {0, 1} of loops in S based at s by π1(S, s).
We de�ne a law of composition on π1(S, s) by

〈γ1〉.〈γ2〉 = 〈γ1 ? γ2〉

where
γ1 ? γ2(t) =

 γ1(2t) if 0 ≤ t ≤ 1
2

γ2(2t− 1) if 1
2 ≤ t ≤ 1.

One can prove using exactly the same methods as for standard topological spaces
that π1(S, s) is a group under this operation [1]. The identity element is the constant
loop at s.
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Note: Observe that if S is an internal topological space then this agrees with the
natural de�nition (the ∗-transform of the standard de�nition) of π1(S). At �rst it
may seem to be a stronger de�nition since we have the property that paths and
homotopies lift to internal covers, but these results follow for internal spaces by ∗-
transform of the standard results.

Suppose f : S → T is a morphism of locally internal quotient spaces. Then f
induces a homomorphism

f∗ : π1(S, s) −→ π1(T, f(s))

〈γ〉 7→ 〈f ◦ γ〉.

Because of the way morphisms are de�ned between locally internal quotient
spaces, all of the classical results concerning the lifting of paths to covering spaces
have an analogue in this context. Although (since the spaces may be external) the
proofs do not follow by ∗-transform, they are almost identical to the standard proofs
in the techniques which they employ. As an example we will prove the following:

Proposition 2.3.7. Let (S̃, p) be an internal covering space for a locally internal
space S. If S̃ is path connected then for any s̃ ∈ S̃ the induced map p∗ : π1(S̃, s̃) →

π1(S, s) is injective, where s = p(s̃).

Proof. Suppose γ̃ is a loop in S̃ such that γ := p ◦ γ̃ is null homotopic. Choose
a speci�c homotopy 1s 'F γ, where 1s denotes the constant loop at s. Choose a
Q-continuous lift F̃ of F such that p ◦ F̃ = F . We may assume that F̃ (0) = s̃ since
if not, chose a path p from F̃ (0) to s̃ and replace F̃ by the homotopy G such that
for each s ∈ ∗I

G̃(t, s) = p−1 ? F̃ ( , s) ? p(t).
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Note that once we have �xed F̃ (0) the function F̃ is unique. Suppose there were
two such lifts F̃1 and F̃2. Then we would have F̃1(t)− F̃2(t) ∈ ker(p). The kernel of p
is a Q-discrete set since for each point s, p identi�es an internal neighbourhood of s
homeomorphically with an internal subset of S̃. Since both the lifts are Q-continuous
and internal maps of the connected set ∗I and agree at 0, we have F̃1 = F̃2.

We need to show that F̃ gives a homotopy from γ̃ to the constant loop at s̃. Let
P denote the internal path connected set

{(t, 0) ∈ ∗I2 : 0 ≤ t ≤ 1} ∪ {(0, t) ∈ ∗I2 : 0 ≤ t ≤ 1}.

Since F is a homotopy relative to {0, 1} we see that F (P ) = s. Since p ◦ F̃ = F we
have F̃ (P ) ∈ p−1(s), which as we have seen is a Q-discrete set. Since F̃ is internal
and Q-continuous we have F̃ (P ) = s̃. This shows that the path F (t, 0) is the constant
loop at s̃. The path F (t, 1) is a lift of γ which starts at s̃. There is a unique such
path by an analogous argument to the uniqueness of homotopy lifting in the above
paragraph. Hence F (t, 1) = γ̃(t).

We stress that despite working within a nonstandard model, the proof of the
previous proposition does not require any new ingredients mathematically. Once
we have the properties of path and homotopy lifting we are working with internal
functions on the covering space and the proofs carry through by ∗-transform of the
standard results.

Proposition 2.3.8. Let f : S −→ T be a morphism between monadically internal
spaces, let s ∈ S and suppose that S̃ and T̃ are path connected. There is a lift
f̃ : S −→ T̃ such that f(s) = t̃ if and only if f∗(π1(S, s)) ⊆ π∗(π1(T̃ , t̃)). This lift is
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unique.
Proof. The result is proved for standard spaces in [1]. It is easy to adapt these
techniques to obtain the result for locally internal quotient spaces.

De�nition 2.3.9 (Covering Transformation). A covering transformation for an
internal covering space (S̃, π) is an internal homeomorphism h : S̃ → S̃ such that
π ◦ h = π.

The set of all covering transformations forms a group Cov(S̃/S) under composi-
tion, and we have an action of Cov(S̃/S) on S̃ by

Cov(S̃/S)× S̃ → S̃

(h, s̃) 7→ h(s̃).

Note that if h1 and h2 are covering transformations which agree on a point s̃, then
both h1(x) − h2(x) and the constant map K(x) = 0 take the value 0 at x = s̃ and
lift π. Hence by the uniqueness part of Proposition 2.3.8 we have h1 = h2.

Utilising methods from the proof of the corresponding standard result, it is easy
to show that the following is true:
Proposition 2.3.10. Let (S̃, p) be a path connected internal covering space. Suppose
p∗(π1(S̃, s̃)) is a normal subgroup of π1(S, s). Then Cov(S̃/S) is isomorphic to the
quotient π1(S, s)/p∗(π1(S̃, s̃)).

We now use this result to describe various fundamental groups associated to
Hyper Quantum Tori.

2.3.4 Covering spaces for Hyper Quantum Tori

The de�nitions of the previous sections enable us to calculate the fundamental group
associated to Hyper Quantum Tori:
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Proposition 2.3.11. Let L be a pseudolattice. For any z ∈ TL, we have an isomor-
phism π1(TL, z) ∼= ∗Z⊕ Z.

Proof. Consider the internal covering space (∗R, p2) considered in �2.3.1 :

p2 : ∗R → TL

x 7→ L(x) + L

Since π1(∗R, r) is trivial for any r ∈ ∗R, Proposition 2.3.10 gives an isomorphism
Cov(∗R/TL) ∼= π1(TL, z). Suppose L = Zω1 + Zω2. For each l ∈ ∗Zω1 + Zω2

let hl be the covering transformation de�ned by hl(r) = r + l, and consider the
homomorphism

∗Zω1 + Zω2 → Cov(∗R/Fθ)
l 7→ hl.

By the previous discussion we see that elements f ∈ Cov(∗R/TL) are determined by
their value at 0, hence this map is injective. Given f ∈ Cov(∗R/TL) we have f(0) ∈
∗Zω1 + Zω2, and hence f = hf(0). Hence the above map de�nes an isomorphism
∗Zω1 + Zω2

∼= Cov(∗R/Fθ). Finally note that ∗Zω1 + Zω2
∼= ∗Z⊕ Z.

One of the purposes for studying Hyper Quantum Tori was to use morphisms
between these objects to determine an appropriate notion of morphism between
Quantum Tori. Recall the natural projection

π : R → TL

x 7→ x+ L.

With the above philosophy in mind we may hope that covering transformations of
the universal covering space ∗R for TL may induce maps on R using the shadow map.
However, by Proposition 2.3.11 such transformations are translations by elements of
∗Zω1 + Zω2, and as such there exist some covering transformations which do not
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map ∗Rlim to itself. We therefore make the following de�nition

De�nition 2.3.12. Let LIQlim be the subcategory of LIQ such that

• The objects of LIQlim are objects of LIQ such that

The restriction of the projection p : S̃ → S to those limited elements
of S̃ is an S-continuous surjection on to S.

• Morphisms in LIQlim are those morphisms in LIQ which map limited elements
to limited elements.

For z ∈ TL, we let πlim
1 (TL, z) denote the fundamental group of TL based at z

where all the paths and homotopies are required to be morphisms in LIQlim.

Proposition 2.3.13. For any z ∈ TL, we have an isomorphism πlim
1 (TL, z) ∼= L.

Proof. Proposition 2.3.11 implies that the following injection is an isomorphism:

Φ : Cov(∗R/TL) → π1(TL, z)

h 7→ γh

where
γh(t) := π ◦ (z̃ + t(h(1)− h(0)).

Such a transformation preserves ∗Rlim if and only if it is a translation by an element
of Zω1 + Zω2 = L.

2.3.5 Another look at morphisms in LIQ

Recall that in De�nition 2.3.3 we de�ned morphisms between locally internal quo-
tient spaces to possess the property that they lifted to internal maps between their
internal covering spaces. In this section we look at whether it is possible to obtain
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an equivalent de�nition without reference to such a cover. Rather than consider the
general case of maps between locally internal quotient spaces, we shall consider the
speci�c problem of de�ning paths. This would enable us to generalise the ideas we
have previously discussed, de�ning the fundamental group of locally internal spaces
which were not obviously quotients of internal spaces. If this were possible then it
may be possible to construct a universal cover for such a space - see �10 of [48]. We
begin with the following de�nition:

De�nition 2.3.14. Let S be a locally internal space. A locally internal path in S
is a map γ : ∗I → S such that for all t ∈ ∗I, there exists an internal neighbourhood
Ut of t with the following properties:

1. The image of Ut lies in an open neighbourhood Vγ(t) of γ(t);

2. There exists an isomorphism φγ(t) : Vγ(t) ∼= Vγ(t) for some internal topological
space Vγ(t);

3. The composition φγ(t) ◦ γ : Ut → Vγ(t) is an internal map.

Hyper Quantum Tori posses a slightly stronger property than local internality.
Instead of the condition of De�nition 2.3.1 we have

For every z ∈ TL, for every in�nitesimal ε the set (z−ε, z+ε)+L ∈ TL is
an open neighbourhood of z isomorphic to an internal topological space.

In this case we strengthen the notion of path in a suitable way:

De�nition 2.3.15. A monadically internal path in TL is a map γ : ∗I → TL such
that (with the notation of De�nition 2.3.14), for every t ∈ ∗I, and every in�nitesimal
ε, there exist Vγ(t), Vγ(t), φγ(t) corresponding to Ut = (t− ε, t+ ε).

When γ is an S-continuous monadically internal path in TL, we can deduce some
information about the lift of γ to ∗R:
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Proposition 2.3.16. Fix t ∈ ∗I. Let γ be an S-continuous monadically internal
path in TL, and let x̃ ∈ ∗R be such that π(x̃) = γ(t). Then there exists a unique
internal function f and r ∈ R such that f : [t− r, t+ r]∩ ∗I → ∗R, f(0) = x̃ and on
µ(t) we have π ◦ f = γ.

Proof. This is a consequence of the property of permanence introduced in Corollary
2.2.16. We �rst suppose that t /∈ µ(0) ∪ µ(1).

For each η ' 0, there exist internal sets V
η
γ(t) ⊆

∗R and functions φηγ(t) such that
π ◦ φηγ(t)(t) = γ(t) and

φηγ(t) : (t− η, t+ η) → V
η
γ(t)

is an internal function.

Fix η0 ' 0. Then for each η ' 0 with η > η0 we obtain an internal func-
tion φηγ(t) such that on (t − η0, t + η0) we have φηγ(t) = φη0γ(t). By permanence there
exists r ∈ R and an internal function φrγ(t) and an internal open set Vr

γ(t) such
that φrγ(t) : (t − r, t + r) → Vr

γ(t) and the restriction of φrγ(t) to (t − η0, t + η0) is
φη0γ(t). Since this holds for any η0 ' 0 we see that φrγ(t) agrees with φη0γ(t) for all η0 ' 0.

Now suppose we had two such lifts φrγ(t) and ψrγ(t) de�ned on (t−r, t+r). Consider
the internal set

S := {t′ ∈ (t− r, t+ r) : φrγ(t)(t) = ψrγ(t)(t)}.

Consider the internal statement

ϕ(s) : t′ ∈ (t− s, t+ s) ⇒ t′ ∈ S.

Then ψ(ε) is valid for all ε ' 0, hence by permanence there exists r′ ∈ R such that
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ψ(r′) holds. Hence φrγ(t) is unique on (t− r′, t+ r′).

If t ∈ µ(0) then we apply the above techniques to the interval [0, η), and similarly
if t ∈ µ(1) we consider the interval (η, 1].

The previous result and its proof poses the following question:

Question 1. With the notation of Proposition 2.3.16 do we have π ◦ f(t′) = γ(t′)

for all t′ ∈ (t− r, t+ r)?

Note that in the proof we do not show that the function f we obtain is a lift of γ
on the whole of the interval (t−r, t+r). One may hope that it follows from applying
the permanence principal to the statement

φ(r) : π ◦ f(t′) = γ(t′) ∀t′ ∈ (t− r, t+ r).

However for this to be successful we would require that π and γ were internal func-
tions on ∗[0, r]

Answer to Question 1: No. We can give an example of an S-continuous monadi-
cally internal path in TL which does not lift to an internal S-continuous path in ∗R.
Consider the following monadically internal path in TL:

γ : ∗I → TL

t 7→ π(sh(t) + L).
(2.6)

By Proposition 2.3.16 there exists an r ∈ ∗Rlim and a unique continuous function f
on (1

2 − r, 1
2 + r

) such that f lifts γ on µ (1
2

). Since the path γ is constant on µ (1
2

)
we see that f(t) = k for some constant k ∈ ∗Rlim. If f lifted γ then we would have
k + L = sh(t) + L for all t ∈ (1

2 − r, 1
2 + r

). But there exist real t′ in this interval
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such that t′ − k /∈ L, so f cannot lift γ.

This shows that De�nition 2.3.14 does not provide a notion of paths in locally
internal spaces which lift to internal paths in internal covering spaces. The problem
essentially lies in the fact that despite having internal neighbourhoods of each point
of TL, we do not know how to �glue� these neighbourhoods together.

Problems with gluing the fundamental region

Let us �rst consider a standard example of the gluing together of a quotient space.
Consider the circle S1 as R/Z. Let F := F1∪F2 where F1 := [0, 1

2) and F2 := [11
2 , 2).

Then F is a fundamental region for the action of Z on R. Those continuous functions
f : I → F which de�ne continuous functions in S1 are precisely those satisfying the
following conditions:

limt→supF1 f(t) = f(inf F2)

limt→supF2 f(t) = f(inf F1)
(2.7)

where sup(F1) and inf(F2) denote the supremum and in�mum of F1 (equal to 1
2 and

0 respectively), and similarly for F2.

Can we do a similar thing for TL? Choose a set of representatives A for the action
of L in R. Then it is easily shown that a fundamental region for the action of L on
∗Rlim is given by

FL := {µ(ak) : ak ∈ A}.

Let P : TL → FL be the map which send each element of TL to its unique represen-
tative in FL. Suppose γ is a monadically internal path in TL. Let us try to impose
conditions on γ analogous to those in (2.7). Let Fk := µ(ak). Since the intervals Fk
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are all open, a natural generalisation of these conditions is

limt→supFk
P ◦ γ(t) = limt→inf Fσ(k)

P ◦ γ(t)

where σ is some permutation of the elements of A. However, despite being bounded
the in�mum and supremum of the sets Fk do not exist. We conclude that it is not
su�cient to de�ne γ on every in�nitesimal neighbourhood of a point of TL - we need
more information on how γ behaves outside each Fk. In light of Proposition 2.3.16
we see that an equivalent de�nition of a monadically internal path is the following:

De�nition 2.3.17. A monadically internal path in TL is a function γ : ∗I → FL

such that

For each x ∈ ∗I ⊂ ∗Rlim, for every ε ' 0 there exists a Q-continuous
internal function γ̃x : [x − ε, x + ε] ∩ ∗I → ∗R such that for all t ∈
[x− ε, x+ ε] ∩ ∗I, π ◦ γ̃(t) = P−1 ◦ γ(t).

We know that this is not enough to give us the property of path lifting. A natural
weakening of this notion is given by

De�nition 2.3.18. An appreciably internal path in TL is a function γ : ∗I → FL

such that

For each x ∈ ∗I ⊂ ∗Rlim, there exists rx ∈ R and a Q-continuous internal
function γ̃x : [x−rx, x+rx]∩∗I → ∗R such that for all t ∈ [x−ε, x+ε]∩∗I,
π ◦ γ̃(t) = P−1 ◦ γ(t).

This is a failure to de�ne paths in TL with the path lifting property without
reference to the covering space ∗R. However, a simple argument shows that this
property implies that we have the property of path lifting:

Proposition 2.3.19. Let γ be an appreciably internal path in TL. Then γ is a path
in TL.
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Proof. We will show that P−1 ◦ γ : ∗I → TL is a path in TL in the sense that is is a
morphism in LIQ. We need to show that there exists a unique internal Q-continuous
map f : ∗I → ∗R such that π ◦ f(t) = P−1 ◦ γ(t) for all t ∈ ∗I. With the notation of
De�nition 2.3.18 for each x ∈ I, let Ux := ∗(x− rx, x+ rx). Since I is compact we
may chose �nitely many x0, x1 . . . , xn such that the Uxi cover ∗I. We may assume
that x0 = 0 and xn = 1. We label the corresponding lifts of γ to on these intervals
γ̃xi : Uxi → ∗R.

Choose x̃ ∈ ∗Rlim such that π(x̃) = P−1◦γ(0). On [0, r0] de�ne f(t) := γ̃x0(t). We
de�ne f recursively. Suppose we have de�ned f on Uxi−1 such that for t ∈ Uxi−1∩Uxi

we have f(t)− γ̃xi(t) = li for some li ∈ L. On Uxi de�ne f(t) := γ̃xi(t) + li.

This also shows that f is Q-continuous. At each stage of the recursion f is an
internal function. Since there are only �nitely many steps we see that f is internal.

Summarising this section, we conclude that we cannot de�ne paths in a monad-
ically internal quotient space without reference to a covering space, possessing the
property that they can be lifted to internal paths in an internal covering space.
From now on, when referring to morphisms between such spaces we will use the
notion de�ned in De�nition 2.3.3.

2.4 Morphisms between Hyper Quantum Tori

Our motivation for de�ning and studying locally internal quotient spaces arose from
the observation that a Hyper Quantum Torus TL can be viewed as an object in the
category of such spaces. We have developed a notion of morphism in between such
spaces, which we now apply speci�cally to Hyper Quantum Tori:
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De�nition 2.4.1 (Category of Hyper Quantum Tori). Let HQT denote the
category such that

• The objects of HQT are Hyper Quantum Tori;

• The morphisms between Hyper Quantum Tori correspond to those homomor-
phisms of the universal internal covering space of Hyper Quantum Tori which
map limited elements to limited elements.

Lemma 2.4.2. We have a bijection between the set of morphisms TL → TM in
HQT , and the set of nonzero real numbers α such that α(L) ⊆M .

Proof. Proposition 2.3.8 shows that a covering space for TL is universal if it has
trivial fundamental group. Hence ∗R is the universal internal covering space for
Hyper Quantum Tori. De�nition 2.3.3 implies that the morphisms between Hyper
Quantum Tori are homomorphisms φ : ∗R → ∗R which map ∗Rlim to itself and satisfy
the following condition:

φ(r) +M = φ(r + L) ∀r ∈ ∗Rlim. (2.8)

Since φ is an internal homomorphism of ∗R it is equal to multiplication by α for some
α ∈ ∗R∗. By (2.8) we have α(L) ⊆ M , which since L and M are standard imply
that α ∈ R∗. Conversely, multiplication by any such element induces a morphism in
HQT .

Corollary 2.4.3. The categories PL and HQT are equivalent.

Proof. This following from the above result, and the de�nition of PL in De�nition
1.2.4.
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2.5 Removing nonstandard analysis

Recall how in �2.2.3 we saw how the shadow map provides us with a surjection
pL : TL → ZL, rendering Quantum Tori as the shadow image of Hyper Quantum
Tori. We now look at how morphisms in HQT can be used to induce a notion of
morphisms between Quantum Tori.

De�nition 2.5.1. Let f : S → T be an S-continuous morphism in LIQlim. De�ne
the standardisation of f to be

f̄ : sh(S) → sh(T )

s 7→ sh(f(s)).

Given S, T ∈ LIQlim let Std(LIQlim(S, T )) denote the standardisation of the mor-
phisms between S and T in LIQlim.

Motivated by our failure in �2.3.5 to de�ne morphisms between locally internal
spaces without reference to an ambient covering space, we postulate the following
philosophy:

Suppose X and Y are topological spaces, such that there exist Hausdor�
spaces X̃, Ỹ , together with surjective morphisms qX : X̃ → X and
qY : Ỹ → Y . Then the morphisms from (X̃, qX , X) to (Ỹ , qY , Y ) should
be those maps f : X̃ → Ỹ such that f(x + y) = f(x) for all x ∈ X,
y ∈ ker(qX).

Given our de�nition of morphisms in LIQlim refers to the lifts of morphisms to
their covering spaces, it is unsurprising that the standardisations of such morphisms
and those morphisms of the standard spaces according to the above philosophy are
related:

Lemma 2.5.2. Let S and T be objects of LIQlim. Suppose
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1. The internal covers S̃ and T̃ of S and T are equal to ∗A and ∗B respectively
for some standard spaces A and B;

2. The kernels of the restricted projections pS : S̃lim → S and pT : T̃ lim → T are
standard.

Then Std(LIQlim(S, T )) is equal to the set of continuous morphisms between
(A, sh(pS), sh(S)) and (B, sh(pT ), sh(T )) according to the above philosophy.
Proof. First of all note that sh(S̃lim) = sh(∗Alim) = A, and similarly sh(T̃ lim) = B.

Let f : S → T be an S-continuous morphism in LIQlim. By de�nition f lifts to an
S-continuous map f̃ : S̃ → T̃ of the internal covering spaces which preserves limited
elements. Take the standardisation of this lift to obtain a continuous map f̄ : A→ B

of the covering spaces. Hence if y ∈ ker(sh(pS)) = ker(pS) then f(x+ y) = f(x) for
all x ∈ S̃lim, and hence f̄(x+ y) = f̄(x).

Conversely suppose f : A → B is a morphism between (A, sh(pS), sh(S)) and
(B, sh(pT ), sh(T )) according to the above philosophy. Then let ∗f denote its image
in a nonstandard structure containing A and B. Then ∗f is a morphism in LIQlim

such that its standardisation is equal to f .

Based on this analysis we make the following de�nition
De�nition 2.5.3. Let X and Y be topological spaces, together with Hausdor�
topological spaces X̃ and Ỹ with projections qX : X̃ → X and qY : Ỹ → Y . A
morphism from (X̃, qX , X) to (Ỹ , qY , Y ) is a map f : X̃ → Ỹ such that f(x+ y) =

f(x) for all x ∈ X̃, y ∈ ker(qX). We say that f is continuous if it is continuous as a
map between X̃ and Ỹ .

We wish to consider the case whenX and Y be Quantum Tori. In this scenario we
de�ne a morphism between Quantum Tori ZL and ZM to be a continuous morphism
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between (R, πL, ZL) and (R, πM , ZM ) as de�ned above. Note that an equivalent
de�nition would be to consider Quantum Tori as quotients of S1 as discussed in
�2.3.1, since R is a cover for S1.

Corollary 2.5.4. Let ZL and ZM be Quantum Tori. The continuous homomor-
phisms between ZL and ZM are nonzero real numbers α such that αL ⊆M .

Proof. By explicit calculation based on De�nition 2.5.3 or using Lemma 2.4.2 to-
gether with Lemma 2.5.2.

When we require that the morphisms are merely continuous we obtain the fol-
lowing classi�cation of continuous maps between Quantum Tori:

Proposition 2.5.5. Let g : R → R be a continuous morphism of Quantum Tori ZL
and ZM . Then there exists α ∈ R such that αL ⊆M and

g(x+ l)− g(x) = αl ∀x ∈ R, l ∈ L.

Proof. Since g is a morphism of Quantum Tori we have

g(x+ l)− g(x) = λ(l, x)

for some function λ : L × R → M . First note that since g is continuous, the
left hand side is a continuous function in x. Fix l ∈ L, and consider the function
λ(l,−) : R → M . This is continuous, and hence maps compact connected subsets
of R to compact connected subsets of M . But the only such sets of the latter are
singletons. Hence λ(l, x) is independent of x. We will write λ(l) := λ(l, x) for some



2.6 Quantum Tori with Real Multiplication 63

x ∈ R. Note that λ is a homomorphism since

λ(l1 + l2) = g(x+ l1 + l2)− g(x)

= g(x+ l1 + l2)− g(x+ l2) + g(x+ l2)− g(x)

= λ(l1) + λ(l2).

Now �x x and consider the function g(x + r) − g(x) : R → R. This is a continuous
function which agrees with λ on L. Hence λ extends to a continuous homomorphism
of R, and is therefore equal to multiplication by α for some α ∈ R. Since λ(L) ⊆M

we have α(L) ⊆M .

De�nition 2.5.6. Let ZL and ZM be quantum tori. An α-morphism between ZL
and ZM is a continuous map g : R → R such that

g(x+ l)− g(x) = αl ∀x ∈ R, l ∈ L.

2.6 Quantum Tori with Real Multiplication

The theory of Complex Multiplication that forms the basis for the solution of Kro-
necker's Jugendtraum relies on the existence of elliptic curves over C whose endo-
morphism ring is strictly greater than Z. We let QT denote the category whose
objects are Quantum Tori, and whose morphisms are continuous homomorphisms as
described in Corollary 2.5.4. Together with the work of the previous section, The-
orem �2.6.1 informs us of the existence of Quantum Tori with endomorphism ring
isomorphic to an order in a real quadratic �eld:

Theorem 2.6.1. The endomorphism ring of a Quantum Torus is either isomorphic
to Z, or an order of a real quadratic �eld.

Proof. Let ZL be a Hyper Quantum Torus. By Corollary 2.5.4, the endomorphism
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ring of ZL is isomorphic to the set of those α ∈ R∗ such that αL ⊆ L. Suppose there
exists such an α such that α /∈ Z, and let L = Zω1 + Zω2. Then there exist a, b, c
and d ∈ Z such that

αω1 = aω1 + bω2

αω2 = cω1 + dω2.
(2.9)

Dividing the second of these equations by ω2, we observe that since α /∈ Z, c 6= 0.
We observe that θ := ω1/ω2 satis�es the quadratic equation

cX2 + (d− a)X − b = 0.

Hence [Q(θ) : Q] = 2, and Q(θ) is a real quadratic �eld.
Hence End(TL) is an integral extension of Z. Eliminating α from (2.9) we see

that α satis�es the equation

X2 − (a+ d)X + ad− bc = 0.

Hence α is integral over Z and therefore contained in the ring of integers OF of
F = Q(θ).

We can therefore identify the ring of endomorphisms as a subring of the ring
of integers of F . Hence End(ZL) is �nitely generated as a Z-module and satis�es
End(ZL) ⊗ Q ∼= F . These are the precisely the requirements for End(ZL) to be an
order in F .

De�nition 2.6.2. Let ZL be a Quantum Torus such that End(ZL) is isomorphic to
an order in a real quadratic �eld F . We say that ZL has Real Multiplication (by F ).
We sometimes abbreviate this to say that ZL has RM.

In this section we consider those Quantum Tori Z such that End(Z) is isomorphic
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to the maximal order in a prede�ned real quadratic �eld F . From a number theoretic
point of view, such orders have a special signi�cance - being the ring of integers of F .
We show that there exists an action of the Class Group of F on isomorphism classes
of such Quantum Tori, and discuss how this can be interpreted to give Quantum
Tori an algebraic character.

2.6.1 Isomorphism Classes of Quantum Tori with RM

When discussing isomorphism classes of Quantum Tori the following de�nition is
important:

De�nition 2.6.3 (Homothety). Let L and M be pseudolattices. We say that L
and M are homothetic if there exists α ∈ R such that αL = M .

The relation of pseudolattices being homothetic is an equivalence relation and it
follows immediately from the de�nitions that quantum tori ZL and ZM are isomor-
phic if and only if the associated pseudolattices are homothetic.

Remark. Note that if ZL ∼= ZM , then End(ZL) ∼= End(ZM ). This follows because
if L = αM then:

End(ZL) ∼= {x ∈ R : xL ⊆ L}

= {x ∈ R : xαL ⊆ αL}

= {x ∈ R : xM ⊆M}

∼= End(ZM ).

De�nition 2.6.4. Let F be a real quadratic �eld, and denote by OF its ring of
integers. Set

QT (OF ) :=
Quantum Tori Z with End(Z) ∼= OF

Isomorphism .
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Note. Note that the above object is well de�ned since OF is an (in fact the maximal)
order of F , and if ZL and ZM are isomorphic, then by the above remark they have
the same endomorphism ring.

Lemma 2.6.5. Let L be a pseudolattice in R. Then End(ZL) ∼= OF if and only if L
is homothetic to a fractional ideal in F .

Proof. Suppose End(ZL) ∼= OF . Then

OF ∼= {x ∈ R : xL ⊆ L}.

Suppose L = Zω1 + Zω2. Then L = ω1Lθ, where θ = ω2/ω1, so

OF ∼= {x ∈ R : xLθ ⊆ Lθ}.

By the proof of Theorem 2.6.1 we deduce that θ ∈ F , and that we can identify OF
precisely with the set {x ∈ R : xLθ ⊆ Lθ}. Hence L is homothetic to a rank two OF -
module contained in F . The latter object is precisely the de�nition of a fractional
ideal in F .

Conversely let a be a fractional ideal of F . This is a rank two abelian subgroup of
R, and therefore a pseudolattice, so we may consider the quantum torus Za. Every
element of End(Za) lifts to multiplication by αa on R such that αaa ⊆ a for some
αa ∈ R. So End(Za) containsOF as a suborder. We know that End(Za) is isomorphic
to an order of F , and that OF is the maximal order. Hence End(Za) ∼= OF .

2.6.2 The algebraic nature of Quantum Tori

Let σ be a generator of the Galois group of F over Q, and denote by IF the group
of fractional ideals of F . We have a natural inclusion ι : F ∗ → IF which sends x to
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the principal ideal (x) generated by x. The class group of F is a �nite group [37]
de�ned to be the quotient

C(F ) :=
IF
ι(F ∗)

.

The equivalence class of a ∈ IF in C(F ) is denoted by [a].

Let
F+ := {x ∈ F : (x > 0) ∧ (xσ > 0)}

denote the subgroup of totally positive elements of F . The narrow class group of F
is de�ned to be

C(F )+ :=
IF

ι(F+)
.

The equivalence class of a ∈ IF in C(F )+ is denoted by [a]+. There is a canonical
surjection

C(F )+ −→ C(F ). (2.10)

Theorem 2.6.6. There is a well de�ned action of C(F ) on QT (OF ). This action
is simply transitive.

Proof. Let ZL be a Quantum Torus with endomorphism ring isomorphic to OF . Let
a be a fractional ideal of F , and de�ne a ∗ ZL := ZaL. I claim this induces a well
de�ned action of IF on QT (OF ).

• aL is a pseudolattice. By Lemma 2.6.5 L = λc for some λ ∈ R∗ and fractional
ideal c of F , so aL = λac. The fractional ideal ac is a pseudolattice since it is
a rank two abelian subgroup of R, and hence aL is.

• End(ZaL) ∼= OF . With the notation of the last paragraph, aL is homothetic
to the fractional ideal ac. The statement follows from Lemma 2.6.5.

• If [a] = [b] then a ∗ZL ∼= b ∗ZL. If a and b represent the same elements in the
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class group, there exists α ∈ F ∗ such that a = αb. Hence aL = αbL, and ZaL

and ZbL are isomorphic.

• The action is simple. If ZaL and ZbL are isomorphic, there exists α ∈ R such
that

aL = αbL. (2.11)

Recall that L = λc for some c ∈ IF , and multiply both sides of (2.11) by
the pseudolattice λ−1b−1c−1. This gives ab−1 = αOF . The left hand side is
contained in F , so we have α ∈ F . Hence [a] = [b].

• The action is transitive. Let ZM be a quantum torus with endomorphism ring
isomorphic to OF . Then M = µd for some µ ∈ R∗, d ∈ IF . Put a := dc−1.
Then aL = λac = λd = (λ/µ)M . Hence a ∗ ZL ∼= ZM .

Corollary 2.6.7.
|C(F )| = |QT (OF )| .

Remarks:

1. Via (2.10) the narrow class group acts on QT (OF ). This is transitive, but is
only faithful when C(F )+ = C(F ). This occurs precisely when both in�nite
primes of F are unrami�ed in the narrow ray class �eld of F . Class Field
Theory gives us an equation for the size of C(F )+:

∣∣C(F )+
∣∣ = 4hF

[O∗F : F+ ∩ O∗F ]
.

Hence the action of C(F )+ on QT (OF ) is faithful precisely when

[O∗F : F+ ∩ O∗F ] = 4.
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2. Let EΛ be an elliptic curve corresponding to a complex lattice Λ by the Uni-
formization Theorem, and let σ be an automorphism of C. We have a natural
action of σ on EΛ by letting σ act on the coe�cients of the equation for EΛ.
Analogous to the proof of Theorem 2.6.6, we have an action of the group of
fractional ideals in K on the set of elliptic curves E with End(E) ' OK , where
K is some �xed quadratic imaginary �eld. This action is de�ned and denoted
by

(a, EΛ) 7→ a ∗ EΛ := EaΛ.

If a is a fractional ideal of K, then the reciprocity map supplies a homomor-
phism

ψHK/K : C(K) → Gal(HK/K) (2.12)

where HK is the Hilbert class �eld of K. It is a fundamental result in the
theory of Complex Multiplication that the following identity holds [56]:

a−1 ∗ EΛ = E
ψHK/K([a])

Λ .

Since (2.12) exhibits an isomorphism between the class group and the Galois
group of the Hilbert class �eld of K over K, this result is strongly linked to
the following:

Proposition 2.6.8. Let E be an elliptic curve with Complex Multiplication by
an order in an imaginary quadratic �eld K. Then there exists an elliptic curve
E′ such that E and E′ are isomorphic, and E′ is de�ned over the Hilbert class
�eld of K.

By Theorem 2.6.6 we are able to describe an action of Gal(HF /F ) on isomor-
phism classes of Quantum Tori with Real Multiplication. There is no reason
a priori why we should be able to do this. The objects ZL are purely analytic
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constructions, associated to which there is no natural algebraic object for the
automorphisms to act upon. However, this simple result shows that Quantum
Tori with Real Multiplication do possess algebraic characteristics. Moreover,
with respect to the algebraic property highlighted by this result, the suggestion
is that Quantum Tori with Real Multiplication by F are somehow �de�ned up
to isomorphism over the Hilbert Class �eld of F �.



Chapter 3

Line Bundles over Quantum Tori

3.1 Introduction

Central to the theory of Complex Multiplication is the existence of meromorphic
elliptic1 functions on the complex plane. The Weierstrass ℘-function is such a func-
tion, which provides the isomorphism between Complex Tori C/Λ and elliptic curves,
where Λ is a lattice in C. This isomorphism of complex Lie groups forms the basis of
the Uniformization Theorem (Theorem 1.1.2), simplifying many calculations on ellip-
tic curves to calculations on the associated lattices. The importance of this function
is further emphasised in the context of the solution of Hilbert's twelfth problem for
imaginary quadratic �elds, where abelian extensions of the base �eld are generated
over the Hilbert class �eld by special values of ℘ and its derivative.

We cannot hope for an obvious analogy for Quantum Tori:

Proposition 3.1.1. Let L be a pseudolattice. Then any meromorphic function pe-
riodic with respect to L is constant.

Proof. Let f be a meromorphic function such that f(z + l) = f(z) for all z ∈ C,
1An elliptic function is a complex valued function f on C such that f(z +ω1) = f(z +ω2) = f(z)

for all z ∈ C, where ω1 and ω2 are complex numbers linearly independent over R.

71
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l ∈ L. If f has a pole at zp then the set {zp + l : l ∈ L} has an accumulation point
of poles of f , but the condition that f is meromorphic forbids this. Hence f has no
poles and is holomorphic. For �xed z0 ∈ C consider the function f(z)− f(z0). This
has an accumulation point of zeros contained within the set {z0 + l : l ∈ L}. Since
f is holomorphic it is therefore constant.

Elliptic functions can be viewed as quotients of theta functions on the Complex
Torus - functions satisfying certain periodicity conditions with respect to the lattice
Λ. These functions can be viewed as sections of line bundles over complex tori, and
due to a theorem of Swan [61] certain classes of these functions characterise line
bundles up to isomorphism. It is this observation which motivates the study of line
bundles over Quantum Tori, which forms the subject of this chapter.

In �3.2 we are concerned with giving a de�nition of a line bundle over the Quan-
tum Torus that does not yield a trivial theory. We examine how line bundles over
complex tori C/Λ have various descriptions in terms of holomorphic functions sat-
isfying the cocycle condition with respect to the lattice Λ. Using these results as
a guide we examine the notion of de�ning holomorphic line bundles over Quantum
Tori to be holomorphic functions satisfying the cocycle condition with respect to the
pseudolattice, and show that this does indeed yield a nontrivial de�nition.

In viewing line bundles as cocycles we have a natural de�nition of what it means
for two line bundles to be isomorphic supplied by the theory of cohomology. We
say that two line bundles are isomorphic if their image in the associated cohomology
group is the same. Section 3.3 is concerned with proving a structure theorem for the
space H1(L,H∗) of line bundles over ZL modulo isomorphism. This is an analogous
result to the Appel-Humbert Theorem (Theorem 1.5 of [23]), which proves a similar
result for line bundles over Complex Tori. The proof of this result has three main
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stages.

First we introduce the Chern class of a line bundle, which arises from the con-
necting map of cohomology. The Chern class of a line bundle is an alternating form
on the pseudolattice L which takes values in Z, and is the image of a homomorphism

Ch : H1(L,H∗) −→ Alt2(L,Z).

Sections 3.3.2 and 3.3.3 describe the image and kernel of this homomorphism respec-
tively. It is found that Ch is surjective, with kernel isomorphic to Hom(L,U(1)),
where U(1) := {z ∈ C∗ : |z| = 1}. Using these two results we use the snake lemma
to show that H1(L,H∗) is isomorphic to a certain group P (L) whose elements are
pairs (E,χ) where

• E is an integral valued alternating form on L;

• χ : L→ U(1) is a semi-character for E - for any l1, l2 ∈ Lθ we have

χ(l1 + l2) = χ(l1)χ(l2)eπiE(l1,l2).

In �3.4 we consider the possibility of de�ning line bundles over Quantum Tori as
topological spaces. In order to do this we introduce the Heisenberg group associated
to a line bundle over a topological space. The philosophy behind our approach is
that line bundles over Quantum Tori ZL should �pull back� to trivial line bundles
over R. We de�ne what we mean by a topological line bundle L over the Quantum
Torus and show in Lemma 3.4.10 that this agrees with the algebraic de�nition in
�3.2. We de�ne a notion of morphisms between topological line bundles, and show
that this corresponds to our previous de�nition of two line bundles being isomor-
phic in Proposition 3.4.12. In �3.4.4 we introduce the translation of a line bundle
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L by an element x ∈ ZL, motivated by the topological de�nition of line bundles we
have developed. If f : ZL → ZM is a 1-morphism (see Proposition 2.5.5 of Chapter
2), given a line bundle L over ZM we de�ne the pullback f∗(L) of L with respect to f .

The topological description of line bundles gives rise to an alternating form eL on
a certain subgroup K(L) ⊆ ZL for each line bundle L. Section 3.5 is concerned with
describing the relationship between these topological constructions and the algebraic
characteristics associated to L, such as its Chern class. The main result of this sec-
tion is Theorem 3.5.7 which exhibits a relationship between the subgroup K(L), the
alternating pairing eL and the Chern class of a line bundle L. The substance of the
proof involves showing that if the Chern class of L is nontrivial, then K(L) is �nite.
The proof of this result is interesting in its own right, since it shows that line bundles
of Quantum Tori can be computed as the �limit� of line bundles over Complex Tori.

The problem of de�ning line bundles over Quantum and Noncommutative Tori
has been studied by many others (Astashkevich, Schwarz [2, 50], Manin [31], Polis-
chuck [41, 42], Zilber). In the �nal section of this chapter we examine how the results
we have obtained from our methods are related to the approaches of others. The
work of Zilber features in our analysis, who has identi�ed a class of structures that
represent a variation from the structures arising from the Zariski topology on an
algebraic curve. It can be shown that Quantum Tori are de�nable in such Analytic-
Zariski structures, and in �3.6.1 we examine whether it may be possible to de�ne
the alternating pairing eL together with the subgroup K(L) in such a structure.
From our work in �3.5 we can show that K(L) is indeed an Analytic-Zariski set, but
problems arise in the de�nability of eL in such a structure.

Finally in �3.6.2 we discuss a phenomenon which has previously brought the
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attention of numerous people. From our structure result for H1(L,H∗) (Theorem
3.3.18), we observe that the group of isomorphism classes of line bundles over Quan-
tum Tori is isomorphic to the corresponding group for Complex Tori. This hints
at a deep relationship between Quantum and Complex Tori, which has previously
been recorded by Nikolaev, Manin and Zilber among others. This notion is further
expressed in the proof of Theorem 3.5.7 which exhibits a close relationship between
cocycles de�ning line bundles over Quantum and Complex Tori. We examine how
this is related to the result of Schwarz concerning noncommutative theta functions,
and how Zilber's approach openly exhibits a duality between these two objects. This
idea is present in the work of Nikolaev [38�40], who in [39] makes some precise con-
jectures concerning generators of the Hilbert class �eld of a real quadratic �eld.

3.2 De�ning Line Bundles over Quantum Tori

Let L ⊆ R be a pseudolattice, and let ZL denote the associated Quantum Torus.
Our aim is to de�ne the notion of a line bundle over ZL. The classical de�nition is
given as follows:

De�nition 3.2.1. Let X be a topological space. A complex line bundle L over X
is a topological space L equipped with a projection

Π : L → X

such that

• For each x ∈ X, Π−1(x) is a one dimensional C-vector space;

• For each x ∈ X there exists an open neighbourhood U of x such that Π−1(U) ∼=

U × C.
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When we try to apply this de�nition to Quantum Tori, we run in to problems
when we try to impose the second criterion due to the fact that ZL is not Hausdor�.

In the following section we discuss various characterisations of line bundles over
Complex Tori, and use these to motivate an analogous de�nition for line bundles
over Quantum Tori in terms of cocycles. We show in �3.2.2 that this does indeed
give rise to a nontrivial de�nition of line bundle.

3.2.1 Line Bundles over Complex Tori

Let Λ denote a complex lattice, so XΛ := C/Λ is a Complex Torus isomorphic to an
elliptic curve EΛ. The torus XΛ admits nontrivial line bundles, and it is possible to
de�ne a notion of isomorphism between line bundles. If L is a line bundle over XΛ,
we let [L] denote the isomorphism class of L. It can be shown that the set of such
classes forms a group which we denote by Pic(XΛ). The group law is given by the
tensor product

[L1][L2] = [L1 ⊗ L2].

Through the theory of Cartier Divisors, we can identify a line bundle L over
XΛ with an element of the group Z1(X,O∗XΛ

) of 1-cocycles2 [36]. It is through
this identi�cation that line bundles are sometimes referred to as invertible sheaves.
Isomorphic line bundles di�er by a coboundary in Z1(XΛ,O∗XΛ

), which yields an
isomorphism

Pic(XΛ) ∼= H1(X,O∗XΛ
).

2O∗XΛ
is a functor which assigns to each open subset U of XΛ the ring of nonvanishing C-valued

functions on U .
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The natural projection
P : C → XΛ

v 7→ v + Λ

allows us to pull back line bundles overXΛ to line bundles over C. Given a line bundle
M over XΛ its pullback to one on C is trivial,3 so there exists an isomorphism

χ : P ∗(L) ∼= C× C.

Let H∗ denote the multiplicative group of nowhere vanishing holomorphic func-
tions on C. The trivial action of Λ on M pulls back to an action on C × C given
by

λ(v, z) = (v + λ,Aλ(v)z) (3.1)

for some function Aλ ∈ H∗. The condition that Λ acts on the trivial line bundle
implies that Aλ(v) satis�es the cocycle condition:

Aλ1+λ2(v) = Aλ1(v + λ2)Aλ2(v).

This implies that we can view Aλ(v) as an element of the group of 1-cocycles with
coe�cients in H∗, which we denote by Z1(Λ,H∗).

The homology group H1(Λ,H∗) is de�ned to be the quotient

Z1(Λ,H∗)
B1(Λ,H∗)

where B1(Λ,H∗) is the subgroup of Z1(Λ,H∗) of those Aλ(v) such that there exists
h ∈ H∗ such that

Bλ(v) =
h(v + λ)
h(v)

3A line bundle M over X is trivial if there exists an isomorphism M∼= X × C.
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for all v ∈ C. Such an element is called a coboundary.

If we change the isomorphism χ by a nowhere vanishing holomorphic function,
then the image of a line bundle L in H1(Λ,H∗) remains the same.

Conversely, given a 1-cocycle Aλ(v) with coe�cients in H∗ the quotient of C×C

by the action of Λ in (3.1) describes a line bundle over X. This yields an isomor-
phism Pic(XΛ) ∼= H1(Λ,H∗).

3.2.2 Line Bundles over Quantum Tori

Given a complex torus XΛ := C/Λ we have two descriptions of line bundles in terms
of cohomology:

• A line bundle L over XΛ can be represented by an element of Z1(XΛ,O∗XΛ
);

• A line bundle L over XΛ can be represented by an element of Z1(Λ,H∗).

This suggests two possible de�nitions for line bundles over a Quantum Torus ZL:

• A line bundle L over ZL can be represented by an element of Z1(ZL,O∗ZL
);

• A line bundle L over ZL can be represented by an element of Z1(L,H∗).

The �rst of these de�nitions yields only trivial line bundles. An element of
Z1(ZL,O∗ZL

) assigns to each z ∈ ZL a nonvanishing holomorphic function on some
open neighbourhood U of z. This statement does not make sense because we have no
complex structure on ZL so we cannot talk about holomorphic functions on it. We
could get around this problem by allowing the restriction of holomorphic functions
to open subsets of ZL, but since the only such subsets are the whole of ZL and the
empty set we only obtain constant functions.
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De�nition 3.2.2 (Line Bundles over Quantum Tori). Let ZL be a Quantum
Torus. A line bundle L over ZL is an element of Z1(L,H∗). We say that two line
bundles are isomorphic if they have the same image in H1(L,H∗), and denote by [L]

the isomorphism class of L. We denote the law of composition both in Z1(L,H∗)

and H1(L,H∗) by ⊗.

Proposition 3.2.3. Let ZL be a Quantum Torus. Then there exist nontrivial line
bundles on ZL.

Proof. Suppose L = Zω1 + Zω2. Consider the function

A : L× C −→ C∗

(l, v) 7→ e
− πi

ω1
[b2ω2−2bv]

.

where l = aω1+bω2. I claim that the function Al(v) is a 1-cocycle. Suppose l1, l2 ∈ L
and lk = akω1 + bkω2.

Al1+l2(v) = e
− πi

ω1
[(b1+b2)2ω2−2(b1+b2)v]

= e
− πi

ω1
[b21ω2+2b1b2ω2+b22ω2−2(b1+b2)v]

= e
− πi

ω1
[b21ω2−2b1(v+a2ω1+b2ω2)]

e
− πi

ω1
[b22ω2−2b2v]

= Al1(v + l2)Al2(v).

(3.2)

We now show that the class of this function on H1(L,H∗) is nontrivial.

Suppose Al(v) does represent a trivial line bundle. Then there exists h ∈ H∗

such that
Al(v) =

h(v + l)
h(v)

for all v ∈ C, l ∈ L. Since h is nonvanishing we may write h(v) = eπig(v) for some
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holomorphic function g(v) which satis�es the following periodicity relations

g(v + ω1)− g(v) = 2m

g(v + ω2)− g(v) = −ω2 + 2v
ω1

for some m ∈ Z. De�ne the holomorphic function k(v) := g(v) − 2mv/ω1, which
satis�es the following periodicity conditions:

k(v + ω1)− k(v) = 0 (3.3)
k(v + ω2)− k(v) = −(2m+ 1)ω2 + 2v

ω1
(3.4)

Suppose such a function existed. Consider the continued fraction expansion of θ :=

ω2/ω1, and let pn/qn be the convergents (see [7]). Then the sequence qn →∞, but

|pnω1 − qnω2| <
|ω1|
qn

→ 0 (3.5)

as n → ∞. Consider the sequence xn = pnω1 − qnω2. By the continuity of k, and
(3.5) we have k(xn) → k(0). Hence by (3.4) we obtain

0 = limn→∞ |k(xn)− k(0)|

= limn→∞ |k(qnω2)− k(0)|

= limn→∞ qn |θ| |(2m+ 1) + (qn + 1)| .

(3.6)

The last line is obtained by using (3.4) to note that for d ∈ N we have

k((d+ 1)ω2)− k(dω2) = −θ(2m+ 2d+ 1)
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and hence

k(qnω2)− k(0) =
qn∑
d=0

k((d+ 1)ω2)− k(dω2) = qnθ(2m+ 1) + θqn(qn + 1).

The expression in the �nal line of (3.6) tends to ∞ as n→∞, which is a contradic-
tion.

Hence Al(v) represents a nontrivial line bundle.

Note that the techniques we used to prove the nonexistence of a nonconstant
coboundary function are very di�erent from the ones used for the Complex Torus.
For Complex Tori the main tool used for this purpose is Louisville's Theorem which
implies that every bounded 2-periodic function is constant. When considering the
analogous situation for Quantum Tori our main tool is the following:

Theorem 3.2.4. Let f : C → C be a holomorphic function which is not identically
zero. Then the set of zeros of f has no accumulation points.

This has an obvious corollary:

Corollary 3.2.5. Let f be a function for which f(ω) is known for each l ∈ L.
Suppose there exists a holomorphic function f̃ : C → C which interpolates f on L.
Then f̃ is unique.

Proof. Suppose there existed two such functions f̃1 and f̃2. Then their di�erence F
would be a holomorphic function with zeros at every ω ∈ L. Since L is dense in R

every element of R is an accumulation point of zeros of F .

This distinction between the theory used for Complex and Quantum Tori suggests
that there is no reason a priori to expect any relationship between the cohomology
groups H1(L,H∗) and H1(Λ,H∗) where L is a pseudolattice and Λ a complex lattice.
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3.3 The Appel-Humbert Theorem for Quantum Tori

The goal of this section is to prove a structure result forH1(L,H∗). For Complex Tori
this is achieved by the Appel-Humbert Theorem [23], which classi�es isomorphism
classes of line bundles by a hermitian form and a semi-character. The main result
we prove is Theorem 3.3.18 which proves a similar result characterising isomorphism
classes of line bundles in terms of alternating forms and semi-character.

3.3.1 The Chern Class of a Line Bundle

We now introduce the notion of the Chern class of a line bundle. The cohomology
group H1(L,H∗) is one of a family of such groups H i(L,H∗) where the index i

ranges over the natural numbers. The general construction of these groups is a
routine operation in cohomology theory [28], and can be applied to any situation
where we have a group G, and a G-module M . In our case the group L acts on H∗

by translation
l.f(v) = f(v + l). (3.7)

The Chern class of a line bundle can be viewed as an element of the cohomology group
H2(L,H∗). The starting point for its construction is the following exact sequence of
L-modules:

0 → Z → H→ H∗ → 0

where the action on Z is trivial and the action on H is de�ned as in (3.7). The
cohomology theory implies that we have a long exact sequence, involving the coho-
mology groups of these modules. The connecting map is one map in this sequence
and supplies a homomorphism

∂ : H1(L,H∗) −→ H2(L,Z).
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De�nition 3.3.1 (Chern class). Let L be a line bundle. The Chern class of L is
given by ∂(L) ∈ H2(L,H∗).

The map ∂ can be de�ned on cocycles, and shown to map coboundaries to
coboundaries. We let ∂̂ denote the map on cocycles which induces the map ∂ on
cohomology groups. A line bundle L is given by a cocycle Al(v) ∈ Z1(L,H∗). The
cohomology theory provides us with an explicit formula for the image of Al(v) under
∂̂. If Al(v) = e2πia(l,v), then ∂̂ is a function on L×L taking values in Z and has the
explicit formula (see the proof of Theorem 2.1.2 of [5])

∂̂(A)(l1, l2) = a(l1 + l1, v)− a(l1, v)− a(l2, v + l1)

for some v ∈ C. This is well de�ned since the cocycle condition satis�ed by Al(v)
implies that this is independent of the choice of v.

De�ne a map
α : Z2(L,Z) → Alt2(L,Z)

P 7→ α(P ),

where α(P ) is de�ned by

α(P )(ω1, ω2) = P (ω1, ω2)− P (ω2, ω1).

This induces a well de�ned map (also denoted by α) from H2(L,Z) to the space
Alt2(L,Z) of alternating forms on L.

Lemma 3.3.2. The map α : H2(L,Z) → Alt2(L,Z) is an isomorphism.

Proof. See Lemma 2.1.3 of [5].
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The composition of ∂̂ with α establishes a homomorphism

Ch : H1(L,H∗) → Alt2(L,Z)

[A] 7→ α ◦ [∂̂(A)]
(3.8)

where [ ] denotes the cohomology class of the appropriate cocycle. An explicit
expression for this map is given by (Theorem 2.1.2 of [5])

Ch(A)(l1, l2) = a(l2, v + l1)− a(l1, v) + a(l2, v)− a(l1, v + l2), (3.9)

where we recall that for each l ∈ L, a(l, v) is the holomorphic function such that
Al(v) = e2πia(l,v). Analysing this map in more detail will enable us to probe the
structure of H1(L,L). In the following sections we examine the image and kernel of
Ch.

3.3.2 Surjectivity of Ch : H1(L,H∗) → Alt2(L, Z).

In this section we study the image of the homomorphism Ch de�ned in (3.8). We
will prove the following result:

Proposition 3.3.3. The map Ch : H1(L,H∗) → Alt2(L,Z) is surjective. Further-
more, there exists a map σ : Alt2(L,Z) → H1(L,H∗) such that Ch ◦σ is the identity
on Alt2(L,Z).

Proof. The proof relies on the construction of elements of Z1(L,H∗) which are sim-
ilar to that introduced in the proof of Proposition 3.2.3.

We �rst observe that we have an isomorphism Alt2(L,Z) ∼= Z. This arises since
every η ∈ Alt2(L,Z) is determined by a skew-symmetric 2×2 matrix Sη with integral
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coe�cients. Such a matrix has the form

Sη =

 0 sη

−sη 0


for some sη ∈ Z. The form η is determined by Sη in the following way:

If L = Zω1 + Zω2, and l1 = aω1 + bω2, l2 = cω1 + dω2 then

η(l1, l2) =

 a

b


T

Sη

 c

d

 = sη(ad− bc). (3.10)

The assignment η 7→ sη gives a bijection between Alt2(L,Z) and Z.

For each η ∈ Alt2(L,Z) de�ne

σ̂(η)l(v) := e
sη

πi
ω1

[b2ω2+2bv] (3.11)

where l = aω1 + bω2. By a similar calculation to (3.2) we �nd that σ̂(η)l(v) ∈

Z1(L,H∗), and hence we can de�ne

σ(η) := [σ̂(η)l(v)] ∈ H1(L,H∗).

By the de�nition above we have σ̂(η)l(v) = e2πiΣη(l,v) where

Ση(l, v) = sη
1

2ω1
[b2ω2 + 2bv].
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We calculate Ch(σ(η)) using (3.9). Let l1 = aω1 + bω2, l2 = cω1 + dω2 ∈ L. Then

Ch(σ(η))(l1, l2) = Ση(l2, v + l1) + Ση(l1, v)− Ση(l2, v)− Ση(l1, v + l2)

= sη

2ω1
[d2ω2 + 2d(v + aω1 + bω2)− d2ω2 − 2dv]

− sη

2ω1
[b2ω2 + 2b(v + cω1 + dω2)− b2ω2 − 2bv]

= sη(ad− bc)

= η(l1, l2).

3.3.3 The kernel of Ch : H1(L,H∗) → Alt2(L, Z).

In the previous section we showed that the homomorphism Ch : H1(L,H∗) →

Alt2(L,Z) de�ned in (3.8) is surjective. We showed furthermore that we have a
homomorphism

σ : Alt2(L,Z) → H1(L,H∗)

such that Ch ◦ σ is the identity on Alt2(L,Z). The signi�cance of this result is
apparent when we observe that if K denotes the kernel of Ch, then we have a split
exact sequence

0 → K → H1(L,H∗) → Alt2(L,Z) → 0.

We can then apply the theory of split exact sequences to give a description of
H1(L,H∗) in terms of K and Alt2(L,Z).

Traditionally the kernel of the Chern map is given the following de�nition:
De�nition 3.3.4. Let Pic0(ZL) = {x ∈ H1(L,H∗) : x ∈ ker(Ch)}.

Proposition 2.2.2 of [23] shows that every line bundle with trivial Chern class
over a Complex Torus can be represented by a cocycle which is constant. We use the
same techniques to prove the analogous result for line bundles over Quantum Tori.
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Proposition 3.3.5. Let Al(v) ∈ Z1(L,H∗) be such that Ch([A]) = 0 ∈ Alt2(L,Z).
Then there exists Kl(v) ∈ Z1(L,H∗) such that Al(v)K−1

l (v) ∈ B1(L,H∗) and for
each l ∈ L, Kl(v) is constant.

Proof. The proof of this result involves unravelling the de�nition of the map Ch.
Let Al(v) = e2πia(l,v) for some function a : L × C → C holomorphic for �xed l ∈ L.
Since Al(v) satis�es the cocycle condition we have

a(l1 + l2, v)− a(l1, v + l2)− a(2, v) ≡ 0 (mod Z). (3.12)

The image of Al under the map ∂̂ : Z1(L,H∗) → Z2(L,Z) is trivial. By (3.9) this
implies that

a(l2, v + l1)− a(l1, v) + a(l2, v)− a(l1, v + l2) = 0 (3.13)

for every v ∈ C and for all l1, l2 ∈ L. De�ne h(v) := a(0, v). Then

a(l, v) + h(v + l)− h(v) = a(l, v) + a(0, v + l)− a(0, v)

≡ a(l, v)− a(0, v) (mod Z)

≡ a(l, 0)− a(0, l) (mod Z).

(3.14)

The second line follows from (3.12) by putting l1 = 0, l2 = l. Using these same
substitutions in (3.13), together with v = 0 yields the �nal line. This is valid since
(3.13) is independent of v. Put H(v) = e2πih(v). Then Kl(v) := Al(v)H(v+l)H(v)−1

is independent of v and lies in the same cohomology class as Al(v).

Hence each element of Pic0(ZL) gives rise to an element φ of Hom(L,C∗), such
that

h(v + l) = φ(l)h(v) ∀l ∈ L
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for some non vanishing holomorphic function h. This de�nes a homomorphism

C : Pic0(ZL) → Hom(L,C∗).

We aim to show that C is in fact an isomorphism of Pic0(ZL) on to Hom(L,U(1))

where U(1) = {z ∈ C∗ : |z| = 1. Our �rst task is to show that the image of C lies
within Hom(L,U(1)). We will need the following lemma:

Lemma 3.3.6. Let θ ∈ R be greater than 1, and let p+
n /q

+
n and p−n /q−n denote the

convergents in the continued fraction of θ and −θ respectively - see chapter 14 of [7]
for an account of the theory of continued fractions. Then as n→∞:

1. p±n → ±∞;

2. q±n →∞;

3. d±n := p±n − q±n → ±∞.

4. e−n := p−n + q−n → −∞.

Proof. Let x ∈ R. The continued fraction expansion for x is given by an in�nite
sequence [a0, a1, a2, a3 . . .], of which all the ai > 0 with perhaps the exception of a0.
The recursion formula's for pn and qn read:

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2.

The �rst few terms are given by:

p−2 = 0 q−2 = 1

p−1 = 1 q−1 = 0

p0 = a0 q0 = 1,
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where a0 is de�ned to be bxc. Because all the ai are positive for i > 0, if pm (qm)
and pm+1 (qm+1) are the same parity for some m, all subsequent terms will be of
that parity. From this it follows that qn is always positive. Now take the case θ > 1.
Then it is clear that all the terms p+

n are positive. We have −θ < −1, and hence
p−0 ≤ −2. The following inequality holds

p1 = a1p1 + a+ 0 = −2a1 + 1 ≤ −1,

therefore each p−n is negative.

Using the recurrence relations, since all the pn are of the same parity:

|pn| = |anpn−1 + pn−2|

≥ an |pn−1| .

Suppose we have equality, then an = 1 and pn = pn−1. But then

|pn+1| = |an+1pn + nn−1| = (an+1 + 1) |pn| > |pn| .

Hence |pn| → ∞. Exactly the same argument works for qn, and the case for d±n
follows from the algebra of limits.

To consider the limit of the sequence e−n we note that the fractions p−n /q−n tend
to −θ < −1. Hence there exists N such that for all n > N we have p−n < −q−n , and
hence e−n < 0. Since all subsequent values of e−n are of the same parity, the above
argument implies that |e−n | → ∞.

Using this result we are able to prove the following:
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Proposition 3.3.7. C(Pic0(ZL)) ⊆ Hom(L,U(1)).

Proof. Let Al(v) ∈ Pic0(ZL). Then Proposition 3.3.5 implies that there exists φ ∈
Hom(L,U(1)) such that for all l ∈ L we have φ(l) = C(A)l(v) for some v ∈ C. Since
this represents the trivial element of H1(L,H) there exists a vanishing holomorphic
function h such that

h(v + l) = φ(l)h(v). (3.15)

We will show that |φ(l)| = 1 for all l ∈ L. If L = Zω1 + Zω2 then note that this is
equivalent to showing that φ(ω1), φ(ω2) ∈ U(1). Without loss of generality we may
assume that ω1 < ω2 since if {ω1, ω2} generate L then so do {ω1, ω1 + ω2}.

With the notation of Lemma 3.3.6 we let p+
n , q

+
n denote the convergents in the

continued fraction expansion for θ = ω2/ω1, and p−n , q−n the corresponding integers
for −θ. Using the Corollary to the proof of Theorem 1.4.7 of [7] we have

∣∣p+
nω1 − q+n ω2

∣∣ = ∣∣ω1q
+
n

∣∣ ∣∣∣∣p+
n

q+n
− θ

∣∣∣∣ ≤ |ω1|
q+n

.

Hence by Lemma 3.3.6 the sequence p+
nω1− q+n ω2 tends to 0 as n→∞. In a similar

way one can show that p−nω1 + q−n ω2 tends to 0 as n→∞.

We will show that φ(ω1), φ(ω2) ∈ U(1) by showing that every other possibility
cannot occur. In each case we assume the existence of a nonvanishing holomorphic
function h satisfying (3.15) and deduce a contradiction.
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1. Suppose |φ(ω1)| > |φ(ω2)| > 1. Let an = p+
nω1 − q+n ω2. Then

|h(0)| = limn→∞ |h(an)|

= limn→∞ |φ(ω1)|p
+
n |φ(ω2)|−q

+
n |h(0)|

≥ limn→∞ |φ(ω2)|p
+
n |φ(ω2)|−q

+
n |h(0)|

= limn→∞ |φ(ω2)|d
+
n |h(0)|

Since d+
n →∞,and |φ(ω2)| > 1 the right hand side tends to in�nity contradict-

ing that h is holomorphic.

2. Suppose |φ(ω1)| < |φ(ω2)| < 1. Then let ψ := φ−1, and f := h−1. Then
f(v+ l) = ψ(l)f(v), and ψ satis�es |ψ(ω1)| > |ψ(ω2)| > 1. By step 1 above no
such f (and hence h) can exist.

3. Suppose |φ(ω1)| > 1 > |φ(ω2)|. De�ne a sequence an by an = p−nω1 + q−n ω2.
Then |φ(ω1)| , |φ(−ω2)| > η > 1 for some η, and we have |φ(ω1)| = ξη and
|φ(−ω2)| = µη for some ξ, µ > 1. Then

|h(0)| = limn→∞ |h(an)|

= limn→∞ |φ(ω1)|p
−
n |φ(ω2)|q

−
n

= limn→∞ |φ(ω1)|p
−
n |φ(−ω2)|−q

−
n

= limn→∞(ξη)p
−
n (µη)−q

−
n

= limn→∞ ηd
−
n ξp

−
n µ−q

−
n .

= limn→∞ ηd
−
n ξp

−
n +q−n (ξµ)−q

−
n

= limn→∞ ηd
−
n ξe

−
n (ξµ)−q

−
n .

Since all the terms η, ξ and ξµ are greater than 1, and all the exponents tend
to −∞, this limit is equal to 0, contradicting the assumption that h is nonva-
nishing.

4. Suppose |φ(ω1)| < 1 < |φ(ω2)|. Then let ψ := φ−1, and f := h−1. Then
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f(v + l) = ψ(l)f(v), and ψ satis�es |φ(ω1)| > 1 > |φ(ω2)|. By step 3 above no
such f (and hence h) can exist.

5. Suppose 1 > |φ(ω1)| > |φ(ω2)|. Then there exists b ∈ N such that |φ(ω1)|b <

|φ(ω2)|. Let an = bp+
nω1 − bq+n ω2. Then

|h(0)| = limn→∞ |h(an)|

= limn→∞ |φ(ω1)|bp
+
n |φ(ω2)|−bq

+
n |h(0)|

≤ limn→∞ |φ(ω2)|p
+
n |φ(ω2)|−bq

+
n |h(0)|

≤ limn→∞ |φ(ω2)|p
+
n |φ(ω2)|−q

+
n |h(0)|

= limn→∞ |φ(ω2)|d
+
n |h(0)| .

Since d+
n → ∞ and |φ(ω2)| < 1, the right hand side tends to zero. This

contradicts that fact that h is non vanishing.

6. Suppose 1 < |φ(ω1)| < |φ(ω2)|. Then let ψ := φ−1, and f := h−1. Then
f(v + l) = ψ(l)f(v), and ψ satis�es 1 > |φ(ω1)| > |φ(ω2)|. By step 5 above no
such f (and hence h) can exist.

7. Suppose φ(ω1) = 1. Then let an = p+
nω1 − q+n ω2. Then

|h(0)| = limn→∞ |h(an)|

= limn→∞ |φ(ω1)|p
+
n |φ(ω2)|−q

+
n |h(0)|

= limn→∞ |φ(ω2)|−q
+
n |h(0)| .

If |φ(ω2)| > 1, then the right hand side tends to 0 as n → ∞. If |φ(ω2)| < 1,
the right hand side tends to in�nity. In both cases we reach a contradiction.
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8. Suppose φ(ω2) = 1. Then let an = p+
nω1 − q+n ω2. Then

|h(0)| = limn→∞ |h(an)|

= limn→∞ |φ(ω1)|p
+
n |φ(ω2)|−q

+
n |h(0)|

= limn→∞ |φ(ω1)|p
+
n |h(0)| .

If |φ(ω1)| > 1, then the right hand side tends to in�nity as n→∞. If |φ(ω1)| <

1, the right hand side tends to 0. In both cases we reach a contradiction.
The only possibility left is that |φ(ω1)| = |φ(ω2)| = 1.

Hence C(Pic0(ZL)) ⊆ Hom(L,U(1)). Our aim is to show that this is an isomor-
phism. Observe that we have a homomorphism

D : Hom(L,U(1)) → Pic0(ZL)

φ 7→ [D(φ)l(v)]

where D(φ)l(v) is de�ned to by the constant cocycle D(φ)l(v) = φ(l).
Lemma 3.3.8. C ◦D = 1.
Proof. Let φ ∈ Hom(L,U(1)). Then D(φ)l(v) = φ(l) = e2πip(l,v) where p is constant
in v. By the proof of Lemma 3.3.5,

C ◦D(φ)(l) = h(v + l)h(v)−1φ(l),

where h(v) = e2πip(0,v). But since p is independent of v, h(v + l)h(v)−1 = 1. Hence
C ◦D(φ) = φ.

Lemma 3.3.9. D ◦ C = 1.
Proof. Let Al(v) = e2πia(l,v) ∈ Pic0(ZL). Then by the proof of Proposition 3.3.5

C(A)(l) = e2πi[a(l,v)+a(0,v+l)−a(0,v)]
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some some v ∈ C. Hence

D ◦ C(F ) =
[
e2πi[a(l,v)+a(0,v+l)−a(0,v)]

]
=
[
e2πia(l,v)

]
= [Al(v)].

Proposition 3.3.10. Let ZL be a Quantum Torus corresponding to a pseudolattice
L. Then Pic0(ZL) ∼= Hom(L,U(1)).

Proof. Lemmas 3.3.8 and 3.3.9 assert that the homomorphism C : Pic0(ZL) →

Hom(L,U(1)) is a bijection.

Corollary 3.3.11. We have a split short exact sequence

0 // Hom(L,U(1)) // H1(L,H∗) // Alt2(L,Z) // 0. (3.16)

Proof. The exactness follows from Propositions 3.3.3 and 3.3.10. That the sequence is
split follows from the existence and properties of the map σ : Alt2(L,Z) → H1(L,H∗)

in the statement of Proposition 3.3.3.

Theorem 3.3.12. With the notation of Corollary 3.3.11 and its proof we have

H1(L,H∗) ' Hom(L,U(1))⊕ Alt2(L,Z).

Speci�cally, every element of H1(L,H∗) has a unique representative in Z1(L,H∗) of
the form

µ(l)σ̂(η)l(v)

for some µ ∈ Hom(L,U(1)) and η ∈ Alt2(L,Z), where σ̂ is as de�ned in (3.11).

Proof. This follows from Corollary 3.3.11 and the theory of split exact sequences.
See Chapter III �3 Proposition 3.2 of [27].
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3.3.4 The Appel-Humbert Theorem for Quantum Tori

Theorem 3.3.12 serves to give a description of H1(L,H∗) in terms of the groups
Hom(L,U(1)) and Alt2(L,Z). The Appel-Humbert Theorem for Complex Tori clas-
si�es isomorphism classes of line bundles with respect to di�erent data, characterising
them in terms of a hermitian form and a type of character. The aim of this section
is to prove a similar result for line bundles over Quantum Tori.

De�nition 3.3.13. Given a pseudolattice L, let P (L) denote the set of pairs (E,χ)

such that

• E ∈ Alt2(L,Z);

• χ : L→ U(1) such that for l1, l2 ∈ L we have

χ(l1 + l2) = χ(l1)χ(l2)eπiE(l1,l2).

We say that χ is a semi-character for E.

P (L) becomes a group with the law of composition

(E1, χ1)(E2, χ2) = (E1 + E2, χ1χ2).

Note that P (L) forms part of a short exact sequence

0 // Hom(L,U(1)) α // P (L)
β // Alt2(L,Z) // 0

where α(µ) = (0, µ) and β(E,χ) = E.

Proposition 3.3.14. There exists a homomorphism

φ : H1(L,H∗) → P (L).
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Proof. By Theorem 3.3.12 we can represent each line bundle L uniquely as a repre-
sentative of the form

µ(l)σ̂(η)l(v)

for some µ ∈ Hom(L,U(1)) and η ∈ Alt2(L,Z). Given a line bundle L represented
by such a cocycle we know that if L = Zω1 + Zω2 then

Ch(L)(aω1 + bω2, cω1 + dω2) = sη(ad− bc)

where sη ∈ Z is as de�ned in �3.3.2. De�ne

φ : H1(L,H∗) → P (L)

L = [µ(l)σ̂(η)l(v)] 7→ (Ch(L), µχη)

where χη(aω1 + bω2) := eπisηab. This is well de�ned since if l1 = aω1 + bω2 and
l2 = cω1 + dω2 then

χη(l1 + l2) = eπisη(a+c)(b+d)

= eπisη(ab+cd+ad+bc)

= χη(l1)χη(l2)eπisη(ad−bd)

= χη(l1)χη(l2)eπiCh(L)(l1,l2).

The penultimate line follows since bc ∈ Z, and so eπibc = e−πibc.

The property that φ is a homomorphism follows immediately from the observa-
tion that if L and M are line bundles whose isomorphism classes are represented
by the cocycles µL(l)σ̂(ηL)l(v) and µM(l)σ̂(ηM)l(v) respectively, then since σ̂ is a
homomorphism the class [L]⊗ [M] is represented by the cocycle

µL(l)σ̂(ηL)l(v)µM(l)σ̂(ηM)l(v) = (µLµM)(l)σ̂(ηL + ηM)l(v).
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Hence
φ([L]⊗ [M]) = (µLµMχηLχηM , ηL + ηM)

= (µLχηL , ηL)(µMχηM , ηL)

= φ([L])φ([M]).

Hence we have the following diagram,which at present we do not know is com-
mutative:

0 // Hom(L,U(1)) // H1(L,H∗) Ch //

φ

��

Alt2(L,Z) // 0

0 // Hom(L,U(1)) α // P (La)
β // Alt2(L,Z) // 0

If we can prove this is a commutative diagram we can apply the snake lemma to
show that φ is an isomorphism.

Lemma 3.3.15. We have a commutative triangle:

Hom(L,U(1)) //

α

''PPPPPPPPPPPPP
H1(L,H∗)

φ

��
P (L)

Proof. Let µ ∈ Hom(L,U(1)). The image Al(v) of µ in H1(L,H∗) is independent of
v and has Ch(Al(v)) = 0. Hence σ ◦Ch(Al(v)) = [σ̂(η0)] = [1], where η0 denotes the
element of Alt2(L,Z) which maps every element to 0. Hence φ(µ) = (0, µ) = α(µ).
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Lemma 3.3.16. We have a commutative triangle

Hom(L,U(1)) Ch //

φ

��

Alt2(L,Z)

P (L)

β
77nnnnnnnnnnnn

Proof. By Theorem 3.3.12, we may represent the isomorphism class of a line bundle
L uniquely by a cocycle of the form

µ(l)σ̂(η)l(v).

Then φ([L]) = (Ch(L), µχη), and hence β ◦ φ(L) = Ch(L).

Corollary 3.3.17. We have a commutative diagram with exact rows:

0 // Hom(L,U(1)) α // H1(L,H∗))
β //

φ

��

Alt2(L,Z) // 0

0 // Hom(L,U(1)) // P (L) Ch // Alt2(L,Z) // 0

Theorem 3.3.18 (Appel-Humbert Theorem for Quantum Tori). Let L be a
pseudolattice. Then φ : H1(L,H∗) → P (L) is an isomorphism.

Proof. This follows from the application of the snake lemma [27] to the commutative
diagram in Corollary 3.3.17

3.4 Geometric Line Bundles and the Heisenberg Group

So far in this chapter we have viewed line bundles L over a Quantum Torus ZL as
elements of a certain group of cocycles. We have shown that this yields a nontrivial
notion of line bundles where the classical one of De�nition 3.2.1 fails due to the
non-Hausdor� nature of Quantum Tori. Whereas this is a perfectly satisfactory
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de�nition, it is di�cult to reconcile this abstract de�nition with the idea that line
bundles are topological objects. The subject of this section is to show that we can
view L as a topological space. We see that this leads to the study of objects which
we may not have considered had we thought of line bundles solely as cocycles.

3.4.1 Line Bundles and Pull Backs

Before we consider the problem of de�ning a line bundle over a Quantum Torus as
a topological space, we note a few facts concerning line bundles over Hausdor� spaces.

Given a morphism f : X → Y of topological spaces, and a line bundle πL : L → Y

we can de�ne the pullback of L by f to obtain a line bundle f∗(L) over X. In the
context of category theory the object f∗(L) is the pullback of the following diagram

L
πL

��
X

f // Y.

However, an explicit de�nition for f∗(L) is given by [21]:

f∗(L) := {(x, l) ∈ X × L : f(x) = πL(l)} (3.17)

The projection πf∗(L) : f∗(L) → X is given by πf∗(L)(x, l) = x.

The pullback has the following universal property:

Let ϕ : M→ L be any morphism of line bundles over f : X → Y . Then
there exists a unique morphism of line bundles ϕ̃ : M→ f∗(L).

The morphism ϕ̃ can be computed explicitly when we use the description of f∗(L)
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in (3.17) as
ϕ̃(m) = (πM(m), ϕ(m)).

Recall that given a Quantum Torus ZL we have a natural projection

π : R → ZL

x 7→ x+ L.

The underlying philosophy in our approach is to de�ne a topological space L together
with a projection πL such that the pullback of the following diagram gives line bundle
(which is necessarily trivial) on R:

L
πL

��
π : R // ZL.

It is not immediately clear how we should do this. In the next section we look for
another characterisation of this property in terms of the Heisenberg Group.

3.4.2 The Heisenberg Group

Suppose X is a topological space endowed with a group law +. Given x ∈ X we
have a natural �translation by x� map

Tx : X → X

y 7→ y + x

De�nition 3.4.1. Let X be a topological group, and πL : L → X a line bundle over
X. De�ne

K(L) := {x ∈ X : T ∗x (L) ∼= L}.

The group K(L) is fundamental in de�ning the Heisenberg Group associated to
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a line bundle L over a topological space X.

De�nition 3.4.2 (Heisenberg Group). Let πL : L → X be a line bundle over a
topological group X. The Heisenberg Group H(L) of L, is de�ned to be the set of
pairs (x, φ) such that

• x ∈ K(L);

• φ : L → T ∗x (L) is an isomorphism.

The group law on H(L) is given by

(x1, φ1).(x2, φ2) = (x1 + x2, T
∗
x1

(φ2) ◦ φ1).

Given a line bundle L over X, an alternative representation of the group H(L)

is given by:

Proposition 3.4.3. As a set H(L) is in bijection with the set of those automor-
phisms of L lying over Tx for some x ∈ K(L). In this representation elements of
H(L) are given by pairs (x, f) such that x ∈ K(L) and f : L → L is a bijection such
that

πL(f(l)) = πL(l) + x.

The law of composition is given by

(x1, f1).(x2, f2) = (x1 + x2, f1 ◦ f2). (3.18)

Proof. See Remark 6.1.2 of [5].

The Heisenberg group can be viewed as part of a short exact sequence:

Proposition 3.4.4 (Proposition 6.1.1 of [5]). There is an exact sequence

1 // C∗ ι // H(L)
p // K(L) // 0.
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The image of C∗ in H(L) lies in the centre of H(L).

Proposition 3.4.4 establishes that H(L) is a central extension ofK(L). According
to the theory of such extensions we have an alternating pairing K(L):

De�nition 3.4.5. De�ne a map eL : K(L)×K(L) → C∗ by

(x1, x2) 7→ ι−1(g1g2g−1
1 g−1

2 ),

where gi = (xi, φi) for some isomorphism φi such that gi ∈ H(L).

3.4.3 Topological Line Bundles over Quantum Tori

In this section we shall see how for Hausdor� spaces, the Heisenberg group can be
used to characterise those line bundles over a space X which arise as pullbacks of line
bundles over a space Y . We will use this idea to de�ne line bundles over Quantum
Tori as topological spaces.

Our starting point is the following result:

Proposition 3.4.6 (Theorem 8.10 of [35]). Let f : X → Y be a map of abelian
varieties spaces, and let L be a line bundle over X. Then there is a bijective corre-
spondence between those line bundles M over Y such that f∗(M) ∼= L, and those
homomorphisms ker(f) → H(L) lifting ker(f) ↪→ X.

This bijection is realised in the following way. Write H = ker(f). Then it is
easily shown that given an action of H on L compatible with the natural action of
H on X by translation, the quotient L/H determines a line bundle M over Y with
the required properties. Conversely such an M de�nes such an action.



3.4 Geometric Line Bundles and the Heisenberg Group 103

The Quantum Torus is not an abelian variety, but we apply the philosophy
supplied by Proposition 3.4.6. Our natural response is to consider the map

π : R → ZL

in this context, which would lead to a study of homomorphisms L → H(L) for line
bundles L over R. However, in light of our previous de�nition of line bundles using
cocycles we will modify this slightly.

The motivation for the approach to line bundles in terms of cocycles came from
the theory of line bundles over Complex Tori outlined in �3.2.1. Examining these
objects led us to de�ne line bundles in terms of cohomology. However, the cohomo-
logical description of line bundles over a complex torus XΛ characterises a speci�c
class of line bundles. The class of bundles characterised by the group Z1(Λ,H∗)

are said to be holomorphic, due to the existence of holomorphic sections of the line
bundle.

One approach in de�ning holomorphic line bundles on Quantum Tori as topo-
logical spaces, would be to say that their pullback to R should be isomorphic to a
holomorphic line bundle over R. However, given that R has no complex structure
this idea seems nonsensical. However, we avoid this problem by making the following
de�nition:

De�nition 3.4.7. A holomorphic line bundle on R is a line bundle πL : L → R such
that there exists a holomorphic line bundle M on C such

L = {m ∈M : πM(m) ∈ R}.

Morphisms between holomorphic line bundles on R are the restrictions of morphisms
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between such line bundles on C.

By this de�nition, holomorphic line bundles over R are essentially the same as
holomorphic line bundles over C. However, all such line bundles over C are trivial -
they are isomorphic to T := C × C. The projection πT is the projection on to the
�rst factor.

Lemma 3.4.8. As a set, H(T ) is in bijection with H∗.

Proof. Since every line bundle over C is isomorphic to T , K(T ) = C. Using the
description ofH(L) given by Proposition 3.4.3, if x ∈ K(T ) we would like to establish
those automorphisms φ : T → T which lie over Tx. We represent an element of T
by (v, z) ∈ C× C. Suppose φ is such an isomorphism, and that

φ(v, z) = (φ1(v, z), φ2(v, z))

for some functions φ1, φ2 : C × C → C. The condition that φ lies over Tx implies
that

Tx ◦ πT (z, v) = πT ◦ φ(v, z).

Hence Tx(v) = φ1(v, z). The condition that φ is an isomorphism of line bundles
implies that φ2(v, z) = A(v)z for some A(v) ∈ C∗. The condition that T is a
holomorphic line bundle implies that the association v 7→ A(v) is a holomorphic
function.

De�nition 3.4.9 (Topological Line Bundle over a Quantum Torus). Let
ZL be a Quantum Torus. A Topological Line Bundle over ZL is a homomorphism
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q : L→ H(T ) such that the following diagram commutes:

L

$$IIIIIIIIII // H(T )

p

��
C = K(T )

(3.19)

where p is as in Proposition 3.4.4. By Lemma 3.4.8 every such morphism is of the
form l 7→ (l, Al(v)) for some Al(v) ∈ H∗. This de�nes an action of L on T by

l(v, z) := (v + l, Al(v)z).

As a topological space, we de�ne L to be the quotient of T by this action and write

L = T /qL.

Using this description of H(T ) we see that the previous notion of line bundles
over Quantum Tori in terms of cohomology, and the topological one of De�nition
3.4.9 are the same:

Proposition 3.4.10. Let ZL be a Quantum Torus. We have a bijection between line
bundles over ZL and topological line bundles over ZL.

Proof. Let L be a topological line bundle. Then we have a homomorphism q :

L → H(T ) such that L = T /qL. We have q(l) = (xl, Al(v)) for some xl ∈ K(T ),
Al(v) ∈ H∗. That (3.19) commutes implies that l = xl, and the condition that q is
a homomorphism implies that

Al1+l2(v) = T ∗l2(Al1(v))Al2(v)

= Al1(v + l2)Al2(v).

This shows that Al ∈ Z1(L,H∗), and represents a line bundle over ZL.



3.4 Geometric Line Bundles and the Heisenberg Group 106

Conversely, if Al(v) ∈ Z1(L,H∗) then de�ne a homomorphism

q : L → H(T )

l 7→ (l, Al(v)),

where the isomorphism Al(v) is multiplication by Al(v) ∈ C∗ on each �bre over
v ∈ C. This represents a topological line bundle over ZL.

Notation: Given a line bundle L = T /qL we have a natural projection πL : L → ZL.
If [v, z] represents the equivalence class of (v, z) ∈ T = C× C then this is given by

πL : L → ZL

[v, z] 7→ v + L.

We de�ned the notion of isomorphism between line bundles abstractly in terms
of their image in the cohomology group H1(L,H∗). Removing the local conditions
from the classical notion of morphism between line bundles we can attempt to de�ne
what an isomorphism between topological line bundles is:

De�nition 3.4.11 (Isomorphisms of Topological Line Bundles). Let L1 =

T /q1L and L2 = T /q2L be line bundles over ZL. An isomorphism h between L1 and
L2 is a map h : L1 → L2 which is linear on each �bre and such that the following
diagram commutes

L1
h //

πL1 !!CC
CC

CC
CC

L2

πL2

��
ZL,

and pulls back to an isomorphism of holomorphic line bundles over C.

Proposition 3.4.12. Let L1 and L2 be Line Bundles over ZL which admit an iso-
morphism between them, corresponding to factors of automorphy A1

l and A2
l . Then
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A1
l and A2

l represent the same class in H1(L,H∗).

Proof. Recall that Ail gives an action of L on C× C, and that Li is the quotient of
C× C by this action. Write [v, z]Ai for the class of (v, z) in Li.

Suppose φ is an isomorphism. Then write φ([v, z]A1) = [φ1(v, z), φ2(v, z)]A2 . The
commutativity condition

πL1(λ) = πL2 ◦ φ(λ) for all λ ∈ L1

implies that we have πL1(x, v) = x+L. The condition that φ is a linear isomorphism
on �bres implies that φ2(v, z) = Φ(v)z for some function Φ, and condition the
isomorphism pulls back to one of holomorphic line bundles over C implies that Φ ∈

H∗. Let [v, z] ∈ L1, and pick l ∈ L. Then for φ to be well de�ned we require that

φ([v, z]A1) = φ([v + l, A1
l (v)z]A1).

We have
φ([v, z]A1) = [v,Φ(v)z]A2 = [v + l, A2

l (v)Φ(v)z]A2 ,

and
φ([v + l, A1

l (v)z]A1) = [v + l,Φ(v + l)A1
l (v)z]A2 .

Therefore
A2
l (v) =

Φ(v + l)
Φ(v)

A1
l (v).
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3.4.4 The Pull back of 1-morphisms

Given a morphism f : X → Y of topological spaces, we can de�ne the pullback of
a line bundle over Y to obtain one over X. We used this as the motivation for our
de�nition of topological line bundles over Quantum Tori in the case where X was
equal to R. In Proposition 2.5.5 of �2.5 in Chapter 2 we classi�ed those continuous
maps between Quantum Tori. For a certain class of such morphisms we can de�ne
the pullback of a line bundle over a Quantum Torus:
De�nition 3.4.13. Let f : R → R be a continuous 1-morphism between Quantum
Tori ZL1 and ZL2 . Let L be a line bundle over ZL2 corresponding to a factor of
automorphy Al(v) ∈ Z1(L,H∗). Then the pullback f∗(L) of L with respect to f is
de�ned to be the line bundle corresponding to the cocycle

f∗(A)l(v) := Al(f(v)).

Note that the condition that f is a 1-morphism, and that f is continuous implies
that f is necessarily translation by an element in R. Conversely, given any x ∈ ZL,
the translation map Tx : ZL → ZL is a 1-morphism. Hence if f represents a 1-
morphism between two Quantum Tori ZL1 and ZL2 then we have L1 = L2, and if L
is a line bundle over ZL then f∗(L) = T ∗x (L) for some x ∈ ZL.

3.5 The relationship between K(L), eL and Ch(L)

This chapter has so far been devoted to de�ning line bundles over Quantum Tori
from two di�erent perspectives. The approach �rst taken was to draw on results
concerning line bundles over Complex Tori to derive a nontrivial de�nition for line
bundles over Quantum Tori. Using this de�nition we were able to prove a structure
theorem for isomorphism classes of line bundles over Quantum Tori using the Chern
class. In �3.4 we gave a topological de�nition of a line bundle over a Quantum Torus
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using the Heisenberg Group. This gave rise to the de�nitions of the group K(L) and
an alternating pairing eL.

The purpose of this section is to reconcile these ideas. Theorem 3.5.7 is the main
result of this section, describing the relationship between the objects Ch(L), K(L)

and eL associated to a line bundle L over a Quantum Torus.

3.5.1 An alternating pairing on Λ(L)

In this section we go part of the way in describing the link between Ch(L) and eL,
describing in Proposition 3.5.6 the pairing eL in terms of the cohomology theory of L.

We begin by giving a description of K(L) in the language of cocycles:

Lemma 3.5.1. Let L be a line bundle over ZL. Then K(L) is isomorphic to the set
with addition

{
x ∈ ZL : (∃x̃ ∈ π−1(x)) ∧

(
Al(v + x̃)
Al(v)

∈ B1(L,H∗)
)}

Proof. Let L be a line bundle with factor of automorphy Al(v). By Proposition
3.4.12, x ∈ K(L) if and only if there exists x̃ ∈ π−1(x) such that

Al(v + x̃)
Al(v)

∈ B1(L,H∗).

This set is independent of the choice for x̃. If x̃′ is another element of C such that
π(x̃′) = x then x̃′ − x̃ = l′ ∈ L, and we have

Al(v + x̃′)
Al(v)

=
Aω+l′(v + x̃)

Al′(l′ + v + x̃)Al(v)
=
Al′(v + x̃+ l)
Al′(v + x̃)

Al(v + x̃)
Al(v)

∈ B1(L,H∗).
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This motivates the following de�nition:

De�nition 3.5.2. Let L be a line bundle over a Quantum Torus ZL. Then de�ne
Λ(L) = π−1(K(L)). If L is represented by Al(v) ∈ Z1(L,H∗) then by Lemma 3.5.1
we have

Λ(L) =
{
x̃ ∈ C :

Al(v + x̃)
Al(v)

∈ B1(L,H∗)
}
.

So given x̃ ∈ Λ(L), we obtain a coboundary representing an isomorphism L ∼=

Tπ(x̃)(L). In order to show that this is unique we will need the following lemma:

Lemma 3.5.3. Suppose g and h are holomorphic functions such that

h(v + l)
h(v)

=
g(v + l)
g(v)

for all v ∈ C, l ∈ L. Then h(v)g(v)−1 is constant in v.

Proof. If the above relation holds we have

h(v + l)
g(v + l)

=
h(v)
g(v)

.

The right hand side is independent of l so the left hand side is. Since L is dense in
R, the function f(v) := g(v)h(v)−1 is therefore constant on the real axis, and since
it is holomorphic therefore constant on C.

Corollary 3.5.4. If x̃ ∈ Λ(L) there exists a unique nonvanishing holomorphic func-
tion hx̃ such that hx̃(0) = 1 and

Al(v + x̃)
Al(v)

=
hx̃(v + l)
hx̃(v)

.

De�nition 3.5.5. Fix v ∈ C and a line bundle L over a Quantum Torus ZL. De�ne
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a pairing on Λ(L) by

Hv( , ) : Λ(L)× Λ(L) → C∗

(x̃1, x̃2) 7→ hx̃2
(v+x̃1)

hx̃2
(v)

By Corollary 3.5.4 each element x̃ of Λ(L) de�nes a unique coboundary hx̃ such
that hx̃(0) = 1 exhibiting an isomorphism L ∼= T ∗π(x̃)(L).

Let
Ĥ(L) = {(x̃, hx̃(v)) : x̃ ∈ Λ(L)}.

De�ne an action of L on Ĥ(L) by

l(x̃, hx̃(v)) =
(
x̃+ l,

Al(v + x̃)
Al(x̃)

hx̃(v)
)
.

It is easily seen that this construction yields an isomorphism

H(L) ∼= Ĥ(L)/L. (3.20)

The group law in this representation is given by

(x̃1, hx̃1(v)).(x̃2, hx̃2(v)) = (x̃1 + x̃2, hx̃2(v + x̃1)hx̃1(v)).

Using this description of H(L) we can describe the relationship between eL and
the pairing on Λ(L) of De�nition 3.5.5:

Proposition 3.5.6. For x̃1, x̃2 ∈ Λ(L), and any v ∈ C we have

eL(x1, x2) = Hv(x̃1, x̃2)Hv(x̃2, x̃1)−1

where xi = π(x̃i) for i = 1, 2.
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Proof. Firstly note that by the de�nition of the group law we have

(x̃, hx̃(v))−1 = (−x̃, hx̃(v − x̃)−1).

Then if gi = (x̃i, hx̃i(v)) for i = 1, 2

[g1, g2] = g1g2g
−1
1 g−1

2

= (x̃1, hx̃1(v))(x̃2, hx̃2(v))(−x̃1, hx̃1(v − x̃1)−1)(−x̃2, hx̃2(v − x̃2)−1)

= (x̃1 + x̃2, hx̃1(v)hx̃2(v + x̃1))(−x̃1 − x̃2, hx̃1(v − x̃1)−1hx̃2(v − x̃1 − x̃2)−1)

= (0, hx̃1(v)hx̃1(v + x̃2)−1hx̃2(v + x̃1)hx̃2(v)
−1)

= (0,Hv(x̃1, x̃2)Hv(x̃2, x̃1)−1).

Hence eL(x1, x2) := ι−1([g1, g2]) = Hv(x̃1, x̃2)Hv(x̃2, x̃1)−1. Note that since the left
hand side is independent of v, the right hand side is.

3.5.2 The relationship between K(L) and Ch(L)

In the theory of Complex Tori, given a line bundle M over a torus XΛ it is shown
that a certain group K(M) (analogous to the group we have de�ned for Quantum
Tori) is either �nite, or the whole of M. The proof of this result relies on the fact
that torus XΛ can be viewed as a complete projective variety, and that the corre-
sponding pairing eM is a morphism of projective varieties.

The aim of this section is to prove the following:

Theorem 3.5.7. Let L be a line bundle over a Quantum Torus ZL. Then there are
two possibilities:

1. If Ch(L) is nontrivial, then K(L) is �nite. In this case we have

Ch(L)(aω1 + bω2, cω1 + dω2) = sη(ad− bc)
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for some sη ∈ Z. We have an isomorphism

K(L) ∼= (Z/sηZ)× (Z/sηZ).

2. The following statements are equivalent:

(a) Ch(L) = 0;
(b) K(L) = ZL;
(c) eL ≡ 1.

Proof of part 1: Suppose that Ch(L) = η is nontrivial.
I �rst claim that it su�ces to only consider those line bundles represented by

the cocycles σ̂(η)l(v) de�ned in (3.11). Clearly if L1 and L2 are isomorphic line
bundles then K(L1) = K(L2). By Theorem 3.3.12 it su�ces to only consider those
line bundles represented by cocycles of the form

µ(l)σ̂l(v)

for some µ ∈ Hom(L,U(1)) and η ∈ Alt2(L,Z). Now let Lµ denote the line bundle
represented by the above cocycle, and L1 the line bundle represented by the cocycle
σ̂l(v). Then x = π(x̃) ∈ K(Lµ) if and only if

µ(l)σ̂l(v + x̃)
µ(l)σ̂l(v)

∈ B1(L,H∗)

for some x̃ ∈ C such that π(x̃) = x. But this occurs if and only if

σ̂l(v + x̃)
σ̂l(v)

∈ B1(L,H∗),

which is precisely the condition that x ∈ K(L1).
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We now show that K(L) is isomorphic to (Z/sηZ) × (Z/sηZ). By the previous
discussion we assume that L is represented by the cocyle σ̂l(v). If x = π(x̃) ∈ K(L)

then there exists a unique hx̃ ∈ H∗ such that hx̃(0) = 1 and

σ̂l(v + x̃)
σ̂l(v)

=
hx̃(v + l)
hx̃(v)

.

However, explicit calculation shows that

σ̂l(v + x̃)
σ̂l(v)

= e
2sη

πi
ω1
bx̃ (3.21)

where l = aω1 + bω2 ∈ L. This latter expression is independent of v.

There exists a holomorphic function Hx̃ such that hx̃(v) = e2πiHx̃(v). By (3.21),
for all l ∈ L, Hx̃(v + l) − Hx̃(v) is a holomorphic function independent of v, and
by continuity is constant on lines of constant imaginary part. Di�erentiating once
with respect to v we see that H ′

x̃(v + l) = H ′
x̃(v) for all l ∈ L, v ∈ C. Hence H ′

x̃ is
a holomorphic function which is constant on lines of constant imaginary part, and
therefore constant everywhere. Hence there exist constants k(x̃) and c(x̃) such that

Hx̃(v) =
k(x̃)
ω1

v + c(x̃).

Since we are only concerned with the quotient hx̃(v + l)hx̃(v)−1 we assume without
loss of generality that c(x̃) = 0, and hence

hx̃(v) = e
2πi
ω1
k(x̃)v

.

Now we compute
hx̃(v + l)
hx̃(v)

= e
2πi
ω1
k(x̃)(aω1+bω2)

.
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Equating this last expression with that of (3.21) we obtain

e
2 πi

ω1
sηbx̃ = e

2 πi
ω1
k(x̃)(aω1+bω2)

.

Note that the right hand side is dependent on a, whereas the left hand side is not.
Since this equality holds for all a ∈ Z we therefore have k(x̃) ∈ Z. We deduce that

sηbx̃ ∈ Z(aω1 + bω2) + Zω1.

This holds for all a, b ∈ Z, and hence sηx̃ ∈ L.

Conversely, if sηx̃ ∈ L, then we have

x̃ =
α

sη
ω1 +

β

sη
ω2

for some α, β ∈ Z. De�ne
hx̃(v) = e

2πi
ω1
βv
.

Then
σ̂l(v + x̃)
σ̂l(v)

=
hx̃(v + x̃)
hx̃(v)

.

Hence Λ(L) ∼= 1
sη
L, and the result follows.

The explicit formula for Ch(L) follows from Proposition 3.5.6.

Proof of part 2: Now consider the case when Ch(L) is trivial, and is represented by
a cocycle Al(v).

2a ⇒ 2b: Suppose Ch(L) = 0. By Proposition 3.3.5 Al(v) is cohomologous to
a constant cocycle Kl(v). By Lemma 3.5.1 we can use this representative of the
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cohomology class to determine K(L):

K(L) =
{
x ∈ ZL : (∃x̃ ∈ π−1(x)) ∧

(
Kl(v + x̃)
Kl(v)

∈ H1(L,H∗)
)}

.

But since Kl(v) is constant in v, for all x̃ ∈ C we have

Kl(v + x̃)
Kl(v)

= 1,

and therefore K(L) = ZL.

2b⇒ 2c: Suppose K(L) = ZL. By the �rst part of the theorem, if η = Ch(L) is
non zero then Λ(L) = 1

sη
L. Since K(L) = ZL we have Λ(L) = R, so we must have

η = 0. Hence L is represented by a cocycle of the form

Al(v) = µ(l)
h(v + l)
h(v)

for some µ ∈ Hom(L,U(1)) and h ∈ H∗. We see that for x̃ ∈ R

Al(v + x̃)
Al(v)

=
h(v + x̃+ l)
h(v + l)

/
h(v + x̃)
h(v)

.

From this it follows that
hx̃(v) =

h(v + x̃)
h(v)

h(0)
h(x̃)

.

Using the explicit formula for Hv(x̃1, x̃2) in De�nition 3.5.5 we have

Hv(x̃1, x̃2) =
h(v + x̃1 + x̃2)

h(v + x̃1)h(v + x̃2)h(v)
.

Observe that this is symmetric in x̃1, and x̃2, and hence by Proposition 3.5.6 we �nd
that eL(x̃1, x̃2) = 1.
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2c⇒ 2a: Suppose eL ≡ 1, and assume that Ch(L) 6= 0. Then sη 6= 0, and by the
results of part 1 we have Ch(L)(ω1/sη, ω2/sη) = 1/sη, and hence eL(ω1/sη, ω2/sη) =

e−2πi/sη 6= 1. This is a contradiction, and hence we must have Ch(L) = 0.

2

As an immediate corollary we have

Corollary 3.5.8. Let L be a line bundle over ZL with Chern class η. Extend Ch(L)

to a pairing on 1
sη
L by linearity, and let x̃1, x̃2 ∈ Λ(L). Then

eL(x̃1, x̃2) = e2πiCh(L)(x̃1,x̃2).

Proof. By Proposition 3.5.6 we have

eL(x̃1, x̃2) =
hx̃2(v + x̃1)
hx̃2(v)

hx̃1(v)
hx̃1(v + x̃2)

.

Let sηx̃1 = aω1 + bω2 and sηx̃2 = cω1 + dω2. Then

eL(x̃1, x̃2) = e
2 πi

sηω1
d(aω1+bω2)

e
−2 πi

sηω1
b(cω1+dω2)

= e
2πiad−bc

sη

= e2πiCh(L)(x̃1,x̃2).

3.6 Other approaches to Quantum Tori

So far in this thesis we have studied Quantum Tori as topological spaces with the
potential to solve a speci�c problem in number theory. This idea was originally for-
mulated by Manin in [32], who drew on successes in in the �eld of Noncommutative
Geometry to provide a basis for his proposed theory of Real Multiplication. Manin's
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paper has sparked considerable research in to Noncommutative Tori, and it is the
purpose of this section introduce two aspects of this research and indicate how they
relate to our studies.

Our discussion of line bundles over Quantum Tori has not been the �rst proposal
of a notion of vector bundles over such Noncommutative spaces. As we remarked in
Chapter 1, a motivation for the philosophy behind Noncommutative Geometry was
the classi�cation of isomorphism classes of vector bundles over a compact Hausdor�
space X as �nitely generated projective right C(X)-modules. These can be viewed as
elements of the K-group of the C*-algebra C(X), a concept which one can associate
to both commutative and noncommutative C*-algebras. Hence through Noncommu-
tative Geometry, we de�ne vector bundles over the Noncommutative Torus Aθ to be
�nitely generated projective right Aθ-modules.

This is the stance taken by Schwarz in [50]. For a Noncommutative Torus Aθ, he
de�nes a �nitely generated projective right Aθ-module E in terms of the Schwartz
functions on R. For each choice of τ ∈ H, there is a choice of holomorphic structure
on E , and a unique holomorphic element of E corresponding to this structure. This
unique element is called a holomorphic theta vector.

Schwarz's construction can be applied to Complex Tori too, and in this case he
exhibits the relationship between the holomorphic theta vectors, and the standard
theta functions over such Tori. In [8], Chang-Young and Kim describe the relation-
ship between theta vectors of Noncommutative Tori, and a quantum theta function
discussed by Manin in [32]. These quantum theta functions are related to the zeta
functions studied by H.Stark in [59] when he formulated a series of conjectures con-
cerning Hilbert's twelfth problem. We will discuss how theta functions arise from
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our development of line bundles, and Stark's conjectures in Chapter 4.

In Chapter 1 we remarked on a recent trend, using techniques in Model The-
ory to solve problems in Number Theory. Quantum Tori have been studied from a
Model Theoretic viewpoint by Zilber in a series of lectures and studies [64�66]. His
work has shown that Quantum Tori can be de�ned in a class of structures known
as Analytic-Zariski structures, which represent a variation to structures arising from
the Zariski topology on an algebraic curve. In �3.6.1 we examine the possibility that
the objects we have studied in the previous sections are de�nable in such a structure.

Several results in this chapter hint at a deep relationship between Quantum Tori
and elliptic curves. This is not an original observation, and the notion of a duality
between Complex and Noncommutative Tori has been studied by both Manin and
Nikolaev. In �3.6.2 we look at how our results indicate the existence of such a
relationship, and refer to the work of Nikolaev who has studied this relationship.

3.6.1 Line Bundles in Model Theory

Throughout our development of line bundles over Quantum Tori, the theory of Com-
plex Tori has been a guiding star. It was a description of line bundles over such tori
in terms of cohomology which formed the basis of our description for line bundles
over Quantum Tori. By the Uniformization Theorem, Complex Tori can be viewed
as algebraic curves, and the theory of line bundles over these objects is closely linked
to this fact.

If XΛ is a complex torus, it is the existence of an integral valued alternating form
on the lattice Λ that ensures the existence of �very ample� line bundles over XΛ.
Fundamentally, it is the existence of these line bundles that imply that XΛ can be
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viewed as an algebraic variety.

Given a Quantum Torus ZL it is possible to de�ne an integral valued alternat-
ing form on the pseudolattice L given by the Chern class. We may postulate that
this assures us of the existence of �very ample line bundles over ZL". It is this fact
that has allowed us to de�ne many objects previously in this chapter associated to
Quantum Tori, which we would normally associated to abelian varieties. Although
Quantum Tori are not algebraic varieties, through the work of Zilber they can be
de�ned in a class of structures called Analytic-Zariski structures.

In Chapter 2 �2.2 we de�ned a structure in the context of mathematical logic. By
adding further axioms to the ones we described, we obtain more specialised struc-
tures. A Zariski structure is such a specialised structure, introduced and studied by
Zilber and Hrushovski. They introduce additional set theoretic axioms, which aim
to characterise the Zariski topology on an algebraic curve and are satis�ed by the
usual Zariski structure on an algebraic variety. Adding a further condition to the
Zariski axioms they showed in [20] that such a Zariski structure is indeed isomorphic
to the Zariski structure of some curve over an algebraically closed �eld.

We may hope that the Quantum Torus ZL lies in a Zariski structure, and hence
we can be able to realise it as an algebraic object. However the Quantum Torus
fails to satisfy some of the appropriate axioms. In [65], Zilber introduces the notion
of an Analytic-Zariski structure, in which some of the axioms for Zariski structures
are modi�ed, and some new axioms are present. These structures, despite not being
isomorphic to structures over algebraic curves may still have properties we commonly
associate to algebraic varieties. For example we can talk of compact, complete and
irreducible Analytic-Zariski structures. The Quantum Torus (or a group which is
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isomorphic to it) is de�nable in an Analytic-Zariski structure, and is compact and
complete.

An important concept in model theory is that of stability:

De�nition 3.6.1 (Stable Theory). Let T be a complete theory in a countable
language, and let κ be an in�nite cardinal. We say that T is κ-stable if whenever
M |= T , A ⊆M and |A| = κ then ∣∣SMn ∣∣ = κ.

Given a structure M, we say that M is κ-stable if its theory is. The following
result attributed to Shelah shows that we have a trichotomy:

Proposition 3.6.2 (Theorem 4.5.48 of [34]). If T is a complete theory in a
countable language, then one of the following holds:

1. there are no cardinals κ such that T is κ-stable;

2. T is stable for all κ ≥ 2ℵ0 ;

3. T is κ-stable i� κℵ0 = κ.

In the �rst case we say that T is unstable, otherwise we say it is stable. If T satis�es
condition 2 we say that T is superstable.

Every ℵ0-stable theory is superstable, but there exists superstable theories which
are not ℵ0-stable, and stable theories which are not superstable. In this context,
superstability can be viewed as a weakening of the property of ℵ0-stability.

This model theoretic concept associated to a structure is conjectured to have
strong links to the topological nature of the structure. For example, it is conjectured
[29] that all simple ℵ0-stable groups arise from the Zariski-structure on an algebraic
variety. In [66] Zilber conjectures that a structure associated to ZL is superstable,
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which is a weakening of the notion of ℵ0-stability which algebraic varieties are known
to satisfy.

The structure considered by Zilber is the two sorted structure

Tθ := ((C,+,Aθ), exp,C∗) (3.22)

where
Aθ = (i+ θ)R + 2πZ + 2πiZ.

It is shown in [66] that that the quotient C/Aθ is isomorphic to the Kronecker fo-
liation of the torus T2

θ. Provided a conjecture in transcendence theory (known as
Schanuel's conjecture) holds, the theory of this structure is superstable. Although
we know that this structure is not isomorphic to a Zariski structure over an algebraic
curve, its stability theory suggests that the theory of this structure may contain some
of the characteristics we associate to algebraic varieties. Indeed, Zilber has proved
that this structure is both compact and complete.

The approach supplied by Model Theory provides a philosophy that may be
invaluable when tackling the problem of Real Multiplication. In Complex Multi-
plication we use torsion points on an algebraic variety (an elliptic curve) to gener-
ate abelian extensions of imaginary quadratic �elds. Although it is not possible to
achieve this for Real Multiplication, Zilber's approach may provide a category (of
Analytic-Zariski structures) in which to look for the objects which could potentially
provide solutions to Hilbert's Problem.
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De�nability of es

For a line bundle over a Complex Torus XΛ = C/Λ, we have an analogous theory
to that developed for Quantum Tori. For each line bundle M over XΛ we obtain a
subgroup K(M) of XΛ and an alternating pairing

eM : K(M)×K(M) → C∗.

The group K(M) is an algebraic subvariety of XΛ, and the pairing eM is a morphism
of algebraic varieties.

As mentioned above, Zilber has identi�ed a category which may serve as an anal-
ogy for that of algebraic varieties for the purpose of Real Multiplication - that of
Analytic-Zariski structures. We would like to discuss whether the objects K(L) and
eL associated to line bundles over Quantum Tori are de�nable in such a structure.

We can view a Quantum Torus with parameter θ as a de�nable subgroup of the
structure de�ned in (3.22) via the map

E : R/Lθ → Tθ := C∗/G0

x+ Lθ 7→ e2πx.Gθ

where Gθ := exp(Aθ). Throughout this rest of this section, we identify K(L) with its
image under E. As a consequence of Theorem 3.5.7 we obtain the following result,
which is a promising start to viewing the pairing eL as a de�nable function in an
Analytic-Zariski structure:

Lemma 3.6.3. If Shanuel's conjecture holds, then K(L) is an Analytic-Zariski set.
Proof. We consider the cases s 6= 0 and s = 0 separately. In the case when s 6= 0, by
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part 1 of Theorem 3.5.7 we have

Λ(L) ∼= {x ∈ C∗ : xs ∈ Gθ}.

K(L) is the quotient of this by Gθ, and hence a de�nable subset of the structure
(C∗,Gθ, .).

If s = 0, by part 2 of Theorem 3.5.7 we have K(L) ∼= Tθ = C∗/Gθ, which is an
Analytic-Zariski structure by Zilber's study (modulo Schanuel's conjecture).

Unfortunately, this is the limit to the extent we can achieve our goal of de�ning
the pairing eL in an Analytic-Zariski structure at present. The graph of eL is not
de�nable in any of the structures that Zilber considers in [64], [65] and [66]. In order
to acquire a structure in which the graph of eL is de�nable, it would be desirable to
have a log-function between C∗ and C. It is unknown whether the addition of this
function to any of Zilber's structures would alter the stability of such a structure.
We do mention that in [66], Zilber de�nes a �random logarithm� from C∗ to e2πθZ
where the resulting structure is unstable.

3.6.2 A Duality between Elliptic Curves and Quantum Tori

In this section we describe how the results of this chapter suggest the existence of
a relationship between Quantum and Complex Tori. The �rst of these is Theorem
3.3.18, which provides an analogue of the Appel-Humbert Theorem for Quantum
Tori. We consider the corresponding result for Complex Tori:

Theorem 3.6.4 (Appel-Humbert Theorem, Theorem 1.5 of [23]). Let XΛ :=

C/Λ be a Complex Torus. The Line Bundles over XΛ are characterised up to iso-
morphism by the following data:
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1. A hermitian form H on C;

2. A semi-character χ : Λ → U(1) such that

χ(λ1 + λ2) = χ(λ1)χ(λ2)eπiE(λ1,λ2) (3.23)

where E = =H is an R-bilinear alternating form on C.4

The set P (Λ) of pairs (H,χ) of such data form a group under the law of composition

(H1, χ1)(H2, χ2) = (H1 +H2, χ1χ2).

However, we note that a Hermitian form H is determined by the alternating form
E := =(H):

H(z, w) = E(iz, w) + iE(z, w).

So by the above result we may characterise isomorphism classes of line bundles over
complex tori by pairs (E,χ) where E is an alternating form on Λ and χ satis�es
(3.23).

Let L and Λ be a pseudolattice and a complex lattice respectively, and suppose ψ
is an isomorphism of additive groups Λ ∼= L. Let χ : L→ U(1) be a semi-character
for E. This corresponds canonically to a semi-character for E with domain Λ given
by

ψ∗(χ) = χ ◦ ψ : Λ → U(1).

Proposition 3.6.5. We have an isomorphism H1(Λ,H∗) ∼= H1(L,H∗).
4Here =(H) denotes the imaginary part of H.
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Proof. If (E,χ) is the Appel-Humbert data for an element of H1(L,H∗), map this
to (E,ψ∗(χ)). Since ψ is an isomorphism this is an isomorphism.

We conclude that we have a bijection between isomorphism classes of line bundles
over Quantum and Complex Tori. This is a surprising result, since as we remarked at
the end of �3.2, the analytic techniques used when considering elements of Z1(L,H∗)

are di�erent from those used for line bundles over Complex Tori.

If we look closer at the proof of Theorem 3.5.7, we see that we have an even
stronger result.

Proposition 3.6.6. We have an isomorphism Z1(Λ,H∗) ∼= Z1(L,H∗).

Proof. The proof shows that every element of Z1(L,H∗) is equal to

χ(l)σ̂(η)l(v)
h(v + l)
h(v)

for some χ ∈ Hom(L,U(1)), η ∈ Alt2(L,Z) and h ∈ H∗. Fix an isomorphism
ψ : Λ ∼= L. Then ψ∗(χ) ∈ Hom(Λ, U(1)), ψ∗(η) ∈ Alt2(Λ,Z). De�ne

Φ : Z1(L,H∗) → Z1(Λ,H∗)

χ(l)σ̂(η)l(v)
h(v+l)
h(v) 7→ ψ∗(χ)(λ)σ̂(ψ∗(η))λ(v)

h(v+λ)
h(v)

Since ψ is an isomorphism, it follows that Φ is.

Hence we have a bijection, not just between isomorphism classes of line bun-
dles of Quantum and Complex Tori, but between line bundles themselves. If we let
Λn = ω1Z + ω2znZ be a sequence of lattices with z ∈ H tending to 1 as n → ∞,
then Λn → L as n→∞. We can view line bundles over Quantum Tori as occurring
as the limit of a sequence line bundles over the Complex Tori determined by the
lattices Λn. The idea that Quantum Tori can be viewed as limits of Complex Tori is
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an idea noted by Manin in [32]. We note that in [33], Manin generalises the notion
of the Heisenberg group to de�ne line bundles over Noncommutative Tori. It would
be interesting to investigate the relationship between this notion of line bundles and
the one we have developed.

The connection between Quantum and Complex Tori has been investigated by
Nikolaev in [40]. In his paper he describes a bijection between elliptic curves Eτ
associated to a lattice Λτ = Z + τZ with τ ∈ H, and pairs (Aθ, ω) of Noncommu-
tative Tori with parameter θ and positive functionals Aθ → C of norm ω. This
not only gives a relationship between Complex and Noncommutative tori, but also
suggests that the arithmetic of certain complex and noncommutative tori may be
linked. Indeed, he claims that this bijection yields Noncommutative Tori with Real
Multiplication from elliptic curves with Complex Multiplication. In a later preprint
[39], he makes some precise conjectures concerning generators of the Hilbert class
�eld of a real quadratic �eld. The determination of such generators would provide
valuable insight in to the Real Multiplication analogue of the modular j-function.

Zilber's representation of the Quantum Torus also lends its self to the suggestion
of a duality between Quantum and Complex Tori. Recall we have de�ned the group

Aθ = R(θ + i) + 2πZ + 2πiZ.

As remarked in �3.6, the quotient C/Aθ is isomorphic to the Kronecker foliation of
the torus with parameter θ, and hence to Zθ.

Alternatively, we note that

Aθ = R(θ + i) + 2πZ + 2πθZ.
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Hence the quotient C/Aθ can be viewed as a �foliation of the Quantum Torus
C/2πLθ� by the subgroup R(θ + i) + 2πLθ.



Chapter 4

Theta Functions over Quantum

Tori

4.1 Introduction

In the previous section we de�ned the notion of a line bundle over a Quantum Torus
ZL as an element of the group of cocycles Z1(L,H∗). We now discuss the existence
of �sections� of these line bundles.

The motivation for the work of Chapter 3 was the fact that line bundles over a
Complex Torus XΛ are in bijection with the group of cocycles Z1(Λ,H∗). Suppose
πL : L → XΛ is a line bundle over such a Complex Torus XΛ, and corresponds to
a cocycle Aλ(v) ∈ Z1(Λ,H∗). The topological space L is viewed as the quotient of
C× C by the action of Λ given by

λ(z, v) = (z + λ,Aλ(v)z).

A section of L is a map σ : X → L, such that πL ◦ σ = 1XΛ
. If p and p̃ denote the

129
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natural projections
C // XΛ and

C× C // L

respectively, then we have the following commutative diagram:

C× C
π

��

p̃ // L
πL

��
C

p // XΛ.

σ

\\

where π is the projection on to the �rst coordinate.

The natural projection p̃ : C×C → L is a covering map, so the section σ lifts to
a section σ̃ : C → C× C of the trivial bundle on C satisfying

π ◦ σ = 1C. (4.1)

By (4.1) we have
σ̃(z) = (z, θ(z))

for some θ ∈ H∗. Since σ̃ is a lift of σ, for all λ ∈ Λ we have

p̃ ◦ σ̃(z) = p̃ ◦ σ̃(z + λ),

which implies that
θ(z + λ) = Aλ(v)θ(z). (4.2)

Conversely, if θ ∈ H∗ satis�es the periodicity condition of (4.2) with respect to the
lattice Λ, the map

σ : z + Λ 7→ p̃((z, θ(z)))
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de�nes a section of L. This prompts the following de�nition:

De�nition 4.1.1 (Theta function). A holomorphic theta function for a group
G ⊆ C is a holomorphic map θ : C → C such that for all v ∈ C

θ(v + g) = Ag(v)θ(v) (4.3)

for some Ag ∈ Z1(G,H∗).

Hence theta functions for a complex lattice Λ correspond to sections of holomor-
phic line bundles over the Complex Torus XΛ. To determine the existence of sections
of holomorphic line bundles over Quantum Tori ZL, we need to determine whether
there are any holomorphic theta functions for the pseudolattice L.

This chapter is split in to two main parts, the �rst consisting of �4.2 and �4.3.
In the �rst of these we show that unlike the case for complex lattices Λ, there are no
nontrivial holomorphic theta functions corresponding to a pseudolattice L. In �4.3,
we weaken the condition of holomorphicity to allow our theta function to have poles.
We show that the double sine function studied by Shintani [54, 55] and Kurokawa
[24, 25] can be interpreted to be a meromorphic theta function for a pseudolattice.

In the 1970's Stark made a series of conjectures [57�60] regarding the values of
L-functions associated to number �elds at s = 0. The second half of this chapter
concerns the application of the functions we discuss in the �rst part to these conjec-
tures. In �4.4 we give an introduction to Stark's ideas, and how they are related to
our goal of understanding an explicit class �eld theory for real quadratic �elds. The
remainder of �4.4 is devoted to an account of the work of Shintani. In [54] Shintani
described the values of an L-function associated to a real quadratic �eld in terms
of speci�c values of the double sine function, and in a later paper [55] used these
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values to generate abelian extensions of speci�c real quadratic �elds. In the context
of this thesis, this is an important result, stating that in speci�c cases special values
of meromorphic theta functions associated to Quantum Tori can generate abelian
extensions of certain real quadratic �elds.

We see that Shinatani's result can be interpreted as a solution in a special case
to the Rank One Abelian Stark conjecture [46, 62], which concerns the case when
the L-function has a simple zero at s = 0. There exist higher order Stark conjectures
[49, 63] which concern the cases when the L-function has zeros of higher order at
s = 0. Motivated by these conjectures and Shintani's result we investigate whether
it is possible to write higher derivatives of L-functions associated to real quadratic
�elds in terms of meromorphic theta functions for a pseudolattice. Our main result
is Theorem 4.6.1, which writes the mth derivative of an L-function as an element of a
certain �eld, whose generators contain the special values of various functions de�ned
in �4.5 which are shown to be theta functions for pseudolattices.

We use Shintani's work of [54] to reduce the proof of Theorem 4.6.1 to a result
concerning a type of zeta function. This result is proved in �4.7 using a blend of
induction (of which Shintani's result is the starting case), and the calculation of
various contour integrals. In �4.8 we discuss the possible implications this has to
Real Multiplication, and where this result could be improved.

4.2 Holomorphic Theta functions for L

We begin by using the results of Chapter 4 to show that there are no nontrivial1
holomorphic theta functions for a pseudolattice.

1A trivial theta function is a nonzero multiple of the exponential function.
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Proposition 4.2.1. Let L be a pseudolattice. There are no nontrivial holomorphic
theta functions for L.

Proof. Note that if Θ is a theta function for Al ∈ Z1(L,H∗) and

Bl(v) = Al(v)
h(v + l)
h(v)

for some non-vanishing holomorphic function h, then Θ(v)h(v) is a theta function
for Bl. Hence it su�ces to show that there are no nonconstant holomorphic theta
functions satisfying (4.3) for a representative of each cohomology class in Z1(L,H∗).

Suppose Θ is a holomorphic theta function for a line bundle L. By Theorem
3.3.12, the isomorphism class of L in H1(L,H∗) has a unique representative

µ(l)σ̂(η)l(v)

where µ ∈ Hom(L,U(1)) and σ̂(η)l(v) is as de�ned in �3.3.2. For v ∈ R we have
|µ(l)σ̂(η)l(v)| = 1. Hence for all v ∈ R we have

|Θ(v + l)| = |µ(l)σ̂(η)l(v)Θ(v)| = |Θ(v)| . (4.4)

First note that if Θ(v) has a zero, then it is identically zero, for the above relation
implies that it has an accumulation point of zeros. Therefore we may assume that
Θ(v) is nonvanishing.

Fix r ∈ R. Since Θ is nonvanishing there exists a function xr(v) holomorphic in
v such that

Θ(v + r)
Θ(v)

= e2πixr(v). (4.5)

Without loss of generality we assume that x0(v) = 0. Equation (4.4) implies that
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xr(v) ∈ R for all v ∈ C. Since xr(v) is a holomorphic function in v this implies that
it is constant.

Now �x v ∈ C, and let r, s ∈ R. Then

Θ(v + r + s)
Θ(v)

=
Θ(v + r + s)

Θ(v + r)
Θ(v + r)

Θ(v)
.

Hence there exists n(v) ∈ Z such that

xr+s(v) = xs(v + r) + xr(v) + 2πin(v)

= xs(v) + xr(v) + 2πin(v).

Since x0(v) = 0 we see that n(v) = 0, and as a function of r ∈ R, xr(v) is a homo-
morphism. Hence for all r ∈ R, xr(v) = αr for some α ∈ R.

Now consider the left hand side of (4.5). As r varies over C this is a holomorphic
function. Hence for �xed v, there exists a function xv(w) holomorphic in w such that
for all v ∈ C

Θ(v + w)
Θ(v)

= e2πixv(w).

Again we assume without loss of generality that xv(0) = 0, and therefore xz(v) =

xv(z) for all v, w ∈ C. On R we therefore have xv(w) = αw, and hence by holomor-
phicity this holds on the whole plane.

Since Θ is holomorphic we may compute its derivative along any path. Let z ∈ C,
and let γz(t) be the path z + t. Then

Θ′(z) = lim
t→0

Θ(γz(t))−Θ(γz(0))
t

= lim
t→0

Θ(z + t)−Θ(z)
t
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= lim
t→0

e2πiαt − 1
t

Θ(z) = 2πiαΘ(z).

Hence
d

dz
log(Θ(z)) = 2πiα

and hence Θ(z) = Ae2πiαz for some A ∈ C∗.

This could be viewed as a set back in de�ning Real Multiplication analogues to
functions which form the foundation of Complex Multiplication, such as the Weier-
strass ℘-function and modular discriminant ∆. When Xτ is the Complex Torus
corresponding to the lattice Λτ = Z + Zτ there are four holomorphic Jacobi theta
functions denoted by θi(z, τ) for i = 1, 2, 3, 4. These are related to the ℘ and ∆-
functions via the following expressions:

℘(z; τ) = − log(−θ1(z; τ))′′ + c for some constant c;

θ3(0; τ)24 =
∆2( τ+1

2 )
∆(τ + 1)

where ∆ = η24.

We may have hoped that the existence of nontrivial holomorphic theta functions
associated to Quantum Tori would have enabled us to de�ne similar functions for a
real irrational parameter θ in place of the complex modulus τ .

The nonexistence of nontrivial holomorphic theta functions for pseudolattices
leads us to consider the existence of theta functions which are meromorphic. For
Complex Tori, elliptic functions and meromorphic theta functions can be constructed
out of quotients of holomorphic theta functions [12]. For Quantum Tori this technique
fails due to Proposition 4.2.1. In the next section we examine how it is possible to
de�ne meromorphic theta functions for L.
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4.3 Meromorphic Theta Functions for L

Let H denote the ring of holomorphic functions on C, and denote by K the �eld of
fractions of H. Then K∗ is the multiplicative group of those meromorphic function
which are not identically zero. Consider the group of 1-cocycles Z1(L,K∗). These
can be viewed as cocycles corresponding to meromorphic theta functions for the
pseudolattice L. We saw in the previous section that any holomorphic theta function
for L is constant. This motivates the following question:

Question 4.3.1 (Existence of meromorphic theta functions for L). Does
there exist Al(v) ∈ Z1(L,K∗), and a nonconstant meromorphic function F on C

such that for any l ∈ L, v ∈ C we have

F (v + l) = Al(v)F (v)?

De�nition 4.3.2. Let ω = (ω1, ω2) be a 2-tuple of elements ω1, ω2 ∈ R>0. The
double sine function with parameter ω is the unique meromorphic function Sω2 (z) on
C such that:

Sω2 (z, ω) = 2 sin
(
πz

ω2

)
Sω2 (z + ω1, ω) (4.6)

Sω2 (z, ω) = 2 sin
(
πz

ω1

)
Sω2 (z + ω2, ω) (4.7)

Sω2

(
ω1 + ω2

2
, ω2

)
= 1. (4.8)

This existence of such a function can be deduced from the properties of the double
gamma function. The development of the double gamma function by Barnes in [4]
in 1901 was motivated by Lerch's formula

log Γ(x) = ζ ′(0, x) +
1
2

log(2π), (4.9)
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where ζ(s, x) is the Riemann-Hurwitz zeta function. For x, ω1, ω2 ∈ R>0, and s ∈ C

with <(x) > 0, the double Riemann-Hurwitz zeta function is de�ned to be

ζ2(s, x, (ω1, ω2)) =
∑

n1,n2∈N

1
(n1ω1 + n2ω2 + x)s

.

This series converges absolutely for <(s) > 1 and has an analytic continuation to the
complex plane. The relationship between the gamma function and Riemann-Hurwitz
zeta function in (4.9) motivates the double gamma function Γ2(x, ω) to be de�ned
by the following relation:

log (Γ2(x, ω)) =
∂

∂s
ζ2(s, x, ω)

∣∣∣∣
s=0

+A

where A is some normalising constant. We can now de�ne the double sine function
by the following formula:

Sω2 (z) :=
Γ2(ω1 + ω2 − z, ω)

Γ2(z, ω)
.

Proposition 4.3.3. Let L = Zω1 + Zω2 be a pseudolattice. Then Sω2 (z) is a mero-
morphic theta function for L. More generally, suppose that G is a meromorphic
function such that there exist meromorphic functions f(v) and g(v) such that for all
v ∈ C

G(v + ω1) = f(v)G(v) (4.10)
G(v + ω2) = g(v)G(v). (4.11)

Then G(v) is a meromorphic theta function for L. If l = nω1 + mω2 ∈ L then we
have

G(v + l) = Al(v)G(v) (4.12)
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where
Al(v) :=

n−1∏
r=0

m−1∏
s=0

f(z + rω1)g(z + sω2).

Proof. It su�ces to prove the general case. It is an immediate consequence of the
periodicity relations of (4.10) and (4.11) to show that (4.12) is satis�ed. We need
to show that Al(v) ∈ Z1(L,H∗). Let l1 = n1ω1 +m1ω2 and l2 = n2ω1 +m2ω2 ∈ L,
and let l = l1 + l2 = nω1 +mω2. Then

Al1+l2(v) =
n−1∏
r=0

m−1∏
s=0

f(v + rω1)g(v + sω2)

=
n−1∏
r=n2

m−1∏
s=m2

f(v + rω1)g(v + sω2)

×
n2−1∏
r=0

m2−1∏
s=0

f(v + rω1)g(v + sω2)

=
n1−1∏
r=0

m1−1∏
s=0

f(v + (r + n2)ω1)g(v + (s+m2)ω2)

× Al2(v)

= Al1(v + l2)Al2(v)

Having exhibited the existence of meromorphic theta functions for pseudolattices,
the remainder of this chapter concerns their possible application to Real Multipli-
cation. In the next section we examine the work of Stark and Shintani to Hilbert's
twelfth problem, and observe that meromorphic theta functions for pseudolattices
have an important role to play in this area.
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4.4 Stark's Conjecture and Hilbert's Twelfth Problem

In this section we give a brief overview of a series of conjectures made by Stark con-
cerning the values of L-functions associated to number �elds at s = 0. This leads on
to give an account of the work of Shintani, who proved a version of Stark's conjecture
in special cases when the ground �eld was a real quadratic �eld. We aim to stress
the importance of the double sine function in Shintani's method, and its application
in his approach to a solution of Hilbert's twelfth problem for certain real quadratic
�elds. Motivated by so called �higher order� Stark conjectures, and Shintani's results
we will study generalisations of the double sine function in �4.5.

4.4.1 L-functions and Stark's conjecture

Let K be a number �eld, and suppose that M is an abelian extension of K with
Galois group G. Class �eld theory supplies a homomorphism

ψ̃M/K : IK → G

where IK denotes the group of fractional ideals of K. Let V be a representation of
G with character χ. Then de�ne

L(χ, s) =
∏
p

Lp(χ, s)

where p runs over the prime ideals in OK and

Lp(χ, s) =
(
1− χ(ψ̃M/K(p))NK/Qp−s

)−1
.
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Let S be a �nite set of places of K which is non-empty and contains all the in�nite
places of K. We de�ne the L-function associated to S by

LS(χ, s) :=
∏
p/∈S

Lp(χ, s).

These functions are known as L-functions, and when χ is a nonprincipal character
they have analytic continuations to the entire complex plane. There exists a func-
tional equation for these functions relating their values at s to their values at 1− s.

We can write
LS(χ, s) =

∑
g∈G

χ(g)LS(s, g)

where
LS(s, g) =

∑
a:(a,S)=1

ψ̃M/K(a)=g

1
NK/Q(a)s

.

When χ is nonprincipal the functional equation implies (see [63]) that the order
of vanishing of LS(χ, s) is equal to

r(χ) = |{v ∈ S : v splits completely in L}| . (4.13)

Suppose L is rami�ed at precisely one of the in�nite primes, and that S contains
precisely the rami�ed �nite primes and the in�nite ones. Then r(χ) = 1.

In a series of four papers [57�60] between 1971 and 1980, Stark studied the
values of the L-functions attached to such Galois extensions of number �elds at the
value s = 1, which are related via the functional equation to the values at s = 0.
If as above, the L-function has a �rst order zero at s = 0, the simple pole of the
gamma factor of the functional equation picks out the derivative of LS(χ, s) at s = 0.
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Under these conditions studying the value of the L-function at s = 1 is equivalent
to studying the value of the derivative at s = 0.

Conjecture 4.4.1 (Rank One Abelian Stark Conjecture [46],[62]). Let M/K

be an abelian extension, and S a �nite set of places of K containing the in�nite ones,
one of which splits completely in M . Let m be the number of roots of unity contained
in K. There exists an S-unit (not necessarily unique) ε ∈ M such that for every
character χ of G we have

d

ds
LS(χ, s)

∣∣∣∣
s=0

= − 1
m

∑
σ∈G

χ(σ) log |εσ|w .

Variations on this conjecture exist for when both in�nite primes ramify (known
as the Brumer-Stark conjecture), and when K is totally real. This last case was
studied by Tangedal in [62].

In the last of Stark's papers he proves a version of Conjecture 4.4.1 for the cases
case k = Q, and when k is an imaginary quadratic �eld. The latter result uses the
the work of Ramachandra in [43], which also was a driving force behind the work of
Shintani, whose work we study in the next section.

4.4.2 Real Quadratic Fields and the work of Shintani

In 1976 Shintani [53] introduced a generalisation of the Riemann-Hurwitz zeta func-
tion and proved its analytic continuation to the complex plane. Shintani used this
function to reprove the result of Siegel and Klingen [17, 55]:

Suppose k is a totally real �eld, and let χ a character of the ray class
group of F modulo an integral ideal f. Let S be the �nite set of those
primes dividing f. Then for each n ∈ N we have LS(1− n, χ) ∈ Q.
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Shintani showed that for a totally real �eld k, it is possible to express L-functions
associated to k as linear combinations of these �Shintani L-functions�, reducing the
study of the value of LS(s, χ) to that of Shintani's L-functions. In a subsequent
paper [54], Shintani proved a formula relating the value of his L-functions at s = 1

to the double gamma function studied by Barnes in [4], analogous to the Kronecker
limit formula for imaginary quadratic �elds. Using these ideas he went on to prove
a re�ned Stark conjecture for real quadratic �elds in [55].

Shintani's Limit Formula

In this section we give an account of Shintani's Kronecker limit formula for real
quadratic �elds.

Let F be a real quadratic �eld such that Gal(F/Q) is generated by σ. Given an
integral ideal g of OF we let F+

1,g denote the group of principal fractional ideals of F
generated by those elements α such that

1. α is totally positive. i.e. α > 0 and ασ > 0;

2. ordp(α− 1) > 0 for all p|g.

The group Ig
F /F

+
1,g is denoted by G+

g (F ), and is called the narrow class group of
F modulo g, where Ig

F denotes the group of fractional ideals coprime to g. When
g = OF we denote this group by G+(F ), and its order by h+. Given a fractional
ideal a we let [a]+ denote the class it represents in G+(F ).

Now �x an integral ideal f of F , and put

S(f) := {p : p is a prime ideal of OF dividing f} ∪ {1, σ}.
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Let χ be a character of G+
f (F ), and suppose ε is a fundamental totally positive unit

of F .

De�ne a simplicial cone in R2 by

C := {x(1, 1) + y(ε, εσ) : x > 0, y > 0}.

We choose and �x a set of representatives {a1, a2, . . . , ah+} of the narrow class group
G+(F ) of F . For each g ∈ G+

f (F ) there exists a unique i such that g = [fai]+ in
G+(F ).

With this notation, for g ∈ G+
f (F ) we de�ne the �nite set

R(g) = {z = x(1, 1) + y(ε, εσ) ∈ C ∩ (fai)
−1 : xfai ∈ g, 0 < x ≤ 1, 0 ≤ y < 1}.

Shintani showed that

LS(s, g) = N(fai)
−s

∑
z=x1+εx2∈R(g)

ζ(s, (ε, εσ), (x1, x2)) (4.14)

where ζ(s, (ε, εσ), (x1, x2)) is a special case of a family of zeta function we will call
�Shintani L-functions�. Higher dimensional versions of this function were studied in
[53], which he used to evaluate the zeta functions associated to totally real algebraic
number �elds at negative integers, obtaining the result of Siegel and Klingen stated
previously.

In [54], Shintani is able to give an explicit formula for the value of the derivative
his L-function at s = 0 in terms of Barnes' double gamma function. Shintani's result
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can be expressed ass

d

ds
ζ(s, (ε, εσ), (x1, x2))

∣∣∣∣
s=0

= log (T (x1 + εx2, (ε, εσ))) (4.15)

where

T (x1+εx2, (ε, εσ)) =
{

Γ2(x1 + x2ε, (1, ε))Γ2(x+ yεσ, (1, εσ))
ρ((1, ε))ρ((1, εσ))

}
e

ε−εσ

4
log

“
εσ

ε

”
(x2

1+x1− 1
6).

The numbers ρ((a1, a2)) are normalising constants which occur in the theory of the
double gamma function [4]. The main result of [54] is deduced from (4.14) and (4.15):

Theorem 4.4.2 (Shintani, [54]). Let F be a real quadratic �eld, and f an integral
ideal of OF . Let S = S(f) and suppose g ∈ G+

f (F ). Then

d

ds
LS(s, g)

∣∣∣∣
s=0

= log T (g)

where
T (g) =

∏
z=x1+εx2∈R(g)

T ((z, (ε, εσ)).

Hence if χ is a character of G+
f (F )

d

ds
LS(χ, 0)

∣∣∣∣
s=0

=
∑

g∈G+
f (F )

χ(g) log T (g).

This �nal expression is reminiscent of the one in the Rank One Abelian Stark
conjecture (Conjecture 4.4.1). With this comparison, Stark's conjecture suggests
that the class invariants T (g) are units in some ray class �eld over F .
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4.4.3 Shintani's Class Invariants

In 1978 Shintani produced a paper proving a modi�ed version of Stark's conjecture
for real quadratic �elds, subject to various conditions. Astonishingly, he was unaware
of Stark's conjecture when he formulated his results.

As before, let F be a real quadratic �eld, and f an integral ideal of F . Fix a totally
positive integer ν such that ν + 1 ∈ f, and let [ν]+f denote the class it represents in
G+

f (F ). By the Existence Theorem of class �eld theory (Theorem 1.1.1), there exists
an abelian extension Mf of F such that the reciprocity map induces an isomorphism

G+
f (F ) ∼= Gal(Mf/F ).

We shall abuse the notation and shall identify [ν]+f with its image under the reci-
procity map as an element of this Galois group. For g ∈ Gal(Mf/F ), Shintani studies
the value of LS(s, g) − L(s, [ν]+f g) using Theorem 4.4.2. The properties of ν imply
this has a particularly nice form:

LS(s, g)− LS(s, [ν]+f g) =
∑

z∈R(g)

log {F (z, (1, ε))F (zσ, (1, εσ))} (4.16)

where the function F (z, (1, ε)) is related to the double sine function introduced in
De�nition 4.3.2 by

F (z, (1, ε)) = S
(1,ε)
2 (z)−1.

Based on this result Shintani de�nes the natural class invariant

Xf(g) =
∏

z∈R(g)

F (z, (1, ε))F (zσ, (1, εσ)).
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With the notation of Theorem 4.4.2 we have

Xf(g) = T (g)T ([ν]+f g)
−1.

Theorem 4.4.2 implies that if Stark's conjecture is true, the invariants Xf(g) should
be units.

For a subgroup G of G+
f (F ), given c ∈ G+

f (F )/G de�ne

Xf(c,G) =
∏
g∈G

Xf(cg),

and let Mf(G) denote the sub�eld of Mf �xed by the elements of G. Using these
invariants Shintani proves the following subject to some conditions on G and further
rather restrictive hypotheses on the ideal f.

Theorem 4.4.3. There exists a positive rational number m such that

1. The invariant Xf(c,G)m is a unit in the �eld Mf(G). Moreover for every
g ∈ G+

f (F ) we have

{Xf(c,G)m}ψMf/F (g) = Xf(cg,G)m

2. Consider the system of invariants

⋃
f′‖f

{
Xf0(c, G̃)m : c ∈ G+

f0
(F )/G̃

}
.

The union is taken over all divisors f0 of f which satisfy the same conditions
that f does, and G̃ is the image of G under the natural homomorphism

G+
f (F ) −→ G+

f0
(F ).
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Then this system generates Mf(G) over F .

The conditions on G imply that precisely one of the in�nite primes of F splits in
Mf(G), so we are in the case considered by the Rank One Abelian Stark conjecture.
Theorem 4.4.3 not only serves to give a special case of Stark's conjecture, but also
has the two ingredients listed in the introduction which are required as a solution
to Hilbert's twelfth problem: A system of generators with an explicit action of the
Galois group.

4.5 Generalisations of the Double Gamma Function

Shintani's results imply that the double sine function will play an important role
in any solution to the Rank One Abelian Stark conjecture for real quadratic �elds.
The description of this function as a meromorphic theta function for a pseudolattice,
and hence a section of a line bundle over a Quantum Torus leads us to question
the existence of other such functions. In this section we generalise the notion of the
double gamma function originally de�ned by Barnes, with a view to investigating its
relationship to the values of L-series attached to real quadratic �elds.

Let ω1, ω2 ∈ R be such that the quotient ω2/ω1 is not negative. In [4], the double
gamma function was de�ned by the integral equation

Γ2(z, ω) := exp

{
1

2πi

∮
I(λ,∞)

e−zt
1

(1− e−ω1t)(1− e−ω2t)
log(−t) + γ

t
dt

}
. (4.17)

In this representation and in what follows, for r ∈ R>0 ∪ {∞}, I(λ, r) is the contour
from r towards zero along the positive real axis to λ, around zero anticlockwise by a
circle of radius λ and then out along the real axis to r.

We aim to generalise this integral de�nition to de�ne a family Γr2(z, ω) of func-
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tions which satisfy periodicity conditions with respect to the group Zω1 + Zω2, for
which we have Γ1

2(z, ω) = Γ2(z, ω).

Barnes supplies the following de�ning relation for the double sine function

log (Γ2(z, ω)) =
d

ds
ζ2(s, z, ω)

∣∣∣∣
s=0

where
ζ2(s, z, ω) =

∞∑
n,m=0

1
(z +mω1 + nω2)s

for <(s) > 1 and <(z) > 0. The function ζ2(s, z, ω) has meromorphic continuation
to the whole plane as a function of s and z.

De�nition 4.5.1. Let r ∈ N, and suppose ω = (ω1, ω2) ∈ R2 is such that the
quotient ω2/ω1 is not negative. For z ∈ C de�ne

log(Γr2(z, ω)) :=
(
d

ds

)r
ζ2(s, z, ω)

∣∣∣∣
s=0

. (4.18)

We have an integral formula for ζ2(s, z, ω) given by

ζ2(s, z, ω) =
Γ(1− s)

2πi

∮
I(λ,∞)

e−zt
(−t)s−1

(1− eω1t)(1− eω2t)
dt.

Integrating this r times we obtain an integral expression for Γr2(z, ω):

log (Γr2(z, ω)) =
1

2πi

r∑
m=0

(−1)m
(
r

m

)
Γ(m)(1)

∮
I(λ,∞)

e−zt

(1− eω1t)(1− eω2t)
log(−t)r−m

t
dt.

(4.19)

De�nition 4.5.2. For ω = (ω1, ω2) ∈ R2 such that the quotient ω2/ω1 is not
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negative, z ∈ C with <(z) > 0 de�ne

Gr2(z, ω) = exp

(
1

2πi

∮
I(λ,∞)

e−zt

(1− eω1t)(1− eω2t)
log(−t)r

t
dt

)

Lemma 4.5.3. Fix z ∈ C and ω ∈ R2
>0. Let W denote the �eld generated over Q

by the values Γ(i)(1) for i = 0, . . . , r. Let V vector space over W generated by the
values log

(
Γj2(z, ω)

)
for j = 0, . . . , r. Then V is equal to the vector space over W

generated by log
(
Gj2(z, ω)

)
for i, j = 0, . . . , r.

Proof. De�ne a matrix A with coe�cients

Aij = (−1)j
(
i

j

)
Γ(j)(1) ∈W.

By (4.19) we have

log (Γr2(z, ω)) =
r∑
j=0

Arj log
(
Gr−j2 (z, ω)

)
.

The matrix Aij is upper triangular, with nonzero diagonal entries, and therefore
invertible.

Corollary 4.5.4. Gr2(z, ω) is a meromorphic theta function on C for the pseudolat-
tice L = Zω1 + Zω2.

Proof. The meromorphicity follows from the meromorphicity of the ζ2(z, s, ω), (4.18)
and Lemma 4.5.3. Observe that

ζ2(s, z + ω1, ω) =
Γ(1− s)

2πi

∮
I(λ,∞)

e−zt[1 + (1− eω1t)]
(−t)s−1

(1− eω1t)(1− eω2t)
dt.

= ζ2(s, z, ω) +
Γ(1− s)

2πi

∮
I(λ,∞)

e−zt
(−t)s−1

(1− eω2t)
dt.

The second term is equal to a zeta function ζ1(s, z, ω2) which has meromorphic
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continuation to the whole plane [3]. Let Γr1(z, ω2) = exp
(
ζ
(r)
1 (0, z, ω2)

)
, and hence

Γr2(z + ω1, ω) = Γr1(z, ω1)Γr2(z, ω).

A similar expression holds for Γ2(z + ω2, ω).

Hence the functions Γr2(z, ω) are meromorphic theta functions for L. By Lemma
4.5.3, the functions Gr2(z, ω) are.

The aim of this chapter is to write the higher derivatives of L-functions associated
to real quadratic �elds in terms of meromorphic theta functions for a pseudolattice.
In order to achieve this we will need to introduce another function, which does not
seem to have any analogy in Shintani's work.

For t, u, z, v ∈ C and ω, λ ∈ R2 de�ne

g(t, u, z, v, ω, λ) =
ezte(|λ|−v)tu

(1− et(ω1+uλ1))(1− et(ω2+uλ2))
− ezt

(1− etω1)(1− etω2)
(4.20)

where |λ| = λ1 + λ2. This is a holomorphic function in u with a zero at u = 0. We
de�ne a family of functions CN (t, v, ω, λ) indexed by N ∈ N by

g(t, u, z, v, ω, λ) +
ezt

(1− etω1)(1− etω2)
=

∞∑
N=0

etzCN (t, v, ω, λ)uN . (4.21)

We note that
C0(t, v, ω, λ) =

1
(1− etω1)(1− etω2)

,

and hence

log(Gr2(z, ω)) =
1

2πi

∮
I(λ,∞)

log(−t)r

t
e(|ω|−z)tC0(t, v, ω, λ)dt
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for any λ ∈ R2, v ∈ C where |ω| = ω1 + ω2.

Suppose h is a function in a real variable vanishing at 0. Let J be the operator
de�ned on such a function by

J(h)(u) := − 1
2πi

∫ u

0

1
t
h(t)dt.

Let g(u) be the function de�ned in (4.20), considered as a function of u. Then we
have

Jk(g(u))(1) = (−1)k
∞∑
N=1

CN (t, v, ω, λ)
Nk

,

where the functions CN (t, v, ω, λ) are as de�ned in (4.21). Note that this can be
viewed as a variety of zeta function.

De�nition 4.5.5. Suppose ω, λ ∈ R2 are such that neither of the quotients ω2/ω1

or λ2/λ1 are negative. For z, v ∈ C and q, k ∈ N de�ne

Hq,k(z, v, ω, λ) :=
1

2πi

∮
I(λ,∞)

e(|ω|−z)tJk(g(u))(1)
log(−t)q

t
dt. (4.22)

Proposition 4.5.6. For all k, q,∈ N, the integral of (4.22) converges for <(z) > S

for some S depending on v, ω and λ. In this region the integral de�nes an analytic
function Hk,q(z, v, ω, λ), which is a theta function in z for the pseudolattice L =

Zω1 + Zω2.

Proof. The proof of this result is the subject of �A.1 of the Appendix.

This last result follows as a result of some crude estimates using Cauchy's integral
formula for the derivative of a holomorphic function. We conjecture that this may
be strengthened:

Conjecture 4.5.7. For all k, q ∈ N, v ∈ C and ω, λ ∈ R2
>0 the integral in (4.22)
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de�nes a meromorphic function Hq,k(z, v, ω, λ), which as a function in z is a theta
function for L = Zω1 + Zω2.

We will implicitly assume Conjecture 4.5.7 for the remainder of this thesis.

4.6 The derivative of L-functions of real quadratic �elds

Let F be a real quadratic �eld and suppose f is an integral ideal of F . Let S be a
�nite set of primes of F containing those primes dividing f. Let χ be a character of
the group G+

f (F ), and let LS(χ, s) denote the corresponding L-function. In �4.4.2,
we saw from the results of Shintani that under certain circumstances we can write
the value of L′S(χ, 0) as a linear combination of special values of meromorphic theta
functions for pseudolattices lying in F . In this section will prove the following

Theorem 4.6.1. Let F be a real quadratic �eld, f an integral ideal of F , and χ a
character of I f

F . Let m ∈ N, and let L(m)(χ, s) denote the mth derivative of the
L-function with respect to s. We may write L(m)

S (χ, 0) as an element of the �eld
Km

f (F ) generated over F by

1. 2πi, the values Γ(j)(1) for j = 0, . . . ,m. The maximal power of 2πi which
occurs is m+ 1;

2. the roots of unity of order p, where p is the maximal order of an element of
G+

f (F );

3. the logarithms of a �nite number of elements Ni ∈ F (which are speci�ed in
the statement of Lemma 4.6.3);

4. the values Lin (−εσ/ε), Lin (−ε/εσ) and Lin (−1) for n = 1 . . .m + 1, where
Lin denotes the nth polylogarithm function, and ε is a generator for the group
of totally positive units of F ;
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5. the special values

log(Gr2(x
i
1 + εxi2, (1, ε)))

log(Gr2(x
i
1 + εσxi2, (1, ε

σ)))

log(Hr,k(xi1 + εxi2, x
i
1 + εσxi2, (1, ε), (1, ε

σ)))

log(Hr,k(xi1 + εσxi2, x
i
1 + εxi2, (1, ε

σ), (1, ε)))

where xi is one of a �nite set of pairs of element of F determined by F and
the choice of ε. The highest value of r and k which occurs is m.

.

Remark. Throughout the proof I will refer to �elds generated over Q or F by some
combinations of these generators. For example, if I wish to refer to the �eld generated
over Q by those elements in statements 2, 4 and 5 in the statement of Theorem 4.6.1,
I shall denote this �eld by Q([2], [4], [5]).

We will break the proof up in to several stages. The �rst stage is to recall that
we can write the L-function of F as a �nite sum of �Shintani L-functions�.

De�nition 4.6.2 (Shintani L-function). Let a = (a1, a2), x = (x1, x2) ∈ R2.
Then we de�ne the Shintani L-function ζ(s, a, x) for <(s) > 1 by

ζ(s, a, x) =
∞∑

m,n=0

1
(x1 +m+ (x2 + n)a1)s(x1 +m+ (x2 + n)a2)s

. (4.23)

Elements of the proof of the following result were discussed in �4.4.2 when we
discussed Shintani's Limit Formula:

Lemma 4.6.3 (Shintani, [54]). Let ε > 1 be a generator for the group of totally
positive units of F , and let σ be the non trivial element of Gal(F/Q). There exists
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N ∈ N, 2-tuples x1, . . . , xN ∈ F 2, elements Ni ∈ F and ci ∈ µp such that

LS(χ, s) =
N∑
i=1

ciN
s
i ζ(s, (ε, ε

σ), xi). (4.24)

Di�erentiating the expression for LS(χ, s) in (4.24) m times with respect to s,
we see that at s = 0 the derivative of the L-function is given by

L
(m)
F (0, χ) =

m∑
j=0

N∑
i=1

ci

(
m

j

)
log(Ni)m−jζ(j)(0, (ε, εσ), xi). (4.25)

This expression shows the need to adjoin the roots of unity µp and the values log(Ni)

which are mentioned in parts 2 and 3 of the statement of Theorem 4.6.1. With this
result in mind, Theorem 4.6.1 will follow if we can prove the following:

Proposition 4.6.4. Let m ∈ N and suppose x ∈ F 2. Then with the notation of
Theorem 4.6.1, ζ(m)(0, (ε, εσ), x) ∈ Km

f (F ).

4.7 Proof of Theorem 4.6.1

We will prove Theorem 4.6.1 by proving Proposition 4.6.4.

An integral formula for ζ(s, a, x) is given in [54] as

4π2 (1 + e2πis)
Γ(1− s)2

ζ(s, a, x) =
∫
I(λ,∞)

(−t)2sdt
t

∫
I(λ,1)

us
du

u
[g(t, tu) + g(tu, t)] (4.26)

where
g(t1, t2) =

e(1−x1)(t1+t2)+(1−x2)(a1t1+a2t2)

(1− et1+t2)(1− ea1t1+a2t2)
.

We shall proceed by induction.

Proposition 4.7.1. For m = 0, 1, ζ(m)(0, (ε, εσ), x) ∈ Km
f (F ).
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Proof. These results follow from the statement and proof of Proposition 3 of [54].
We let B1 and B2 denote the �rst and second Bernoulli polynomials, which have
coe�cients in Q. The statement of this result implies that

ζ(1)(0, (ε, εσ), x) = log
(
Γ1

2(x1 + x2ε, x1 + x2ε
σ, (1, ε), (1, εσ))

)
+ log

(
Γ1

2(x1 + x2ε
σ, x1 + x2ε, (1, εσ), (1, ε))

)
+
εσ − ε

4εεσ
log
(
εσ

ε

)
B2(x1).

We may rewrite the �nal term as

εσ − ε

4εεσ
log
(
εσ

ε

)
B2(x1) =

εσ − ε

4εεσ
[Li1(−εσ/ε)− Li1(−ε/εσ)]B2(x1)

since Li1(x) = − log(1− x).

In the proof of this result, Shintani also shows that

ζ(0, (ε, εσ), x) =
1
4

(
1
ε

+
1
εσ

)
B2(x1) +B1(x1)B1(x2) +

1
4
(ε+ εσ)B2(x2).

Hence we may write the null values of these derivatives of the zeta function in terms
of the double gamma function. Since the �eld W of Lemma 4.5.3 is contained in
Q([1]), the result follows.

Now �x m ∈ N, and assume the inductive hypothesis holds for all values of b less
than m:

If x ∈ F 2 then ζ(b)(0, (ε, εσ), x) ∈ Km
f (F ) for all b = 0 . . .m− 1.

We need to show that ζ(m)(0, (ε, εσ), x) ∈ Km
f (F ).

Di�erentiate both sides of (4.26) m times with respect to s. Evaluating at s = 0
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we see that the left hand side of the result is a �nite sum of terms of the form

Tma,b := 2π2(2πi)aζ(b)(0, a, x)
(
d

ds

)m−a−b
Γ(1− s)

∣∣∣∣∣
s=0

(4.27)

for a, b ∈ N such that a + b ≤ m. By our inductive hypothesis, if b 6= m then
Tma,b ∈ Km

f (F ). Note that it is at this point we are required to adjoin the higher
derivatives of the gamma function in the statement of Theorem 4.6.1. To prove that
ζ(m)(0, (ε, εσ), x) ∈ Km

f (F ) it is therefore su�cient to show that the mth derivative
of the right hand side of (4.26) lies in Km

f (F ). The rest of this section is devoted to
proving that this is indeed true.

When we di�erentiate m times with respect to s, the right hand side of (4.26)
becomes

Im(s) :=
∫
I(λ,∞)

(−t)2sdt
t

∫
I(λ,1)

us
du

u
[g(t, tu) + g(tu, t)][2 log(−t) + log(u)]m.

Using the binomial theorem we see that at s = 0

Im(0) =
m∑
p=0

(
m

p

)
2pIp,m−p (4.28)

where
Ip,q :=

∫
I(λ,∞)

dt

t

∫
I(λ,1)

du

u
[g(t, tu) + g(tu, t)] log(−t)p log(u)q.

In order to evaluate integrals of this form we will �rst consider the integrals

Ap,q :=
∫
I(λ,∞)

dt

t

∫
I(λ,1)

du

u
g(t, tu) log(−t)p log(u)q

where p = m− q and q = 0, 1, . . . ,m. Once we have evaluated the integrals Ap,q, we
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shall be able to use our result to evaluate the integrals

Bp,q :=
∫
I(λ,∞)

dt

t

∫
I(λ,1)

du

u
g(tu, t) log(−t)p log(u)q. (4.29)

Having shown that both Ap,q and Bp,q lie in Km
f (K), since Ip,q = Ap,q +Bp,q it shall

follow that Ip,q ∈ Km
f (F ). Hence by (4.28) we will have shown Im(0) ∈ Km

f (F ).

We begin by noting that

g(t, tu) = g(t, u, (1− x1) + a1(1− x2), (1− x1) + a2(1− x2), (1, a1), (1, a2))

= − ezt

(1−et)(1−ea1t)
+
∑∞

N=1 e
tzCN (t, v, (1, a1), (1, a2))uN .

where z := (1− x1) + a1(1− x2) and v = (1− x1) + a2(1− x2).

Before we proceed we make a remark which will simplify our calculations. Note
that the integral expression we have for ζ(s, a, x) in (4.26) is independent of λ for
su�ciently small λ, and hence Im is independent of λ. Hence Im = limλ→0 Im. Now
suppose we can write Im as the sum of �nitely many integrals:

Im =
n∑
i=1

∫
I(λ,∞)

∫
I(λ,1)

fi(t, u)du dt.

Then providing each of the limits is �nite, we have

Im = lim
λ→0

Im =
n∑
i=1

lim
λ→0

∫
I(λ,∞)

∫
I(λ,1)

fi(t, u)du dt.

We will use this idea to calculate the integrals Ap,q. There are three cases to consider:

• When q = 0 we have

Ap,0 = −
∫
I(λ,∞)

dt

t

∫
I(λ,1)

du

u
eztC0(t, v, (1, a1), (1, a2)) log(−t)p
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+
∫
I(λ,∞)

dt

t

∫
I(λ,1)

du

u

∞∑
N=1

etzCN (t, v, (1, a1), (1, a2))uN log(−t)p.

The second integral vanishes since the integrand does not have poles on or
within the contour traced as u traces I(λ, 1). By our de�nitions

Ap,0 = 4π2 log (Gp2(1 + a1 − z, (1, a1)))

= 4π2 log (Gp2(x1 + a1x2, (1, a1)))
.

• Now consider the case when neither p or q are zero. Then

Ap,q = −
∫
I(λ,∞)

dt

t

∫
I(λ,1)

du

u

ezt

(1− et)(1− ea1t)
log(−t)p log(u)q

+
∫
I(λ,∞)

dt

t

∫
I(λ,1)

du

u

∞∑
N=1

etzCN (t, v, (1, a1), (1, a2))uN log(−t)p log(u)q.

Using Lemma A.2.1 (found in the Appendix) we �nd that this is equal to

−(2πi)q+1

q + 1

∫
I(λ,∞)

dt

t

ezt

(1− et)(1− ea1t)
log(−t)p

+
q−1∑
k=1

(−1)k
q!

(q − k)!
(2πi)q−k

∫
I(λ,∞)

dt

t

∞∑
N=0

etz
CN (t, v, (1, a1), (1, a2))

Nk+1
log(−t)p.

Using the de�nitions of �4.5 we �nd that

Ap,q = −(2πi)q+2

q + 1
log (Gp2(x1 + a1x2, (1, a1)))

−(2πi)q+1
q−1∑
k=0

q!
(q − k)!

log
(
Hp,k+1(x1 + a1x2, x1 + a2x2, (1, a1), (1, a2))

)
.

• Finally we consider the case when p = 0. In this case

A0,q = −
∫
I(λ,∞)

dt

t

∫
I(λ,1)

du

u

ezt

(1− et)(1− ea1t)
log(u)q
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+
∫
I(λ,∞)

dt

t

∫
I(λ,1)

du

u

∞∑
N=1

etzCN (t, v, (1, a1), (1, a2))uN log(u)q.

The coe�cient of t−1 in the integrand of the �rst integral is calculated to be

1
2

1 + u

a1 + a2u
B2(x1) +B1(x1)B1(x2) +

1
2
a1 + a2u

1 + u
B2(x2).

We use Lemma A.2.1 again to calculate the integral over I(λ, 1) to �nd that

A0,q = −
∫
I(λ,1)

[
1
2

1 + u

a1 + a2u
B2(x1) +B1(x1)B1(x2) +

1
2
a1 + a2u

1 + u
B2(x2)

]
log(u)q

u

+
q−1∑
k=0

(−1)k
q!

(q − k)!
(2πi)q−k

∫
I(λ,∞)

dt

t

∞∑
N=1

etz
CN (t, v, (1, a1), (1, a2))

Nk+1
.

Using the de�nitions of �4.5 this simpli�es to

A0,q = −
∫
I(λ,1)

[
1
2

1 + u

a1 + a2u
B2(x1) +B1(x1)B1(x2) +

1
2
a1 + a2u

1 + u
B2(x2)

]
log(u)q

u

−(2πi)q+1
q−1∑
k=0

q!
(q − k)!

log
(
H0,k+1(x1 + a1x2, x1 + a2x2, (1, a1), (1, a2))

)
.

To prove the result it su�ces to show that the �rst integral lies in Km
f (F ).

Note that
∫
I(λ,1)

log(u)q

u

1 + u

a1 + a2u
du

=
1

a1a2

∫
I(λ,1)

log(u)q
[

1
u
− a2

a1 + a2u

]
[(1− a1) + (a1 + a2u)] du.

We are therefore reduced to calculating the following integrals
∫
I(λ,1)

log(u)qdu; (4.30)
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∫
I(λ,1)

log(u)q

u
du; (4.31)

∫
I(λ,1)

log(u)q

a1 + a2u
du. (4.32)

Lemma A.2.1 shows that both the integrals (4.30) and (4.31) lie in Km
f (F ).

By the remark made earlier, to determine (4.32) it is su�cient to evaluate

lim
λ→0

∫
I(λ,1)

log(u)q

a1 + a2u
du.

It is easy to see that the integral around the circular path is O(λ), so tends to
0 as λ→ 0. This reduces the evaluation of (4.32) to that of

lim
λ→0

{∫ 1

λ

(log(u) + 2πi)q

a1 + a2u
du−

∫ 1

λ

log(u)q

a1 + a2u
du

}
.

Expanding this using the binomial theorem we are reduced to showing that the
following expression lies in Km

f (F ):

lim
λ→0

∫ 1

λ

log(u)q

a1 + a2u
du.

This is proved in Lemma A.2.2.

Hence we have shown that for all p = 0 . . .m, Ap,m−p ∈ Kf(F ). The details of the
proof describes this in more detail:

Lemma 4.7.2. There exist αl, βr,k ∈ F ([1]) and polynomials Q1, Q2 and Q3 ∈

Q([1], [4])[X1, X2] such that

Ap,q =
∑
l

αl log
(
Gl2(x1 + a1x2, (1, a1))

)

+
∑
r,k

βr,k log
(
Hr,k(x1 + a1x2, x1 + a2x2, (1, a1), (1, a2))

)
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+B2(x1)Q1[a1, a2] +B1(x1)B1(x2)Q2[a1, a2] +B2(x2)Q3[a1, a2].

In order to show that Im(0) ∈ Km
f (F ) we need to show that Bp,m−p ∈ Km

f (F )

where Bp,q is de�ned in (4.29). However, note that

g(tu, t) = g(t, u, (1− x1) + a2(1− x2), (1− x1) + a1(1− x2), (1, a2), (1, a1))

= g(t, u, v, z, (1, a2), (1, a1))

If Ap,q has an explicit description as in the statement of Lemma 4.7.2, then the above
expression implies that we have

Bp,q =
∑
l

αl log
(
Gl2(x1 + a2x2, (1, a2))

)

+
∑
r,k

βr,k log
(
Hr,k(x1 + a2x2, x1 + a1x2, (1, a2), (1, a1))

)
+B2(x1)Q1[a2, a1] +B1(x1)B1(x2)Q2[a2, a1] +B2(x2)Q3[a2, a1].

Hence Bp,q ∈ Km
f (F ), and therefore Ip,q = Ap,q + Bp,q does. By (4.28) Im(0) ∈

Km
f (F ).

2

4.8 Meromorphic Theta functions and Stark's conjecture

Let F be a real quadratic number �eld, and let f be an integral ideal of F . Let T be
a �nite set of primes, such that the �nite primes in T are precisely those dividing f,
and suppose χ is a character de�ned on I f

F . Let S be a set of places of F containing
S. Then the relationship between the L-functions corresponding to T and S is given
by

LS(χ, s) = LT (χ, s)
∏

p∈T\S

Lp(χ, s). (4.33)
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In �4.4 we examined the Rank One Abelian Stark conjecture, which concerned the
case when the L-function had a simple zero at s = 0. Higher order conjectures, exist
when the L-function has zeros of order greater than one. These conjectures link the
values of derivatives of L-functions over number �elds to the existence of units in Ga-
lois extensions, and have been the subject of study by Tate [63] and Rubin [49]. In the
light of these conjectures we suggest that information concerning the derivatives of
L-functions associated to real quadratic �elds will be relevant to Real Multiplication.

In �4.6 we identi�ed a certain �eld Km
f (F ) in which the value L(m)

S (χ, 0) lies. If
S contained both real primes of F then we observe from (4.13) that r(χ) = 2, and
LS(χ, 0) has a second order zero at s = 0. Although we have not explicitly done so,
using our method it is possible to give an exact formula for the value L(2)(χ, 0) in
terms of the theta functions Gr2 and Hk,r, and hence to formulate a conjecture on
how these functions may de�ne units in a class �eld above F .

When T is a set of primes containing S, the L-function LT (χ, 0) may have zeros
at s = 0 of arbitrary order. Using (4.33) we see that

L
(m)
T (χ, 0) ∈ Km

f (F )
(
{log(NF/Q(p)) : p ∈ T \ S}

)
.

Using analogous techniques to the proof of Theorem 4.6.1 we could obtain an explicit
formula for this value in terms of meromorphic theta functions for pseudolattices in
F .

Theorem 4.6.1 is a far cry from an immediate application to Hilbert's twelfth
problem. It does not give an explicit description for the value of the derivative of
the L-function (although this is implicit in the proof), and the �eld Km

f (F ) is clearly
not a number �eld. However, motivated by a technique of Shintani's [55] we can
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write certain L-values purely in terms of theta functions, without the transcendental
constant terms:

Theorem 4.8.1. Let F be a real quadratic �eld, f an integral ideal of F , and χ

a character of Gf(F ). Let m,n ∈ N. Let µ ∈ F be a totally positive element of
OF such that ν ≡ 1 mod f, and suppose g ∈ G+

f (F ). If S = S(f) then the value
L

(m)
S (0, g) − L

(m)
S (0, [ν]+f g) is an element of the �eld Kf(F ) generated over F by a

�nite number of meromorphic theta functions.

Proof. By the proof of Theorem 1 of [55], with the notation used previously we have

LS(s, g) = N(faj)
−s

∑
x1+εx2∈R(g)

ζ(s, (ε, εσ), (x1, x2)).

Di�erentiating m times with respect to s we get

L
(m)
S (0, g) =

∑
x1+εx2∈R(g)

m∑
k=0

(
m

k

)
log(N(faj))

m−kζ(k)(0, (ε, εσ), (x1, x2)).

By Lemma 4.7.2, by employing an induction argument it is easy to show that there
exist coe�cients al, br,k ∈ F ([1]) and polynomials R1, R2 and R3 ∈ Q([1, 4]) such
that

ζ(m)(0, (ε, εσ), (x1, x2)) =
∑
l

al log
(
Gl2(x1 + x2ε, (1, ε))

)

+
∑
l

al log
(
Gl2(x1 + x2ε

σ, (1, εσ))
)

+
∑
r,k

br,k log
(
Hr,k(x1 + x2ε, x1 + x2ε

σ, (1, ε), (1, εσ))
)

+
∑
r,k

br,k log
(
Hr,k(x1 + x2ε

σ, x1 + x2ε, (1, εσ), (1, ε))
)

+B2(x1)R1[ε, εσ] +B1(x1)B1(x2)R2[ε, εσ] +B2(x2)R3[ε, εσ].
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For z = x1 + x2ε ∈ R(g), by the proof of Theorem 1 of [55] the map

z 7→ −z :=


1− x1 if x2 = 0, 0 < x1 < 1

1− x1 + (1− x2)ε if 0 < x1, x2 < 1

1 + (1− x2)ε if x1 = 1, 0 < x2 < 1

is a bijection between R(g) and R([ν]+f g). If −z = x1 + x2ε, then observe that
B2(x1) = B2(x1), B1(x1)B1(x2) = B1(x1)B1(x2) and B2(x2) = B2(x2). Hence when
we compute L(m)

S (0, g) − L
(m)
S (0, [ν]+f g) using the above expression, the presence of

the terms with the polynomials R1, R2 and R3 vanish. We de�ne

Gr(z, ε) :=
Gr2(z, (1, ε))

Gr2(1 + ε− z, (1, ε))
,

Hr,k(z, v, ε, εσ) :=
Hr,k(z, v, (1, ε), (1, εσ))

Hr,k(1 + ε− z, v, (1, ε), (1, εσ))
.

It follows that L(m)
S (0, g)−L(m)

S (0, [ν]+f g) can be written as a �nite linear combination
with coe�cients in F of values of the form

log(N(faj))iGr(x1 + x2ε, ε)

log(N(faj))iGr(x1 + x2ε
σ, εσ)

log(N(faj))jHr,k(x1 + x2ε, x1 + x2ε
σ, ε, εσ)

log(N(faj))jHr,k(x1 + x2ε
σ, x1 + x2ε, ε

σ, ε).

The proof of Theorem 4.6.1 in �4.7 would enable us to give an explicit expression
for the value L(m)

S (χ, 0) as an element of of the �eld Km(F ), which is transcendental
over F . By the proof of Theorem 4.8.1 we could obtain an expression for

L
(m)
S (0, g)− L

(m)
S (0, [ν]+f g)
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as an element of a �eld Lf(F ). It would be interesting to investigate whether the �eld
Lf(F ) is algebraic over F , or if not, whether any sub�eld of it was. Indeed, according
to higher order versions of Stark's conjectures certain combinations (de�ned by the
explicit expression for the L-value) of the special values of theta functions are strongly
related to units in some algebraic extension of F .



Appendix A

Integral Calculations

A.1 The analyticity of Hq,k

Lemma A.1.1. Fix v ∈ C and ω, λ ∈ R2 such that neither of the quotients ω2/ω1

and λ2/λ1 are negative, and assume that |ωi| > |λi| for i = 1, 2. Then there exists
R, r > 1 such that for |t| su�ciently large and for all N

|CN (t, v, ω, λ)| ≤ 1
rN

max
{
er|t||λ1+λ2−v|, e−r|t||λ1+λ2−v|

}
R2

.

Proof. By the conditions on ω and λ, there exists r > 1 such that the function
g(t, u, z, v, ω, λ) de�ned in (4.20) is a meromorphic function in u possessing no poles
in the circle {|u| < r} other than the one at zero. By the de�nition of the functions
CN (t, v, ω, λ) in (4.21), by Cauchy's formula we have

CN (t, v, ω, λ) =
1

2πi

∮
|u|=r

1
uN+1

e(|λ|−v)tu

(1− et(ω1+λ1u))(1− et(ω2+λ2u))
du.

Therefore we obtain

|CN (t, v, ω, λ)| ≤ 1
2π

2πr
rN+1

max
|u|=r

{
e(|λ|−v)tu

(1− et(ω1+λ1u))(1− et(ω2+λ2u))

}
.
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Now consider
∣∣∣∣∣ e(|λ|−v)tu

(1− et(ω1+λ1u))(1− et(ω2+λ2u))

∣∣∣∣∣ =
∣∣e(|λ|−v)tu∣∣∣∣1− et(ω1+λ1u)

∣∣ ∣∣1− et(ω2+λ2u)
∣∣

≤
∣∣e(|λ|−v)tu∣∣∣∣1− ∣∣et(ω1+λ1u)
∣∣∣∣ ∣∣1− ∣∣et(ω2+λ2u)

∣∣∣∣
≤

max|u|=r
∣∣e(|λ|−v)tu∣∣

min|u|=r
∣∣1− ∣∣et(ω1+λ1u)

∣∣∣∣min|u|=r
∣∣1− ∣∣et(ω2+λ2u)

∣∣∣∣ . (A.1)

The remainder of the proof is concerned with obtaining bounds for these maxima
and minima. On the circle we have u = riθ for 0 ≤ θ ≤ 2π. We �rst consider the
denominator of (A.1), and put t = t1 + it2:

∣∣∣1− ∣∣∣et(ω1+λ1u)
∣∣∣∣∣∣ = ∣∣∣1− e<(t(ω1+λ1u))

∣∣∣
=
∣∣∣1− et1ω1+rt1λ1 cos(θ)−rt2λ1 sin(θ)

∣∣∣
This expression assumes its extremal values when t1 cos(θ) − t2 sin(θ) does, which
are equal to ± |t|. Hence

min
|u|=r

∣∣∣1− ∣∣∣et(ω1+λ1u)
∣∣∣∣∣∣ = min

{∣∣∣1− et1ω1+rλ1|t|
∣∣∣ , ∣∣∣1− et1ω1−rλ1|t|

∣∣∣} ,
and we obtain a similar expression for

min
|u|=r

∣∣∣1− ∣∣∣et(ω2+λ2u)
∣∣∣∣∣∣ .

Therefore, there exists a T ∈ R such that if |t| > T then

min
{

min
|u|=r

∣∣∣1− ∣∣∣et(ω1+λ1u)
∣∣∣∣∣∣ , min

|u|=r

∣∣∣1− ∣∣∣et(ω2+λ2u)
∣∣∣∣∣∣} ≥ R.
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Now consider the numerator of (A.1), and put v = v1 + iv2. We calculate

(|λ| − v)tu = (λ1 + λ2 − v1 − iv2)(t1 + it2)u

= ([(λ1 + λ2 − v1)t1 + v2t2] + i [(λ1 + λ2 − v1)t2 − t1v2])u

The real part of the above expression is equal to

r [(λ1 + λ2 − v1)t1 + v2t2] cos(θ)− r [(λ1 + λ2 − v1)t2 − t1v2] sin(θ).

Hence the extremal values of
∣∣∣e(|λ|−v)tu∣∣∣ = ∣∣∣e(|λ|−v)tr(cos(θ)+i sin(θ))

∣∣∣
are e±E where

E2 = r2 [(λ1 + λ2 − v1)t1 + v2t2]
2 + r2 [(λ1 + λ2 − v1)t2 − t1v2]

2

= r2
(
(λ1 + λ2 − v1)2t21 + v2

2t
2
2 + (λ1 + λ2 − v1)2t22 + t11v

2
2

)
= r2

(
(λ1 + λ2 − v1)2 |t|2 + v2

2 |t|
2
)

= r2 |t|2 |λ1 + λ2 − v|2

Corollary A.1.2. Under the same conditions as Lemma A.1.1, the integral
∫
I(λ,∞)

e(|ω|−z)tJk(g(u))(1)
log(−t)

t
dt

converges if <(z) > r |λ1 + λ2 − v|+ ω1 + ω2.
Proof. The integrand is bounded on the circular path around the origin, so it su�ces
to show that the following integrals converge:

∫ ∞

λ
e(|ω|−z)tJk(g(u))(1)

log(−t)
t

dt;
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∫ ∞

λ
e(|ω|−z)tJk(g(u))(1)

log(−t) + 2πi
t

dt.

Note that since t dominates log(t) there exists R1 such that if t > R1.

max
{∣∣∣∣ log(−t)

t

∣∣∣∣ , ∣∣∣∣ log(−t) + 2πi
t

∣∣∣∣} < 1.

Once again, on any �nite interval (λ,R) the integrands are bounded so it su�ces to
show that the following integral is convergent for su�ciently large R:

∫ ∞

R

∣∣∣e(|ω|−z)t∣∣∣ ∣∣∣Jk(g(u))(1)
∣∣∣ dt (A.2)

for su�ciently large R.
∣∣∣Jk(g(u))(1)

∣∣∣ ≤ ∣∣∣∣∣
∞∑
N=1

CN (t, v, ω, λ)
Nk

∣∣∣∣∣
≤

∞∑
N=1

|CN (t, v, ω, λ)|

≤
max

{
er|t||λ1+λ2−v|, e−r|t||λ1+λ2−v|

}
R2

∞∑
N=1

1
rN

.

Then the expression of (A.2) is less than or equal to

1
1− r

1
R2

∫ ∞

R

∣∣∣e(|ω|−z)t∣∣∣max
{
er|t||λ1+λ2−v|, e−r|t||λ1+λ2−v|

}
dt

If <(z) > r |λ1 + λ2 − v|+ ω1 + ω2 then this integral converges.

Corollary A.1.3. The integral (4.22) de�nes an analytic theta function for the
pseudolattice L = Zω1 + Zω2 in the region <(z) > r |λ1 + λ2 − v|+ ω1 + ω2.
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Proof. Using the integral formula we see that for i = 1, 2

log(Hk,q(z + ωi, v, ω, λ))

=
1

2πi

∮
I(λ,∞)

e(|ω|−z)t(1− eωit)Jk(g(u))(1)
log(−t)

t
dt+ log(Hk,q(z, v, ω, λ)).

In a similar way to the proof of Corollary A.1.2 one can show that the above integral
converges for <(z) > r |λ1 + λ2 − v|+ ω1 + ω2.

A.2 Contour Integrals used in �4.7

In this appendix we calculate two integrals that we use in Chapter 4 �4.7 whilst
proving Theorem 4.6.1.

Lemma A.2.1. Let m ∈ Z,and r ∈ N. Then

∫
I(λ,1)

um logr(u)du =


∑r−1

k=0(−1)k r!
(r−k)!

(2πi)r−k

(m+1)k+1 if m 6= −1
(2πi)r+1

r+1 if m = −1.

Proof. Since the integrand is holomorphic at all points away from 0, we know the
value of the integral is independent of λ. We will show that we can split this integral
in to a �nite sum of �nite integrals, and take the limit as λ→ 0. We have

∫
I(λ,1)

um logr(u)du =
∫ λ

1
um logr(u) +

∫ 1

λ
um [log(u) + 2πi]r

+iλm+1

∫ 2π

0
e(m+1)iθ [log(λ) + 2πiθ]r dθ.

The second integral is O(λ). The �rst integral is equal to
r−1∑
k=0

(
r

k

)
(2πi)r−k

∫ 1

λ
um logk(u)du. (A.3)
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Let
Im,k =

∫ 1

λ
um log(u)kdu

and note the decomposition um log(u)k = u−1 × um+1 log(u)k. Using integration by
parts we obtain

Im,k =
[
um+1 log(u)k+1

]1
λ
− (m+ 1)Im,k+1 − kIm,k.

We are only interested in the limit of these integrals as λ→ 0. Taking this limit we
obtain

lim
λ→0

Im,k = − k

m+ 1
lim
λ→0

Im,k−1.

This yields
lim
λ→0

Im,k = (−1)k
k!

(m+ 1)k+1

which when substituted in to (A.3) yields the result.

Lemma A.2.2. Let d be a non-negative integer. Then

lim
λ→0

∫ 1

λ

log(u)r

a1 + a2u
du =

r!
a2
Lir+1

(
−a2

a1

)
.

Proof. We �rst observe the identity
∫ t

0

logr(u)
a1 + a2u

du =
1
a2

r∑
i=0

(−1)i+1Lii+1(−at/b) log(t)r−i
r!

(r − i)!
. (A.4)

This is easy to prove by di�erentiation, and using the identities

Li1(z) = − log(1− z) and Lis+1(z) =
∫ z

0

Lis(t)
t

dt.
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Now split the integral in the statement of the lemma in to two parts:
∫ 1

λ

log(u)d

a1 + a2u
du =

∫ 1

0

log(u)d

a1 + a2u
du−

∫ λ

0

log(u)d

a1 + a2u
du.

Evaluating the integral of (A.4) at t = 1 yields r!
a2
Lir+1. The order of vanishing

of Lij(t) is at least 1 for j ≥ 1. Hence Lij(λ) log(λ)n → 0 as λ → 0 for any
j ≥ 1, n ∈ N.
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